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Abstract

The causes and consequences of fluctuating population densities are an important topic

in ecological literature. Yet, the effects of such fluctuations on maintenance of variation

in spatially structured populations have received little analytic treatment. We analyze

what happens when two habitats coupled by migration not only differ in their trade-

offs in selection but also in their demographic stability – and show that equilibrium

allele frequencies can change significantly due to ecological feedback arising from locally

fluctuating population sizes. When an ecological niche exhibits such fluctuations, these

drive an asymmetry in the relative impact of gene flow, and therefore, the equilibrium

frequency of the locally adapted type decreases. Our results extend the classic conditions

on maintenance of diversity under selection and migration by including the effect of

fluctuating population densities. We find simple analytic conditions in terms of the

strength of selection, immigration, and the extent of fluctuations between generations

in a continent-island model. While weak fluctuations hardly affect coexistence, strong

recurrent fluctuations lead to extinction of the type better adapted to the fluctuating

niche – even if the invader is locally maladapted. There is a disadvantage to specialization

to an unstable habitat, as it makes the population vulnerable to swamping from more

stable habitats.
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Introduction

Classic evolutionary theory behind maintenance of variation in natural populations fo-

cuses on the balance between selection, migration and mutation (Levene, 1953; May-

nard Smith, 1970; Bulmer, 1972). Over decades of research, the conditions for mainte-

nance of polymorphism have been analyzed for increasingly complex systems with many

loci, alleles and demes (reviewed in Bürger 2014). Yet typically, population dynamics

are considered fast enough so that they do not need to be modeled explicitly – an as-

sumption that we relax in this work.

Natural populations are often out of equilibrium (Hastings, 2004). The discovery that

large and irregular fluctuations can be driven by very simple dynamics (Lorenz, 1963)

has led to a surge of interest in ecological theory. Both within- and between-species in-

teractions, such as density dependence and predator-prey interactions can lead to large

fluctuations in population sizes (May, 1972, 1974; Levins, 1979). Even chaotic dynamics,

arising from overcompensating density dependence via intraspecific predation, have been

successfully induced in an experimental population of flour beetles (Costantino et al.,

1995). While, nonetheless, chaotic dynamics are believed to be rare (Thomas et al., 1980;

Ellner and Turchin, 1995), fluctuations in population size are omnipresent. In natural

populations, these can be caused by both intra- and inter-specific interactions, as well as

purely exogenous abiotic factors such as weather (Framstad et al., 1997; Turchin et al.,

2000; Coulson et al., 2001).

Oscillations in population size rarely affect the whole species uniformly. The size of the

fluctuations may change through the species’ range and at any given time, some sub-

populations can even go extinct. These local extinctions may affect the persistence of

the whole population (Levins, 1969, 1970; Hanski and Ovaskainen, 2003). Yet, disper-

sal among subpopulations can strongly mitigate the extent of fluctuations, diminishing

the risk of extinction in spatially structured populations (Den Boer, 1968; Reddingius

and Den Boer, 1970; Roff, 1974). The whole (meta-)population becomes more stable as

immigration from more populated patches pushes local population sizes away from zero

(Hanski, 1985, 1991). Notably, even weak migration can dampen chaotic fluctuations

arising due to overcompensating density dependence (Ruxton, 1994; Stone and Hart,

1999; Allen et al., 1993).

While dispersal stabilizes the ecological dynamics of a single species in the presence of
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disturbances, the effect of the interplay of dispersal and disturbances is more complex

once we consider more species or within-species diversity (Holt, 1983b). Strong dispersal

can lead to both global and local loss of variation, when some of the locally adapted

types get swamped by other, more abundant variants. Interestingly though, diversity

can increase with dispersal in the presence of disturbances and specific trade-offs in

adaptation at low vs. high densities (r/K-selection, MacArthur and Wilson 1967; Pi-

anka 1970). Even in the absence of spatial structure, coexistence on a single resource

is possible if the trade-off in resource use leads to a stronger intra-specific competition

than inter-specific competition (“relative nonlinearity”, Armstrong and McGehee 1980;

Chesson 1994). When the balance between the ability to grow fast (high r) vs. effi-

ciently (high K) can evolve, selection may favor intermediate values of both r and K

(Roughgarden, 1971; Gadgil and Solbrig, 1972; Turelli and Petry, 1980; Lande et al.,

2009; Engen et al., 2013; Lande et al., 2017). In contrast to well-mixed populations

(Armstrong and McGehee, 1980; Turelli and Petry, 1980; Chesson, 1994), coexistence of

multiple types on a single resource becomes considerably more robust when populations

are spatially structured. Notably, in an environment with frequent local disturbances,

coexistence of a quick (“weedy”) colonizer which grows fast from low densities and an

efficient user of resources is possible under a broad range of conditions (Hastings, 1980;

Comins and Noble, 1985; Tilman et al., 1994; Chesson, 2000; Long et al., 2007; Yodzis,

2013). In the presence of spatial structure, a wide range of r–K trade-offs readily leads

to coexistence. In contrast to these previous studies, r and K are properties of the niches

in our model: there is no trade-off in r and K which drives coexistence of multiple types

when population densities fluctuate. We ask how coexistence between locally adapted

types is influenced by out-of-equilibrium population dynamics.

We study coexistence of two discrete types (genotypes, species, bacterial clones) that

are locally adapted to two habitats. These are coupled by migration and one (or both)

of the habitats exhibit deterministic fluctuations in population size. When the environ-

ment varies across space, dispersal between two habitats brings in locally maladapted

variants. How is local adaptation affected by the recurrent asymmetric gene flow aris-

ing in locally fluctuating populations? The balance between the trade-offs in selection,

and between the flows among the independently-regulated habitats is of known impor-

tance: for stable polymorphism to be maintained, the stronger the migration between

the niches, the tighter must be the symmetry between the selection underlying the neg-

ative trade-offs in fitness in the different niches (Maynard Smith, 1970; Bulmer, 1972;

Bürger, 2014). Yet, to our knowledge, it is not known whether the classic predictions are
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robust when population dynamics within the niches are taken into account. We start

by modeling evolution jointly with discrete-time ecological dynamics, where fluctuations

arise from overcompensating density dependence under Ricker’s regulation (1954). We

then proceed by analyzing a simplification with imposed fluctuations in population size.

This leads to explicit analytical conditions which provide a qualitative insight into the

effect of fluctuations in population densities on evolutionary dynamics – whether these

are due to extrinsic disturbances or arise from complex ecological population dynamics.

Models and methods

Population dynamics are modeled jointly with the dynamics of the change in frequency

of two types adapted to two different habitats. Throughout, we interpret these types as

two different alleles in a one-locus haploid system, although they could also represent

two different species. The trade-off in selection is density-independent. A relatively com-

plex model where local, endogenous density fluctuations arise due to overcompensating

density dependence in discrete-time precedes a simplified version with exogenous fluctu-

ations imposed on a subpopulation’s density. We start with numerical demonstrations

of temporal dynamics, and progress to stability analyses in the presence of fluctuations.

