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Abstract

Information extraction by mining the scientific literature is key to uncovering relations between biomedi-
cal entities. Most existing approaches based on natural language processing extract relations from single
sentence-level co-mentions, ignoring co-occurrence statistics over the whole corpus. Existing approaches
counting entity co-occurrences ignore the textual context of each co-occurrence. We propose a novel
corpus-wide co-occurrence scoring approach to relation extraction that takes the textual context of each
co-mention into account. Our method, called CoCoScore, scores the certainty of stating an association
for each sentence that co-mentions two entities. CoCoScore is trained using distant supervision based
on a gold-standard set of associations between entities of interest. Instead of requiring a manually anno-
tated training corpus, co-mentions are labeled as positives/negatives according to their presence/absence
in the gold standard. We show that CoCoScore outperforms previous approaches in identifying human
disease–gene and tissue–gene associations as well as in identifying physical and functional protein–protein
associations in different species. CoCoScore is a versatile text-mining tool to uncover pairwise associa-
tions via co-occurrence mining, within and beyond biomedical applications. CoCoScore is available at:
https://github.com/JungeAlexander/cocoscore

1 Introduction

Text mining of the scholarly literature for the pur-
pose of information extraction is a fruitful approach
to keep abreast of recent research findings. The first
step in information extraction is named entity recog-
nition (NER) [Jurafsky and Martin, 2008]. Biomed-
ical NER aims to identify relevant entities, such as
genes, chemicals, or diseases, in text. Entities of
interest can either be predefined in a dictionary or
predicted using a machine learning model. NER is
followed by a normalization step mapping the en-
tities to a fixed set of identifiers, such as HGNC
gene symbols [Yates et al., 2017] or Disease Ontology
terms [Kibbe et al., 2015]. General approaches such
as LINNAEUS [Gerner et al., 2010], Tagger [Pafilis
et al., 2013], taggerOne [Leaman and Lu, 2016],
or OGER [Basaldella et al., 2017] recognize diverse
biomedical entities in text, while specialized tools
recognize mentions of genetic variants [Allot et al.,
2018] or chemicals [Jessop et al., 2011].

It is an active area of research to aggregate lit-
erature mentions of individual entities to extract
higher-level information, such as pairwise biomed-
ical relations, from the literature. Approaches to
extract pairwise relations from a corpus of scien-
tific articles, e.g., downloaded from PubMed, typ-
ically follow one of three main paradigms. Firstly,
pattern-based approaches define a fixed set of regu-
lar expressions or linguistic patterns to match single

phrases stating relations of interest. Pattern-based
approaches typically achieve high precision but low
recall in practice and require a labor-intensive man-
ual construction of matching rules. Examples for
this class of approaches are textpressso [Muller et al.,
2004] or pattern-based approaches, as developed by
Saric et al. [2004], used in STRING [Szklarczyk
et al., 2017] and STITCH [Szklarczyk et al., 2016].
Secondly, unsupervised counting approaches count
how often two entities appear together and aggre-
gate these counts over the whole corpus in a co-
occurrence statistic. A major shortcoming of simple
counting-based co-occurrence scoring approaches to
find pairwise relations is that the context of each
co-occurrence is ignored, which can lead to low pre-
cision. For instance, sentences explicitly stating the
absence of an association or describing findings un-
related to a relation are counted, too. Furthermore,
counting-based co-occurrence scoring approaches do
not allow to differentiate between different kinds
of associations, such as physical protein–protein in-
teractions and transcription factor–target associa-
tions. The major strengths of counting approaches
are that they typically achieve relatively high recall
and require no annotated training data or manually
crafted match patterns. Examples of this class of ap-
proaches are the text-mining evidence contained in
STRING and DISEASES [Pletscher-Frankild et al.,
2015] as well as DisGeNet [Pinero et al., 2017].
Thirdly, supervised machine learning approaches re-
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quire a labeled training dataset of associations and
train a model to recognize relations of interest. Ma-
chine learning approaches are prone to overfit to the
often small, manually annotated training datasets
resulting in brittle models that do not generalize
well to other datasets. For example Rios et al.,
2018 showed that generalization between datasets of
protein–protein and drug–drug interactions is only
achieved when additional techniques such as the use
of adversarial neural networks for domain adaption
are employed. Examples for machine learning-based
approaches to relation extraction are BeFree [Bravo
et al., 2015], LocText [Cejuela et al., 2018], or con-
ditional random fields [Bundschus et al., 2008].

