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Abstract

In this study, we used pan RNA-seq analysis to reveal the ubiquitous existence of 5' end and 3' end
small RNAs. 5' and 3' sSRNAs alone can be used to annotate mitochondrial with 1-bp resolution and nuclear
non-coding genes and identify new steady-state RNAS, which are usually from functional genes. Using 5, 3'
and intronic SRNAs, we revealed that the enzymatic dsRNA cleavage and RNAI could involve in the RNA
degradation and gene expression regulation of U1 snRNA in human. The further study of 5', 3' and intronic
SRNAs help rediscover double-stranded RNA (dsRNA) cleavage, RNA interference (RNAi) and the
regulation of gene expression, which challenges the classical theories. In this study, we provided a simple
and cost effective way for the annotation of mitochondrial and nuclear non-coding genes and the
identification of new steady-state RNAS, particularly long non-coding RNAs (IncRNAs). We also provided
a different point of view for cancer and virus, based on the new discoveries of dsSRNA cleavage, RNAi and

the regulation of gene expression.
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Introduction

RNA sequencing (RNA-seq) , usually based on the Next Generation Sequencing (NGS) technologies
is widely used to simultaneously measure the expression levels of genes with higher accuracy than Serial
Analysis of Gene Expression (SAGE) and microarray [1]. RNA-seq is also used to annotate genes in
sequenced genomes, which is the only basis to study gene transcription, RNA processing and biological
functions of these genes, etc. Particularly, RNA-seq or small RNA sequencing (SRNA-seq) is indispensable
for the annotation of non-coding genes, while the annotation of protein-coding genes can be conducted
based on the analysis of protein codons. However, RNA-seq cannot be used to obtain the full-length
transcripts by de novo assembly or alignment. Both of PacBio full-length transcripts (PacBio cDNA-seq) [2]
and Nanopore cDNA seguencing (Nanopore cDNA-seq) [1] can be used to obtain the full-length transcripts
of mature RNAs or RNA precursors [3]. PacBio cDNA-seq produces reads with lower error rates than
Nanopore cDNA-seq, while Nanopore cDNA-seq can produce longer reads than PacBio cDNA-seq.
However, neither PacBio cDNA-seq nor Nanopore cDNA-seq can provide the exact 3'-end information of
transcripts (e.g. polyA length) due to reverse transcription. The reason is that primers anneal to random
positions located in the polyA regions or A-enriched regions in the body of transcripts to start reverse
transcription. Nanopore direct RNA sequencing (Nanopore RNA-seq), as the only available sequencing
technology which can sequence RNA directly [4], theoretically can be used to obtain the full-length 3' ends
of transcripts. But it can not be used to obtain the exact 3'-end information of transcripts either, due to the
high error rate of Nanopore RNA-seq data. Combined with specific capture or enrichment technologies,
several other RNA-seq methods have been developed to extent the use of standard RNA-seq. Paralel
Analysis of RNA Ends and sequencing (PARE-seq), Cap Analysis of Gene Expression and sequencing
(CAGE-seq) and Precision nuclear Run-On and sequencing (PRO-seq) have been developed to identify 5'
ends of mature RNAs. Polyadenylation sequencing (PA-seq) has been developed to identify 3' ends of
mature RNAs. Global Run-On and sequencing (GRO-seq) has been developed to sequence nascent RNAs
[5], which helps determining the primary transcripts of genes.

The standard RNA-seq, sSRNA-seq, PARE-seq, CAGE-seq, PRO-seq, PA-seq, GRO-seq, PacBio
cDNA-seq, Nanopore cDNA-seq, Nanopore RNA-seq and et al., defined as pan RNA-seq, were used to
improve gene annotation in our previous studies. Using pan RNA-seq analysis, we reported the corrected
annotation of tick rRNA genes, human rRNA genes [6], insect mitochondrial genes [3] and human
mitochondrial genes [7]. We aso reported two novel long non-coding RNAs (IncRNAS) discovered in
human mitochondrial DNA [7]. In addition, we unexpectedly discovered the existence of 5' and 3' end small
RNAs (5' and 3' sSRNASs) in animal rRNA genes [6] and later proved the ubiquitous existence of 5 and 3'
sRNAs in mitochondrial and nuclear non-coding genes. In this study, we demonstrated that 5' and 3' SRNAs
alone can be used to annotate mitochondrial and nuclear non-coding genes with 1-bp resolution and identify

new steady-state RNAs. Using public SRNA-seq data from the same species, this method provides a simple
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and cost effective way for the annotation of mitochondrial and nuclear non-coding genes and the
identification of new steady-state RNAs, which are usually from functional genes. The further study of 5', 3'
and intronic SRNAs help rediscover double-stranded RNA (dsRNA) cleavage, RNA interference (RNAI)

and the regulation of gene expression, which challenges the classical theories.