All results presented in the stability analyses are analytic – but lengthy and complicated

expressions are evaluated numerically and visualized in graphics. The stability analysis

was assessed via the leading eigenvalues of the corresponding systems, and by the con-

ditions for a protected polymorphism, which – in the case of two haploids in two demes

– implies global convergence (Karlin and Campbell, 1980). More details are provided in

the supporting information (section S1).

Density dependent regulation of population densities (endogenous

fluctuations)

First, we address a two-niche model with migration and joint evolutionary and ecologi-

cal dynamics, where the density-dependent population growth follows Ricker’s regulation

(Ricker, 1954). In this model, a delayed feedback in density regulation can cause large

fluctuations of the population size beyond the carrying capacity.

The life cycle starts with migration, where m12 denotes the forward migration rate

from deme 1 into deme 2, i.e. m12 is the proportion of individuals that emigrate from

deme 1. m21 is the forward migration rate in the opposite direction. Throughout our

analyses, we will mainly focus on the complementary cases of symmetric migration,
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m12 = m21 = m ≤ 1/2, and unidirectional migration, m12 = 0 (Fig. 1).

At generation t, deme i is described by the population size, Ni(t), and the frequency of

the focal allele A, pi(t). We denote the second allele by a. For simplicity, primes label

the intermediate variables after migration but before selection and population growth.

Following migration, the number of individuals in deme 1 is

N ′1(t) = (1−m12)N1(t) +m21N2(t) (1)

and the frequency of allele A in deme 1 is given by

p′1(t) =
(1−m12)p1(t)N1(t) +m21p2(t)N2(t)

N ′1(t)
(2)

with similar recursions for deme 2.

There is a negative trade-off in the fitness of the alleles A and a in the two niches. The

fitnesses of allele A are w1A = 1 and w2A = 1 − s2 in niches 1 and 2 respectively, and

the corresponding fitnesses of allele a are w1a = 1− s1 and w2a = 1 (see left-hand side of

Fig. 1 for visualization). The selection coefficients s1, s2 range between 0 and 1. Thus,

the focal allele A has a fitness advantage in niche 1 whereas a is better adapted to niche

2. In the next generation (after migration and selection), allele frequency of A in each

deme i is

pi(t+ 1) = p′i(t) ·
wiA

w′i(t)
(3)

where w′i(t) = p′i(t)wiA+(1−p′i(t))wia denotes the mean fitness after migration in deme i.

After migration, there is separate population regulation in each deme i following Ricker’s

dynamics (Ricker, 1954):

Ni(t+ 1) = N ′i(t) · e
ri

(
1−N′

i(t)

Ki

)
w′

i(t)
(4)

Here, ri denotes the intrinsic rate of increase, which gives the maximum growth rate of

the population at low densities. Importantly, the rate ri is assumed to be a property of

the niche rather than the types. This is a valid assumption when both types compete

for the same resource within a niche. However, we suppose that the effective intrinsic

rate of increase declines due to maladaptation (by multiplying the mean fitness w′i(t)
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to the exponent): a maladapted population is not able to exploit the potential intrinsic

rate of increase ri. The carrying capacity of a niche, though, remains unaltered by

maladaptation and is given by Ki. Throughout, we will consider niches with equal

carrying capacity, i.e. K = K1 = K2, unless explicitly stated differently (notably, for

the mainland-island model).

m12

m21

Niche 1 Niche 2

w1A = 1

w1 a = 1 - s1

w2A = 1 - s2

w2 a = 1
M21

Niche 1

w1A = 1

w1 a = 1 - s1
a

Figure 1: Evolution and maintenance of variation in the face of gene flow between
populations in two divergent habitats. Left-hand side: Bidirectional migration
between two ecological niches with forward migration rates m12 and m21. Type A is
better adapted to niche 1; type a to niche 2. Right-hand side: Continent-island model
with monomorphic immigration of the locally maladapted type a to the island. M21

denotes the absolute number of immigrants per generation.

We are interested in the effects of fluctuations in population size around the carrying

capacity on the evolutionary dynamics. In this study, the genetic composition of a popu-

lation does not influence its carrying capacity (soft selection: Wallace 1975; Christiansen

1975), because this would add another layer of interactions between ecology and evolu-

tion to the system. We discuss an alternative model choice, where the mean fitness of a

population affects its carrying capacity (hard selection) in the SI (section S7). The key

results are the same for both models.

Backward migration

For parts of our analysis it will prove helpful to rewrite the allele frequencies after

migration to

p′1(t) =
(
1−M1(t)

)
· p1(t) +M1(t) · p2(t) (5)

p′2(t) =M2(t) · p1(t) +
(
1−M2(t)

)
· p2(t) (6)
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Here, Mi(t) is the backward migration rate to deme i, which gives the proportion of

new immigrants in the population of deme i at generation t. In our model, the backward

migration rates are given by

M1(t) =
1

1 + α1 n(t)
and M2(t) =

α2 n(t)

1 + α2 n(t)
(7)

where n(t) = N1(t)/N2(t) is the proportion of the two population sizes, and α1 =

(1−m12)/m21 and α2 = m12/(1−m21).

Imposed population densities (exogenous fluctuations)

While fluctuations in the population size arising under high intrinsic rate of increase

due to overcompensating density regulation such as over-exploitation of the resource or

cannibalism are well documented (Symonides et al. 1986; Costantino et al. 1995; Turchin

et al. 2000), it is useful to examine a simpler system where fluctuations in the population

density are imposed.

In this second model, we impose fluctuations D1 in the population size of niche 1 such

that it periodically fluctuates between two densities K1−D1 and K1 +D1, whereas the

population in niche 2 maintains a constant density K2 (Fig. S2). Again, we concentrate

on the case K = K1 = K2. The equations for the evolutionary dynamics remain un-

changed.

Finally, we analyze the most simplified setting with unidirectional migration from a

monomorphic continent to an island which is subject to imposed fluctuations (see right-

hand side of Fig. 1). Every generation, a constant absolute number M21 (corresponding

to m21K2 = m21K1) of type a individuals migrate to the island, where they are locally

maladapted (w1a = 1−s1). The population size on the island fluctuates between K1+D1

and K1−D1 in subsequent generations. (We assume that population regulation is strong

enough to counteract the ecological effects of immigration.) For this model, we can find

an explicit solution for the equilibrium frequency of the focal type A on the island

(see SI, section S10) and compact analytical conditions for coexistence that allow for

comprehensive interpretation.
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Results

We prove that in structured populations, the evolutionary dynamics strongly depend

on whether the ecological dynamics maintain constant densities or exhibit fluctuations

(which can arise from deterministic intrinsic dynamics or can be imposed extrinsically).

As explained in detail in the methods, we study this phenomenon via a model of two

discrete types living in two habitats with migration between them. There is a trade-off

in adaptation to the two habitats and they also differ in their inherent productivity

(which determines the attainable intrinsic rate of increase of the local population). Nu-

merical demonstrations of the temporal dynamics – showing that allele frequencies can

change significantly due to the ecological feedback – precede a stability analysis of the

polymorphic equilibrium.

