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Abstract 

Recent studies have shown a critical role of the gastrointestinal microbiome in brain and behavior via 

the complex gut–microbiome–brain axis, however, the influence of the oral microbiome in neurological 

processes is much less studied, especially in response to the stimuli in the oral microenvironment such 

as smoking. Additionally, given the complex structural and functional networks in brain system, our 

knowledge about the relationship between microbiome and brain function in specific brain circuits is 

still very limited. In this pilot work, we leveraged next generation microbial sequencing with functional 

neuroimaging techniques to enable the delineation of microbiome-brain network links as well as their 

relationship to cigarette smoking. Thirty smokers and 30 age- and sex- matched non-smokers were 

recruited for measuring both microbial community and brain functional networks. Statistical analyses 

were performed to demonstrate the influence of smoking on the abundance of the constituents within 

the oral microbial community and functional network connectivity among brain regions as well as the 

associations between microbial shifts and the brain functional network connectivity alternations. 

Compared to non-smokers, we found a significant decrease in beta diversity (p = 6×10
-3

) in smokers and 

identified several classes (Betaproteobacteria, Spirochaetia, Synergistia, and Mollicutes) as having 

significant alterations in microbial abundance. Taxonomic analyses demonstrate that the microbiota 

with altered abundance are mainly involved in pathways related to cell processes, DNA repair, immune 

system, and neurotransmitters signaling. One brain functional network connectivity component was 

identified to have a significant difference between smokers and nonsmokers (p = 0.033), mainly 

including connectivity between brain default network and other task-positive networks. The brain 

functional component was also significantly associated with some smoking related oral microbiota, 

suggesting a potential link between smoking-induced oral microbiome dysbiosis and brain functional 

connectivity, possibly through immunological and neurotransmitter signaling pathways. This work is the 

first attempt to link oral microbiome and brain functional networks, and provides support for future 

work in characterizing the role of oral microbiome in mediating smoking effects on brain activity. 
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1. Introduction 

Nicotine, an addictive substance, has been reported to influence brain function and human behavior, 

including cognitive function and endogenous information processing networks [1].  Functional magnetic 

resonance imaging (fMRI) has been widely applied to delineate the interactions among diverse brain 

functional networks related to nicotine use or dependence, informing our understanding of the links 

between brain function and smoking abuse or cessation. Studies have reported negative association 

between the severity of nicotine dependence and dorsal anterior cingulate cortex (dACC) connectivity 

strength with several other regions including the ventrium and insula [2, 3]. These studies suggest the 

use of resting state connectivity among dACC, insula and striatum as biological measures of nicotine 

addiction. Consistent reduction of dACC-insula connectivity was also found in smokers who relapsed 

when quitting compared to those who remained abstinent [4]. Cole et al. [5] reported that cognitive 

withdrawal improvement after nicotine replacement was associated with enhanced connectivity 

between the executive cognitive network (ECN) and the default mode network (DMN). After acute 

nicotine administration, non-smokers showed reduced activity within the DMN and increased activity in 

extra-striate regions within the visual attention network, suggesting a shift in network activity from 

internal to external information processing [6]. Other evidence supports the critical role of insula, 

together with the ACC in influencing the dynamics between large-scale brain networks [1]. Significant 

lower connectivity strength between left ECN and DMN domains was found in chronic smokers 

compared to nonsmokers [7]. Chronic nicotine use also showed negative impact on functional network 

connectivity within ECN domain.  

 Smoking can affect oral health by altering the microbial ecosystem in the oral cavity. There are 

around 600 types of bacterial species inhabiting the human oral cavity, which live together in synergy [8]. 

Bacteria can colonize and form complex communities in the oral cavity on a range of surfaces including 

on the teeth, the tongue, or under the gum with each surface representing a specific microenvironment 

with slightly variant conditions. The oral microbiome helps to maintain oral health, but composition is 

sensitive to environmental disruptions including smoking cigarettes or antibiotic intake [9]. The balance 

of the microbial ecosystem is disturbed by these alterations, dysbiosis, resulting in diseases such as 

periodontitis or respiratory diseases [10-12]. Smoking can directly influence the oral microbiome and 

perturb oral microbial ecology through a variety of mechanisms including antibiotic effects or oxygen 

deprivation [13]. Evidence suggests smoking drives colonization of marginal and subgingival spaces with 

highly diverse biofilms resulting in a proinflammatory response from the host [14]. Investigators also 

found that smokers harbored more pathogenic, anaerobic microbes in the subgingival space than non-

smokers [15]. Use of 16s RNA sequencing has demonstrated a shift in the abundances of particular 

microbiota in smokers compared to non-smokers including an increase in pathogenic microbes 

associated with increased risk of oral diseases [16]. Kumar et al. identified an increase in periodontal 

pathogens belonging to the genera Fusobacterium, Cardiobacterium, Synergistes, and Selenomonas in 

tobacco users [14]. Wu et al. showed depletion in the abundance of microbes associated with oral 

health including from the phylum Proteobacteria and genera Capnocytophaga, Peptostreptococcus and 