Results

=

5 MatureRNA | Mature RNA | Mature RNA 3
NR_046235 7920 C 2911 25. 27% 733/2901 0.00%  0/8
NR_046235 7921 G 3680 20. 92% 767/3667 0.00% 0/8
NR 046235 7922 A4 5160 28. 55% 1463/5124 25. 00% _ 2/8
NR_046235 7923 G 21927  76.37% 16628/21772 16.67% 1/6
NR_046235 7924 A 174268  87. 34% 150395/172195 0.00%  0/5
NR 046235 7925 C 3958059 95, 50% 3774978/3949017 0. 00%  0/5
NR_046235 7926 G 3993818 0.89% 35555/3989101 0.00%  0/5
NR_046235 7927 C 4007854 0. 35% 13984/4002163 0.00%  0/5
NR_046235 7928 G 4015550 0.19% 7612/4012403  0.00%  0/5

Figure 1. Definition of 5" and 3' SRNAs

A. 5" and 3' sSRNAs are defined as sSRNA-seq reads with lengths of 15~50 bp, which are precisely aligned to the 5' and 3'
ends of mature RNAs respectively. The lengths of them vary progressively with 1-bp differences. B. 5-end format is defined
to easily identify 5' ends of mature RNAs using sRNA-seq data. Human rRNA genes (RefSeq: NR_046235.1) were
annotated using alignment results in the 5-end format. Among positions 7923, 7924 and 7925 with ratiols (the 5" column)
above 70 %, 7925 with the highest ratiol was determined as the 5' end of 28S rRNA.

Discovery of 5" and 3' SRNAs

In a genome-alignment map of sSRNA data, there usually are some peaks or hotspots [8], where the
depths of the paositions are much higher than those of other positions in the genome. In our previous study of
human rRNA genes [6], we found that some of peaks comprised 5' and 3' SRNAs and they were ubiquitously
existed in mitochondrial and nuclear non-coding genes. As the current sSRNA-seq technologies usually
provide sequences with short lengths, 5' and 3' SRNAs are defined as SRNA-seq reads with lengths of 15~50
bp, which are precisely aligned to the 5' and 3' ends of mature RNAs respectively (Figure 1A) and they have
such features: 1) 5' and 3' SRNAs are degraded fragments from mature RNAs and the lengths of them vary
progressively with 1-bp differences. 2) The cleavage sites between 3' SRNAs and their downstream 5'
sRNAs are not limited to one (usually three) due to inexact cleavage by enzymes (Figure 1B). 3) 5 and 3'
SRNAs of steady-state RNAs (e.g. 18S, 5.8S and 28S rRNA) are significantly more abundant than the

-4-


http://dx.doi.org/10.1101/444117
https://doi.org/10.1101/444117

blo%%ﬁ@’%ﬂ@é p'ég&g%ww élg)i\gébﬁm 18; dai dg?? 3%9. %?%%@5%%%%%?%% r‘th (which was not
(Nq] S reserved o reuse a Wi out permission.

intronic SRNAs of them, while 5" and 3' SRNAs of transicent RNAs (e.g. Internal Transcribed Spacers of
rRNA, ITS1 and ITS2) are not. This criterion can be used to identify new steady-state RNAS, which are
usually from functional genes. One example of a new steady-state RNA downstream tRNAs and another
example of two novel mitochondrial INcRNAs were introduced in the following paragraphs. Particularly, it
was proved that MDL1 and MDL1AS were two steady-state INcRNASs in the human mitochondrial DNA and
predicted to have biological functions[7].

