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The identification of essential regulatory elements is central to the understanding of the 
consequences of genetic variation. Here we use novel genomic data and machine learning 
techniques to map essential regulatory elements and to guide functional validation. We train 
an XGBoost model using 38 functional and structural features, including genome essentiality 
metrics, 3D genome organization and enhancer reporter STARR-seq data to differentiate 
between pathogenic and control non-coding genetic variants. We validate the accuracy of 
prediction by using data from tiling-deletion-based and CRISPR interference screens of activity 
of cis-regulatory elements. In neurodevelopmental disorders, the model (ncER, non-coding 
Essential Regulation) maps essential genomic segments within deletions and rearranged 
topologically associated domains linked to human disease. We show that the approach 
successfully identifies essential regulatory elements in the human genome. 
There is rapid improvement in the understanding of the human genome, the organization of 
function, and the consequences of human genetic variation. This understanding enables multiple 
innovations in medical genetics. For example, exome sequencing accelerates the diagnosis and 
contributes to the clinical management of rare genetic disorders. However, exome sequencing 
only examines less than 2% of the genome sequence and the current diagnostic yield stands at 
around 30%1-4. The role of genetics in the remaining 70% of rare disorders is at present unknown, 
and the exact mechanisms of disease remain largely unexplored. One potential mechanism is 
through perturbation of important regulatory regions of the genome. Recent efforts at extending 
the search space from the coding to the immediate regulatory regions show that new pathogenic 
variants can be identified in a small fraction of cases5,6. In parallel, there are recent examples of 
diseases that implicate distal enhancers and changes in the 3D genome structure6,7. Thus, the 
next milestones in the interpretation of the human genome sequence will emerge from the 
analysis of functional consequences of genetic variants in the non-protein coding (here in 
referred to as non-coding) genome – the remaining 98% of genome sequence that includes the 
regulatory machinery.  As previously done for coding genes8, we define a regulatory element as 
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essential when loss of its function may compromise viability of the individual or results in 
profound loss of fitness or in disease. 
Interpretation of the non-coding genome requires the identification of landmarks, features and 
structures – analogous to the same first principles that aid the interpretation of the coding 
genome. This translates to the characterization of regulatory genomic elements, rules of 
functional essentiality and redundancy, and the interpretation of the organization of the genome. 
Genome-wide epigenomic maps have revealed hundreds of thousands regions showing 
signatures of enhancers, promoters, and other gene-regulatory elements9. However, the high-
resolution dissection of driver nucleotides as well as the characteristics of essentiality of those 
regions remain limited at present10.  There are multiple sources of data (biochemical, genetic, 
evolutionary) that convey functional information on the non-coding genome11. These data are 
used by different scoring algorithms 12-21 that aim at ranking variants according to their predicted 
deleteriousness. The accuracy of these methods typically increases through collective integration 
of multiple models, eg. ensemble-based classifiers22. In addition, there is an opportunity to 
increase the precision of functional and deleteriousness prediction by learning from novel data 
sources – in particular, resources that have not been included in previous analyses. Those novel 
sources of data include studies of the patterns of human-specific constraints that are revealed 
by population genomic analyses23, analyses of 3D organization of the genome (eg., promoter 
capture Hi-C)24,25, and from high throughput screens of enhancer function26. In this work we 
implement state-of-the art machine learning tools to rank-classify the most essential regulatory 
elements of the non-coding genome with an emphasis on the contribution of new data 
modalities. We then use tiling array deletion and CRISPR interference (CRISPRi) data to assess the 
accuracy and functional relevance of the predictions. Lastly, we use the new predictive tools to 
identify essential regulatory regions associated with human disease – in structural variants 
associated with the autism spectrum disorder (ASD) and in developmental disorders resulting 
from the disruption of topological associated domains (TADs). The study design is summarized in 
Suppl. Figure S1. 
Training a model to identify essential regulatory elements. To train a supervised machine 
learning model, we included non-coding pathogenic variants from ClinVar27 and Human Gene 
Mutation Database (HGMD)28 (N= 1,095, Methods).  The set of control variants was built by using 
all variants from gnomAD (http://gnomad.broadinstitute.org/) with allele frequencies greater 
than 1% across populations and sub-selecting (N=8,093) those that matched the pathogenic 
variant set based on distance to splice sites and genomic element distribution (Methods). For 
validation, we used non-coding pathogenic variants not included in the original dataset: an 
independent set of manually curated non-coding Mendelian pathogenic variants (n=425)23, and 
a new release of ClinVar and HGMD (total of N=599, including N=245 mapping to the ncRNAs); 
Methods. 