Distant supervision [Mintz et al., 2009] is an ap-
proach similar to weak labeling [Morgan et al., 2004].
It can be used to generate datasets with a large num-
ber of samples with some amount of noise in the
labels. Distant supervision for relation extraction
only requires access to a knowledge base of well-
described associations as well as an unlabeled set
of entity co-occurrences. Labels for the dataset of
co-occurrences are then inferred based on the pres-
ence or absence of the co-mentioned entities in the
knowledge base. Note that a manually annotated
text corpus is not required when using distant su-
pervision.

In this work, we describe a novel approach,
CoCoScore, that combines an unsupervised counting
approach with a machine learning approach based
on distant supervision. This allows CoCoScore to
train a machine learning model to score sentence-
level co-mentions without requiring an expert-
curated dataset of phrases describing associations.
The model is based on fastText [Joulin et al., 2016]
and relies on word embeddings that represent words
as dense vectors. CoCoScore finally aggregates all
sentence-level scores in a given corpus in a final
context-aware co-occurrence score for each entity
pair. We apply CoCoScore to different biomedi-
cal relation extraction tasks: tissue–gene, disease–
gene, physical protein–protein interactions, and
functional protein–protein associations in H. sapi-
ens, D. melanogaster, and S. cerevisiae. CoCoScore
consistently outperforms a baseline model that uses
constant sentence scores, following previously pro-
posed approaches. We show then that the perfor-
mance of CoCoScore further benefits from an un-
supervised pretraining of the underlying word em-
beddings. By querying CoCoScore with manually
constructed sentences, we show that keywords in-
dicating protein–protein interactions and, to a cer-
tain extent, negations and modality are reflected in
the sentence scores. A Python implementation of
CoCoScore is available for download. The software
package is geared towards reusability across many
text mining tasks by only requiring a list of co-
mentions for scoring without relying on a particular
NER approach.

2 Materials and methods

2.1 Corpus

The corpus used for text mining consists of
PubMed abstracts as well as both open access
and author’s manuscript full text articles avail-
able from PMC in BioC XML format [Doğan
et al., 2014, Comeau et al., 2018]. All abstracts
were last updated on June 9th, 2018 and all full
text articles were last updated on April 17th,
2018. We removed full text articles that were
not classified as English-language articles by fast-
Text [Joulin et al., 2016] using a pretrained lan-
guage identification model for 176 languages down-
loaded from https://fasttext.cc/docs/en/language-
identification.html. We furthermore removed full
text articles that could not be mapped to a PubMed
ID and those that mention more than 200 entities
of any type included in our dictionary of biomedical
entities such as proteins, chemicals, diseases, species
or tissues. The final corpus consists of 28,546,040
articles of which 2,106,542 are available as full text
and the remainder as abstracts.

2.2 Datasets and distant supervision

We use tagger v1.1 to recognize named en-
tities in the corpus using a dictionary-based
approach. Tagger can be downloaded from
https://bitbucket.org/larsjuhljensen/tagger/. The
dictionaries used for named entity recognition,
training and test datasets as well as pretrained
word embeddings and fastText scoring models
described below can be downloaded from
https://doi.org/10.6084/m9.figshare.7198280.v1.
The named entity recognition step is followed
by a normalization step to a common naming
scheme. All gene/protein identifiers were mapped
to identifiers of corresponding proteins used in
STRING v10.5 [Szklarczyk et al., 2017]. The
normalization of disease and tissue identifiers is
described below. We used placeholder tokens in
all datasets to replace tissue, gene, protein, and
disease names found by tagger. This blanking of
entity names is important to learn a co-occurrence
scoring model independent of the identity of the
entities mentioned. Finally, we retain sentences
that co-mention at least two biomedical entities of
interest, depending on the given dataset.