We used 5' and 3' sSRNAs from one sRNA-seq dataset to annotate genes and used one CAGE-seq
dataset, one GRO-seq dataset and one PacBio cDNA-seq dataset (M aterials and M ethods) to validate the
annotations. Later, we developed a simplified gene-annotation procedure. Using only 5' sRNAS, gene
annotation can be reduced to the identification of 5' ends of mature RNAs. By doing so, the 3' ends of their
upstream mature RNAs and their cleavage sites can be derived (Figure 1A). We have defined a new file
format, named 5-end format, to easily identify 5' ends of mature RNAs. The new format is derived from the
Pileup format (Materials and Methods) to include eight columns (Figure 1B) for each line including
information from a genomic position: 1) chromosome ID, 2) 1-based coordinate of this position, 3) reference
base, 4) depth (the number of reads covering the position), 5) ratiol (the number of positive-stranded reads
starting at this position divided by the number of positive-stranded reads), 6) the number of positive-
stranded reads starting at this position divided by the number of positive-stranded reads, 7) ratio2 (the
number of negative-stranded reads starting at this position divided by the number of negative-stranded
reads), 8) the number of negative-stranded reads starting at this position divided by the number of negative-
stranded reads. Using the 5-end format, the 5' end of one mature RNA can be easily identified from two to
three candidates (Figure 1B). Their ratiols or ratio2s must be above a threshold (e.g. 75%) and significantly

higher than the ratiols or ratio2s of positions surrounding these two to three positions.

5" and 3' sRNAsin non-coding genes

Using 5 and 3' sSRNAs, we corrected the annotation of human rRNA genes. For the 5' end of each
mature RNA, we obtained two or three candidates and selected the position with the highest ratiol or ratio2
as the result. For example (Figure 1B), we obtained three positions 7,923, 7,924 and 7,925 to identify the 5'
end of 28S rRNA and selected 7,925 as the result. In the same way, 5' ends of 18S and 5.8S rRNA were also
identified using 5 sRNAs. Then, 3' ends of 18S, 5.8S and 28S rRNA were identified using 3' sSRNAs.
Finally, the annotations of ITS1 and ITS2 were derived using the annotations of 18S, 5.8S and 28S rRNA.
These corrected annotations (T able 2) were validated using the CAGE-seq dataset and the GRO-seq dataset
(Materials and Methods). Although the depth 1,471,247 at the position 6,601 was much higher than the
depth 647,406 at the position 6,596 in the SRNA-seq dataset, the 5' end of 5.8S rRNA annotated as the
position 6,601 with the ratiol of 35.42% (520,006/1,468,024) was still corrected as the position 6,596 with
the ratiol of 88.11% (569,882/646,805). In addition, the genome-alignment map using the SRNA-seq dataset

showed that human rRNA genes had peaks at the position 6,596, 7,925 and 6,756 corresponding to the 5'
-5-
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ends of 5.8S and 28S rRNA and the 3' end of 5.8S rRNA, respectively (Figure 2A). The genome-alignment
map using the CAGE-seq dataset showed that human rRNA genes had peaks at the position 3,675 and 7,926
corresponding to the 5' ends of 18S and 28S rRNA, respectively (Figure 2B). This suggested that 5' m’G or

other caps of 18S and 28S rRNA could exist. By the analysis of 3' SRNAs, we confirmed that rRNA genes
did not contain 3' polyAs.
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Figure2. Genome-alignment maps using sSRNA-seq, Cage-seq and GRO-seq|