Population dynamics affect evolution

When the density of a subpopulation fluctuates, allele frequencies evolve to a different

equilibrium than predicted for population densities that are stable in time – see Fig. 2.

In the absence of ecological dynamics, we can predict the allele frequencies maintained

at equilibrium (Eq. S4). These evolutionary predictions continue to be true when popu-

lation dynamics are included as long as they lead to stable, constant densities (Fig. 2A,

B). Whenever population densities tend to (and remain at) carrying capacity, allele fre-

quencies converge to the unique, stable and globally attracting equilibrium predicted in

the absence of ecology (Fig. 2B, dashed lines; Karlin and Campbell (1980) for the proof

of global convergence). When the trade-off in selection is symmetric, this equilibrium

is always polymorphic in the absence of fluctuations. Hence, even if the focal type is

initially rare, it is able to invade and reach high frequencies.

When population dynamics do not lead to constant densities, the evolutionary predic-

tions change. For high intrinsic rates of increase, overshooting of the carrying capacity is

followed by overcompensating density regulation pushing the population to low densities,

which leads to recurrent fluctuations in population size (Fig. 2C). The type adapted to a

niche that exhibits such density fluctuations evolves to lower frequencies than predicted

in the absence of ecology. Fig. 2D shows that a high intrinsic rate of increase in the first

niche, which drives strong fluctuations in the local population size, is disadvantageous

to the locally adapted type – and can ultimately result in its extinction. This is true

even if the focal type is initially abundant and even if its equilibrium frequency in the
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absence of fluctuations is high (dashed lines). We analyze this effect in detail in the

following paragraphs.

Population densities over time Allele frequencies over time
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Figure 2: Ecological dynamics can change the evolutionary predictions. (A, C): Popula-
tion dynamics in niche 1 (blue) and niche 2 (dark orange) following Ricker’s dynamics
(Eq. 4) with low vs. high intrinsic rate of increase in niche 1 (A r1 = 1 vs. C r1 = 2.5).
(B, D): The allele frequencies of the focal type, which is favored in niche 1, is shown in
blue for niche 1 and in orange for niche 2. The dashed lines represent the expected equi-
librium allele frequencies of the focal type in the absence of ecological dynamics. When
population sizes evolve to a stable constant equilibrium (A), evolutionary dynamics be-
have as predicted (B): even when initially rare (p1(0) = 0.01, p2(0) = 0.005), the focal
type is able to invade and its frequency converges to the globally asymptotically sta-
ble evolutionary equilibrium predicted in the absence of population dynamics (dashed
lines). However, as the population density in niche 1 fluctuates due to overcompensat-
ing density dependence (C, blue), the frequency of the locally favored type decreases
in both niches (D). Although initially very frequent (p1(0) = 0.999, p2(0) = 0.997), the
focal type eventually dies out due to the fluctuations in the niche where it is adapted
to. The inset highlights the fluctuations in the allele frequencies, which are due to the
fluctuating population density. In (A) the population sizes at equilibrium are equal
(N1/K is offset by 0.02 for visual clarity). (C) In niche 2, intrinsic rate of increase
is low enough (r2 = 1) so that the density stays nearly constant at carrying capacity
(see inset) despite the strong fluctuations in niche 1. Parameters: s1 = s2 = 0.05,
m12 = m21 = 0.1, r1 = 1 (A, B), r1 = 2.5 (C, D), r2 = 1, K = K1 = K2.
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How and why local fluctuations affect the evolutionary equilibrium

How does the equilibrium frequency of the focal type depend on the amplitude of fluc-

tuations in population density? Fig. 3 shows the ecological (A) and evolutionary (B)

dynamics at equilibrium for increasing values of the intrinsic rate of increase in niche 1,

r1. For small r1, the population size reaches a stable equilibrium at carrying capacity

(N1 = K1), and the allele frequencies converge to the stable migration-selection equi-

librium predicted by classic population genetic theory. However, as r1 rises above a

threshold, the ecological equilibrium becomes unstable and the population size in niche

1 fluctuates (blue lines in Fig. 3A). Simultaneously, the equilibrium allele frequencies of

the type adapted to niche 1 start to decrease in both niches (blue, orange in Fig. 3B).

The larger the intrinsic rate of increase, the stronger are overshooting and overcompen-

sation, which leads to oscillations of higher period and eventually to chaos, whenever

migration is absent or really weak. In the absence of migration and selection, the tran-

sition to cycling occurs at r1 = 2 for the Ricker model (May and Oster, 1976). Yet,

immigration from the second, stable deme stabilizes the ecological dynamics in two

ways. First, by pushing the local population density away from zero: Even weak migra-

tion dampens fluctuations sufficiently so that the long-term dynamics no longer portrait

the classic chaotic branching diagram of the single population Ricker model (Ruxton,

1994; Stone and Hart, 1999). Additionally, in our model, the effective intrinsic rate of

increase (r1 · w′1(t)) declines with the mean fitness due to immigration of maladapted

types, increasing the threshold to cycling as a function of r1. A detailed analysis of

the population dynamics, their stability analysis, branching points and how they are

influenced by migration and selection can be found in the SI, section S2 (Fig. S3, S4).

Despite wildly fluctuating population dynamics with rising intrinsic rate of increase

r1, the corresponding change in the polymorphic equilibrium is almost linear (Fig. 3A

vs. B). The higher the variance in the population density of the focal niche, the lower

the equilibrium frequency of the locally adapted type – until it dies out: when local

fluctuations with increasing r1 become too strong, the stable polymorphism ceases to

exist and the focal type goes extinct; the other type adapted to the stable niche fixes in

both niches.
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Figure 3: The evolutionary equilibrium changes continuously as fluctuations in pop-
ulation density increase. Fluctuations in local population size – whether they arise
intrinsically due to overcompensating density dependence (A, blue) or are imposed
extrinsically (C, blue) – lead to considerable changes in the evolutionary equilibrium
of the focal type (B, D). The stronger the fluctuations in the density of one niche,
the lower the equilibrium frequencies of the type that is adapted to this fluctuating
habitat. (A) Fluctuations arise in niche 1 (blue) as the local intrinsic rate of increase,
r1, increases above a threshold (see section S2). The population size in the second
niche (orange) with a fixed intrinsic rate of increase, r2 = 1, stays close to the carrying
capacity (N2/K is offset by 0.02 for visual clarity). The bifurcation diagram of the
Ricker-regulated population (blue) differs from the classic one due to the stabilizing
effect of dispersal (Fig. S3A). (B) As long as the intrinsic rate of increase r1 leads to
stable population sizes, allele frequencies evolve towards the equilibrium predicted in
the absence of joint population dynamics. However, with growing r1, fluctuations in
the population density of niche 1 arise, and thus the equilibrium frequencies of the
type favored in this niche decrease in both habitats (blue: p1 in niche 1, orange: p2 in
niche 2). When fluctuations in the focal niche are strong, the locally adapted type goes
extinct. Grey dots are an approximation of the evolutionary equilibrium, obtained
by inserting the mean backward migration from the complete model (Fig. 4) into a
simplified model with constant backward migration rates. This explains the evolution-
ary dynamics well unless fluctuations in backward migration rates are really large (see
Fig. S6). The decrease in equilibrium frequency is smooth despite the complicated
ecological dynamics, with only small fluctuations in the allele frequencies (inset). (C)
This analogue to the branching diagram in (A) depicts the population density in niche
1 (blue) for linearly increasing values of imposed fluctuations (expressed relative to
the carrying capacity as D1/K1). The population size in niche 2 stays constant (or-
ange). (D) The equilibrium frequencies of the focal type decrease as a function of the
(imposed) fluctuations in the niche where it is favored. Grey dots give the approxima-
tion using mean backward migration. The decrease in equilibrium frequencies is not
as abrupt as it is in (B), because the increase in fluctuations is linear. Parameters:
s1 = s2 = 0.1, m12 = m21 = 0.05, K = K1 = K2.
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Also under a model with exogenous fluctuations in the focal niche (Fig. 3C), equilibrium