The assignments of binary class labels to the sen-
tences in each dataset follows a distant supervision
approach to obtain a weak labeling. Given a sen-
tence co-mentioning two entities of interest, the sen-
tence is assigned a positive class label (1) if the en-
tity pair is found in a given gold standard set of
pairwise associations. If the two entities appear in
the gold standard individually but not in associa-
tion, the sentence is assigned a negative class label
(0). The gold standard is specific to each dataset
and described in the following sections. Table 1 lists
information about the final datasets. Contrary to
[Mintz et al., 2009], we treat each sentence in the
dataset as a separate sample and do not merge all
sentences for an entity pair into a single sample.
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This allows to define the final CoCoScore scoring
scheme as a sum over all articles in the corpus (see
Section 2.3).

2.2.1 Disease–gene associations

We followed the approach in the DISEASES
database [Pletscher-Frankild et al., 2015] and ob-
tained an expert-curated gold standard of disease–
gene associations from GHR [Fomous et al., 2006]
(downloaded on May 7th, 2017) by parsing disease-
associated genes from json-formatted disease en-
tries in GHR. We also retained entity co-mentions
in the literature that involved a Disease Ontology
(DO) [Kibbe et al., 2015] child term of a disease
found in the gold standard. This propagation up-
wards the DO hierarchy yields a larger dataset of
disease–gene associations while not compromising
quality. Finally, disease names and aliases were
mapped to DO identifiers.

2.2.2 Tissue–gene associations

We followed the approach in the TISSUES
database [Palasca et al., 2018] and downloaded man-
ually curated tissue–gene associations from UniPro-
tKB [SIB Members, 2016]. We restricted the
tissue–gene association dataset to 21 major tis-
sues, following the benchmarking scheme of the
TISSUES database, and employed ontology prop-
agation upwards the BRENDA Tissue Ontology
(BTO) [Gremse et al., 2011], similar to the previ-
ously described DO propagation for disease men-
tions. Tissue names were normalized to BTO iden-
tifiers.

2.2.3 Functional protein–protein associa-
tions

We obtained gold standard protein–protein asso-
ciations (PPA) for H. sapiens, D. melanogaster,
and S. cerevisiae following the approach for bench-
marking associations in STRING [Szklarczyk et al.,
2017]: Proteins found in at least one KEGG path-
way map [Kanehisa et al., 2017] were considered pos-
itives since they are functionally associated in the
given pathway. We also supplemented the original
KEGG maps with artificial maps created by joining
proteins from maps that share common metabolites.

2.2.4 Physical protein–protein interactions

We obtained gold standard physical protein–protein
interactions (PPI) for H. sapiens, D. melanogaster,
and S. cerevisiae by obtaining interactions classified
as ’binding’ from STRING v10.5 and retained only
the highest scoring interactions, with a score > 0.9,
as the gold standard. Binding interactions with a
score ≤ 0.9, were added to a grey list. Co-mentions
of grey-listed protein pairs were ignored and counted
as neither positives nor negatives when creating the
gold standard via distant supervision. While the re-
sulting PPI datasets only contain protein pairs that
physically bind to each other, the PPA datasets also
encompass other functional associations as defined
by membership in the same pathway.

2.3 Context-aware co-occurrence scor-
ing

The context-aware co-occurrence scoring approach
implemented in CoCoScore consists of two compo-
nents. Firstly, a sentence-level classification model is
trained to predict context-aware co-mention scores.
Secondly, a scoring scheme combines sentence-level
scores into a co-occurrence score taking evidence
gathered over the whole corpus into account.

2.3.1 Unsupervised pretraining of word em-
beddings

Word embeddings represent each unique word in the
corpus by a vector. We use a skipgram word em-
bedding model that learns word vectors such that
the vector representation of a word can be used to
predict the words appearing in its context. This ob-
jective allows to represent words with similar syn-
tax and semantics by similar vectors, as measured
in terms of their inner product. Further details on
the skipgram model and its training process can be
found in Mikolov et al. [2013] and Bojanowski et al.
[2016].