Leptotrichia in smokers, which could potentially lead to smoking-related diseases [17].  
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 In the past few years, many studies have shown a critical role of the gastrointestinal microbiome 

in brain development, function, and behavior via the complex gut microbiome–brain axis [18, 19]. It has 

been suggested that the communications between the microbiome and brain is bidirectional through 

multiple pathways including the hypothalamic-pituitary-adrenal axis (HPA), neurotransmitter pathways, 

immune system, and recognition of bacterial or host metabolites. Research has found that hormonal 

changes along the HPA axis due to neurological reactions within the brain to stress or anxiety are related 

to gut microbiome composition [20]. Inversely, gastrointestinal microbial perturbations have been 

shown to impair recognition memory and cognitive function in hippocampus [21]. Microbiota are also 

involved in several neurotransmitter pathways including dopaminergic, serotonergic, and glutamatergic 

signaling, which are well known in modulating neurogenesis and brain function [22]. Animal models 

have demonstrated increased levels of noradrenaline, dopamine, and serotonin in the striatum and 

hippocampus, and reduced expression of N-methyl-D-aspartate receptor subunits in the hippocampus, 

cortex, and amygdala in germ-free mice, suggesting the role of the microbiome in regulating the levels 

of these neurotransmitters in the brain [23]. The microbiome has also been reported to affect 

neurogenesis and development given its possible influence on brain-derived neurotropic factor 

expression in multiple brain regions. Moreover, neuroinflammation also plays a critical role in brain and 

behavioral abnormalities, disrupting synaptic plasticity and neurogenesis among cortical and limbic 

areas [24]. Certain bacteria (e.g., Bacteroidetes) are believed to stimulate neuroinflammation via 

increased brain-blood-barrier permeability and toll-like receptor 4 (TLR4)-mediated inflammatory 

pathways [25]. With such a close relationship between the gastrointestinal microbiome and brain 

function, researchers have identified several neurological disorders correlated to changes in 

gastrointestinal microbial populations including autism, major depression disorders, and 

neurodegenerative disorders [26-28]. 

 While most studies focus on the influence of gut microbiome on brain signaling, the potential 

role of the oral microbiome in the regulation of neurological activity is much less studied. Recent work 

has demonstrated that oral microbial perturbations are associated with neurodegeneration (e.g., 

Alzheimer’s diseases, Parkinson’s disease, and glaucoma) [29-31]. Bacterial endotoxin from the oral 

cavity is tied to chronic, subclinical inflammation, development of neurodegeneration, and has even 

been localized to the brain tissue of patients suffering from Alzheimer’s disease [29]. As the second most 

taxonomically diverse body site, the oral microbiome consists of some bacteria that are specific to the 

oral cavity while also sharing microbes found within the in gastrointestinal microbiome. As such, it is not 

surprising that some oral and gut microbiota show concordant disease associations [32] indicating a 

potential connection between the two sites contributing to inflammatory diseases [33, 34]. With these 

linkages and close proximity to the brain, there is high potential for oral dysbiosis, similar to 

gastrointestinal dysbiosis, to affect brain activity. However, knowledge of the constituents and 

interactions of the oral microbiome is still limited, especially in relation to how the compositional 

changes influence neurological signaling in the context of disease. 

 Despite recent advances in understanding of the gut-brain axis, there is still a significant gap in 

knowledge as to the role of the microbiome on different regions or circuits involved in brain function. 

Neuroimaging is a powerful tool enabling the delineation of microbiome influences on specific brain 
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circuitry using similar applications designed for brain functional mapping and neurological disease 

diagnosis [35]. Recent studies have identified the influence of changes in the gastrointestinal 

microbiome to activation of brain circuits related to memory and depression [36-38], suggesting the 

potential of combining the microbiome and neuroimaging in studying microbiome-brain interactions. 