frequencies of the locally adapted type decrease (Fig. 3D). Here, we assume that the

external environment imposes periodic fluctuations between two densities (e.g. sum-

mer/winter) with constant average density K, but amplitude parametrized by D1.

Fig. 3D shows a decline in the equilibrium frequencies of the locally adapted type with

increasing amplitude of the fluctuations, which is entirely analogous to the effect of in-

trinsic fluctuations under Ricker’s regulation. In particular, the simplified model with

imposed fluctuations demonstrates that the decrease in equilibrium frequency of the fo-

cal type is not simply caused by a drop in the mean population size within the focal

niche when fluctuations arise.

What is the reason for the decrease in equilibrium frequency of the type that is locally

adapted to the niche with oscillating population size? As both types grow reasonably

well at low densities, the fluctuations in the focal niche can easily be exploited by types

immigrating from the more stable environment, even if they are locally maladapted. In

generations where the population density in the fluctuating niche is low, immigration

brings in a significant number of individuals that are adapted to the other niche – result-

ing in a higher proportion of locally maladapted types in the focal niche. Afterwards, in

the transition to a generation with high density, both types increase in number as the

ecological dynamics are much faster than the evolutionary dynamics. In summary, in

generations where the local density is low, the focal niche gets swamped by the other,

more stable habitat. If fluctuations are strong, selection is not capable of compensating

the recurrent swamping that occurs over a long time of repeated oscillations around the

carrying capacity. Hence, the equilibrium allele frequency of the focal type decreases,

i.e. the type that is adapted to the “better” niche, in which a high intrinsic rate of

increase leads to fluctuations in density.

We can understand the increased swamping by gene flow due to fluctuations in local

population densities in terms of backward migration rates. Backward migration measures

the relative strength of immigration to a niche: it gives the proportion of individuals

in the local population that immigrated from the other habitat. In contrast to forward

migration, it depends on the population size in the focal niche. When densities fluctuate,

they drive fluctuations in the backward migration rates (both to the fluctuating niche

and to the other niche – light blue and light orange lines in Fig. 4): fluctuations up

in local population size correspond to fluctuations down in the backward migration to

this niche and vice versa. More importantly, fluctuations in the focal niche lead to an
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increase in its average backward migration rate (dark blue lines in Fig. 4). Indeed,

whenever the population size in the focal niche is low, the backward migration to this

niche is strongly increased due to the large contribution of immigrants relative to the

locals. In contrast, the decrease in the backward migration rate in times of high local

density is much smaller.

Figure 4: The mean backward migration to the focal niche increases significantly as
fluctuations in the local population size grow. Because backward migration
reflects immigration rates, it rises substantially when local population density is low.
Thus, fluctuations in population size drive an increase in the average backward mi-
gration rate to the fluctuating niche (dark blue lines). (A) Under imposed density
fluctuations in the focal niche, backward migration rates fluctuate up and down with a
period of 2 (migration to niche 1 in light blue, niche 2 in light orange). As density fluc-
tuations D1/K1 grow, the extent of these fluctuations in backward migration increases
markedly for the focal niche (increasing mean, dark blue), but only about linearly for
the stable niche 2 (barely declining mean, dark orange). (B) Under Ricker’s regulation,
complex fluctuations in backward migration rates arise (light lines) as a high intrinsic
rate of increase r1 drives fluctuations in population density. Again, this leads to a
strong increase in mean backward migration to the focal niche, while hardly affecting
the one to the stable niche (dark blue vs. dark orange). Dark lines were obtained by
averaging backward migration over generations 1000 − 1300. The bump in the mean
backward migration rates around r1 = 4 comes from the population size fluctuating to
high densities in this regime. Parameters of selection and migration are the same as in
Fig. 3.

The rise in “average relative immigration” as density fluctuations grow explains most of

the change in the evolutionary equilibrium: using the mean backward migration rates

as an approximation for fluctuations leads to a good estimate of the equilibrium allele

frequencies under fluctuating population densities (c.f. grey dots in Fig. 3). We obtain

this close approximation by replacing the migration rates in a model without joint pop-

ulation dynamics by the mean backward migration from the model with joint ecological
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dynamics (and density fluctuations). Hence, the mean backward migration gives a good

measure for the strength of fluctuations and their impact on the evolutionary dynamics

– especially when fluctuations in backward migration rates are not too strong (SI, sec-

tion S3.2). When fluctuations in backward migration increase with intensifying density

fluctuations, their small effect on equilibrium allele frequencies becomes apparent – and

the approximation deviates slightly from the complete model (just before the focal type

dies out in Fig. 3).

Stronger selection in a fluctuating niche counteracts higher mean backward migration

rate. It makes the locally adapted type less vulnerable to the recurrent swamping, be-

cause the type’s ability to compete in the growing phase increases with selection. This

holds true even when the maladapted type dominates in frequency after migration and

even if the trade-off in selection between the niches is symmetric (i.e. also strong in the

stable niche). Strong symmetric selection, albeit leading to less variation in both niches,

stabilizes the polymorphism and maintains diversity for higher intrinsic rate of increase

(Fig. S7).

The decrease in allele frequency of the type which is best adapted to a fluctuating

environment is due to the combination of the ecological instability and immigration

of a type adapted to an other, more stable habitat. In the absence of gene flow, the

locally adapted type converges to fixation regardless of fluctuations. Given a constant

immigration rate, increasing emigration may be essential for survival of the type adapted

to the fluctuating niche (see Fig. S8). As fluctuations grow, higher asymmetry between

emigration and immigration is necessary for the focal type to persist – the other niche acts

as a reservoir of the focal type although it is locally maladapted. Increasing symmetric

migration is only advantageous to the focal type under specific conditions, such as when

the focal niche is larger (Fig. S9).