We trained an XGBoost model (https://xgboost.readthedocs.io), an implementation of gradient-
boosted decision trees consisting of a collection of decision trees, where a node in a single 
decision tree splits the training data into subsets (deleterious versus benign). During testing, new 
variants with the same feature sets were given to each tree to make a prediction (essential or 
non-essential). The outputs of each tree were combined (“ensembling”) to generate a final 
prediction. Each variant in the dataset was annotated with 38 features from 4 major categories 
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(Suppl. Table S1, Methods). (i) Essentiality features, such as context-dependent tolerance score 
(CDTS)23 and probability of loss-of-function intolerance (pLI)33, among others. The latter was used 
by mapping each non-coding genetic variant to the closest gene and assigning the gene 
essentiality score of that gene to the corresponding variant. (ii) Chromatin structure features, 
such as chromosome conformation23,25 data used either as a binary indicator to denote whether 
or not a given non-coding genomic position physically interacts with gene promoters, or as a 
continuous feature, by attributing the respective gene essentiality of the associated promoter to 
the distal interacting region. The loop and anchor features were also used as discrete values 
representing the number of cell lines where they were identified. (iii) Gene expression related 
features, such as readout of high-throughput enhancer functional screens26, and (iv) existing non-
coding deleteriousness metrics: CADD13, ncEigen14, FATHMM17, FunSeq216, LINSIGHT21, ORION20, 
ReMM18 and ncRVIS29. 
We scored the non-coding regions genome-wide. The result of this process was a score (ncER, 
non-coding Essential Regulation) for each nucleotide, ranging from 0 (non-essential) to 1 
(essential). We evaluated the model performance on a test set comprising 20% of the data 
through 5-fold cross validation and assessed the generalization of the model on 3 independent 
non-overlapping sets, consisting of curated Mendelian and two hold-out HGMD and ClinVar 
variants, for validation of the performance of the classifier (Methods). The ensemble algorithm, 
ncER, with a Receiver Operating Characteristic (ROC) AUC of 93% and a Precision-Recall (PR) AUC 
of 75% on the test set outperformed previously reported deleteriousness metrics by at least 18% 
ROC-AUC and 31% PR-AUC (Figures 1A and B). The model generalized to other independent 
validation datasets, achieving a ROC-AUC ranging from 88% to 96% and a PR-AUC ranging from 
63% to 86% (Suppl. Figure S2). The univariate importance of each input feature in the model is 
displayed in Figure 1C. Most of the features (34 out of 38) in the model contributed to the score. 
The top contributing features were CDTS23 that measures human-specific genomic constrain, 3D 
organization features such as distal enhancers46 of essential genes and GTEx30 expression 
variance as indicator of tolerance to gene dysregulation. Because of sparsity of some of the data 
(for example, pcHi-C and Vista enhancers), some of the features did not contribute to the model 
because few variants mapped to informative positions. A model trained with only the new 
essentiality, 3D genome organization and gene expression features outperformed a model 
trained with only previously published metrics (Figures 1D and E). In summary, the increase in 
ROC AUC and PR-AUC observed after inclusion of new features in the models emphasizes their 
orthogonality to the previously reported scoring metrics.  
For computing efficiency purposes and to increase the signal-to-noise ratio, we smoothed the 
scores over 10bp window and used the 10bp bin resolution for all subsequent analyses. We 
examined the nature of the most essential regions of the genome based on different ncER 
percentile thresholds (99.9th, 99.5th, 99th and 95th percentiles, representing 2.8, 14.1, 28.3 and 
141 Mb of cumulative sequence). The distribution of essential genomic elements at each 
threshold is displayed in Suppl. Figure S3A. All types of genomic elements were represented in 
the most essential bins of the genome, although cis-regulatory and enhancer sequences were 
enriched in the highest percentiles. Essential regions were of small size, with the most common 
size range being the 10bp bin (Suppl. Figure S3B). To have an overview of the putative function 
of those essential regulatory regions, we did pathway analyses for the set of genes (N=2,441) 
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with at least one promoter bin in the top 99.9% ncER values. The most significant enriched 
biological process GO terms included development and regulation of gene expression, such as 
cerebral cortex development, positive/negative regulation of transcription and gene expression, 
among others (Suppl. Figure S4).  
In summary, a model that trains on novel genomic features (essentiality, 3D organization, 
expression) adds precision to previous models that trained on partially orthogonal features 
(biochemistry, conservation). The model performs well in testing and generalization using new 
sets of human non-coding disease variants. 