We pretrained word embeddings using fast-
Text v1.0 [Joulin et al., 2016] on the whole corpus,
not just on sentences in the dataset that co-mention
entities of interest, which improves their generaliza-
tion to downstream machine learning tasks. This
step can be viewed as an instance of transfer learning
where information is brought from a general task,
the pretraining of word embeddings, to a specific
task, the classification of sentences co-mentioning
biomedical entities.

2.3.2 Training a sentence classification
model

Our sentence-level classification model was imple-
mented using fastText v.1.0 in supervised classifica-
tion mode. Given a sentence, the pretrained vector
representations of each word in the sentence are av-
eraged. A logistic regression classifier M then pre-
dicts a binary class label since each sentence is la-
beled as either positive or negative after distant su-
pervision. The sentence classification model M re-
turns a score between 0 and 1. We interpret this
score as a the probability that the sentence belongs
to the positive class, i.e., that it states an associa-
tions.

We manually tuned the following hyperparame-
ters of fastText: The dimensionality of word em-
beddings was set to 300; we performed 50 epochs
of stochastic gradient descent with learning rate of
0.005 to train the model; we used unigram as well as
bigram word features to partially capture local word
order. Remaining hyperparameters were set to their
defaults in the fastText v1.0 release.

2.3.3 Co-occurrence scoring

The final CoCoScore co-occurrence scores for a pair
of entities aggregates the scores computed by sen-
tence model M over all documents in the dataset.
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Table 1: Entity, pair, and co-mention counts as well as as percentage of positive instances in all datasets..
’Gold pairs’ refers to the total number of pairs found in the gold standard. ’Gold pairs cov.’ is the
percentage of gold-standard pairs co-mentioned in at least one sentence in the dataset.

Dataset type Organism Entity count Pair count Pos. pairs Gold pairs Gold pairs cov. Co-mentions Pos. co-mentions

disease–gene H. sapiens 698 diseases,1972 genes 51,786 4.9% 2,726 93.7% 1,182,951 45.2%
tissue–gene H. sapiens 21 tissues, 14066 genes 174,916 13.2% 31,387 74.0% 15,706,365 39.4%
functional PPA H. sapiens 4695 proteins 1,032,063 14.1% 361,744 40.4% 16,390,304 58.2%
functional PPA D. melanogaster 1792 proteins 36,524 27.4% 88,604 11.3% 358,141 64.9%
functional PPA S. cerevisiae 1567 proteins 47,005 32.6% 59,111 25.9% 301,582 65.4%
binding PPI H. sapiens 6053 proteins 1,236,751 2.9% 76,299 47.4% 15,611,378 21.3%
binding PPI D. melanogaster 2168 proteins 60,378 12.7% 32,541 23.6% 463,822 42.6%
binding PPI S. cerevisiae 1612 proteins 35,786 17.2% 13,500 45.6% 240,112 59.0%

Given a corpus C and an entity pair (i, j), the co-
occurrence count C(i, j) for the pair is

C(i, j) =
∑
k∈C

sk(i, j),

where

sk(i, j) =

 max
u∈Tk(i,j)

ru(i, j) if i and j are
co-mentioned in k,

0 else.

Here, Tk(i, j) is the set of sentences co-mentioning
i and j in document k and ru(i, j) is the sentence-
level score returned by M for sentence u. The
co-occurrence counts C(i, j) are converted to co-
occurrence scores S(i, j) as follows:

S(i, j) = C(i, j)α
(
C(i, j)C(·, ·)
C(i, ·)C(·, j)

)1−α

. (1)

C(i, ·) and C(·, j) are the sums of all co-occurrence
counts involving entity i and j, respectively, C(·, ·)
sums the co-occurrences of all entity pairs. The hy-
perparameter α trades off the influence of C(i, j)
counts and the observed-over-expected ratio cap-
tured in the second term of Equation 1.

Figure 1 outlines the complete context-aware
co-occurrence scoring approach, illustrating both
C(i, j) and M .

