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Abstract 
Protein kinases catalyse the phosphorylation of target proteins, controlling most cellular 
processes. The specificity of serine/threonine kinases is partly determined by 
interactions with a few residues near the phospho-acceptor residue, forming the so-
called kinase substrate motif. Kinases have been extensively duplicated throughout 
evolution but little is known about when in time new target motifs have arisen. Here we 
show that sequence variation occurring early in the evolution of kinases is dominated by 
changes in specificity determining residues. We then analysed kinase specificity 
models, based on known target sites, observing that specificity has remained mostly 
unchanged for recent kinase duplications. Finally, analysis of phosphorylation data from 
a taxonomically broad set of 48 eukaryotic species indicates that most phosphorylation 
motifs are broadly distributed in eukaryotes but not present in prokaryotes. Overall, our 
results suggest that the set of eukaryotes kinase motifs present today was acquired 
soon after the eukaryotic last common ancestor and that early expansions of the protein 
kinase fold rapidly explored the space of possible target motifs.  
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Introduction  
 
Protein kinases are essential for signal transduction and have been found in every 
eukaryotic species so far examined. They are required for almost all cellular processes 
(Endicott, Noble, and Johnson 2012), and mutations in protein kinases are often 
associated with diseases such as cancer and diabetes (Stenberg, Riikonen, and 
Vihinen 2000; Lahiry et al. 2010; Torkamani et al. 2008). Kinases are often described in 
terms of their 'specificity', which refers to the set of substrates that the kinase is able to 
phosphorylate in vivo. Multiple factors define the specificity of the kinase (Ubersax and 
Ferrell 2007). The kinase and substrate must be co-expressed and co-localised for 
example, and their interaction may be mediated by adaptor or scaffold proteins (Pawson 
and Scott 1997; Faux and Scott 1996). Docking sites on the substrate may also be 
employed to recruit the kinase and the substrate directly (Biondi and Nebreda 2003; 
Goldsmith et al. 2007). Fundamentally, selectivity is often defined by the structural 
interface between the kinase active site and the residues flanking the target serine, 
threonine, or tyrosine – the so-called 'peptide specificity' of the kinase. 
 
The kinase peptide specificity is usually described in terms of a short linear motif 
(Pearson and Kemp 1991; Pinna and Ruzzene 1996). The substrate motif of PKA, for 
example, is R-R-x-S/T, meaning that an arginine is preferred 2 and 3 positions N-
terminal to the target serine/threonine in the PKA active site. Conceptually, different 
substrate motifs can be thought of as different channels of communication within the 
cell, allowing for kinases that are simultaneously active to regulate a specific set of 
substrates. Mitotic kinases with overlapping localisations, for example, tend to have 
mutually exclusive substrate motifs, presumably to prevent the aberrant phosphorylation 
of non-targets during cell cycle progression (Alexander et al. 2011). 
 
The range of possible selectivities at the active site is likely restricted by the structure of 
the kinase domain itself. In turn, the capacity of the kinase fold to create novel 
specificity preferences through mutations may determine the maximum effective 
number of kinases possible for a genome, as it has been suggested for transcription 
factors (Itzkovitz, Tlusty, and Alon 2006). In this analogy to a communication channel, 
the full set of possible substrate motifs can be thought as the full bandwidth or 
“communication potential” of the kinase fold. Understanding how this communication 
potential was explored over evolutionary time can reveal insights into the evolution of 
cell pathways and cell signalling. However, while the proliferation of the kinase domain 
itself has been well documented, much less is known about the evolution of new kinase 
specificities at the active site (Ochoa, Bradley, and Beltrao 2018). One study found that 
the frequency of tyrosine kinases in the proteome correlates negatively with the 
frequency of tyrosine residues in the proteome, implying some extent of coevolution 
between kinases and substrates (Tan et al. 2009). Another study found that the 
evolution of a new specificity in the CMGC group proceeded through an intermediate of 
broad specificity (P+1/R+1) before later specialisation into distinct target preferences 
(P+1 and R+1) (Howard et al. 2014).  
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Currently, the scarcity of kinase-substrate interaction data outside of a few model 
organisms (human, mouse, and budding yeast) is limiting for further research. However, 
other sources of data can yield insights more indirectly. An evolutionary analysis of the 
kinase domain can be informative provided that the specificity-determining positions 
(SDPs) are known (Bradley et al. 2017). This applies to phosphoproteome data also 
provided that motifs can be extracted and linked to the known specificities of kinase 
families or subfamilies. Here we collect kinase sequence data, kinase specificity data, 
and phosphorylation data from several species to perform an evolutionary analysis of 
kinase specificity. Collectively, the results suggest that most specificities arose early in 
the evolution of protein kinases, followed by a long period of relative stasis. 
 