However, there have not been investigations into the link between the oral microbiome and brain 

function in relation to behavioral changes. In this work, we leveraged next generation 16s rRNA 

sequencing and resting-state fMRI techniques to explore the effects of changes in oral microbiome 

composition on brain function. Smoking directly influences the constitution of the oral microbiome, 

which allows for examination of fluctuations in brain activities that are potentially correlated with shifts 

of the oral microbial populations. Saliva samples and resting-state fMRI scans from 60 individuals were 

collected, and the associations between bacterial populations and neurological signaling (e.g., brain 

functional connectivity) were examined. Influence of bacterial fluctuations linked to smoking on brain 

functional abnormalities was demonstrated showing the potential role of oral microbiome in influencing 

brain functional connectivity in relation to smoking. 

2. Materials and Method 

2.1. Participants 

Sixty subjects were used for the analyses, including 30 smokers with the level of nicotine dependence 

score (FTQ:Fagerstrom Tolerance Questionnaire [39]) >6 and 30 age- and sex-matched, non-smokers 

(FTQ score <=6). Subjects consisted of 45 males and 15 females (Fisher exact test p = 1) between the 

ages of 21 and 56 (37.2±10.65; p = 0.98) years. Group difference tests on age, AUDIT (the alcohol use 

disorders identification test [40]) score, and marijuana smoking (the number of marijuana smoking days) 

via two-sample t-test, and sex by Chi-square test can be seen in Table 1. Subjects with injury to the brain, 

brain-related medical problems, bipolar or psychotic disorders, or illicit drugs users (confirmed through 

urinalysis) were excluded.  

Table 1. Demographics of subjects 

 Smoker (n=30) Nonsmoker (n=30) p 

Age 37.23±9.58 37.17±11.78 0.98 

Sex(M/F) 21/8 20/7 1 

Alcohol (AUDIT score) 8.43±9.27 14.1±7.55 0.012 

Marijuana smoking 12.27±25 5.57±13.11 0.2 

FTQ score 8.87±1.57 0.93±1.96 - 

 

2.2.  16S rRNA sequencing  

Saliva samples were collected for 16S rRNA amplicon sequencing. Participants provided 5 ml of saliva in 

a sterile 50 ml conical centrifuge tube and stored in a refrigerator until the DNA was extracted. 

Sequencing was performed in the same laboratory using an Illumina MiSeq covering variable region V4 

with primers (5’GGAGGCAGCAGTRRGGAAT-3’ and 5’-CTACCRGGGTATTAAT -3’). Raw sequence data 

were demultiplexed, followed by quality control by applying the pipeline in DADA2 [41], generating a 
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number of unique sequences, similar to operational taxonomic unit (OTU) derived by sequences 

clustering with 100% identity accuracy in the previous pipeline [42]. Each sequence was trimmed to 

have a length of 150 base pairs and was aligned by the mafft tool to build a phylogenetic tree [43]. A 

classifier for taxonomy assignment was trained based on sequences and taxonomic results from 

Greengenes database (http://greengenes.lbl.gov) with a 99% similarity. The classifier was then applied 

to the identified sequences for taxonomic assignment. Assigned sequences were further agglomerated 

at the genus, family, and class levels for taxonomic analyses. All processing scripts were implemented on 

a QIIME2 (https://qiime2.org/) platform. 

2.3. Resting state fMRI imaging  

Fifty-six participants also had resting state functional MRI (rsfMRI) collected on a 3 T Siemens TIM Trio 

(Erlangen, Germany) scanner. Images were acquired with an echo-planar imaging (EPI) sequence 

(TR=2000 ms, TE=29 ms, flip angle=75°) with a 12-channel head coil. Each volume consisted of 33 axial 

slices (64×64 matrix, 3.75×3.75 mm
2
, 3.5 mm thickness, 1 mm gap). Image preprocessing was performed 

as previously described [44]. Briefly, this included slice-timing correction, realignment, co-registration 

and spatial normalization. By transforming the images to the Montreal Neurological Institute (MNI) 

standard space, we kept those with the root mean square of head movement not exceeding 3 standard 

deviations, despiked time courses[45], and smoothed images using a FWHM Gaussian kernel of size 6 

mm. The data were then analyzed by group independent component analysis (GICA) [46] with 120 and 

100 components for the first and second decomposition levels respectively [46, 47]. Thirty-nine out of 

the 100 components were selected with low noise and free of major artifacts. The spatial map of each 

selected component was z-transformed, and voxelwise one-sample t-test statistics were thresholded to 

identify the main brain areas. The time course corresponding to each component was filtered using a 

band-pass filter 0.01–0.15 Hz. Finally, resting state functional network connectivity (FNC) matrices were 

calculated for each subject based on the correlation coefficients between the time courses of all 

possible pairs formed with the 39 chosen components.  