Functional correlates of essential regulatory elements. To confirm that ncER signals effectively 
captured essential regulatory functions, we analyzed two sets of functional data. The first analysis 
used high-throughput CRISPRi data from 1.29 Mb of sequence in the vicinity of two essential 
transcription factor genes, GATA1 and MYC31. The library deployed more than 80,000 single guide 
RNA (sgRNAs) pairs tiled across the genomic loci. The readout of the study was cellular 
proliferation of K562 erythroleukemia cells. GATA1 or MYC regions are characterized by a high 
median ncER score, in the 87th percentile (Figure 2A and 2B and Suppl. Figure S5) – which is 
consistent with the biological importance of the loci. However, we observed a shift to a median 
99th ncER percentile for the regions targeted by the most functional pairs of sgRNA probes 
(p=2.1e-15, compared to non-functional probes). There was a dosage effect: the more essential 
the region, the stronger the functional readout of CRISPRi (Figure 2B). The parameters of 
predictive performance and accuracy of ncER are shown in Suppl. Table S2. In summary, the 
sequences that control cellular proliferation, cell viability and gene expression of GATA1 and MYC 
reside in the most essential regions of the locus.   
The second dataset was generated using high-throughput scanning for cis-regulatory elements 
by tiling-deletion and sequencing (CREST-seq)32. The area investigated encompassed 2-Mb of the 
POU5F1 locus in human embryonic stem cells. POU5F1 encodes a transcription factor that plays 
a key role in embryonic development and stem cell pluripotency. Knockout of POU5F1 is 
associated with embryonic mortality in the mouse and scores as an essential gene in humans (pLI 
score of 0.89)8,33. Thus, POU5F1 is expected to use regulatory elements with features of 
essentiality23. CREST-seq identified 45 cis-regulatory elements, including 17 previously annotated 
as promoters of unrelated genes that, like typical enhancers, form extensive spatial contacts with 
the POU5F1 promoter. The 45 enhancers of POUSF1 were significantly more likely to be essential 
compared to random genomic loci of matched size (Figure 2C). For example, 56% of POU5F1 
enhancers reside in regions with ncER >99th percentile, compared to 14-17% for random genomic 
regions matched to enhancer size, p≤6.3e-09. Similarly, the enhancers contained the most 
essential regions within the locus in permutation analysis (Suppl. Figure S6). The parameters of 
predictive performance and accuracy of ncER are shown in Suppl. Table S3 and Suppl. Figure S7. 
In summary, the excellent performance of ncER scores for the identification of deleterious 
variants and for the prediction of functional read-outs in the non-coding genome may help map 
critical regulatory and structural elements of the non-coding genome in human disease. 
Mapping essential regulatory elements in genetic diseases. We hypothesized that severe 
genetic diseases that do not have causal variants in the coding region could result from damage 
to essential functional elements. To investigate this concept, we chose two different models that 
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represent challenges for the accurate mapping of the regulatory sites in relation to function and 
disease: (i) the identification of essential functional areas within non-coding structural 
variants/deletions associated with autism and ASD, and (ii) the impact of reorganization of TADs 
in the setting of a human developmental disorder that has been modeled in the mouse.  
For the first disease model and as follow-up to our previous collaboration with Sebat et al.34, we 
assessed a dataset of 136 transmitted cis-regulatory structural variants (SV, deletions) in the 
setting of autism and ASD. The deletions spanned a wide range of sizes: <1kb, N=32 probands 
and N=10 healthy sibling controls; 1-25kb, N=65 cases and N=4 controls; 25-100kb, N=17 cases 
and N=2 controls. The last group, >100kb deletions, found in N=6 probands did not have matched 
controls (Suppl. Figure S8). We observed that probands carry structural variants with only slightly 
higher ncER scores (median ncER percentile: 86 in probands versus 70 in healthy siblings for the 
<1kb deletions, p=0.21, Suppl. Figure S9). However, autism and ASD probands were more likely 
to carry structural variants with localized essential functional domains compared to healthy 
siblings (Figure 3A). For example, 41% of the <1kb deletions in probands contain regions with 
ncER >99th percentile, compared to 4% for random genomic regions matched to the size of the 
deletions, p=1.7e-10 and also compared to the few deletions present in non-probands (Figure 
3A). Similar findings were observed for larger deletions (Suppl. Figure S10). As example, 20 
unique <1kb deletions with at least one essential domain are displayed in Figure 3B. These results 
indicate that the identification of essential regulatory regions could map the most plausible 
causal region within a structural variant.  