Results 
 
Residues implicated in the differentiation of duplicated kinases  
  
The eukaryotic protein kinase superfamily by convention is divided hierarchically at the 
level of 'groups', 'families', and 'subfamilies' (Hanks and Hunter 1995; Manning et al. 
2002). The eight canonical kinase groups (AGC, CAMK, CK1, CMGC, RGC, STE, TKL, 
TK) evolved the earliest and, with the exception of tyrosine kinases (TKs) and the RGC 
group, are thought to have arisen in an early eukaryotic ancestor (Miranda-Saavedra 
and Barton 2007). Kinase families and then subfamilies generally emerged later during 
evolution and reflect more distinct features of the kinase's function (specificity, 
regulation, localisation, etc) (Hanks and Hunter 1995). In order to study the evolution of 
kinase specificity, we first performed a systematic phylogenetic analysis to predict 
kinase functionally divergent residues for every kinase family and subfamily where 
possible. To this end, a global kinase domain phylogeny was constructed for the 9 
annotated opisthokont kinomes (H. sapiens, M. musculus, S. purpuratus, D. 
melanogaster, C. elegans, A. queenslandica, M. brevicollis, S. cerevisiae, and C. 
cinerea) present in the kinase database KinBase 
(http://kinase.com/web/current/kinbase/). For 99 kinases families and 88 kinase 
subfamilies, we identified residues that are conserved within a clade but differ from the 
sister clade in the phylogeny. These residues are implicated as functionally divergent 
residues and are expected to underlie functional differences between kinase sister 
clades. This was achieved by calculating divergence scores (s) for each alignment 
position and each family and subfamily using an adaptation of the BADASP method 
(Edwards and Shields 2005) that is based on ancestral sequence reconstructions 
(Figure 1a, Methods). 
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Figure 1 - Family and subfamily divergent residues. a) Explanation of the score used to
identify divergent residues. RC (recent conservation): conservation of residue within
the family of interest. AC (ancestral conservation): extent to which the residues are
conserved between sister clades in the phylogeny. p(AC): a measure of confidence in
the ancestral sequence prediction. A full explanation is given in the Methods section. b-
e) Examples of residues predicted to be functionally divergent in the SRPK, CDC7,
CAMK2, and PLK families.  
 
Functionally divergent residues were first predicted across all kinase families. A detailed
analysis of the results suggests multiple ways in which novel kinase functions have
evolved at the family level via changes in functionally relevant residues. In the SRPK
family (CMGC) for example, two substitutions to negatively charged amino acids (D
and/or E) map to parts of the kinase structure that have been shown previously to bind
to a positively charged docking peptide (Figure 1b; (Ngo et al. 2005)). In the CDC7
family (CMGC) also, two of the identified functionally divergent residues bind to the
CDC7 activator protein named Dbf4 (Figure 1c;  (Hughes et al. 2012)), and are
therefore important for kinase regulation. In other examples, the functionally divergent
residues identified can help to account for the specificity of the kinase. Two substitutions
in the CAMK2 family (CAMK) for example bind to a preferred D/E residue at the
substrate +2 position (PDB: 5H9B, unpublished). A glycine substitution in the
activation loop has also been shown to be important for kinase function (LeBoeuf,
Gruninger, and Garcia 2007), and may explain why CAMK2 kinases do not require
activation loop phosphorylation for activity ((Bhattacharyya et al. 2016), Figure 1d).
Finally, many substitutions for the acidophilic PLK family map to SDRs and are
convergent with those identified for the unrelated GRK family (AGC) that is also
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acidophilic ((Bradley et al. 2017), Figure 1e). These examples illustrate how the 
predicted functionally divergent sites between families or subfamilies of kinases can 
map to functionally relevant residues. We next studied if this would be a general feature 
of these residues across many families and subfamilies.   
 
 
Functionally important residues are often divergent across kinase families and 
subfamilies    
 
Across all kinase families, we aggregated the total number of predicted functionally 
divergent residues or ‘switches’ at each position in the kinase domain. This allows us to 
predict positions that often determine the functional differences between kinase families. 
These were mapped across the kinase catalytic domain sequence and fold (Figure 2, 
left). The distribution of residues that are often implicated in kinase family functional 
differences is not uniform and strongly enriched within or close to the kinase activation 
segment, the αC helix, the β5-αD region, and the αF-αG regions (Figure 2, left). For 
further analysis, we divided kinase residues into functional categories: 'catalytic' 
(catalytic residues and the catalytic spine), 'proximal' (within 4 Angstroms of the peptide 
substrate), 'distal SDRs' (distal SDRs implicated in (Bradley et al. 2017)), 'regulatory' 
(regulatory spine residues and those within and surrounding the activation loop), 
'interaction' residues (those most frequently in contact with other protein domains) and 
'other' (residues not belonging to any of the previous categories). We defined as 
frequently-switching residues those at the 90th percentile of residues with most 
changes. The majority (14/21) of frequently switching residues can be assigned to a 
functional category (catalysis, specificity, regulation, etc.), which is more than would be 
expected by chance (p=0.0083; Fisher's Exact Test, one-sided). This suggests that this 
approach can successfully identify residues that are of relevance for the functional 
divergence of kinases. Of these residues, 8 have been implicated in determining 
differences in kinase specificity. The number of substitutions for specificity determining 
residues is generally higher than that for residues without an assigned function (Mann-
Whitney, one-tailed, p = 1.1x10-5). These results suggest that substrate-determining 
residues often undergo substitutions as new kinase families emerge.  
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Figure 2 - Aggregated analysis of sequence divergence across kinase families (left) and
subfamilies (right). For each kinase domain position, the total number of ‘switches’
(score > 95th percentile of scores) was counted across all families or subfamilies
considered (see Methods). Top: Results mapped to kinase structures. Darker shades
of red/blue represent a higher number of switches. Middle: Total number of switches
mapped to the kinase primary sequence, with secondary structure elements
represented above the barplot. A domain position is considered to be ‘frequently
switching’ if the number of switches lies above a 90th percentile threshold for the kinase
domain (246 positions). The threshold is ‘8’ for families and ‘7’ for subfamilies.  Bottom:
The values for each domain position have been grouped according to the functional
category (‘catalytic’, ’regulatory’, ’proximal’, etc) and the distribution plotted separately at
the family and subfamily level.  
 