2.4. Analysis of oral microbiome 

We tested the overall microbiota composition difference between smoking and non-smoking groups by 

comparing cross-sample distance. Raw read counts were first rarefied at 2020 sequences/sample. 

Weighted and unweighted UniFrac distances and Bray-Curtis distance were assessed by the R package 

‘vegan’ [48] and tested for group difference by applying permutational MANCOVA (‘Adnois’ function in 

vegan package) controlling for age, sex, alcohol AUDIT score, and marijuana smoking score. Principal 

coordinate analysis (PCoA) plots were generated based on the first two principle coordinates from each 

type of distance matrix to compare the dissimilarity among samples in the subspace spanned by the first 

two dimensions.  

 The OTU table of raw read counts was normalized to the table of relative abundances at 

different taxa levels. The taxa present in less than 20% of subjects were filtered out, resulting in 163 

OTUs, 73 genera, and 20 classes. Each taxon was tested for the relative abundance difference between 

smoking and non-smoking groups by Wilcox ranked sum test. Those taxa with significant group 
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difference, were further tested controlling for age, sex, alcohol and marijuana smoking by ‘Zig’ function 

in the MetagenomeSeq package [49]. The ‘Zig’ method has demonstrated advantage in microbiome data 

analysis by modeling raw counts using multivariate Gaussian distribution and taking into account zero 

abundance in a large proportion of subjects for each taxon.  

 

2.5.  Analysis of resting state fMRI imaging 

Each element in the FNC matrix indicates the correlation between any two functional networks within 

the brain. We transformed the FNC matrix of each subject to the vector and concatenated all FNC 

matrices across all subjects to form the matrix C with a dimension of n (subjects) by m (FNC links). To 

reduce the dimension of large number of FNC links, we applied the ICA algorithm to decompose matrix C 

into the multiplication of two full rank matrices by C = AS, where matrix S contains independent FNC 

components with similar cross-individual pattern and matrix A is the loading matrix which shows the 

presentation of each component on the subjects. The ICASSO algorithm [50] followed by best run 

selection was applied to obtain four reliable FNC components and each corresponding loading was 

tested for group difference by two-sample t-test. For the component with significant group difference, 

multiple regression model was further applied by controlling for covariates. 

2.6. Linking microbiota with FNC 

After obtaining significant FNC component and taxa with the above analyses, we further tested the 

association between FNC component and taxa using the ‘Zig’ function with the following model design: 

 Taxon ~ FNC+ smoking status + age + sex + alcohol + marijuana 

We tested taxa from OTU, genus, and class levels, and reported the significant associations with nominal 

p<0.05. Multiple comparisons in all tests were corrected by false discovery rate (FDR) method. 

2.7. Functional analysis of predicted metagenomes 

Metagenome content in the samples was inferred from 16S rRNA microbial data, normalized by copy 

number count to account for the differences of the number of 16S rRNA copies between taxa, and then 

functional metabolic pathways were predicted based on the Kyoto Encyclopedia of Gene and Genomes 

(KEGG) catalog [51], using Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States (PICRUSt) [52]. Analyses revealed 328 metabolism pathways at level 3 were predicted. Of these, 

66 pathways were removed due to presence in less than 10% of samples. Group difference of each 

metabolism pathway between smokers and non-smokers was tested using Welch’s t-test using the 

Statistical Analysis of Metagenomic Profiles (STAMP) software [53]. Multiple comparisons were 

corrected by FDR with cut-off set as 0.15 for significance. For the KEGG pathways and OTUs or genera 

significantly associated with smoking status, we further used Spearman's rank correlation to examine 

their relationship. 

3. Results 
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3.1. Overall microbiome composition between smoking groups 

To determine whether overall microbiome composition differed between smokers and nonsmokers, we 

performed principal coordinate analysis on unweighted UniFrac, weighted UniFrac and Bray-Curtis 

phylogenetic distances. Without controlling for covariates, we found significant group difference in 

unweighted UniFrac distance (p= 6×10
-3

) and Bray-Curtis distance (p= 0.025) under 9999 times 

permutation. The differences were still significant (p= 4×10
-3

 and 0.027, respectively) after controlling 

covariates (age, sex, alcohol score and marijuana smoking). No significant differences were found in 

weighted UniFrac (p= 0.2).  

