186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

bioRxiv preprint doi: https://doi.org/10.1101/444364; this version posted December 22, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

10

11

12

13

14

15
16

17

18

19

20

under aCC-BY 4.0 International license.

Pigozzi, M. I. & Solari, A. J. Germ cell restriction and regular transmission of an
accessory chromosome that mimics a sex body in the zebra finch, Taeniopygia guttata.
Chromosome Res. 6, 105-113 (1998).

Warren, W. C. et al. The genome of a songbird. Nature 464, 757762 (2010).

Itoh, Y., Kampf, K., Pigozzi, M. I. & Arnold, A. P. Molecular cloning and
characterization of the germline-restricted chromosome sequence in the zebra finch.
Chromosoma 118, 527-536 (2009).

Biederman, M. K. et al. Discovery of the first germline-restricted gene by subtractive
transcriptomic analysis in the zebra finch, Taeniopygia guttata. Curr. Biol. 28, 1620-1627
(2018).

Smith, J. J. Programmed DNA elimination: keeping germline genes in their place. Curr.
Biol. 28, R601-R603 (2018).

Pigozzi, M. I. & Solari, A. J. The germ-line-restricted chromosome in the zebra finch:
recombination in females and elimination in males. Chromosoma 114, 403-409 (2005).
Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination
of diploid genome sequences. Genome Res. 27, 757-767 (2017).

Bell, J. M. et al. Chromosome-scale mega-haplotypes enable digital karyotyping of cancer
aneuploidy. Nucleic Acids Res. 45, e162-e162 (2017).

Kapusta, A. & Suh, A. Evolution of bird genomes—a transposon's-eye view. Ann. N. Y.
Acad. Sci. 1389, 164-185 (2017).

Singhal, S. et al. Stable recombination hotspots in birds. Science 350, 928-932 (2015).
del Priore, L. & Pigozzi, M. I. Histone modifications related to chromosome silencing and
elimination during male meiosis in Bengalese finch. Chromosoma 123, 293-302 (2014).
Goday, C. & Pigozzi, M. I. Heterochromatin and histone modifications in the germline-
restricted chromosome of the zebra finch undergoing elimination during spermatogenesis.
Chromosoma 119, 325-336 (2010).

Marin, R. et al. Convergent origination of a Drosophila-like dosage compensation
mechanism in a reptile lineage. Genome Res. 27, 1974-1987 (2017).

Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science
286, 964-967 (1999).

Torgasheva, A. A. et al. Germline-restricted chromosome (GRC) is widespread among
songbirds. bioRxiv doi:10.1101/414276 (2018).


https://doi.org/10.1101/444364
http://creativecommons.org/licenses/by/4.0/

353

354
355
356
357
358
359
360
361
362

bioRxiv preprint doi: https://doi.org/10.1101/444364; this version posted December 22, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Extended Data Figure 3| The zebra finch GRC is not enriched in satellites or specific transposable element
families. a, Comparison of spectra for k-mers shared between or exclusive to genome sequencing data from testis
and liver of the Seewiesen sample, showing that the germline is not enriched for exclusive high frequency k-mers,
but is conspicuously enriched in high frequency k-mers shared with the soma. b, Comparison of simple repeat
abundance as assessed by kSeek in the Spanish muscle samples relative to the testis samples. ¢, Same as in panel b,
with a focus on low abundance simple repeats. d-e, Repeat landscapes based on RepeatMasker analyses showing the
main repetitive element families for genome re-sequencing data from muscle (d) and testis (e) of the combined
Spanish samples. f, Subtractive repeat landscape obtained by subtracting muscle from testis counts showing a general
impoverishment of testis for most of the repetitive elements (negative values) due to the presence of the GRC.
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Extended Data Figure 4 | Testis-specific linked-read barcode sharing between A chromosomes indicates GRC
haplotypes. Plots show side-by-side comparison of the inter-chromosomal barcode overlap for 200-kb regions for
the liver and testis, respectively (chromosome position scale in Mb). With the exception of the interaction between
chromosome 6 and chromosome 8 (bottom right) showing some background in the liver sample (potentially due to a
shared A-chromosomal rearrangement), all inter-chromosomal structural variants were testis-specific and thus
indicative of being on the same haplotype on the GRC. We exported barcode overlap matrices from the Loupe
browser for testis-specific structural variants called by LongRanger and plotted themin R (v. 3.5.1). We reassigned 0
values to “NA” (shown in white on the plot) and log.-transformed all values. Note that the scale varies across plots.
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Extended Data Figure 5 | Further examples for RNA expression of GRC-linked genes. Comparison of coverage
and read pileups for DNA-seq from Spain_1 and Spain_2 testis/muscle, RNA-seq data from Spain_1 and Spain_2
testis, and available ovary RNA-seq data®. Shown are 100-bp regions within 10 selected genes. Colours indicate
SNVs deviating from the zebra finch reference genome taeGut2.
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Extended Data Figure 6 | Proteomic evidence for GRC protein presence in zebra finch testes and ovaries. The
five proteins listed at the top are also shown in Fig. 2d, i.e., those where we could differentiate between peptides
from GRC vs. A chromosomes. GRC paralogs are denoted by the ‘alt’ suffix, whereas A-chromosomal paralogs are
denoted by the ‘ref” suffix. Unique sequence coverage corresponds to the peptide coverage percentage of the
reference protein sequence. Note that unique peptides may occur in several samples (testes/ovaries). Entries of only
one protein identification have sufficient evidence at the peptide level to differentiate between the GRC and A-
chromosomal paralogs due to coverage of non-identical regions between the both reference sequences; entries of
more than one protein identification contain evidence of presence based solely on identical regions, thus cannot be
differentiated at the proteomic level. Entries of only one protein identification without the corresponding “alt’ or ‘ref’
variant contain evidence that span the non-identical region only, thus the alternate variant need not be called.
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Extended Data Figure 7 | Gene trees of GRC-linked genes from stratum 1 and their A-chromosomal paralogs
from broad taxon sampling imply GRC emergence in the ancestor of Passeriformes. a, Maximum likelihood
gene tree of trim71 (partitioned for codon positions) suggesting GRC linkage in the ancestor of Passeriformes. b,
Maximum likelihood gene tree of biccl (only 3’ UTR) suggesting GRC linkage in the ancestor of oscine songbirds.
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