 
A similar analysis was performed for kinase subfamily comparisons (Figure 2, right).
Similar to kinase family evolution, a large fraction (73%, 11 out of 15) of residues
frequently implicated in the functional differences between kinase subfamilies were also
annotated to a functional category (p=0.0068 ; Fisher's Exact Test, one-sided). We also
observed a higher than expected number of switches for putative specificity determining
residues at the subfamily level when compared to residues not annotated with a

nd 
es’ 
ies 
es 
es 
ts 
tly 
se 
m: 
al 

 at 

). 
es 
so 
so 
ng 
 a 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/443945doi: bioRxiv preprint 

https://doi.org/10.1101/443945
http://creativecommons.org/licenses/by/4.0/


 
 

function (Mann-Whitney, one-tailed, p = 1.0x10-4). However, we note that the frequently 
switching residues for subfamilies are more evenly distributed across functional classes 
than for the family level analysis. 
 
 
Evolution of experimentally determined kinase target preferences 
 
The above results suggest that residues important for kinase specificity are often 
different across kinase families and less so across subfamilies. We then studied the 
extent by which these changes in kinase residues impact on their target specificity. To 
study this, we derived kinase specificity models for 101 S/T kinases from human and 
mouse using experimentally determined target sites (Methods). We then tested the 
extent to which kinase specificities differ within and between groups, families, and 
subfamilies for kinases of known specificity. In line with expectation, the differences in 
specificity are larger across groups than across families, and also larger across families 
than across subfamilies (Figure 3a). For subfamilies, the differences are not statistically 
different from the distances measured within subfamilies (p=0.21, Kolmogorov-Smirnov-
test, two-sided). These results suggest that kinase specificity often diverges at the level 
of the group, less so at the family level, and rarely when new subfamilies emerge. We 
show in Figure 3b some examples of typical differences in kinase specificity for the 3 
classifications. Although the differences in specificity across families is statistically 
different from expectation (p<<0.01, Kolmogorov-Smirnov-test, two-sided), the “typical” 
differences observed are smaller than at the group level. This is illustrated by the RSK 
and PKC families (Figure 3b, center), which both have a preference for arginine at the 
-3 position, but PKC additionally has a preference for R at position +2 while RSK has a 
modest preference for the same residue at  position -5.    
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Figure 3 - a) Differences in S/T kinase specificity models at the group, family and
subfamily levels. The Frobenius distance was calculated for all possible pairwise
comparisons within and between groups, families, and subfamilies b) Representative
kinase pairs belonging to different groups (left), families (center), and subfamilies (right).
Frobenius distances for each of the 3 pairs are given beneath the logos c) A simplified
Tree of Life with three important divergence times (plant-opisthokont, fungi-metazoa,
chordate - non-chordate) marked. d) Phylogenetic estimation of kinase ages at the
group, family, and subfamily level for S/T kinases. 
 
To put the previous results into the context of evolutionary time-scales, we sought to
estimate the time of origin for many kinase groups, families and subfamilies. To this
end, the presence or absence of every S/T kinase group, family, and subfamily, was
predicted for several species across the Tree of Life (Figure 3c). The phylogenetic
origin of kinase groups/families/subfamilies was then predicted using ancestral state
reconstruction, which allowed their emergence to be dated based on the know
divergence times between species (Kumar et al. 2017). Overall, we estimated that most
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kinase groups arose in a universal eukaryotic ancestor, in line with a previous study 
(Miranda-Saavedra and Barton 2007). For kinase families, around 55% are estimated to 
have arisen in a universal ancestor and up to 65% have arisen before the split between 
chordates and non-chordates (~800 mya). Around 60% of subfamilies were similarly 
estimated to have arisen before the split between chordates and non-chordates (Figure 
3d). Together with the analysis of kinase specificity differences, this result suggests that 
relatively few kinase specificities are likely to have arisen in the past 800 million years of 
kinase evolution.    
 
 
Kinase motif enrichment across 48 eukaryotic species 
 
The analysis of kinase specificity differences described above can only be performed for 
kinases with many experimentally determined targets. For most kinases, this 
information is not available (Hornbeck et al. 2015; Bradley et al. 2017). As an alternative 
way to study the evolution of kinase specificity, we analyzed MS-derived 
phosphorylation sites from a broad range of species. The phosphoproteome of any 
given species represents an ensemble of kinase activities. Many of these kinases will 
have preferred target site sequence motifs that are required for optimal substrate 
phosphorylation. The signature of several different kinases may therefore be encoded in 
each phosphoproteome.  
 
For this study, we were interested in determining the extent to which different kinase 
motifs have been exploited during the evolution of the eukaryotes. To this end, 
phosphoproteome data was collected from 48 eukaryotic species, including species 
from the alveolates (4), amoebozoa (1), excavates (3), fungi (19), heterokonts (1), 
metazoa (12) and plants (8). We first measured the enrichment of three well-established 
substrate signatures (R-x-x-S/T, S/T-P, and D/E+3) and found them to be strongly 
enriched in nearly all of the 48 species (Figure 4, top). This suggests that these 3 
common preferences are likely to have been present very early on during the evolution 
of the eukaryotes. To extend this to other kinase preferences, target site S/T sequence 
motifs were extracted from each species phosphoproteome using the motif-x tool 
(Schwartz and Gygi 2005). Motifs without consistent enrichment across related species 
were filtered from any further analysis (Methods). In total, 29 motifs were (Figure 4) 
identified, which account for ~54% of all phosphosites analysed (Supplementary 
Figure 1a).  
 