Next, we chose a human disease that involves the rearrangement of the regulatory landscape of 
IHH (encoding Indian hedgehog), which cause developmental defects including craniosynostosis 
and synpolydactyly35,36. Will et al.37 identified nine enhancers with individual tissue specificities 
in the digit anlagen, growth plates, skull sutures and fingertips. The IHH region in humans shares 
a common structure with the mouse locus that was used for the model by Will et al.37 In their 
study, consecutive deletions resulted in growth defects of the skull and long bones that 
confirmed that the enhancers function in an additive manner. Deletions and duplications caused 
dose-dependent upregulation and misexpression of Ihh, leading to abnormal phalanges, fusion 
of sutures and syndactyly. We identified the critical enhancers to reside in an extensive region of 
essentiality as scored by ncER, in particular for the regions shared across human duplications 
associated with disease (Figure 3C, Blue box). Within the locus, the critical enhancers were also 
endowed with features of essentiality (Figure 3D). For example, 67% of the enhancers contain 
regions with ncER >99th percentile, compared to 16% for random genomic regions matched to 
size, p=9.3e-04. Similarly, the nine enhancers carried the most essential regions within the locus 
in permutation analysis (Supp. Figure S11).  Thus, highly essential enhancers that associate with 
human disease are correctly prioritized by computational approaches.  
The present work contributes to the debate about reconciling redundancy and conservation of 
regulatory elements in the genome. Work on developmentally expressed genes supports the 
widespread existence of functionally redundant enhancers in mammalian genomes38. 
Redundancy reduces the likelihood of severe consequences resulting from genetic or 
environmental challenge. However, Osterwalder et al.38 also suggest that contributions of 
enhancers to overall gene expression levels are relevant for organismal fitness under specific 
pressures, thus subjecting enhancers to purifying selection over evolutionary time. We have in 
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the past indicated that essential genes will use proximal and distant regulatory elements that are 
conserved and constrained – thus representing essentiality in the non-coding genome8,23. We 
now show hallmarks of proximal or distal regions that regulate the expression of medically 
important genes. The current model supports the prioritization of variants and regions across the 
non-protein coding human genome for diagnostics and for functional analysis. 
 
Materials and Methods 
Training Features. To train our model, we leveraged a total of 38 features from 4 major 
categories: (i) gene essentiality, (ii) 3-dimentional chromatin structure, (iii) gene expression and 
other regulatory/functional data and (iv) existing variant pathogenicity/deleteriousness scores. 
A complete list of features along with their descriptions and accession links can be found in Suppl. 
Table S1. 
We have previously identified a coordination of constrains between genes and their respective 
cis and distal regulatory elements23. We implement this concept in the present study by including 
the following essentiality features: (i) CDTS (our recently developed approach to score the non-
coding genome essentiality, based on human genetic diversity23, (ii) probability of loss-of-
function intolerance (pLI)33, (iii) haploinsufficiency score39, (iv) gene dosage sensitivity score from 
ClinGen40, (v) autosomal dominant or recessive categorization41,42 and (vi) OMIM association 43. 
For the metrics that solely provide scores for the genic portion of the genome, the respective 
essentiality features were calculated by mapping each non-coding genomic position to the 
nearest gene and assigning the corresponding essentiality metric score to the genomic position.  
Chromatin 3D structure features included (i) nucleosome positioning extracted from MNase data 
(https://www.encodeproject.org/), (ii) multiple cell type anchor, loop and domain regions 
extracted from Hi-C data44, (iii) frequently interacting regions (FIRE) and topologically associated 
domains (TADs) extracted from Schmitt et al.45 and (iv) distal enhancer-TSS associations extracted 
from CAGE pairwise expression correlation (FANTOM)46. The 3D organization features were 
either used as binary indicators to denote whether or not a given non-coding genomic position 
physically interacted with gene promoters, or as discrete values representing the number of cell 
lines were the structures were identified. Finally, to combine both essentiality and chromatin 
structure features, we created distal essentiality features, by attributing the respective coding 
gene essentiality score (pLI) to distal regulatory elements identified through pcHi-C or CAGE 
pairwise expression correlations.  
The model used gene expression, long non-coding RNA (lncRNA) annotations and functional 
regulatory data that have not been used by other existing metrics. Those included (i) median 
gene expression and variance across tissues (GTEx)30, (ii) functionally tested genomic regions with 
enhancer activity identified through (ChIP-)STARR-seq experiments26,47 or validated with 
transgenic mice48 and (iii) lncRNAs identified through CAGE and transcriptome analysis49.  
Lastly, variant pathogenicity/deleteriousness scores used in the model included CADD13, 
ncEigen14, FATHMM17, FunSeq216, LINSIGHT21, ncRVIS29, Orion20 and ReMM18.  We downloaded 
pre-computed genome-wide scores for each of these metrics (hg19 reference build). In the 
minority of cases where a per alternative variant score was provided, we used the most 
“deleterious” value at each position. For the metrics that solely provide scores for the genic 
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portion of the genome, the respective features were calculated by mapping each non-coding 
genomic position to the nearest gene and assigning the corresponding metric score to the 
genomic position. 