Robustness to further scenarios

So far, we have assumed that one of the niches undergoes fluctuations in population

density while the second niche is stable, but our findings generalize to oscillations in

both niches. When both niches exhibit density fluctuations, the type which is adapted

to the more stable habitat (where fluctuations are the smallest), increases in frequency

(see Fig. 5). Specifically, when the population density in the second niche fluctuates,

the focal type A benefits from these fluctuations as long as the first niche maintains a

more stable density (r1 < r2). This relative advantage of the focal type declines, and
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so does its equilibrium frequency, as the amplitude of the fluctuations in the focal niche

rises. When the intrinsic rates of increase are the same in both niches and population

sizes are fluctuating but not yet chaotic, allele frequencies converge to about the same

value as in the absence of fluctuations (intersection of gray dashed lines in Fig. 5B, D,

F). This is because mean backward migration rates are identical in both niches when

density fluctuations are the same. Similarly, the less fluctuating niche is subject to the

weakest average backward migration, and therefore the type adapted to it swamps niches

that undergo stronger fluctuations. This generalizes the phenomenon described in the

previous paragraphs: when one niche is significantly less stable than the other niche, the

locally adapted type goes extinct.

The decline in equilibrium frequency of the type adapted to the less stable niche is inde-

pendent of the underlying reason for the occurrence of fluctuations. For the evolutionary

dynamics, only net fluctuations in population size matter – whether imposed or driven

by intrinsic dynamics. Thus, the change in equilibrium frequency is robust also under

other forms of population dynamics such as logistic density dependence (see SI: section

S6, Fig. S10, S11). Here, fluctuations are weaker than under Ricker’s regulation, and we

see that the focal type’s equilibrium frequencies decrease continuously even if polymor-

phism can be maintained under chaotic densities.

Our results are also robust to a model of hard selection, where the mean fitness of a

population impacts both its growth rate and its carrying capacity. We discuss this al-

ternative formalization in detail in the SI (section S7): the decline in equilibrium allele

frequency with growing fluctuations is even steeper, because mean fitness in the fluc-

tuating niche decreases due to a higher proportion of maladapted immigrants (Fig. S12).

Furthermore, the observed evolutionary phenomenon is qualitatively independent of

whether migration precedes selection and population growth (as modeled here) or suc-

ceeds them (Fig. S13).
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Figure 5: When both niches exhibit fluctuations, the type better adapted to the more
stable niche increases in frequency. With growing intrinsic rate of increase in niche
2 (from top to bottom: r2 = 2, 2.4, 2.8), fluctuations in population density in niche 2
arise and intensify (A, C, E). This leads to higher equilibrium frequencies of the focal
type (B, D, F) because it is able to swamp niche 2 whenever the population density
there is low. Blue lines show the long-term behavior in niche 1, orange lines describe
niche 2. Gray dashed lines indicate the diversity maintained if population densities were
constant (horizontal), and the value of r2 (vertical). When the population density in
niche 1 stays close to the carrying capacity while niche 2 exhibits fluctuations (r2 > 2,
r1 < r2 – note that the branching point in niche 1 depends on the amplitude of
fluctuations in niche 2), the focal type reaches higher equilibrium frequencies than
predicted in the absence of fluctuations (horizontal dashed lines in D, F). The relative
advantage of the focal type vanishes once r1 ≈ r2 (vertical dashed lines in D, F),
where equilibrium frequencies are about the same as for constant population densities
(intersection of vertical with horizontal dashed lines in B, D, F). When r1 > r2 (right
of vertical dashed lines), niche 1 is less stable than niche 2, which leads to a decrease
in the equilibrium frequency of the focal type – and eventually, as r1 increases, to its
extinction. Parameters: s1 = s2 = 0.1, m = 0.05
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Conditions for stable polymorphism

How do the classic conditions for maintenance of diversity under migration and selection

change when local population size fluctuates? As long as population dynamics maintain

constant densities, simple explicit conditions for a stable polymorphism can be derived

(SI, section S1.1). For the general case of arbitrary migration rates and potentially

unequal niche sizes these can be found in the SI (Eqs. S5, S6). The condition for coex-

istence of the two types when population densities are stable (and equal) and migration

is symmetric, is given by

m ·
∣∣∣∣ 1

s1
− 1

s2

∣∣∣∣ < 1−m (8)

We see that both symmetry in selection strength between the niches and low migration

stabilize the polymorphism. This balance between migration and selection expresses a

necessary and sufficient condition for maintenance of polymorphism in the case of two

haploids inhabiting two demes in the absence of population dynamics (or, when they

are included but lead to a stable, constant ecological equilibrium). The formula is simi-

lar to the well-known sufficient conditions for maintenance of polymorphism in diploids

and models in continuous time (Maynard Smith, 1970; Bulmer, 1972; Lenormand, 2002;

Bürger, 2014). Condition (8) is visualized by the dashed lines in Fig. 6 (also Fig. S1): the

stronger the asymmetry in selection, the larger selection needs to be relative to migra-

tion for diversity to be maintained. In the absence of fluctuations, if selection is strongly

asymmetric, and weak relative to migration, there is no polymorphic equilibrium and

allele frequencies converge to fixation.

When population densities fluctuate, the explicit analytic conditions for a globally stable

polymorphism are long and complex (SI, section S1.3). They are derived using stabil-

ity analysis of the model with imposed fluctuations in niche 1 – where this analysis is

possible although we do not have an explicit formula for the equilibrium allele frequen-

cies under fluctuating population densities. The conditions for maintenance of diversity

under strong imposed fluctuations in the focal niche are shown in Fig. 6 (solid lines,

encasing the grey area).

The parameter region where a stable polymorphic equilibrium is maintained changes

when a subpopulation’s density fluctuates (Fig. 6: solid vs. dashed lines) – but the sta-

bilizing effect of weak migration and strong selection is preserved under both constant

and fluctuating population dynamics. Variation is maintained more easily when disper-

sal is low (Fig. 6A vs. B), and the robustness of the polymorphism broadens as symmetric
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selection gets stronger (polymorphism is maintained for larger fluctuations as selection

intensifies). Therefore, the shape of the stability region is fairly robust to fluctuations in

density. However, fluctuations in one niche, while the other niche is stable, introduce an

asymmetry in the range of selection coefficients for which variation is maintained. The

stability region is shifted because selection against the focal type and density fluctua-

tions in the focal niche have a similar impact on the evolutionary dynamics: both lead

to a decrease in equilibrium allele frequency of the focal type.