2.3.4 Baseline scoring scheme

We next defined a baseline model to compare
CoCoScore to. Contrary to the context-aware model
implemented in CoCoScore, the baseline model does
not take context into account but scores all co-
mentions equally. Given a corpus C and entity pair
(i, j), the baseline co-occurrence count C̃(i, j) is de-
fined as:

C̃(i, j) =
∑
k∈C

s̃k(i, j),

where

s̃k(i, j) =

1 if i and j are
co-mentioned in a sentence in k,

0 else.

As before, the final co-occurrence scores ˜S(i, j) are

computed from ˜C(i, j):

S̃(i, j) = C̃(i, j)α
(
C̃(i, j)C̃(·, ·)
C̃(i, ·)C̃(·, j)

)1−α

(2)

For the datasets of sentence-level co-mentions
used in this work, this baseline model is equiva-
lent to the co-occurrence scoring model used in,
e.g. STRING [Franceschini et al., 2013, Szklarczyk
et al., 2017], STITCH [Szklarczyk et al., 2016], TIS-
SUES [Santos et al., 2015, Palasca et al., 2018], and
DISEASES [Pletscher-Frankild et al., 2015].

2.3.5 Performance evaluation

We used the area under the precision–recall curve
(AUPRC) to evaluate the co-occurrence scores. All
AUPRC performance measures reported below were
adjusted to a fixed percentage of 10% positive sam-
ples in the dataset. This adjustment makes AUPRC
values comparable between datasets. We picked a
positive percentage of 10% since this seems to be a
realistic prior given our datasets Table 1.

The unadjusted AUPRC was computed by first
sorting all pairs according to their co-occurrence
scores in decreasing order and computing Precision
and Recall at each score threshold as follows:

precision =
TP

TP + FP

and

recall =
TP

TP + FN
=

TP

P
,

where TP is the number of true positives, FP is
the number false of positives, FN is the number of
false negatives, and P is the number of positives.
The AUPRC is the area under the precision–recall
curve. A random classifier has AUPRC equal to
to the fraction of positives in the dataset and a
perfect classifier has an AUPRC of 1. Precision–
recall curves are better suited than receiver oper-
ating characteristic curves for dataset biased to-
wards negatives since the latter give inflated per-
formance estimates [Lichtnwalter and Chawla, 2012,
Lever et al., 2016]. However, for comparison, we
also state model performance in terms of area under
ROC (AUROC) in the Supplementary Material of
this article.

Adjusting the AUPRC to fixed class distribution
was performed as follows: Let a be the aspired frac-
tion of positives in the dataset (0.1 in this work) and
b be the observed fraction of positives in the dataset.
To adjust the AUPRC we replace Precision with the
following adjusted measure:

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 16, 2018. ; https://doi.org/10.1101/444398doi: bioRxiv preprint 

https://doi.org/10.1101/444398
http://creativecommons.org/licenses/by/4.0/


Average

Mutations in LRRK2 were associated with Parkinson's disease.

Association 
score r1(i,j)

Sentence
vector

Word 
vectors

Logistic
regression

mutations + in + 
were + associated 
+ with

Mutations in LRRK2 were associated with 
Parkinson's disease. [...]

LRRK2 variants are the most common genetic 
risk factors for late-onset Parkinson’s 
disease. [...]

Our data strengthen a possible role for 
LRRK1, in addition to LRRK2, in the genetic 
underpinnings of Parkinson’s disease. [...]

...

r1(i,j)

r2(i,j)

rN(i,j)

A B

⇒ C(i,j) = r1(i,j) + r2(i,j) + ... + rN(i,j) 

...

Figure 1: Context-aware scoring of co-occurrences. A) N sentences in the corpus co-mention the gene
LRRK2 (i) and Parkinson’s disease (j). Context-aware sentence-level scores r(i, j) are summed to produce
the final co-occurrence count C(i, j). B) The score r1(i, j) is computed by blanking gene and disease
names, mapping all remaining words to their word vectors and scoring the resulting document vector with
a logistic regression model (previously trained via distant supervision) (Section 2.2).

precisionadjusted =
a
b
TP

a
b
TP + ( 1−a

1−b )FP

The adjusted AUPRC is then the area under the
precisionadjusted–recall curve.