Training Set. We used a total of 9,188 single nucleotide variants (SNVs) to train the model. The 
pathogenic dataset comprised 1,095 non-coding SNVs, located at least 10bp from the nearest 
spice site, obtained from HGMD (2016_R1)28 and ClinVar (July 2016)27. The selection criteria for 
HGMD SNVs were “DM and high” tags, while for ClinVar, SNVs had to be labeled as “Pathogenic” 
or “Likely Pathogenic”, with star 1 or more and no conflicting assertion. HGMD were further 
filtered out for variants overlapping SNVs annotated as “benign” or “likely benign” in ClinVar 
(with star 1 or more and no conflicting assertion). The control genomic training set consisted of 
8,093 variants chosen from a larger set of variants that were present in the gnomAD dataset at 
an allelic frequency > 1% and matched for the distance to the nearest splice sites and genomic 
elements. The matching was performed as follows: all pathogenic variants and gnomAD variants 
with allelic frequency > 1% were annotated with their respective distance to the closest splice 
site and the genomic element they mapped to (see Reference build, Annotation and Genomic 
Element Categorization section). For each pathogenic variant the subset of control variants falling 
within the same genomic element was extracted. Within this subset, the 10 control variants with 
the most similar distance to splice site as compared to the pathogenic variant were kept. Finally, 
duplicated control variants (if any) were removed from the final set. 80/20 percent of the variants 
were respectively used as training/test sets.  
Machine Learning Model. We trained an XGBoost model in order to differentiate between 
pathogenic and control genomic positions in our training set. Hyperparameters were tuned using 
5-fold cross validation and a randomized search method. 1,000 sets of randomly selected 
hyperparameters were evaluated using 5-fold cross validation, and the model that achieved the 
highest ROC-AUC score was selected.  These hyperparameters were then used to train the final 
model on the entirety of the training set. After hyperparameter tuning, we found that using 233 
estimators, a maximum depth of 31, a learning rate of 6.1e-2, and a minimum child weight of 
6.17 maximized model performance. We evaluated our model with Receiver Operating 
Characteristic (ROC) AUC and Precision-Recall (PR) AUC on the test set (representing 20% of the 
data).  
We annotated each position in the genome with our set of features and used the tuned XGBoost 
model to make a functionality prediction at each genomic position to score the entire genome. 
Of note, the model is trained to assess the functionality and essentiality of regulatory regions and 
should therefore be interpreted as such even in protein coding regions. 
Validation Sets. The generalization of the model was assessed on three independent sets of 
variants. The non-coding pathogenic sets included 425 manually curated variants associated with 
Mendelian traits23, 354 and 245 new HGMD and ClinVar variants28 mapping outside/inside non-
coding RNA genes (HGMD 2017_R2 and ClinVar January 2018). The control genomic training sets 
consisted respectively of 1,863, 2,604 and 1,876 variants in the gnomAD dataset at an allelic 
frequency > 1% and matched to the pathogenic sets for the distance to the nearest splice sites 
and genomic elements as explained above. 
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Reference build, Annotation and Genomic Element Categorization. All input features and the 
model were mapped to the human reference build hg19. To investigate the element distribution, 
we built an annotation track that combined annotations from GenCode (v.27 mapped to GRCh37) 
and ENCODE (annotated features and multicell regulatory elements, Ensembl v91 Regulatory 
Build) and used a prioritization scheme to assign each genomic position a single annotation 
category (described in 23). For Figure 3 and Suppl. Figure S3, Intron refers to intronic regions 
(from protein coding or non-coding genes), ncRNA refers to exonic regions of non-coding RNAs, 
Cis Regulatory encompasses promoters and untranslated regions (UTRs), Enhancers and Others 
encompasses promoter flanking regions, enhancers, open chromatin, CTCF and other 
transcription factor binding sites, Intergenic refers to unannotated regions and Histone marks 
encompasses H3K9me3 and/or H3K27me3 as well as other histone marks combinations.  
ncER score. For computing power purposes and to minimize the signal-to-noise ratio, the ncER 
score were averaged over 10bp bins and then expressed as percentiles genome-wide. The 
binned/percentile scores are provided at https://github.com/TelentiLab and can be accessed 
directly at OMNI (https://omni-variants.herokuapp.com/). Intersection of ncER score with other 
datasets was performed using bedops utility (v2.4.30)50. 
 
External Datasets. The CRISPRi coordinates and scores used for analyses displayed in Figures 2A 
and 2B and Suppl. Figure S5 were obtained from Fulco et al.31 
(http://science.sciencemag.org/highwire/filestream/686019/field_highwire_adjunct_files/2/aa
g2445_Table_S2.xlsx). As recommended in their paper, the CRISPRi scores were smoothed over 
20 subsequent pairs. . Only regions that were assessed by at least 20 different pairs and <1kb 
long (to prevent size biases) were retained for analysis, resulting in a total of N=77,368 remaining 
probed pairs. 