Under fluctuations in the focal niche, more variation is maintained when the selection

trade-off between the niches is asymmetric and benefits the focal type (s2 < s1). Fluc-

tuations in the first niche lower the equilibrium frequency of the locally favored type

(A), while increasing the proportion of the other type (a). Therefore, they reduce the

parameter region where the focal type A becomes fixed (Fig. 6: white area, bottom

right). This means, whenever the focal type A has a strong relative selective advan-

tage (s2 � s1), fluctuations in the niche where it is favored counteract the asymmetry

in selection by increasing the proportion of the disadvantaged type a. In that regime,

this broadens the region where polymorphism is maintained: density fluctuations can

support diversity if asymmetry in selection trade-offs favors the type adapted to the

fluctuating habitat. On the other hand, when asymmetry in selection trade-offs imposes

a strong disadvantage on the focal type A (s2 � s1), its allele frequencies decrease and

fluctuations lead easily to its extinction. Then fluctuations intensify the asymmetry in

selection. Hence, a significantly larger range of parameters leads to fixation of the other

type, a, when fluctuations occur in the first niche (Fig. 6: white area, top left). In sum-

mary, in the presence of fluctuations, polymorphism is maintained for stronger selection

against maladapted immigrants (s1), and weaker selection against the focal type in the

stable niche (s2).
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Figure 6: Fluctuations in the density of niche 1 shift and skew the parameter region
where variation is maintained. Dashed lines give the condition for maintenance
of polymorphism in the absence of fluctuations (m · |1/s1 − 1/s2| < 1 − m), while
solid lines delimit the region where polymorphism is stable (grey area) under strong
imposed fluctuations in the population density in niche 1 (D1/K = 0.9). To prevent
extinction of the type adapted to the fluctuating niche, its selective advantage must
be comparatively higher than when the densities are stable: the stability region shifts
to the right, at a rate which is nearly independent of the strength of migration (A
vs. B). Fluctuations broaden the parameter space that leads to fixation of the type a
adapted to the stable niche by increasing the pressure on the focal type A. However,
if asymmetry in selection favors the focal type (s1 � s2), then fluctuations counteract
that asymmetry and polymorphism is maintained more easily: the region where type
A gets fixed shrinks.

Polymorphism under imposed fluctuations in a continent-island model

Since the analytic conditions for maintenance of polymorphism under imposed fluctu-

ations are extensive and complicated in the model with bidirectional migration (visu-

alization in Fig. 6), it proves useful to analyze a continent-island model with imposed

fluctuations on the island. In the SI we demonstrate that the effect of (intrinsic) density

fluctuations on the evolutionary dynamics is robust to whether migration is symmetric

or unidirectional to the fluctuating niche: the equilibrium frequency of the focal type

is simply shifted to lower values under monomorphic immigration (section S9). For the

continent-island model, simple explicit conditions for the persistence of the resident type

on the island can be derived.
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We obtain conditions for persistence of the locally adapted type in terms of selective

disadvantage of the immigrating type, s1, the relative fluctuation size on the island,

D1/K1, and the “rate of immigration” – the mean ratio of immigrants to locals (at the

beginning of the life cycle), M21/K1 = m21.

Extinction of the locally adapted resident type on the island is certain whenever the

selective disadvantage of the immigrating type is not strong enough to prevent swamping

by the continent. Namely, for survival of the resident type to be possible, the relative

strength of immigration at the time of selection, M21/(K1 + M21) = m21/(1 + m21),

needs to be weaker than the local selective disadvantage of the immigrants, s1:

M21

K1 +M21
< s1 (9)

This condition recovers the known threshold for survival of a locally adapted type in a

continent-island model in the absence of population dynamics (Haldane, 1930; Wright,

1931).

In the presence of fluctuations, condition (9) is necessary but not sufficient. The resident

type persists on the island if and only if

D1

K1
<

√
1

(2− s1)s1
−
(

1

(2− s1)s1
− 1

)
·
(

1 +
M21

K1

)2

(10)

This threshold, which we denote by (D1/K1)
∗, gives the critical relative fluctuation size

at which the resident type dies out. It increases with the selection coefficient s1 and

decreases with the rate of immigration M21/K1, as illustrated in Fig. 7A.

Condition (10) implies and extends the threshold for swamping in the absence of pop-

ulation dynamics (Eq. 9). The critical relative fluctuation size (D1/K1)
∗ is a positive

real number, whenever condition (9), which is equivalent to M21/K1 < s1/(1 − s1), is

fulfilled. The critical relative fluctuation size equals zero when M21/K1 = s1/(1 − s1),
and increases to positive values as the rate of immigration decreases below this threshold

for swamping. In summary, whenever the relative number of immigrants is small enough

(Eq. 9), coexistence becomes possible, but depends on the amplitude of fluctuations on

the island (Eq. 10).
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This result corresponds to our previous findings: the fewer locally maladapted immi-

grants arrive on the island and the stronger their maladaptation, the higher the frequency

of the resident type in the absence of fluctuations. Therefore, the locally adapted type

becomes more robust to fluctuations. In general, small fluctuations do not yet lead to

extinction of the resident type once the balance between selection and immigration al-

lows for coexistence of the two types (see Fig. 7A). Weak fluctuations have a weak effect

on the maintenance of diversity on the island.
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Figure 7: Strong fluctuations lead to extinction even when migration is weak, but
the effect is attenuated under bidirectional migration. The critical relative
fluctuation size is a decreasing function of the migration rate and an increasing func-
tion of selection (s1 = 0.1 (blue), 0.2 (orange), 0.3 (green)). (A) In the continent-
island model, locally maladapted immigrants swamp the island when immigration is
too strong. Just once the relative immigration falls below the critical value (dots:
M21/K1 = s1/(1 − s1), see Eq. 9), coexistence becomes possible. Then the critical
relative fluctuation size (D1/K1)∗ increases abruptly: weak fluctuations have a weak
effect on the maintenance of diversity on the island. When migration is weak relative to
selection (M21/K1 � s1/(1−s1)), the dependency between critical relative fluctuation
size and the rate of immigration becomes almost linear – the stronger the selection
against the immigrating type, the more is the resident type robust to fluctuations. (B)
In the 2-demes model, migration can be polymorphic, and hence even strong dispersal
does not necessarily lead to extinction of the focal type. The lines depict the criti-
cal relative fluctuation size when migration and selection are symmetric (m12 = m21,
s1 = s2). The triangle (m = 0.1) and square (m = 0.4) provide a reference to Fig. 6
which depicts the stability of the system for variable selection (s1 6= s2) but a fixed
value of fluctuations (D1/K = 0.9).

There are two cases when fluctuations can be extensive without leading to extinction of

the resident type: when immigration tends to zero, or when selection against the immi-

grants is lethal, s1 → 1. These are the scenarios where the island is monomorphic for the

resident type because the immigrants cannot survive there. As immigration increases

from zero, the critical relative fluctuation size decreases almost linearly, with a negative

rate of −1/
(
(2−s1)s1

)
+1 (Fig. 7A and Fig. S15). This rate flattens as selection against
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the immigrating type increases. Thus, the critical relative fluctuation size declines faster

with increasing immigration when selection is weak. Conversely, the stronger the selec-

tion, the larger are the fluctuations under which the resident type is still able to survive

– a phenomenon that we discussed in the model with symmetric migration and density

dependent population regulation already (Fig. S7).