 

(A)   (B) 

Figure 1. PCoA analysis of microbial composition between smokers and non-smokers. The microbial 

composition was evaluated based on (A) Unweighted UniFrac distance and (B) Bray-Curtis distance, 

respectively. Dark blue point indicates the center of eclipse. 

3.2. Taxonomic analysis between smokers and nonsmokers 

To determine the compositional differences in the salivary microbiota of smokers and nonsmokers, we 

examined the relative abundance of taxa at OTU, genus, and class levels. For each taxon, we tested their 

group difference using non-parametric rank sum test. For taxa with significant group difference (FDR≤ 

0.05), a multivariate test was applied controlling for covariates (age, sex, alcohol score and marijuana 

smoking). Fig.S1 and Table 2 show the relative abundance and log fold change (logFC= 

log2(smokers/nonsmokers)) of significant taxa by multivariate test at the OTU, genus, and class levels. 

We found that class Betaproteobacteria significantly differed in smokers with a clear depletion as 

compared to non-smokers (logFC= -0.35, p= 3.2×10
-2

). Within this class, it was genera Lautropia (logFC= -

1.99, p= 7.4×10
-3

) and Neisseria (logFC= -1.16, p= 8.5×10
-3

) that were specifically reduced in smokers. 

Other genera displaying significant differences between smokers and non-smokers included Treponema 

(class Spirochaetes), TG5 (class Synergistia), and Mycoplasma (class Mollicutes), which all had significant 

enrichment in smokers. Additionally, within the smoking population, there was a significant increase in 
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relative abundance of both genus Bacteroides and the family Mogibacteriaceae (logFC= 2.24, p= 7.9×10
-4

; 

logFC= 2.92, p= 3.1×10
-4

, respectively) but not seen at the class level. 

 Lower-level analyses on OTU identified 12 OTUs from 7 classes showing significant difference 

between smoking and non-smoking groups. Besides the classes identified at genus level, we additionally 

found 2 OTUs from genus Actinomyces and Rothia in class Actinobacteria with higher abundance in 

smokers compared to non-smokers. The abundance of three OTUs from genera Tannerella and 

Prevotella (in class Bacteroidia) and one from genus Fusobacterium were also significantly increased in 

smokers. On the contrary, 2 OTUs from genera Oribacterium and Selenomonas were depleted in 

smokers. 

  

Table 2: List of taxa with significant difference between smoking and non-smoking groups at species, 

genus and class levels. 

Taxa  Relative Abundance 

Class Order Family Genus Species Smoker Non-

smokers 

logFC FDR 

OTU level         

Actinobacteri

a 

Actinomycetales Actinomycetaceae Actinomyces spp 7.8×10
-3

 1.5×10
-3

 2.35 1.1×10
-4

 

Actinobacteri

a 

Actinomycetales Micrococcaceae Rothia mucilaginosa 1.6×10
-2

 6.3×10
-3

 1.39 8.3×10
-4

 

Bacteroidia Bacteroidales Porphyromonadaceae Tannerella forsythia 1.1×10
-3

 4.1×10
-4

 1.42 1.4×10
-2

 

Bacteroidia Bacteroidales Prevotellaceae Prevotella oris 1.7×10
-3

 7.1×10
-4

 1.23 3.1×10
-3

 

Bacteroidia Bacteroidales Prevotellaceae Prevotella spp 7.1×10
-4

 2.8×10
-4

 1.32 1.3×10
-2

 

Clostridia Clostridiales Eubacteriaceae Eubacterium saphenum 7.9×10
-4

 1.0×10
-4

 2.92 2.4×10
-4

 

Clostridia Clostridiales Lachnospiraceae Oribacterium asaccharolyti

cum 

1.4×10
-3

 2.9×10
-3

 -1.04 1.9×10
-2

 

Clostridia Clostridiales Veillonellaceae Selenomonas spp 1.9×10
-3

 5.5×10
-3

 -1.52 1.6×10
-3

 

Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacteriu

m 

nucleatum 9.8×10
-3

 4.5×10
-3

 1.14 5.1×10
-2

 

Betaproteoba

cteria 

Burkholderiales Burkholderiaceae Lautropia mirabilis 9.9×10
-4

 4.1×10
-3

 -2.06 2.6×10
-3

 

Synergistia Synergistales Dethiosulfovibrionace

ae 

TG5 unclassified 7.7×10
-4

 1.4×10
-4

 2.44 1.3×10
-4

 