This figure shows the count distribution of all aigned reads on the reference rRNA sequence (RefSeq: NR_046235.1).
These reads are from one sRNA-seq dataset (A.), one CAGE-seq dataset (B.) and one GRO-seq dataset (C.). The
description of these datasets can be seen in the section Materials and Methods. The identified 5' and 3' ends of mature RNAs
are marked by boxes.
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In 2009, anovel class of SRNAs named tRNA-derived RNA fragments (tRFs) was introduced and three
series of tRFs (tRF-5, tRF-3 and tRF-1) were identified using the sSRNA-seq data of the human prostate
cancer cell line by 454 deep sequencing [9]. However, these authors did not correctly understand the tRFs
due to the technology limit and the small dataset size. Using the pan RNA-seq analysis, we proved that the
tRF-5 and tRF-3 series were 5' and 3' SRNAs from mature tRNAs and the tRF-1 series were 5' SRNAs from
mature RNAs of their downstream genes (Figure 2A). In this study, 13 mature tRNAs and their 43
precursors (Supplementary file 1) were analyzed, and the 5/3-sRNA ratios of them ranged from 0.1 to
595.8. However, we did not found the characteristics in the size distribution of 5" and 3' SRNASs from these
tRNAs. As 3 sRNAs contain detailed 3-end information of mature RNAS, we acquired more discoveries
related to tRNA processing, maturation and degradation. One example was 3' SRNAs of tRNAs had four
types, which were non-tail, C-, CC-, and CCA-tailed. The proportions of these four types were 5.26%
(22,906/4,355,95), 12.36% (53,845/4,355,95), 13.81% (60,176/4,355,95) and 68.57% (298,668/4,355,95). In
addition, we obtained sequences of full-length mature tRNAs with non-tail, C-, CC-, and CCA-tailed.
Among these full-length mature tRNAs, 8,539 TRD-GTC2-1 tRNAs (for Asp) and 16,900 TRE-CTC1-1
tRNAs (for Glu) were obtained. These results suggested that 3' SRNAs were produced by tRNA degradation
during its synthesis, when CCAs were post-transcriptionally added to 3' ends of tRNAs one nucleotide by
one nucleotide. Another example was the correction of TRL-TAGS3-1's annotation. The mature TRL-TAG3-
1 was annotated as a 82-nt sequence from the human genome with its 3' cleavage site
ACCGCTGCCA |cacctcagaa. Using 5' and 3' SRNAS, the 3' cleavage site of TRL-TAG3-1 was determined as
ACCGCTGCCAClacctcagaa. Instead of CAA, it was CA that was post-transcriptionally added to the 3' end
of TRL-TAGS3-1 ACCGCTGCCAC. The genome-alignment results using the CAGE-seq dataset showed
that 5' m’G or other caps of tRNA did not exist. By the analysis of 3' SRNAs, we confirmed that tRNA genes
did not contain 3' polyAs. 5' and 3' sSRNAs from all the 13 mature tRNAS resided in peaks in the genome-
aignment maps, while a few 3' sRNAs of their upstream genes or 5' SRNAs of their downstream genes
resided in peaks. Among the peaks from these upstream or downstream genes, the highest one was on the
downstream of TRS-TGA1-1 (chrl0:67764503-67764584). It suggested that this peak was the 5' end of a
new steady-state RNA, which could be from a functional gene and had not been annotated in the current
genome version.

Small nuclear RNAs (snRNAs) include a class of small RNA molecules that are found within the
splicing speckles and Cajal bodies of the cell nucleus in eukaryotic cells [10]. snRNAs are aways associated
with a set of specific proteins and the complexes are referred to as small nuclear ribonucleoproteins
(shnRNPs). SnRNAs are also commonly referred to as U-RNAs and one well-known member is U1 snRNA
[11]. Using 5' sSRNAs, we confirmed annotations of U1, U2, U3, U4, U5, U6 and U7 (Supplementary file
1). The genome-alignment results using the CAGE-seq dataset showed that U1, U2, U3 and U4 snRNAs
could be capped by 5' m’G, but U5, U6 and U7 snRNAs could not. By the analysis of 3' SRNAs, we
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confirmed that all the snRNAs did not contain 3' polyAs. In addition, we did not found any new steady-state

RNA on the upstream or downstream of seven snRNA genes.

5" and 3' sRNAs in mitochondrial genes

Table 1. Annotation of human rRNA geneswith corrections

Gene Start End Start* End* Length*
18SrRNA 3,655 5,523 3,655 5,523 1,869

ITS1 5,524 6,600 5,524 6,595* 1,072
5.8SrRNA 6,601 6,757 6,596* 6,756* 161
ITS2 6,758 7,924 6,757* 7,924 1,168

28SRNA 7,925 12,994 7,925 12,993* 5,069

Human rRNA genes (RefSeq: NR_046235.1) were annotated using 5' and 3' sSRNAs and * represented the corrected
annotation.