How does the critical relative fluctuation size in the continent-island model compare to

the critical relative fluctuation size in the model with two niches and symmetric migration

between them (Fig. 7B)? When there is bidirectional migration between two niches,

fluctuations in the focal niche are less detrimental to the locally adapted type than in the

continent-island model (Fig. 7A vs. B). Then, the other more stable niche is inhabited by

both types, leading to a polymorphic (rather than monomorphic) immigration into the

focal niche. Hence, migration out of the fluctuating niche can be essential for persistence

of the locally adapted type: the ability to find refuge in a stable niche is strongly

beneficial for its maintenance – even if it is maladapted to that other niche and would

go extinct there in the absence of immigration.

Discussion

In nature, the productivity and stability of environments vary through space. Species

live across sets of heterogeneous habitats that differ both in their demographic stability

and evolutionary optima. For example, many species live both in their natural habi-

tat as well as in strongly human-altered environments such as parks, fields or houses.

These habitats favor different adaptation, and typically differ in their stability as well.

Likewise, peripheral populations of species often experience more extreme and unstable

environments, inducing fluctuations in population sizes. Our results demonstrate that

in structured populations, recurrent density fluctuations within an ecological niche have

a substantial effect on the diversity of the whole population. Whenever local popula-

tion size is low, the locally adapted type is vulnerable to swamping by migration from

a neighboring habitat. The asymmetry in gene flow induced by fluctuating popula-

tions is reflected by an increase in average backward migration rate, which measures the

mean relative immigration into the focal niche. We obtain simple explicit conditions

for persistence of the resident type and show that while small fluctuations hardly affect

coexistence, even weak migration may drive the locally adapted type to extinction if

fluctuations are strong. Stability in population size can be just as important for main-

tenance of diversity as the selective advantage within a niche.
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In the 60s and 70s, ecological instability and chaotic dynamics were in the focus of at-

tention (May, 1972, 1974; Levins, 1979), and the fact that migration can balance local

disturbances has been recognized early on: “The effect of extreme conditions in one

place will be leveled out to some degree by less extreme conditions in others. Migration

can contribute to the leveling influence of spatial heterogeneity.” (Den Boer, 1968).

Later, Chesson (1985) formalized these ideas of coexistence as a “spatial storage effect”

– coexistence is facilitated because differing micro-habitats buffer a species against poor

recruitments that occur during periods when the other species has a competitive advan-

tage. In our work, local population sizes fluctuate, but within each habitat, evolutionary

optima are stable across time. While dispersal stabilizes the population dynamics, it has

a destabilizing effect on the maintenance of polymorphism: weak migration across a het-

erogeneous habitat increases local variation, but polymorphism cannot be maintained

when immigration is too high (reviewed in Lenormand 2002). When population densities

fluctuate, swamping by migration becomes powerful, and the equilibrium frequency of

the type which is adapted to the “fluctuating” niche decreases. There is a disadvantage

to adaptation to an ecological niche which exhibits fluctuations in population size.

Migration between habitats stabilizes population dynamics – and can even suppress

chaotic fluctuations (Allen et al., 1993; Stone and Hart, 1999) – for types which share a

common resource. Yet, due to ongoing migration, types adapted to unstable, strongly

fluctuating niches will be replaced by their competitors, which benefit from migration

from a more stable environment. The replacement itself may have a minor stabilizing

effect on the ecological dynamics when the effective growth rate decreases with maladap-

tation (Fig. S3B). As long as the habitats are connected by dispersal, fluctuations of the

persisting type remain suppressed – even if in the absence of population structure, these

would be chaotic.

It is an important assumption of our model that the intrinsic rate of increase is a property

of the niche rather than the genotype – as is the case when multiple types use a common

abundant resource. Similarly, exogenous fluctuations are imposed on the entire popula-

tion within a niche. As the fluctuations of a niche apply to its whole subpopulation, they

lead to an increase in relative immigration which is independent of evolution and applies

to all genotypes at the same rate. Therefore, the recurrent swamping overcomes the

evolutionary trade-off and the type adapted to the most severely fluctuating niche gets

swamped by migration from more stable habitats. Its allele frequency declines slowly
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over many generations of fluctuations in population density. In ecological models where

the capacity to grow well from low densities and the trade-off between the types are

combined to one parameter (Smith, 1998; Lúıs et al., 2011), we do not observe the effect

that fluctuations in the resource-rich niche ultimately harm the locally more competitive

type. This is because density fluctuations then only arise due to a dual advantage of

this type. The coupling of demography and evolution is an essential feature of our model.

Here, we assume soft selection, so that the carrying capacity does not change with mal-

adaptation. Under hard selection, both intrinsic rate of increase and carrying capacity

change with the mean fitness of the population. Then, the decline in frequency of the

type adapted to the unstable environment is slightly faster with growing fluctuations

(see Fig. S12), because the asymmetry in average gene flow increases as the carrying

capacity in the focal niche decreases. We have started with the Ricker model of a popu-

lation’s density dependent growth, as it is established in theoretical literature and there

are examples where it gives good fit to experimental data (Thomas et al., 1980). Here,

fluctuations driven by delayed feedback in density regulation arise from discrete time dy-

namics. However, our main results are robust to extrinsically imposed fluctuations and

alternative choices of density regulation such as logistic density dependence (see Fig. 3

and Fig. S11). To a good approximation, the effect of fluctuations can be recovered us-

ing mean backward migration rates. Therefore, our results obtained from discrete-time

dynamics should hold for continuous time as well – as long as the differences in the time

scales of fluctuations in the ecological vs. evolutionary dynamics are similar as in our

model.

Furthermore, although we restrict ourselves to the study of two types inhabiting two

heterogeneous niches, we are confident that our results generalize to n types in m niches

with various trade-offs in fitness between the niches. The deleterious effect of fluctu-

ations would then be observable as a decrease in equilibrium frequency of the type(s)

that is/are best adapted to the environment(s) that exhibit(s) fluctuations in population

density. We expect a decrease in equilibrium frequency of the type adapted to the niche

exhibiting the most severe fluctuations. However, when one type is adapted to multiple

unstable habitats, migration between them can stabilize the population dynamics (Allen

et al., 1993; Ruxton, 1994; Stone and Hart, 1999) and therefore increase the type’s ro-

bustness against gene flow from neighboring habitats with trade-offs in adaptation.

Our results are of particular relevance for maintenance of local adaptation to peripheral
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populations (Holt, 1983a,b; Lennon et al., 1997; Sexton et al., 2009; Holt and Barfield,

2011), which often experience more severe fluctuations than central habitats (Harrison,

1991). Our deterministic model predicts that if genetic drift is weak relative to se-

lection, adaptation to local conditions is considerably more difficult when population

density fluctuates strongly. Then, dispersal can even prevent local adaptation. How-

ever, our predictions could change when we include stochasticity: by keeping the locally

adapted type away from very low densities, migration could reduce stochastic extinction

risk, as even weak dispersal has a strong stabilizing effect on density-dependent popu-

lation dynamics. Therefore, when genetic drift is strong, dispersal could be beneficial

even when it brings in also maladapted types. A similar effect is seen in models of

evolution to species range margins with a continuously varying resource – once genetic

drift becomes important, increasing migration rate improves the adaptation to marginal

conditions (Polechová, 2018). The effects of genetic and demographic stochasticity in

our simple model, as well as the impact of added instability in peripheral populations on

adaptation to marginal conditions, would be an interesting subject to dedicated future

study.