Among the 29 motifs identified, 11 have been characterised previously in the literature 
and have been assigned to at least one kinase family or subfamily. This includes well-
known motifs such as the CDK family motif (S/T-P-K) and the CK2 family motif (S/T-
D/E-x-D/E). Eight of the motifs feature either a proline at position +1 or an arginine at 
position -3. Other motifs were identified in addition to those that are well characterized 
(Figure 4, motifs in black). Here multiple constraints were imposed to ensure that the 
selected motifs were likely to represent bona fide kinase target motifs. For example, 
motifs with simple S/T additions to a classical motif were filtered from the analysis, as 
they could result from phosphosite misassignment within phosphopeptides from the 
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mass spectrometry analysis or potential clustering of phosphorylation sites in the
substrate primary sequences (Moses, Hériché, and Durbin 2007; Schweiger and Linial
2010). Overall, 18 uncharacterized motifs were selected using the protocol described in
the Methods section. Some of these motifs feature ‘new’ substrate specificity
determinants such as asparagine (N) and glycine (G). 
 
In Figure 4, enrichment p-values for each motif were calculated for each species
relative to a background set of shuffled phosphorylation site sequences, with the S/T
retained at the centre. This analysis suggests that the majority of motifs (Figure 4) are
pervasive across the eukaryotic Tree of Life. This finding is even more evident when
phosphorylation data is pooled from each of the major taxonomic clades (animals, fungi,
plant, etc.), and the enrichment p-values recalculated (Supplementary figure 1b and
1c). Most of the motifs analysed are distributed across clades that diverged early during
the evolution of the eukaryotes. For example, 18 out of 29 motifs (62%) are highly
enriched (p < 1x10-6) in animals, fungi, and plants indicating that they are therefore
likely to be of ancient origin.  

Figure 4 - Enrichment of S/T phosphorylation motifs across several species. Binomial p-
values were calculated for each motif and each species considered. The heatmap cells
are coloured according to the extent of enrichment for that particular motif and species
(see legend, bottom-right). The numbers in the column labels correspond to the sample
size of unique S/T phosphorylation sites (15mer). Prokaryotic phosphosite samples are
coloured in purple. Top: enrichment of three common phosphorylation signatures (S/T-
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P, R-x-x-S/T, S/T-x-x-D/E). Bottom: enrichment of 29 motifs discovered using the motif-
x tool. Motifs where the effector kinase has already been described in the literature are 
coloured in red.  
 
The distribution of motif enrichments between related species is non-random as 
supported by tests for the phylogenetic signal of phosphorylation motifs 
(Supplementary Table 1). We tested whether kinase motif enrichments correlate with 
the frequency of their expected effector kinases in the kinome, including for example the 
frequency of CDKs with the frequency of S/T-P-x-K motifs. However, our analysis 
suggests that kinase family or subfamily frequencies are not generally correlated with 
motif enrichment values when the phylogenetic interdependence of data points is taken 
into account (Felsenstein 1985) (Supplementary Figure 2). In spite of this, there is 
local evidence of kinase-substrate coevolution for some clades and motifs. In the plants, 
for example, the lack of enrichment of the basophilic R-R-x-S/T motifs can likely be 
explained by the depletion of its cognate effector kinase (PKA/PKG) (Supplementary 
Figure 3), as has been suggested previously (Resjö et al. 2014; Frades, Resjö, and 
Andreasson 2015). For the CDK family also, the pattern of S/T-P-x-K evolution and 
CDK evolution is similar across many species (Supplementary Figure 4). However, 
many other patterns cannot be similarly accounted for, which suggests that there are 
multiple factors can that affect the fold enrichment values calculated. 
 
 
Kinase motif enrichment in prokaryotes 
 
Some kinases encoded in the genome of prokaryotes are homologous to eukaryotic 
protein kinases and are currently referred to as ELKs (ePK-like kinases) (Oruganty et al. 
2016; Pereira, Goss, and Dworkin 2011). Current genomic data now suggests that 
these eukaryotic-like kinases are as prevalent as histidine kinases in the prokaryotes 
(Kannan et al. 2007). Until recently however the S/T phosphoproteomes of archaean 
and bacterial species had remained poorly characterised (M.-H. Lin, Sugiyama, and 
Ishihama 2015). We repeated the motif analysis on the species E. coli (bacteria) and 
Sulfolobus spp. (archaea), which are currently the only two organisms with more than 
1,000 determined S/T phosphosites (M.-H. Lin, Sugiyama, and Ishihama 2015; Pan et 
al. 2015; Potel et al. 2018). This analysis suggests that a large majority of the eukaryotic 
phosphorylation motifs discussed previously are not significantly enriched in these two 
species (Figure 4). For E. coli, there is a moderate enrichment for some single-site 
motifs, which could have evolved convergently with those motifs found in the 
eukaryotes. For Sulfolobus, we observe only weak enrichment for five eukaryotic motifs 
(S/T-L/I/V, S/T-P-x-x-x-K, S/T-P-R/K, R/K-R-x-x-S/T, and R-x-x-S/T-L/I/V). We note also 
that the S/T-P and R-x-x-S/T motifs that are highly prevalent in the eukaryotes show no 
evidence of enrichment across the prokaryotic species tested (Figure 4). While it could 
be argued that the low phosphosite sample sizes (2287 and 1655 for E.coli and 
Sulfolobus, respectively) precludes the reliable detection of weaker motifs, we note that 
both of these signatures (S/T-P and R-x-x-S/T) were found to be strongly enriched in 
eukaryotic species with small sample sizes (Dictyostelium discoideum: 1389, 
Leishmania infantum: 1266). A similar lack of enrichment was found for a pooled 
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sample of prokaryotic phosphorylation sites (n=1440) from several species (Pan et al. 
2015) (Figure 4).  
 
Prokaryotic motifs were then identified de novo using the motif-x tool for E. coli and the 
Sulfolobus genus. None of the motifs identified overlap with the motifs recovered 
previously for eukaryotic species (Supplementary Tables 2 and 3). For Sulfolobus, in 
particular, we also found that 5 out of the 7 motifs identified contain a positively charged 
residue (R/K), implying the existence of basophilic Sulfolobus kinases.  
 