Mollicutes Mycoplasmatales Mycoplasmataceae Mycoplasma hyosynoviae 1.5×10
-3

 3.4×10
-3

 2.15 5.5×10
-3

 

         

Genus level         

Bacteroidia Bacteroidales Bacteroidaceae Bacteroides  3.5×10
-4

 7.4×10
-5

 2.24 7.9×10
-4

 

Clostridia Clostridiales Eubacteriaceae Eubacterium  7.5×10
-4

 9.8×10
-5

 2.92 3.1×10
-4

 

Betaproteoba

cteria 

Burkholderiales Burkholderiaceae Lautropia  1.0×10
-3

 4.1×10
-3

 -1.99 7.4×10
-3

 

Betaproteoba

cteria 

Neisseriales Neisseriaceae Neisseria  1.8×10
-2

 4.0×10
-2

 -1.16 8.5×10
-3

 

Spirochaetes Spirochaetales Spirochaetaceae Treponema  1.8×10
-2

 7.6×10
-3

 1.27 1.4×10
-3

 

Synergistia Synergistales Dethiosulfovibrionace

ae 

TG5  1.7×10
-3

 6.0×10
-4

 1.53 1.3×10
-3

 

Mollicutes Mycoplasmatales Mycoplasmataceae Mycoplasma  1.9×10
-3

 3.9×10
-4

 2.28 4.6×10
-4

 

         

Class level         

Betaproteoba

cteria 

    2.2×10
-2

 5.0×10
-2

 -0.35 3.2×10
-2

 

Spirochaetes     1.8×10
-2

 7.6×10
-3

 0.38 2.1×10
-3

 

Synergistia     1.7×10
-3

 6.0×10
-4

 0.46 4.0×10
-3

 

Mollicutes     3.2×10
-3

 1.9×10
-3

 0.23 1.8×10
-2
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3.3. Differential FNC component between groups 

Among four rsfMRI components derived by applying ICA on the FNC matrix, there was one component 

with the corresponding loading vector showing significant difference between smoking and non-

smoking groups (nominal p= 0.033), as shown in Fig. 2A. The group difference remained significant after 

controlling for covariates (p= 0.04) suggesting higher loading in smokers compared to nonsmokers for 

the FNC component. All of the top 13 FNCs with absolute (z-scored weights)> 2.5 in the component had 

negative weights (Fig. 2B), which indicates that those FNCs contributed in an opposite way to the 

component that they demonstrated significant reduction in smoking group. Fig. 2C shows the 

connectivity among functional networks from the top contributing FNCs in the component. The brain 

regions of those connected functional networks were plotted in Fig. 2D. Altered connectivity was mainly 

between DMN and visual network (VIS), salience network (SAL), and cognitive controls network (ECN), 

as well as between precunes (PRE) network and VIS. As listed in Table S1, the DMN network included 

several functional regions including anterior cingulate cortex (ACC), left angular gyrus and posterior 

cingulate cortex (PCC) with some precuneus overlap. The VIS group was composed of right 

fusiform/lingual gyrus, left middle occipital gyrus and right inferior occipital gyrus. The FNCs between 

DMN and other task-positive networks (VIS domain, inferior frontal gyrus (IFG) within the ECN domain, 

right supramarginal gyrus within the SAL domain, precuneus from PRE domain and supplementary 

motor area from SEN domain) were all negative, indicating stronger anti-correlation between DMN and 

those task-positive networks in smokers.  
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Figure 2. The loading and spatial mapping of identified FNC component. (A) The loading of identified FNC

component in smokers compared to nonsmokers; (B) Top FNCs with z-scored weights absolute (z-score)

2.5 in the component; (C) The top contributing connectivity among the functional networks from the

selected component; (D) Brain regions of those functional networks involved the top FNCs. 

3.4. Association test between FNC component and microbiome 

After identifying both taxa and FNC component showing significant group difference, we further tested

for associations between relative abundance of each taxon and the loading of FNC component. Table 3

lists significant associations between taxa and FNC component. The abundance of Treponema (class

Spirochaetes),TG5 (class Synergistia) and Eubacterium (class Clostridia)were positively associated with

the FNC loading of the component while Neisseria (class Betaproteobacteria) demonstrated an opposite

relationship. Genus Bacteroides (class Bacteroidia) also had a marginal association, suggesting higher

abundance of Bacteroides related to higher FNC loading and thereby lower connectivity strength of top

FNCs in this component. Lower-level analysis further identified that the abundance of species from

genus Actinomyces (class Actinobacteria) showed significant positive relationship with FNC loading only

in smokers (logFC= 2.36, p= 4.9×10
-7

), while genera Prevotella (class Bacteroidia) and Rothia (class

Actinobacteria) were significantly increased along with lower top FNCs strength in smokers.  
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Table 3. The associations between smoking-related taxa and FNC component 

+: the significance was shown in smoking group only. 