Using pan RNA-seq analysis, we confirmed that nuclear mitochondrial DNA segments (NUMTS) in
human genome did not transcribe into RNAs [7]. This finding smplified the analysis of mitochondrial genes
(e.g. mutation detection or quantification) using RNA-seq data. In our previous study, we annotated two
primary transcripts and 30 mature transcripts (tRNA'"® tRNA®"AS, tRNAM®, ND2, tRNA™,
tRNAAPASHRNAAASIRNAPASRNA™AS, COI, tRNASAS, tRNA®®, COIll, tRNAY, ATP8/6,
COIlll, tRNA®Y, ND3, tRNA*Y NDA4L/4, tRNA™S tRNAS, tRNA" ND5/ND6AS/RNAC'AS, Cytb,
tRNA™, MDL1, tRNA™® 12S rRNA, tRNA"?, 16S rRNA, tRNA"* and ND1) on the H-strand with 1-bp
resolution [7]. In this study, COI and tRNA®AS were corrected as one mature transcript COI/tRNASAS
that could not be further cleaved. We classified mitochondrial genes into tRNA, mRNA, rRNA, antisense
tRNA (eg. tRNA®AS), antisense mRNA (e.g. ND6AS), antisense rRNA and IncRNAs (e.g. MDL1 and
MDL1AS) [7] and improved the "mitochondrial cleavage" model that had been proposed in our previous
study [7]. The improved model is that RNA cleavage can be processed: 1) at 5' and 3' ends of tRNAS, 2)
between mMRNAs and mRNASs (e.g. ATP8/6 and COIIl) and 3) between antisense tRNAs and mRNAs (e.g.
tRNA™'AS and COl), but cannot be processed: 1) between mRNAs and antisense tRNAs (e.g. COl and
tRNAS*AS) 2) between mRNAs and antisense mRNAs (e.g. ND5 and ND6AS), 3) between antisense
mRNAs and antisense tRNAs (e.g. ND6AS and tRNA®'AS) or 4) between antisense tRNAs and antisense
tRNAS (e.g. tRNAYPASHRNAASHRNASSASIERNA™AS). This model provided a framework to identify
all the full-length coding and non-coding RNAs of animal mitochondrion with 1-bp resolution. For example,
the identification of ND5/ND6AS/RNAC®'AS, MDL1 and MDL1AS proved that all the reported IncRNAs

from ND5, ND6, Cytb [12] or the D-loop region were meaningless fragments from RNA degradation or.
-8-
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Another example was that tRNA*?AStRNA™'AS (NC_012920: 1318-1638) could not be further cleaved,
which was against a hypothesis from one previous study [13].

Among 29 mature transcripts on the H-strand, tRNA transcripts were tailed by 3' CCAs, while other
mature transcripts were tailed by 3' polyAs. The maximum lengths of polyAs in tRNA®"AS, ND2,
tRNAMPAStRNA™AS, COItRNA®'AS, COIl, ATP8/6, COIll, ND3, NDAL/4, ND5/ND6AStRNASVAS,
Cytb, MDL1, 12SrRNA, 16S rRNA, and ND1 are 14, 1, 12, 11, 20, 35, 10, 1, 22, 1, 8, 28, 32, 21 and 16,
respectively. 3' SRNAs containing polyAs or CCAs of different lengths were captured to proved that 3'
SRNAs were produced by RNA degradation during its synthesis, when polyAs or CCAs were post-
transcriptionally added to 3' ends of RNAs one nucleotide by one nucleotide. In this study, we aso
confirmed that both of MRNA and rRNA transcripts were capped by 5' m’G [3]. Our data supported that
MDL1AS, ND5/ND6ASHRNACUAS and tRNA*?AStRNAATASHRNAAS/tRNA 'AS could be capped
by 5' m’G, but tRNA®"AS and MDL 1 could not be capped. 5' and 3' SRNAs of MDL1 and MDL1AS were
significantly more abundant than the intronic SRNAs of them, which was one criterion to identify steady-
state RNAs. Although MDL1 was not capped by 5' m’G as MDL1AS, we still proposed that they were
steady-state RNAs and could have biological functions. The further study showed that g°PCR of MDL1
provided higher sensitivities than that of BAX/BCL2 and CASP3 in the detection of cell apoptosis [14].