Understanding the impact of fluctuations is becoming progressively more important to

conservation biology. Extreme weather, which currently appears increasingly often as the

stability of the climate is decreasing, can readily induce larger fluctuations in population

densities. We show that even when population sizes stay large enough so that stochastic

extinction is not yet a concern, the variance in population size is an important factor

for maintenance of diversity. As an omnipresent phenomenon in natural populations,

the effects of fluctuations on diversity has also come into focus of experimental studies

(Buckling et al., 2000; Rainey et al., 2000; Buckling et al., 2007). With our work, we aim

to elucidate the effects of unstable population dynamics, and highlight the importance

of considering ecology and evolution jointly.

25

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/444273doi: bioRxiv preprint 

https://doi.org/10.1101/444273
http://creativecommons.org/licenses/by-nd/4.0/


References

Allen, J., W. Schaffer, and D. Rosko, 1993. Chaos reduces species extinction by amplifying local popu-

lation noise. Nature 364:229.

Armstrong, R. A. and R. McGehee, 1980. Competitive exclusion. The American Naturalist 115:151–170.

Buckling, A., M. Brockhurst, M. Travisano, and P. Rainey, 2007. Experimental adaptation to high and

low quality environments under different scales of temporal variation. Journal of Evolutionary Biology

20:296–300.

Buckling, A., R. Kassen, G. Bell, and P. Rainey, 2000. Disturbance and diversity in experimental

microcosms. Nature 408:961–964.

Bulmer, M., 1972. Multiple niche polymorphism. The American Naturalist 106:254–257.

Bürger, R., 2014. A survey of migration-selection models in population genetics. Discrete & Continuous

Dynamical Systems-B 19:883–959.

Chesson, P., 1994. Multispecies competition in variable environments. Theoretical Population Biology

45:227–276.

———, 2000. General theory of competitive coexistence in spatially-varying environments. Theoretical

population biology 58:211–237.

Chesson, P. L., 1985. Coexistence of competitors in spatially and temporally varying environments: a

look at the combined effects of different sorts of variability. Theoretical Population Biology 28:263–287.

Christiansen, F. B., 1975. Hard and soft selection in a subdivided population. American Naturalist

109:11–16.

Comins, H. and I. Noble, 1985. Dispersal, variability, and transient niches: species coexistence in a

uniformly variable environment. The American Naturalist 126:706–723.

Costantino, R. F., J. M. Cushing, B. Dennis, and R. A. Desharnais, 1995. Experimentally induced

transitions in the dynamic behaviour of insect populations. Nature 375:227.

Coulson, T., E. A. Catchpole, S. D. Albon, B. J. Morgan, J. Pemberton, T. H. Clutton-Brock, M. Craw-

ley, and B. Grenfell, 2001. Age, sex, density, winter weather, and population crashes in soay sheep.

Science 292:1528–1531.

Den Boer, P. J., 1968. Spreading of risk and stabilization of animal numbers. Acta biotheoretica

18:165–194.

Ellner, S. and P. Turchin, 1995. Chaos in a noisy world: new methods and evidence from time-series

analysis. The American Naturalist 145:343–375.

Engen, S., R. Lande, and B.-E. Sæther, 2013. A quantitative genetic model of r-and k-selection in a

fluctuating population. The American Naturalist 181:725–736.

26

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/444273doi: bioRxiv preprint 

https://doi.org/10.1101/444273
http://creativecommons.org/licenses/by-nd/4.0/


Framstad, E., N. C. Stenseth, O. N. Bjørnstad, and W. Falck, 1997. Limit cycles in norwegian lemmings:

tensions between phase–dependence and density-dependence. Proceedings of the Royal Society of

London B: Biological Sciences 264:31–38.

Gadgil, M. and O. T. Solbrig, 1972. The concept of r-and k-selection: evidence from wild flowers and

some theoretical considerations. The American Naturalist 106:14–31.

Haldane, J. B. S., 1930. A mathematical theory of natural and artificial selection. (part vi, isolation.).

Mathematical Proceedings of the Cambridge Philosophical Society 26:220–230.

Hanski, I., 1985. Single-species spatial dynamics may contribute to long-term rarity and commonness.

Ecology 66:335–343.

———, 1991. Single-species metapopulation dynamics: concepts, models and observations. Biological

Journal of the Linnean Society 42:17–38.

Hanski, I. and O. Ovaskainen, 2003. Metapopulation theory for fragmented landscapes. Theoretical

population biology 64:119–127.

Harrison, S., 1991. Local extinction in a metapopulation context: an empirical evaluation. Biological

journal of the Linnean Society 42:73–88.

Hastings, A., 1980. Disturbance, coexistence, history, and competition for space. Theoretical Population

Biology 18:363–373.

———, 2004. Transients: the key to long-term ecological understanding? Trends in Ecology & Evolution

19:39–45.

Holt, R. D., 1983a. Immigration and the dynamics of peripheral populations. Advances in Herpetology

and Evolutionary Biology Pp. 680–694.

———, 1983b. Models for peripheral populations: the role of immigration. Pp. 25–32, in Population

Biology. Springer.

Holt, R. D. and M. Barfield, 2011. Theoretical perspectives on the statics and dynamics of species

borders in patchy environments. The American Naturalist 178:S6–S25.

Karlin, S. and R. Campbell, 1980. Selection-migration regimes characterized by a globally stable equi-

librium. Genetics 94:1065–1084.

Lande, R., S. Engen, and B.-E. Sæther, 2009. An evolutionary maximum principle for density-dependent

population dynamics in a fluctuating environment. Philosophical Transactions of the Royal Society

of London B: Biological Sciences 364:1511–1518.

———, 2017. Evolution of stochastic demography with life history tradeoffs in density-dependent age-

structured populations. Proceedings of the National Academy of Sciences P. 201710679.

Lennon, J. J., J. R. Turner, and D. Connell, 1997. A metapopulation model of species boundaries. Oikos

Pp. 486–502.

27

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/444273doi: bioRxiv preprint 

https://doi.org/10.1101/444273
http://creativecommons.org/licenses/by-nd/4.0/


Lenormand, T., 2002. Gene flow and the limits to natural selection. Trends in Ecology & Evolution

17:183–189.

Levene, H., 1953. Genetic equilibrium when more than one ecological niche is available. The American

Naturalist 87:331–333.

Levins, R., 1969. Some demographic and genetic consequences of environmental heterogeneity for bio-

logical control. American Entomologist 15:237–240.

———, 1970. Extinction. Some mathematical questions in biology .

———, 1979. Coexistence in a variable environment. The American Naturalist 114:765–783.

Long, Z. T., O. L. Petchey, and R. D. Holt, 2007. The effects of immigration and environmental variability

on the persistence of an inferior competitor. Ecology letters 10:574–585.

Lorenz, E. N., 1963. Deterministic nonperiodic flow. Journal of the atmospheric sciences 20:130–141.
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