 

3.5. Functional metabolism pathway prediction 

Among the 262 KEGG pathways predicted for microbial function, we identified 23 pathways showing 

significant difference in abundance between smokers and non-smokers after correcting for multiple 

tests by FDR with a threshold 0.15, as shown in Fig.3. These pathways with abundance significantly 

altered in smokers mainly involved metabolism and genetic information processing. Enriched metabolic 

pathways included those involved with metabolism (cofactors and vitamins, terpenoids and polyketides, 

amino acids, nucleotides, and glycans). Depleted pathways were involved with energy and lipid 

metabolism, membrane transport, and xenobiotics biodegradation (i.e., drug metabolism-cytochrome 

P450). In addition, genetic information processing pathways (i.e., proteasome, protein export, 

nucleotide excision repair, DNA repair and recombination proteins, and ubiquitin system) were also 

significantly enriched in smokers whereas other pathways related to diseases (i.e., immune disease, 

neurodegenerative disease), nervous system, and circulatory system were also associated. Further 

examination of the correlations between microbiota and the functional pathways demonstrated that 

alterations in the abundance of microbiota were highly correlated to these pathways (mean absolute 

value of correlation 0.19~0.29 in different taxonomic levels), especially for the genera Lautropia and 

Neisseria from class Betaproteobacteria as shown in Fig. S2.   

 

Taxa Association with FNC component  

Class Order Family Genus Species logFC Statistic FDR 

OTU level 

Actinobacteria Actinomycetales Actinomycetaceae Actinomyces mucilaginosa 2.35 120.9 4.9×10
-7+

 

Actinobacteria Actinomycetales Micrococcaceae Rothia forsythia 1.39 19.8 6.2×10
-2

 

Bacteroidia Bacteroidales Prevotellaceae Prevotella oris 1.23 43.2 5.8×10
-6

 

Clostridia Clostridiales Eubacteriaceae Eubacterium saphenum 2.92 34.0 1.1×10
-4

 

Genus level 

Bacteroidia Bacteroidales Bacteroidaceae Bacteroides  2.24 15.12 6.2×10
-2

 

Clostridia Clostridiales Eubacteriaceae Eubacterium  2.92 35.09 7.1×10
-5

 

Betaproteobacteria Neisseriales Neisseriaceae Neisseria  -1.16 -20.18 3.7×10
-2

 

Spirochaetes Spirochaetales Spirochaetaceae Treponema  1.27 18.78 5.0×10
-2

 

Synergistia Synergistales Dethiosulfovibrionaceae TG5   1.53 13.04 3.7×10
-2

 

Class level 

Betaproteobacteria     -0.35 -20.15 3.7×10
-2

 

Synergistia     0.46 14.80 2.9×10
-2

 

Mollicutes     0.23 18.76 1.9×10
-2
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Figure 3. Pathway enrichment analysis based on the predicted metagenomics. The 23 out of 262 KEGG 

functional pathways show significant changes in abundance between smokers and non-smokers (FDR < 

0.15). Those pathways were predicted from 16S rRNA microbiome sequencing using the PICRUSt 

algorithm. Mean proportion (colored bar) indicates the relative abundance of the pathway in each group. 

The difference of mean proportions between groups as well as the 95% confidence interval indicates the 

effect size of relative abundance change for each pathway. 

 

4. Discussion and Conclusions 

In this work, we specifically set out to determine if correlations existed between shifts in the oral 

microbial population and changes in brain signaling networks due to smoking. To achieve this, we used 

16s rRNA sequencing to characterize the microbial composition in the saliva of participants (smokers 

versus nonsmokers), and rsfMRI to measure brain functional activity in these same participants. Data 

delineating microbial shifts was consistent with previously reported findings for changes in the oral 

cavity due to smoking. Likewise, changes in brain functional activity also matched with previous results 

found due to smoking. When correlative analyses were performed on with these data sets, some oral 

microbial populations were found to have significant correlation with particular neurological signaling 

networks. While the influence of the gastrointestinal microbiome on neurological activity has been an 

area of intense study, this study suggests that the oral microbiome also influences neurological signaling 

and may provide new therapeutic opportunities for treatment of neurological disorders. 