 
Discussion 
 
Here we have explored the evolution of protein kinase specificity at the active site, using 
a combination of kinase sequence data, phosphorylation data, and kinase specificity 
models. Using the sequence of protein kinases across several species, we have shown 
that the evolution of new kinase families is dominated by sequence changes that are 
likely to impact on kinase function, including kinase peptide specificity. This is in line 
with our observation that kinases belonging to different groups and families typically 
show significant differences in their specificity. In contrast, kinases belonging to sister 
subfamilies do not show significant differences in their specificity. A phylogenetic 
analysis revealed that most kinase groups and families (89% and 54%, respectively) are 
of ancient origin among the eukaryotes, while subfamilies generally emerged later 
during evolution (only 32% are of ancient origin). Finally, phosphorylation motifs 
determined for 48 eukaryotic species were found to be broadly distributed across 
divergent species and likely emerged in an early eukaryotic ancestor after their 
divergence from the prokaryotes. Taken these different observations together, we 
suggest that the majority of the kinase active site specificities present today in 
eukaryotic species have emerged early on during the evolution of eukaryotes.  
 
The analysis here of divergent residues across kinase families follows a similar analysis 
employing a BLAST-based approach (Kalaivani, Reema, and Srinivasan 2018). This 
analysis is focused here on the kinase catalytic domain and we did not take into account 
the evolution of domain composition or sequence changes outside the catalytic domain, 
which may have a significant impact on catalytic function (Pearce, Komander, and 
Alessi 2010). Kinase docking interfaces also are not amenable to the aggregated 
analysis attempted here as their location in the kinase domain tends to differ 
significantly between families (Biondi and Nebreda 2003). In general, the approach 
used here assumes that a given kinase domain position will adopt a given function 
(catalytic, regulatory, proximal, etc) across all kinase families. Examples are known 
already however of modes of regulation or specificity that are particular to a given family 
or subfamily (Sang et al. 2018; Simon et al. 2016). The important residues may be 
functionally misannotated in such cases, which would underestimate the extent of 
divergence in regulatory or substrate-specific functions. Such kinase-specific examples 
of residue function may account for many of the switching events currently placed in the 
‘Other’ category. 
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From the analysis of kinase specificity models, it is apparent that new specificities are 
often generated following the emergence of a new kinase group or family, but not 
following the emergence of a new kinase subfamily. This is not a surprising result given 
that kinase groups and families tend to be older than kinase subfamilies (Figure 3d). It 
is however in conflict with the finding that SDR substitutions are also present throughout 
the evolution of subfamilies (Figure 2, subfamilies). There are two known cases in the 
literature (PLK and GRK) where modest differences in specificity are observed between 
sister subfamilies (Onorato et al. 1991; Franchin et al. 2014). We suggest that 
differences in peptide specificity can exist between subfamilies but on average, and 
based on the current small sample size of specificity models, these tend to be very 
modest at the subfamily level. 
 
Finally, the analysis of phosphorylation motifs across 48 different eukaryotic species 
suggests that most arose in an early eukaryotic ancestor. The phosphorylation dataset 
spans the Tree of Life but is unsurprisingly biased towards animal, fungal, and plant 
species. Ongoing projects for increased representation of the protist superkingdoms 
could help to address this problem in the future (Waller et al. 2018). From this analysis 
also we conclude that most eukaryotic phosphomotifs post-date the divergence of 
eukaryotes and prokaryotes. The acquisition of phosphoproteome data from several 
more prokaryote species will be required however to strengthen this conclusion. In 
general, the increase in statistical power enabled by larger datasets will enable the 
reliable identification of weakly enriched motifs (‘false negatives’), many of which are 
likely missing from this analysis.  
 
Collectively, the results suggest that the evolution of new kinase specificities was 
characterised by a ‘burst’ in early eukaryotic evolution followed by a period of relative 
stasis. Most gene duplicates will be quickly silenced (Lynch and Conery 2000) and 
diversification of function is often considered a primary means for the “survival” a newly 
duplicated genes in the genome. The capacity of the kinase fold to generate diverse 
target preferences in the active site interaction through mutations may have been an 
important factor underlying the success of this fold. Our analysis suggests that over the 
past 800 million years there have been relatively few novel motifs emerging in 
eukaryotic kinases. It is interesting to speculate why this is the case. It is possible that 
no new distinct mode of interaction can be accommodated at the active site or that such 
novel motifs are not easily reached via mutations of existing kinases. As mentioned 
above, kinase specificity is determined via multiple mechanisms including docking 
interactions, expression, localization, activation modes etc. Duplicated kinases can, 
therefore, be made non-redundant by diversifying the way by which they regulate their 
substrates to avoid miss-regulation in multiple different ways (Alexander et al. 2011). 
Additional research will be needed to study how the different kinase specificity 
mechanisms have evolved in kinases.      
 
Protein kinases are just one of many peptide-binding domain types that can recognize 
diverse sets of peptide motifs. Other such domains include for example the PDZ, SH2, 
SH3, and WW, among many other families. It remains to be seen whether the findings 
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described here relating to the evolution of different target motifs will apply to other such 
important peptide-binding domains. 
 