In our previous study, the first Transcription Initiation Site (T1S) of H-strand (ITw,) and the TIS of L-
strand (IT.) were determined at the position 561 and 407 on the human mitochondrial genome (RefSeq:
NC_012920.1), but the second TIS of H-strand (ITy) was not determined [7]. In this study, 1Ty, was
determined at the position 648, which was also the 5' end of 12S rRNA. This finding was against the long-
standing knowledge that 1T, was at the position 638 [15]. Using pan RNA-seq analysis, we found that all
the TISs (IThy, ITHz and ITL) could be capped by 5 m’G. We aso found polyAs before TISs, which
suggested that the transcription of mitochondrial genes could be initated by primers containing polyTs. This
finding explained why al the TI1Ss were resided in A-enriched regions. However, these explanations need be
proved in the future studies.

Analysis of RNA degradation using 5', 3 and intronic SRNAs

As 5, 3" and intronic sSRNAs are accumulated RNA degradation intermediates, they can be used to
investigate the RNA degradation [16], particularly for steady-state RNAs. The result using our data showed
that in general, 5' and 3' SRNAs were more abundant than intronic SRNAs and short 5' and 3' SRNAs were
more abundant than longer ones for tRNAsS, rRNAS, snRNAs and mitochondrial RNAs. This suggested that
these mature RNAS, particularly short RNAs (e.g. tRNASs), were mainly degraded by 3' and 5' exonucleases
to accumulate 5' and 3' sSRNAs. As for rRNAs and snRNAs, we found many peaks in the body of genes,
which were even much higher than the peaks comprising 5' or 3' SRNAs in the genome-alignment map. In
addition, the peaks comprising intronic SRNAs in rRNAs showed tissue specificities. The liver tissue (SRA:

SRP002272) had specific peaks at the positions 12,891. The Plasma (SRA: SRP034590) had specific peaks
-9-
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Figure3. SIRNA duplexesdiscovered from Ul snRNAs

A. The count distribution of all aligned reads on the reference U1 snRNA (RefSeq: NR_004430.2). B. The above is a
mountain plot representation of the MFE structure, the thermodynamic ensemble of RNA structures and the centroid
structure. The positional entropy for each position is showed below. C. The secondary structure of U1 snRNA. D. U1 over-
expression in the HEK293 (human), SY5Y (human) and PC-12 (rat) cell lines were conducted by virus transfection. The
gPCR results showed the relative expression levels of U1 in 12 groups (Materials and Methods). The control group used
unprocessed samples.

at the positions 5,431, 9,891 and 11,158. The B-Cell and exosome (SRA: SRP046046) had specific peaks at
the positions 3,789 and 9,891. The Platelets (SRA: SRP048290) had specific peaks at the positions 4,384
and 10,627. Further study of these tissue specificities was beyond the scope of this study. Then, we focused
on the study of the secondary structures around these peaks in rRNAs and snRNAs and found that some of
them involved in dsRNA regions. Particularly, we found a featured peak spanning a 43-bp region from 49
bp to 92 bp of U1 snRNA (Figure 3). In thisregion, 5' ends of most intronic SRNAs were precisely aligned
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to 49 bp or 78 bp (Figure 3A). We also found that this region formed a hairpin in the secondary structure of
U1 snRNA and produced a series of SRNA duplexes [17] with lengths from 15 bp to at least 25 bp (Figure
3C). The most abundant reads AGGGCGAGGCTTATC and TGTGCTGACCCCTGC formed a 15-bp
duplex structure. The duplex ratio of AGGGCGAGGCTTATC against TGTGCTGACCCCTGC was 2.15
(34,078/15,825) and 99.97% (49,889/49,903) of these duplexes were sequenced from 14 samples of plasma
(SRA: SRP034590). It suggested that this dsRNA region was cleaved by the ribonuclease I11 (RNase 111)
family [18] to produce these SIRNA duplexes and could induced RNAI. Based on the findings in this study,
our hypothesisis: 5" and 3' exonucleases are prevalent than endonuceases for the degradation of mature non-
coding RNAs. So abundant 5' and 3' SRNAs were observed using SRNA-seq data. The longer mature RNAS
have more and longer dsRNA regions (e.g. 15-bp long for U1) than short ones (e.g. 7-bp longest for tRNAS)
to induce dsRNA cleavage to produce sIRNA duplexes. Although the lengths of SIRNA duplexes discovered
in this study were only 15 bp, we still hypothesized that they could induce RNAI due to the unbaanced
duplex ratio 2.15. As RNAI regulate the expression of these genes through a negative feed-back mechanism,
we designed preliminary experiments to over-express U1 snRNA in the HEK293 (human), SY5Y (human)
and PC-12 (rat) cell lines to prove our hypothesis. The basic idea was that if the negative feed-back
mechanism existed, the expression level of U1 snRNA could decrease rather than be stable when the over-
expression of it beyond athreshold. The experimental results showed that the expression level of U1 snRNA
decreased after 4X, 9X and 6X dosage (M aterials and M ethods) in the HEK293 (human), SY5Y (human)
and PC-12 (rat) cell lines, respectively (Figure 3D). Particularly, the resultsin the HEK 293 cell line showed
a significant effect caused by the negative feed-back mechanism. Therefore, RNAI could involve in the
RNA degradation and gene expression regulation of U1 snRNA.