2.3.6 CV and train/test splitting

For each dataset, we reserved all co-mentions involv-
ing 20% of the entity pairs as the test set which is
only used for the final model evaluation step. This
pair-level splitting ensures independence of train-
ing and test datasets since no entity pair is present
in both training and test dataset. Each training
dataset consists of co-mentions of the remaining 80%
of entity pairs. In the training dataset, we ran-
domly sampled a maximum of 100 sentence-level co-
mentions per pair to ensure that the sentence-level
model M does not overly fits to pairs that appear
very often in the literature. To ensure a realistic per-
formance evaluation, no such sampling was done for
the test dataset. 3-fold cross-validation (CV) on the
training set was used to tune the hyperparameter
α. For computational reasons, we randomly sam-
pled 10% of interactions in the three biggest datasets
(functional PPA H. sapiens, binding PPI H. sapi-
ens, tissue–gene associations) during CV. This re-
duced the number of associations in the downsam-
pled dataset to approximately the number of asso-
ciations in the remaining datasets.

3 Results and Discussion

3.1 Sentence scores of higher impor-
tance in CoCoScore than in baseline
model

Before analyzing the performance on the test set,
we tuned the weighting exponent hyperparameter
α for both CoCoScore and the baseline model (see
Section 2.3) via cross-validation (CV). α determines
how much weight is put on the co-occurrence counts
compared to the observed-over-expected ratio. The
CoCoScore model achieved optimal CV performance
for α ≈ 0.65 and the baseline model for α ≈ 0.55
for most datasets. Supplementary Figure 1 depicts
CV performance depending on α for both mod-
els. We consider the tissue–gene dataset, where CV
results in a considerably down-weighted observed-
over-expected ratio term, an outlier due to the poor
performance of both models on this dataset. The
optimal α for CoCoScore was larger than the opti-
mal α for the baseline model. This means that the
best performing CoCoScore model put more weight
on the co-occurrence counts than on the observed-
over-expected-ratio, compared to the baseline model
(Equations 1 and 2). We hypothesize that this is be-
cause CoCoScore down-weights uninformative sen-
tences, compared to informative ones, making the
sentence-level scores more reliable. Furthermore,
the CoCoScore model outperformed the baseline on
all datasets for the respective optimal α ranges. Be-
low, we use α = 0.65 for CoCoScore and α = 0.55 for
the baseline to compute test dataset performance.
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Table 2: Adjusted area under the precision-recall
curve (AUPRC) for CoCoScore and baseline model
on tissue-gene and disease-gene association datasets
generated via distant supervision.

method disease–gene tissue–gene

CoCoScore 0.86 0.19
baseline 0.80 0.17

3.2 CoCoScore outperforms baseline
model in identifying disease–gene
and tissue–gene associations

Table 2 lists AUPRC performance for both
CoCoScore and the baseline model on the tissue-
gene and disease-gene association datasets. Supple-
mentary Table 1 depicts the performance in terms
of the area under the receiver operating character-
istic curve (AUROC). CoCoScore outperformed the
baseline model on both dataset. Both approaches
achieved considerably better performance on the
disease–gene than on the tissue–gene association
dataset. We thus manually inspected the 10 highest-
scoring associations in the tissue–gene association
dataset. Five of these tissue–gene pairs were counted
as false positives, as defined by the gold standard
derived from UniProtKB (Section 2.2.2). However,
each of these pairs had more than 900 sentence-
level co-mentions in articles and multiple sentences
clearly stating the expression of the respective gene
in the respective tissue. We concluded that these five
association are likely true positives that are missing
in the gold standard rather than rather than false
positives. The seemingly poor performance on the
tissue–gene association dataset can in part be ex-
plained by the incompleteness of the gold standard.
While the low quality of the gold standard leads us
to underestimate the performance, CoCoScore still
appears to be able to learn informative text patterns
leading to an improved performance.