 
Methods 
 
The evolution of kinase function 
 
Kinase domain sequences were collected for all 9 opisthokont species in KinBase with 
an annotated kinome (H. sapiens, M. musculus, S. purpuratus, D. melanogaster, C. 
elegans, A. queenslandica, M. brevicollis, S. cerevisiae, C. cinerea) (Manning et al. 
2002). The kinase domain sequences were then aligned using the L-INS-i method 
(Katoh et al. 2005) and filtered to remove pseudokinases (kinases without expected 
residues at domain positions 30, 48, 123, 128, and 141). Manual corrections were then 
made to the multiple sequences alignment (MSA), and the trimAl tool employed to 
remove positions with 80% or more of 'gap' characters among the sequences (Capella-
Gutiérrez, Silla-Martínez, and Gabaldón 2009). Finally, a further filter was applied to 
remove truncated sequences with fewer than 190 kinase domain positions. 
 
The resulting MSA (2094 sequences) was used to generate a maximum-likelihood 
kinase domain phylogeny with the RaxML tool (Stamatakis 2014). Amino acid 
substitutions were modelled using the LG matrix, and a gamma model was employed to 
account for the heterogeneity of rates between sites. A neighbour-joining phylogeny 
generated with the R ape package was used as the starting tree (Paradis and Schliep 
2018). 
 
Ancestral sequence reconstructions were performed with the CodeML program (part of 
the PAML package) using an LG substitution matrix (Yang 2007). No molecular clock 
was assumed (clock=0), and a gamma model was employed again to account for rate 
heterogeneity between sites. The alpha parameter of the gamma distribution was 
estimated (fix_alpha = 0) with a staring value of 0.5 (alpha = 0.5), and four categories of 
the gamma distribution were specified (ncatG=4). The physicochemical properties of the 
amino acids were not taken into account when performing the ancestral sequence 
reconstructions (aaDist = 0). 
 
For the analysis of kinase evolution, each family and subfamily was assessed iteratively 
and a divergence score (s) was assigned to each position of the MSA. The divergence 
scores are calculated by comparing the family/subfamily of interest (clade A) with the 
closest sister clade (clade B) in the phylogeny. The score calculated is adapted from the 
BADX score of a previous publication (Edwards and Shields 2005), specifically: 
 
� � ���  � ��x . 	
��� 
 
RC (recent conservation) represents the sequence conservation for the clade of interest 
(clade A) and is calculated here on the basis of substitution matrix similarity in the R 
package bio3d (Grant et al. 2006). ACX represents the conservation of ancestral nodes 
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for the clade of interest (clade A) and the ancestral node for the nearest sister clade 
(clade B); this is given as a 1 if the predicted residues are identical to each other and a -
1 otherwise. Finally, the score is weighted by the value p(AC), which represent the the 
probability that the AC value was correctly assigned. For matching residues (AC=1), this 
is the posterior probability of the predicted residue for clade B; for differing residues 
(AC=-1) this is the summed posterior probability of all residues in clade B besides from 
the predicted residue for clade A. Therefore, scores for suspected divergence would be 
down-weighted if there is ambiguity concerning the nature (matching or mismatching) of 
the clade B ancestor. 
 
Where the sequences of interest were divided into two or more clades in the phylogeny, 
only the largest clade was considered for further analysis. In some cases also the clade 
of interest contained spurious sequences from the wrong group, family, or subfamily. 
Spurious sequences were tolerated only if they comprised less than 15% of the clade 
sequences, otherwise the largest 'pure' subclade (with the sequences of interest only) 
was selected for further analysis. For the calculation of divergence scores, the nearest 
sister clade to the clade of interest was selected. However, scores were only calculated 
if the nearest sister clade contained 5 or more sequences and belonged to the correct 
category (e.g. two subfamilies that are being compared must belong to the same 
family). All searching/manipulation of the phylogeny was performed using a custom 
script in R with the aid of the ape package. 
 
For the global analysis represented in Figure 2, the number of switches was calculated 
at the family and subfamily level. A substitution is considered a switch if it is above the 
95th percentile for all subfamily (ssubfamily(95) =1.904) or family (sfamily(95) = 1.793) scores. 
For the one-sided Fisher test's described in the Results section, a site is considered to 
be ‘frequently switching’ if the number of switches is above the 90th percentile of switch 
frequencies for the 246 alignment positions. This was calculated separately at the family 
(90th percentile = 8) and subfamily (90th percentile = 7) level. 
 
 
Analysis of kinases with known specificity 
 
For the analysis of kinase specificity, 101 high-confidence specificity models of human 
and mouse S/T kinases were collected as described in Bradley et al., 2017. Each 
kinase was annotated at the group, family, and subfamily level (as required) using the 
manual annotations given in the kinase.com website (Manning et al. 2002). The 
analysis of specificity divergence was performed separately at each of the three levels. 
For each level, all pairwise distances within a grouping is computed and then all 
possible pairwise distances are calculated between groupings. Importantly, the higher-
level categorisation is retained for all pairwise comparisons. For example, at the family-
level, all between-family distance comparisons would occur for kinases belonging to the 
same 'group'. For each pairwise comparison, the Frobenius distance between specificity 
models was calculated using the 'norm()' function in R. 
 
Dating the emergence of kinase groups, families, and subfamilies 
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First, all known kinase groups, families, and subfamilies present in animal and fungal 
species were retrieved from the kinase database KinBase (Manning et al. 2002). The 
list was then filtered to remove Atypical kinases and tyrosine protein kinases. The 
presence or absence of each kinase group/family/subfamily across several species of 
the eukaryotic Tree of Life was then predicted using the Kinannote tool (Goldberg et al. 
2013). For this purpose, we used all species from a recently published Tree of Life for 
which a publicly available genome/proteome sequence was available (Burki et al. 2016). 
The Tree of Life was then pruned in R using the ape package to retain these species 
only (55 in total). The origin of each kinase group/family/subfamily was then predicted 
using maximum likelihood-based ancestral state reconstruction with the ace function of 
the ape package (Paradis and Schliep 2018). The reported divergence times between 
species in the literature was then used to estimate ages for each group, family, and 
subfamily (Kumar et al. 2017). 
 