CREST-seq peaks coordinates used for analyses displayed in Figure 2C and Suppl. Figure S6 were 
obtained from Diao et al.32 (https://media.nature.com/original/nature-
assets/nmeth/journal/v14/n6/extref/nmeth.4264-S7.xlsx). Statistical enrichment of the 11,570 
tested sgRNA pairs used for analyses in Suppl. Figure S7 were also obtained from 32 
(https://media.nature.com/original/nature-assets/nmeth/journal/v14/n6/extref/nmeth.4264-
S5.xlsx). The locus used for random extraction of same size regions was chr6:30132133-
32138339. The matched size random extraction (both in the same locus and genome-wide) was 
performed 100 times.  
Cis regulatory transmitted deletions used for analyses displayed in Figures 3A and B and Suppl. 
Figures S8-10 were obtained from  Brandler et al.34 
(http://science.sciencemag.org/highwire/filestream/708877/field_highwire_adjunct_files/9/aa
n2261_TableS7.xlsx, Replication CR Trans sheet). The matched size genome-wide random 
extraction was performed 100 times.  
The nine mouse enhancer data used for analyses displayed in Figure 3C and Suppl. Figure S11 
were obtained from Will et al.37 (https://media.nature.com/original/nature-
assets/ng/journal/v49/n10/extref/ng.3939-S1.pdf, Supplementary Table S4). The mouse 
coordinates were mapped to human using CrossMap (v.0.2.5. http://crossmap.sourceforge.net/) 
using the mm9ToHg19.over.chain.gz chain. When the mouse enhancers were mapped 
discontinuously to the human genome, the left most and right most coordinates in the human 
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genome were used as start and end. The locus used for random extraction of same size regions 
was chr2: 219940039-220025587. The matched size random extraction (both in the same locus 
and genome-wide) was performed 100 times.  
Statistics. Statistical analyses and plotting were performed with R v3.4.3 (https://www.R-
project.org/), notably using the package ggplot2 (http:// ggplot2.org/). Data mining was 
performed using Python (v.2.7.11). The performance predictors in Figures 1 and 2, Suppl. Figures 
2,5 and 7, Suppl. Tables S2 and S3 were assessed as follows: sensitivity or true positive rate or 
recall is (TP/(TP+FN)) * 100, specificity is (TN/(TN+FP)) * 100, false positive rate is (FP/(FP + TN)) 
* 100, accuracy is ((TP+TN)/(TP+TN+FP+FN))*100, positive predictive value or precision is 
(TP/(TP+FP))*100 and negative predictive value is (TN/(TN+FN))*100. Where TP is a true positive, 
TN is a true negative, FP is a false positive and FN is a false negative. 
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Figure 1. Ensemble learning for the prediction of essential regulatory domains. 
Performance ROC-AUC (panel A) and PR-AUC (panel B) on the test set (N=231 non-coding 
pathogenic and N=1,607 control variants) of ncER model (in grey) compared to previously 
published scores. The color codes for each metric is shown in the legend. The various input 
features to ncER (feature importance, the features that have the most effect in the model) are 
shown in panel C. Green, new essentiality features; Blue, published scores; Orange, 
regulatory/functional screen features; Red, 3D chromatin structure features. Performance ROC-
AUC (panel D) and PR-AUC (panel E) of model trained only with published deleteriousness 
metrics (blue), only with new features (orange) and with both new features and published 
metrics (green, ncER). 
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Figure 2. Comparison of experimental functional assays with in silico predictions of essentiality. 
Panel A. CRISPRi effect on cell viability (77,368 sgRNA probes pairs) from Fulco et al.31 and the 
corresponding maximum ncER score accross the GATA1 and MYC loci. Accuracy at four ncER 
thresholds is shown in yellow, orange, red and dark-red respectively for the 95th, 99th, 99.5th and 
99.9th percentiles. Panel B. Distribution of maximum ncER at different bins of cell viability (0 to 
less than -3 log2 fold change). P values were computed with independent 2-group Man-Whitney 
Unpaired Test. Panel C. Upper display represents the experimental locus and the identified 
CRESTseq peaks (n=45, green), from Diao et al.32. Lower display presents the fraction of regions 
with at least one essential bin. Essential bins are defined by four different ncER percentile 
thresholds. CRESTseq peaks are shown in red (N=45), random matched sized in silico regions 
extracted from the same locus (“random same locus, N=4,500) in dark grey and random matched 
sized in silico regions extracted genome-wide (“random GW”, N=4,500), in light grey. P values 
were computed with Fisher Exact Test. Panel C pictogram is adapted from32. FC, fold change. 
CRESTseq, cis-regulatory elements by tiling-deletion and sequencing. GW, genome-wide. 