Conclusion and Discussion

In this study, we used the pan RNA-seq analysis to reveal the ubiquitous existence of 5'end and 3' end
small RNAs. 5 and 3' SRNAs alone can be used to annotate mitochondrial and nuclear non-coding genes
with 1-bp resolution and identify new steady-state RNAs. Using 5', 3' and intronic SRNAS, we revealed that
the enzymatic dsRNA cleavage and RNAI could involve in the RNA degradation and gene expression
regulation of U1 snRNA in human. The RNAI’s function in the RNA degradation was reported as a
inappropriate event in yeast rRNA and tRNA degradation and only happened when 5" and 3' degradation
were absent [19]. However, our finding suggested that RNAI’s function in the RNA degradation could be a
genera mechanism.

Based on a previous study, the Rnt1p polypeptide cleave hairpin structuresin pre-rRNAS, pre-mRNAS,
and transcripts containing noncoding RNASs (e.g. snoRNAS) for their maturation in yeast. Rnt1p recognizes
the tetraloop [A/u]lGNN and cleaves the stem ~14-16 bp from the structure [18]. The most abundant read
AGGGCGAGGCTTATC discovered in this study contained AGGG and AGGC tetraloops and had a length
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of 15 bp. It suggested that Rnt1p could produce those sSiRNA duplexes from U1l snRNAs and cause RNAI,
which was against basic knowledge that Dicer is required for RNAi in mammal but produce SRNA
duplexes with lengths of ~20-25 bp. Although our preliminary experiments proved the existence of RNAI ,
which enzyme caused RNAI in U1 snRNAs s still unclear.

The ancestral function of RNAI is generally agreed to have been immune defense against exogenous
genetic elements such as transposons and viral genomes [20]. However, our findings help rediscover dsRNA
cleavage, RNAIi and the regulation of gene expression. That is, both of dsRNA cleavage and RNAI are
innate mechanisms rather than immune defense mechanisms. Basically, the enzymatic dsRNA cleavage is
responsible for RNA processing, maturation and degradation, while RNAI is responsible for RNA
degradation. By the degradation of mature RNAs, RNAI of one gene produces siRNA duplexes to regulate
expression levels of itself or other genes. Mature RNAs containing more hairpin structures have more
chances to induce RNAI, which is more important for highly expressed genes (e.g. U1 snRNA) or virus
genes. These genes need RNAI to regulate gene expression though a negative feed-back mechanism. In one
of our previous studies, we reported for the first time the existence of complemented palindromic small
RNAs (cpsRNASs) and proposed that one cpsRNA from severe acute respiratory syndrome coronavirus
(SARS-CoV) could induced RNAI [14]. This cpsRNA was detected from a 22-bp DNA complemented
palindrome in the SARS-CoV genome. As DNA complemented palindromes are prone to produce dsRNA
regions, viruses containing more DNA complemented palindromes in their genomes have more chances to
induce RNAI and have more abilities for the regulation of gene expression, which is important for ther
infection or pathogenesis.