Where multiple origins were predicted for a kinase group/family/subfamily, we traced the 
kinase emergence to the most recent common ancestral node between the predicted 
nodes of origin. This approach assumes no horizontal gene transfer between species or 
convergent evolution of kinase groups/families/subfamilies.  
 
Kinase motif enrichment across eukaryotic species 
 
The phosphorylation site data was collected from a range of sources. They are as 
follows: Trypanosoma Brucei (Nett et al. 2009; Urbaniak, Martin, and Ferguson 2013), 
Trypanosoma cruzi (Amorim et al. 2017; Marchini et al. 2011), Leishmania infantum 
(Tsigankov et al. 2013), Trichoplax adhaerens (Ringrose et al. 2013), Homo 
sapiens/Mus musculus/Rattus norvegicus (Hornbeck et al. 2015), Strongylocentrotus 
purpuratus (Guo et al. 2015), Drosophila spp. ((Hu et al. 2018)), Caenorhabditis elegans 
(Rhoads et al. 2015),  Magnaporthe oryzae (Franck et al. 2015), 18 fungal species 
(Studer et al. 2016), Dictyostelium discoideum (Charest et al. 2010), Medicago 
truncatula (Rose et al. 2012; Yao et al. 2014), Glycine max (Nguyen et al. 2012; Yao et 
al. 2014), Arabidopsis thaliana (L.-L. Lin et al. 2015; Yao et al. 2014), Selaginella 
moellendorffii (Chen et al. 2014), Brachypodium distachyon (Lv et al. 2014), Oryza 
sativa (Hou et al. 2015; Yao et al. 2014), Zea mays (Marcon et al. 2015; Yao et al. 
2014), Chlamydomonas reinhardtii (Wang et al. 2014), Plasmodium 
falciparum/Plasmodium berghei/Toxoplasma gondii (Invergo et al. 2017; Treeck et al. 
2011), Tetrahymena thermophila (Tian et al. 2014), and Phytophthora infestans (Resjö 
et al. 2014).  
 
For each species, redundant phosphosite 15mers (centred on S or T) were filtered from 
the analysis. Phosphorylation motifs (S/T) for each of the 48 species were obtained by 
running r-motif-x using its default parameters (p-value of 1e-06 and a minimum of 20 
motif occurrences). This tool takes as its input a 'foreground' set of known target sites 
and a 'background' set of sites known not to be target sites (Wagih et al. 2016). For the 
background set, we randomly shuffled the flanking sequences of known phosphorylated 
target sites (central S/T retained). The amino acid composition of the foreground and 
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background sets was therefore identical. This approach is expected to generate fewer 
spurious motif predictions than simply sampling S/T sites randomly from the proteome 
(Cheng et al. 2018). To generate the background set, each known target site was 
randomly shuffled 10 times.  
 
For further analysis, we selected only those motifs appearing in at least a third of 
species within one or more superphyla (i.e. fungi, metazoa, and plants). For the 
excavates (three species represented here), the motif had to be present in at least two 
of the examined species. Motifs exclusive to the amoebozoa or heterokonts were not 
considered as both superphyla are represented here by only a single species. Other 
constraints were imposed to filter out potentially spurious motifs. Serine or threonine 
additions to a classical motif were not considered, as they may result from phosphosite 
misassignment within phosphopeptides or the clustering of phosphorylation sites in the 
substrate primary sequence (Moses, Hériché, and Durbin 2007; Schweiger and Linial 
2010). We also considered R/K and D/E to be synonymous when identifying new motifs. 
Finally, D/E additions to the classic casein kinase 2 motif 'S/T-D/E-x-D/E' were not 
considered as weak D/E preferences outside the +1 and +3 positions have already 
been described for this kinase (Sarno et al. 1997). Motifs detected here that do not 
match the list of motifs given in (Amanchy et al. 2007) or (Miller and Turk 2018) are 
declared to be ‘new’ motifs with an unknown upstream regulator. 
 
The enrichment of kinase motifs was calculated relative to the background set of 
randomised peptides. The significance of motif enrichments in each species was 
determined by calculating binomial p-values. Here, the null probability of the motif is 
taken to be equal to the total frequency of motif matches (e.g. P-x-S/T-P) to the 
background set, divided by the total number of background matches for the superset 
motif (e.g. S/T-P). The calculation of equivalent frequencies for the foreground set 
enables an analytical p-value to be calculated using the binomial distribution. The 
calculated p value therefore gives an indication, for each motif, of the extent of 
enrichment of the motif against the background set relative to that of the most frequent 
superset motif (e.g. the enrichment of P-X-S.T-P relative to S/T-P).  
 
Number of motif matches as a percentage of the phosphoproteome 
 
Each of the motifs previously identified using motif-x was screened against the known 
target sites of each species, and the total number target sites matching at least one 
motif was counted and then divided by the total number of known target sites in each 
species (Supplementary Figure 1a). For this analysis, we do not consider motifs with 
only one constrained flanking position (e.g. G-S/T), where matches to the foreground 
set are likely to arise just by chance. These patterns may represent incomplete 
sequence motifs. Exceptions are made for the classic S/T-P and R-x-x-S/T signatures, 
which by themselves can be sufficient for kinase targeting (Errico et al. 2010; Ubersax 
and Ferrell 2007).  
 