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Figure 3. Mapping of essential regulatory domains in disease models. 
Panel A. Fraction of <1kb deletions with at least one essential bin. Essential bins are defined at 
four different ncER percentile thresholds. Autism and ASD deletions are shown in red (ASD, 
N=32), control deletions in dark grey (control, N=10) and random size-matched in silico deletions 
extracted genome-wide in light grey (random, N=4,200). See Suppl. Figure 8 for distribution of 
other sizes of deletions. Panel B. Schematic illustration of 20 unique deletions (grey bars) 
identified in Autism and ASD probands that harbor essential regions (highlighted in yellow, 
orange, red and dark red, based on the ncER thresholds). The corresponding genomic elements 
present at the essential regions are displayed under the deletions. Introns are shown in blue, 
ncRNA in magenta, cis regulatory in dark green and enhancers and others regulatory elements in 
light green (See Methods for categorization of genomic element classes). Panel C. The upper 
panel illustrates the human IHH genomic locus associated with developmental defects including 
craniosynostosis and synpolydactyly35,36. It harbors the 9 enhancers identified in mice (from Will 
et al.37). Lower panel, UCSC genome browser view of the essential region in the locus. Essential 
bins are shown at four ncER percentile thresholds. The grey box inset highlights the region of 
essentiality across human pathogenic duplications, the blue box the essentiality at the maximal 
overlap of genomic lesions in humans, and the green box that includes the IHH region present in 
duplications causing syndactyly Leuken type engineered in Will et al.37. Panel C pictogram is 
adapted from37. Panel D. Fraction of regions with at least one essential bin. Essential bins are 
defined by four different ncER percentile thresholds. Mouse to human mapped enhancers are 
shown in red (“functional”, N=9), random size-matched in silico deletions extracted from the 
same locus (“random same locus”, N=900) in dark grey and random size-matched in silico 
deletions extracted genome-wide (“random GW”, N=900) in light grey. GW, genome-wide. 
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Suppl. Figure S1. Study design. 
CREST-seq= cis-regulatory element scan by tiling-deletion and sequencing. 
CRISPRi= clustered regularly interspaced short palindromic repeats (CRISPR) interference. 
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Suppl. Figure S2. ncER generalization to independent variant sets. 
Performance ROC-AUC (panel A) and PR-AUC (panel B) for the independent set of manually 
curated non-coding Mendelian variants (N=425 pathogenic and N=1,863 control)23. Performance 
ROC-AUC (panel C) and PR-AUC (panel D) for the independent set of left out non-coding HGMD 
and ClinVar variants mapping to ncRNAs (N=245 pathogenic and N=1,876 control).  Performance 
ROC-AUC (panel E) and PR-AUC (panel F) for the independent set of left out non-coding HGMD 
and ClinVar variants mapping outside of ncRNAs (Others; N=354 pathogenic and N=2,604 
control). ncRNA, non-coding RNA. TPR, true positive rate. FPR, false positive rate. Xgb, XGBoost 
model or ncER. 
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Suppl. Figure S3. Essential regions distribution in the genome. 
Panel A. Bar plot displaying the cumulative territory covered by each element family at different 
percentile threshold (indicated at the bottom of the bars). The total genomic territory is displayed 
at the top of the bars. The percentiles are based on the rank of ncER values. The elements appear 
in the bar plot in the same order as in the legend. Genomic elements grouping is detailed in 
Methods. Panel B. Size distribution of essential regions defined at different ncER percentile 
thresholds (indicated by the color code in the top-right of the figure). GW, genome-wide. 
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Suppl. Figure S4. The GO terms enrichment for biological processes in essential regions. 
The bubble plot represents the significance of the enrichment for a given term (y axis, minus 
log10(pvalue)) versus the percentage of genes associated with a given biological process that 
were present in the set of genes with at least one essential promoter bin (x axis). Each circle in 
the plot represents one biological process. The size of the circles is proportional to the number 
of genes in the specific GO term class. Only the significant terms are colored. The circles and the 
rows in the associated table are colored according to the highest ranking hierarchical term (to 
facilitate pathway and redundant information detection). When multiple terms could be the 
highest hierarchical ancestor, the coloring was randomly selected among the multiple 
possibilities. The associated table provides the name of the top ranked terms. Promoter regions 
were defined as the 600bp upstream the transcription start site. A modified version of the 
GOBubble function from the GOplot R package (http://wencke.github.io/) was used to generate 
this figure. 
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Suppl. Figure S5. Comparison of experimental CRISPRi functional assays with in silico 
predictions of essentiality. 