We also provided a different point of view for the gene expression regulation of U1 snRNA, The
primary function of U1 snRNA is its involvement in the splicing of preemRNAs in nuclei. In the past 20
years, research of U1 snRNA has focused on its primary function, particularly related to neurodegenerative
diseases caused by abnormalities of U1 snRNA [11]. In one of our previous studies, we reported that over-
expression of U1 snRNA induces decrease of U1 spliceosome function associated with Alzheimer's disease.
However, the relationship between Ul snRNA over-expression and U1l snRNP loss of function remain
unknown [21]. In another previous study, we reported that U1 snRNA over-expression induced cell
apoptosisin SYS5Y cells, but not in PC-12 cells [11]. These contradictory phenomena can be explained using
the RNAI’s function in the RNA degradation and the negative feedback mechanism.

We provided a different point of view for cancer and virus. In one of our previous study, we reported
how U1 snRNA over-expression affected the expression of mammal genes on a genome-wide scale and that
U1l snRNA could regulate cancer gene expression. This had been explained by that Alternative Splicing
(AS) and Alternative Polyadenylation (APA) were deregulated and exploited by cancer cells to promote
their growth and survival [22]. Based on our point of view, the over-expressed U1 snRNA in cancer cells

recruit excess RNase |11, So the left RNase 11 is not enough to function in RNA degradation of other genes
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or genome surveillance and etc [18]. Viruses also recruit excess RNase Il and the left RNase Il is not

enough to function in hose defense [18].

Materials and Methods

Datasets and data analysis

All sSRNA-seq data were downloaded from the NCBI SRA database. Data in four projects (SRP002272,
SRP034590, SRP046046 and SRP048290) were selected from the human931 sRNA-seq dataset which had
been collected in our previous study [23]. SRP002272, SRP034590, SRP046046 and SRP048290 were
sequenced using Illumina Single End (SE) sequencing technologies with length 35~46, 202, 101 and 101 bp,
respectively and they contained 15, 14, 12 and 6 runs of SRNA-seq data, respectively. One CAGE-seq
dataset, one GRO-seq dataset [5] and one PacBio cDNA-seq dataset [7] were used to validate the
annotations (Supplementary file 1). The cleaning and quality control of SRNA-seq data were performed
using the pipeline Fastq_clean [24] that was optimized to clean the raw reads from Illumina platforms. To
simply annotate genes from a sequenced genome, we aligned all the cleaned reads from sRNA-seq, CAGE-
seq and GRO-seq data to the reference sequences using the software bowtie v0.12.7 alowing one mismatch.
Then, we obtained SAM, BAM, sorted BAM, Pileup and 5-end files using the software samtools. Statistical

computation and plotting were performed using the software R v2.15.3 with the Bioconductor packages [1].

Validation by preliminary experiments

U1 over-expression in the HEK293 (human), SY5Y (human) and PC-12 (rat) cell lines were conducted
by virus transfection using the pLV X-shRNA1 plasmids and the Lenti-X HTX Packaging System (Clontech,
USA), which had been described in our previous study [21]. U1 snRNAs of human and rat used synthetic
DNA containing the sequence (RefSeq: NR _004430.2) and the sequence (GenBank: V01266.1),
respectively. For each experiment, 12 groups of samples named control, 1X, 2X, 3X, 4X, 5X, 6X, 7X, 8X,
9X, 10X and 11X were transfected by O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 uL Ul-packged lentiviruses
(Figure 3D). Each group contained three samples for biological replicates and the control samples used
unprocessed cells. Each sample contained 10° cells and virus titer was 10’ TU/mL for 1X. After transfection,
RNA extraction, cDNA synthesis and cDNA amplification were performed following the same procedure in
our previous study [11]. For each sample, total RNA was isolated using RNAiso Plus Reagent (TaKaRa,
Japan) and the cDNA was synthesized by Mir-X miRNA First-Strand Synthesis Kit (Clontech, USA). The
cDNA product was amplified by gPCR (Thermo Fisher Scientific, USA) using U6 snRNA as internal
control under gene-specific reaction conditions. U1 snRNAs of human and rat used the forward and reverse
primers GGGAGATACCATGATCAC and CCACTACCACAAATTATGC. U6 snRNAs of human and rat
used CGGCAGCACATATACTAA and GAACGCTTCACGAATTTG.
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