3.3 Physical protein–protein interac-
tions are better identified than func-
tional protein–protein associations

Figure 2 depicts performance on functional protein–
protein associations (PPAs) and physical protein–
protein interactions (PPIs) across H. sapiens,
D. melanogaster, and S. cerevisiae for both
CoCoScore and the baseline. Supplementary Fig-
ure 2 depicts the performance in terms of AUROC.
CoCoScore outperformed the baseline and yielded
similar improvements on all functional PPA and
physical PPI datasets. While both models per-
formed better on the binding PPI datasets than
on the functional PPA datasets, we did not ob-
serve a clear trend in performance differences be-
tween organisms. CoCoScore achieves best adjusted
AUPRC of 0.67 for binding PPI in H. sapiens and
adjusted AUPRC of 0.57 in D. melanogaster and of
0.58 in S. cerevisiae. On the other hand, CoCoScore
achieves best adjusted AUPRC of 0.50 for functional
PPA in both D. melanogaster and S. cerevisiae and
an adjusted AUPRC of 0.44 for H. sapiens. Overall,

H.sapiens D.melanogaster S.cerevisiae

binding PPI

functional P
PA

binding PPI

functional P
PA

binding PPI

functional P
PA

0.00

0.25

0.50

0.75

1.00

Dataset

A
dj

us
te

d 
A

U
P

R
C

CoCoScore

baseline

Figure 2: Performance on functional protein–protein
associations and physical protein–protein interac-
tions across H. sapiens, D. melanogaster, and
S. cerevisiae for both CoCoScore (blue) and the
baseline model (red). Performance is depicted
as adjusted area under the precision-recall curve
(AUPRC).

CoCoScore outperformed the baseline model on all
six protein–protein association datasets surveyed.

3.4 Pretrained word embeddings im-
prove performance on most datasets

The default CoCoScore sentence classification model
relies on word embeddings that were pretrained in
an unsupervised manner on all articles in the cor-
pus. To assess the impact of this pretraining step
on CoCoScore’s performance, we compared the us-
age of pretrained word embeddings to the usage of
embeddings that are learned along with weights for
the logistic regression model at training time. Since
the latter approach never accesses the complete cor-
pus, word embeddings are only trained on sentences
co-mentioning entities that are found in the respec-
tive training dataset.

Fig. 3 depicts adjusted AUPRC performance
with and without pretrained word embeddings. The
CoCoScore performance in Figure 3 is the same as
shown in Figure 2 and Table 2. Supplementary Fig-
ure 3 depicts performance in terms of AUROC.

The CoCoScore model using pretrained word em-
beddings in most cases outperformed non-pretrained
word embeddings. We observe that the pretraining
step was more fruitful for datasets with poor perfor-
mance. The small increase in performance for some
datasets could be due to the considerable size of the
distantly supervised dataset (the smallest dataset
contains 240k sentence co-mentions) which are large
enough to train adequate word embeddings with-
out pretraining. However, we still recommend using
CoCoScore with pretrained embeddings for best per-
formance.
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Figure 3: Performance with and without pretrained word embeddings on functional PPA and binding
PPI datasets (A) as well as disease–gene and tissue–gene associations (B) for CoCoScore with (blue)
and without (green) pretrained word embeddings. Performance is depicted as adjusted area under the
precision-recall curve (AUPRC).).

3.5 Making sense of CoCoScore’s sen-
tence scoring model by manually
querying the model

The 300 dimensions of the word embeddings are not
easily interpretable making it hard to understand
which features drive sentence score predictions for
a model trained on a given dataset. We thus used
an indirect approach to interpret the sentence-level
scoring model learned by CoCoScore by querying the
model trained to recognize binding PPIs in S. cere-
visiae with hand-crafted example sentences.

We observed that the model returned high scores
for sentences containing keywords linked to physical
interactions, such as the words ”complex” or ”sub-
unit”, but did not pick up modality or uncertainty
in sentences very well, once a keyword was present.
For instance, the sentence ” and form a complex.”
received a score of 0.99 while the sentences ” and
do not form a complex.” and ” and might form a
complex.” received a score of 0.98 and 0.99, respec-
tively. Here, ” ” is a generic token used to blank
protein names.