Panel A. CRISPRi effect on cell viability (71,404 sgRNA probe pairs targeting the MYC locus) and 
the corresponding maximum ncER score within the tested region. Accuracy at four ncER 
thresholds is shown in yellow, orange, red and dark-red respectively for the 95th, 99th, 99.5th and 
99.9th ncER percentiles. Panel B. Distribution of maximum ncER at different bins of cell viability 
(0 to lower than -3 log2 fold change). P values were computed with independent 2-group Man-
Whitney Unpaired Test. Panel A. CRISPRi effect on cell viability (5,856 sgRNA probe pairs 
targeting the GATA1 locus) and the corresponding maximum ncER score within the tested region. 
Accuracy at four ncER thresholds is shown in yellow, orange, red and dark-red respectively for 
the 95th, 99th, 99.5th and 99.9th ncER percentiles. Panel B. Respective distribution of maximum 
ncER at different bins of cell viability (0 to lower than -3 log2 fold change). P values were 
computed with independent 2-group Man-Whitney Unpaired Test. 
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Suppl. Figure S6. CREST-seq peaks enrichment in essential regions. 
CREST-seq peaks (N=45, dark blue) display the highest ncER percentile distribution, compared to 
100 permutations (grey), each containing 45 regions matched by size to the CREST-seq peaks and 
from the same genomic locus. 
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Suppl. Figure S7. Comparison of experimental CREST-seq functional assays with in silico 
predictions of essentiality. 
Panel A. P values determined by Diao et al. 32 comparing POU5F1 expression in targeted cells 
versus controls (11,570 sgRNA probe pairs) and the corresponding maximum ncER score within 
the tested region. Accuracy at four ncER thresholds is shown in yellow, orange, red and darkred 
respectively for the 95th, 99th, 99.5th and 99.9th ncER percentiles. Panel B. Distribution of 
maximum ncER at different bins of -log10(p value) (up to 5.36 (non-significant), above 5.36 
which corresponds to -log10(0.05/11,570)). P values were computed with independent 2-group 
Man-Whitney Unpaired Test. 
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Suppl. Figure S8. Size distribution of Cis-regulatory transmitted deletions. 
The transmitted cis-regulatory deletions were split into 4 groups of matched size (with no 
significant difference in the distribution of control and ASD deletion within the same group size). 
Deletions present in cases are shown in red, deletions present in controls are shown in grey. The 
y axis is on logarithmic scale. P values were computed with independent 2-group Man-Whitney 
Unpaired Test. 
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Suppl. Figure S9. ncER percentile distribution across transmitted deletion. 
The <1kb cis-regulatory transmitted deletions tend to have an average ncER slightly higher in ASD 
than in controls, however the effect, if any, disappears for higher size deletions. The longer the 
deletion the more likely to approach ncER 50th percentile, the genome average. Deletions present 
in probands are shown in red, deletions present in controls are shown in grey. The boxplot width 
is proportional to the number of deletions per group (see Suppl. Figure S8). P values were 
computed with independent 2-group Man-Whitney Unpaired Test.  
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Suppl. Figure S10. Fraction of transmitted deletions with essential functional domains. 
Panel A. Fraction of 1-25kb deletions with at least one essential bin. Essential bins are defined by 
four different ncER percentile thresholds. Autism and ASD deletions are shown in red (“ASD”, 
N=65), control deletions in dark grey (“control”, N=4) and random size-matched in silico deletions 
extracted genome-wide in light grey (“random”, N=6,900).  Panel B. Fraction of 25-100kb 
deletions with at least one essential bin. Essential bins are defined by four different ncER 
percentile thresholds. Autism and ASD deletions are shown in red (“ASD”, N=17), control 
deletions in dark grey (“control”, N=2) and random size-matched in silico deletions extracted 
genome-wide in light grey (“random”, N=1,900). 
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Suppl. Figure S11. Enrichment in essential regions for mouse functional enhancers. 
Functional enhancers (N=9, blue) are placed among the highest ncER percentile distribution 
compared to 100 permutations (grey), each containing 9 regions matched by size to the 
enhancers and issued from the same genomic locus. 
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Suppl. Table S1. Input feature description and accession links. 
 
Provided as separate file. 
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Suppl. Table S2. Predictive performance and accuracy of ncER compared to CRISPRi functional 
assays. 
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Suppl. Table S3. Predictive performance and accuracy of ncER compared to CREST-seq 
functional assays. 
 
 

 

 

 
 

condition ncER percentile threshold sensitivity specificity PPV NPV accuracy
 -log10(pval)>=5.36 99.9 0.00 96.07 0.00 99.52 95.63
 -log10(pval)>=5.36 99.5 26.42 76.46 0.51 99.56 76.23
 -log10(pval)>=5.36 99 50.94 64.03 0.65 99.65 63.97
 -log10(pval)>=5.36 95 92.45 19.02 0.52 99.82 19.36
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