Kinase motif enrichment for prokaryotic phosphorylation sites. 
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The prokaryotic phosphorylation data was collected from multiple sources. 
Phosphorylation data for E. coli derives from (M.-H. Lin, Sugiyama, and Ishihama 2015; 
Pan et al. 2015; Potel et al. 2018). Phosphorylation data for Sulfolobus acidocaldarius 
and Sulfolobus solfataricus comes from the dbPSP database (Pan et al. 2015). The 
‘pooled species’ in Figure 4 represents 180 unique phosphorylation sites from 8 
prokaryotic species – Halobacterium salinarum, Bacillus subtilis, Mycobacterium 
tuberculosis, Streptomyces coelicolor, Escherichia coli, Synechococcus sp., Sulfolobus 
solfataricus, Sulfolobus acidocaldarius – all of which derives from the dbPSP database 
also (Pan et al. 2015). 
 
Enrichment values and binomial p-values were calculated using the same methods 
described in the previous section. The motif-x tool was executed using its default 
parameters, as described above. 
 
Co-evolution between the kinome and phosphoproteome 
 
A starting phylogeny for the 48 eukaryotic species was assembled using the NCBI 
taxonomy tool (NCBI Resource Coordinators 2018). Unresolved branches (polytomies) 
for particular clades were then resolved manually after referring to previous 
phylogenetic studies in the literature ((Cavalier-Smith et al. 2014; Drosophila 12 
Genomes Consortium et al. 2007; Mathews, Tsai, and Kellogg 2000; Shen et al. 2016; 
Telford, Budd, and Philippe 2015) 
(Cavalier-Smith et al. 2014; Drosophila 12 Genomes Consortium et al. 2007; Mathews, 
Tsai, and Kellogg 2000; Shen et al. 2016; Telford, Budd, and Philippe 2015)). Kinome 
annotations for each species were generated automatically using the KinAnnote tool 
(Goldberg et al. 2013), which employs BLAST- and HMM-based searches to identify 
and classify eukaryotic protein kinases. 
 
The relationship between kinase motifs and their cognate kinases (e.g. S/T-P-x-K and 
CDKs) was modelled with phylogenetic independent contrasts (PIC) in R using the ape 
package (Paradis and Schliep 2018; Felsenstein 1985). This method generates 
phylogenetic contrasts between variables on a tree to account for the non-
independence of data points (Felsenstein 1985). In Supplementary Figure 2, contrasts 
were generated for motif enrichment values on the y-axis and for relative kinase 
frequencies (number of kinases of interest divided by total number of kinases detected 
in the proteome) on the x-axis. 
 
Tests for the phylogenetic signal of different motifs were conducted in R using the 
Phylosignal package (Keck et al. 2016). The phylogenetic plots in Supplementary 
Figures 3 and 4 were also generated using Phylosignal. 
 
 
Supplementary Figures and Tables  
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Supplementary Figure 1 - a) Proportion of phosphorylation sites in each species that
match a phosphorylation motif (see Methods). b) A simplified version of the eukaryotic
Tree of Life presented in the (Burki et al. 2016) study. The numbers in brackets
correspond to the number of different species represented by phosphorylation data in
this study. c) Calculation of binomial p-values (as in Figure 4) for each motif in each
major clade (metazoa, fungi, plants, etc) after phosphorylation sites within a clade were
pooled across species. The figure legend (bottom-right) is the same as in Figure 4. 
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Supplementary Figure 2 - Phylogenetic independence contrasts (PIC) between five
different kinase clades (AKT/SGK, CAMK2, CDK, CK2, PKA/PKG) and their
corresponding substrate motifs (R-x-x-S/T-F, R-x-x-S/T-x-D/E, S/T-P-x-K, S/T-D/E-x-
D/E, and R-R-x-S/T, respectively). This approach accounts for the phylogenetic non-
independence between data points when comparing two continuous variables
(Felsenstein 1985). 
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Supplementary Figure 3 - Mapping of relative kinase frequencies and substrate motif
enrichments to a phylogeny of 48 eukaryotic species. Relative kinase frequencies
across the 48 species were calculated for the PKA/PKG family, and motif enrichments
were calculated for their cognate substrate motif (R-R-x-S/T). The red box highlights
species where the absence of PKA and PKG kinases in the proteome corresponds to a
lack of R-R-x-S/T motif enrichment.    
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Supplementary Figure 4 - Mapping of relative kinase frequencies and substrate motif
enrichments to a phylogeny of 48 eukaryotic species. Relative kinase frequencies
across the 48 species were calculated for the CDK family, and motif enrichments were
calculated for its cognate substrate motif (S/T-P-x-K).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
tif 

ies 
re 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/443945doi: bioRxiv preprint 

https://doi.org/10.1101/443945
http://creativecommons.org/licenses/by/4.0/


 
 

 
Supplementary Table 1 - Five tests for the phylogenetic signal (Cmean, I, K, K.star, and
Lambda) of 9 different eukaryotic motifs. Numbers in the table represent p-values for
each one of the tests. Low p-values (e.g. p < 0. 01) suggest that the motif in question is
non-randomly distributed with respect to the species phylogeny of 48 eukaryotic species
(as presented in Supplementary Figure 3 and Supplementary Figure 4). All tests were
performed using the Phylosignal package in R (Keck et al. 2016).  
 
 

 
 

Supplementary Table 2 - Motifs identified from phosphorylation sites in E. coli (n=2287)
using the motif-x tool. In both instances, motif-x was executed using its default
parameters (p<1x10-6  and at least 20 occurrences). The motif-x scores for each of the
motifs is displayed in the second column.  
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Supplementary Table 3 - Motifs identified from phosphorylation sites in Sulfolobus spp. 
(n=1655) using the motif-x tool. In both instances, motif-x was executed using its default 
parameters (p<1x10-6  and at least 20 occurrences). The motif-x scores for each of the 
motifs is displayed in the second column.  
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