On the other hand, the model seemed to recog-
nize negations and modality in sentences that con-
tained the verb phrase ”bind to”. The sentence ”
always binds to .” received a score of 0.72, ” binds
to .” received a score of 0.44, ” possibly binds to
.” received a score of 0.37, ” does not bind to .”

received a score of 0.34, and ” never binds to .”
received a score of 0.24. Based on this exploratory
analysis, we conclude that the CoCoScore sentence
scoring model for S. cerevisiae binding PPIs seems
to rely on keywords and is able to detect modality
and negations in certain situations.

3.6 Limitations and future work

While CoCoScore implements a novel context-aware
co-occurrence scoring approach that improves upon
a baseline model for all our test datasets, we see sev-

eral limitations and directions for future research.
Relations extracted by CoCoScore currently lack di-
rectionality. Many biomedical relations, such as
protein phosphorylation, are directional that is not
trivial to infer if, for instance, one protein kinase
phosphorylates another, as commonly seen in signal
transduction pathways. To address this shortcom-
ing, CoCoScore’s distant supervision approach could
be combined with pattern-based approaches to infer
directionality. Alternatively, the word embeddings
for the words in a sentence could not be collapsed
into a single sentence vector but kept as a sequence
of vectors fed into a sequence model such as a recur-
rent neural network.

We also plan to investigate the transferability
of pretrained sentence scoring models between re-
lation extraction tasks. For instance, a unified
model could potentially be trained that recognizes
not one specific type of relations, such as disease–
gene associations, but also other relations, such as
protein–protein interactions. Keywords and modal-
ity driving sentence scores (Section 3.5) should, to
some extent, be transferrable between relation ex-
traction tasks. Similarly, pretrained scoring mod-
els trained on one dataset could be combined with
supervised learning performed on a second, expert-
labeled dataset. This would enable the simulta-
neous use of large, distantly supervised dataset as
well as small, accurately labeled dataset to boost
performance. [Magge et al., 2018] use a similar
approach to to identify geographic locations in se-
quence database entries.

Lastly, CoCoScore could be extended to score co-
mentions beyond sentence-level by, for example, in-
troducing a term in the scoring model that depends
on the distance between entities co-mentioned out-
side a sentence.
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4 Conclusion

Our newly developed approach, CoCoScore, per-
forms pairwise co-occurrence scoring over a big cor-
pus by combining an unsupervised counting scheme
with a distantly supervised sentence scoring model
based on pretrained word embeddings. The un-
derlying sentence scoring model is able to recog-
nize keywords, negations, and modality in sen-
tences. Our approach performs better than a base-
line scoring scheme inspired by previously proposed
approaches on all eight benchmark datasets used
in this study, covering disease–gene, tissue–gene,
physical protein–protein interactions, and functional
protein–protein associations.

CoCoScore is a versatile tool to aid biomedical
relation extraction via text mining that is applica-
ble to many applications beyond those presented in
the paper. Our open source implementation only re-
quires sentences co-mentioning entities as input and
is available under a permissive license together with
pretrained word embedding as well as the sentence
scoring models trained in this work. This eases the
integration of CoCoScore into existing text mining
workflows for biomedical relation extraction.
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Figure 1: Cross-validation performance for CoCoScore and baseline. Values shown are the mean
area under the precision-recall curve (AUPRC) across the three cross-validation sets. α chosen for
each data set is depicted as vertical solid or broken lines, respectively. Note that AUPRC is not
adjusted to a fixed prior since this adjustment does not affect the choice of α.
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Table 1: AUROC for CoCoScore and baseline model on tissue-gene and disease-gene datasets
generated via distant supervision.

method disease–gene tissue–gene

CoCoScore 0.98 0.70
baseline 0.96 0.65
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Figure 2: Performance for functional protein–protein associations and physical protein–protein
interactions across H. sapiens, D. melanogaster, and S. cerevisiae for both CoCoScore (blue) and
the baseline model (red). Performance is depicted as AUROC.
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Figure 3: Performance with and without pretrained word embeddings for functional PPA and
binding PPI datasts (A) as well as disease–gene and tissue–gene associations (B) for CoCoScore
with (blue) and without (green) pre-trained word embeddings. Performance is depicted as AUROC.
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