 As stated, results from 16s rRNA sequencing were consistent with previously reported results 

for changes in the oral microbiome due to smoking. We found significant changes in microbial 

composition in both unweighted UniFrac and Bray-Curtis distances with smaller variation within 
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smokers than nonsmokers, showing less microbial diversity in the salivary microbiome of smokers. 

Taxonomic analyses identified drastic abundance changes on multiple taxa at different levels. Gram-

negative bacteria from the genera Lautropia and Neisseria from the class Betaproteobacteria showed 

depletion in the smokers, in line with previous [14, 16]. Several in vitro studies have also demonstrated 

the strong inhibitory effect of smoking in Neisseria growth [54]. Other genera were enriched in smokers 

including Bacteroides [55], Treponema [14], TG5 and Mycoplasma [55], especially Mycoplasma may be 

synergize with smoking to produce the pro-inflammatory effects [56]. In addition, low-level analysis 

identified some species significantly enriched in smokers. Actinomyces spp. and Rothia mucilaginosa 

from the gram-negative class Actinobacteria were increased in abundance in smokers, in line with 

previous large scale oral microbiome study [17]. Tannerella forsythia has been reported to enrich in 

subgingival plaque of current smokers and demonstrated potential risk as pathogen to induce 

periodontal disease [57]. Prevotella oris and Prevotella spp. from Bacteroidales are coaggregated with 

Porphyromonas gingivalis [58] which is also a critical periodontitis pathogen and is highly promoted 

during the infection by smoking [59]. Most of these enriched microbiota are anaerobes compared to 

aerobic Neisseria, consistent with the finding of higher abundance of anaerobes in subgingival plaque 

samples of smokers, suggesting the depleting of oxygen in oral cavity induced by smoking [15]. 

 KEGG pathway analysis identified several metabolic pathways involved in functional changes 

during smoking. This is perhaps not surprising as cigarette smoke has been reported to be highly 

associated with DNA damage, lipid peroxidation and antioxidant impairment, and protein modification 

and misfolding, thereby inducing severe cellular damage [60, 61]. These influences may affect the oral 

microbiome community with its direct proximity to toxins from cigarette smoking. We found significant 

enrichment of metabolic pathways involving the proteasome, protein export and the ubiquitin system.  

All of them are related to protein degradation and recycling in the cell, which is essential for cellular 

processes such as proliferation, signaling, and immune responses [62]. The up-regulation of these 

pathways indicates the role of smoking in disrupting protein modification and cellular processes of the 

microbial constituents within the oral cavity. Other pathways related to DNA repair and replication- 

including folate biosynthesis- were also significantly activated in the oral microbiome of smokers. The 

involvement of proteasome function and DNA repair pathways enhanced in the smoking population may 

be due to increased cellular dysfunction and DNA damage induced by smoking. Additionally, enrichment 

was also found in pathways related to small amino acid production such as glutamate and glutamine, 

glutamatergic synapse and tyrosine metabolism, which are related to neurotransmitter release and 

potentially interact with nervous system in changing neuronal activity of smokers such as addiction and 

craving [63, 64]. On the contrary, some metabolisms are significantly depleted in smokers such as 

metabolisms of lipid energy (i.e., alpha-linolenic and sulfur), and xenobiotics biodegradation (i.e., drug 

metabolism-cytochrome P450), which is in line with previous studies [17, 65]. 

 Neuroimaging analysis identified one smoking-related FNC component involved in the 

connectivity between DMN and other task-positive networks from VIS, SAL, ECN and PRE domains, 

which is consistent with our previous study [44]. DMN is mostly related to self-referential and episodic 

memory processing, which is down-regulated in task performance [66]. The other networks are 

activated corresponding to different tasks such as visual, cognitive control, attention and moment-to-
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moment information processing, namely ‘task-positive’ regions [67]. Functional MRI studies in both task 

performance and resting state have reported tight coupling between DMN and other task positive 

networks with negative correlations (anti-correlation) [67-69]. In our work, we found similar anti-

correlations between DMN and the other domains (e.g., VIS, SAL and ECN) with reduced connectivity 

(i.e., increased negative coupling) in smokers when compared to nonsmokers. Reduced connectivity 

within and between DMN and ECN networks were also reported in chronic smokers compared to 

nonsmokers, showing larger decreases of connectivity with heavier nicotine use [7]. Additional studies 

found increased coupling among medial orbital prefrontal cortex, the dorsal medial PFC, striatum, and 

visual cortex over the course of 1 h acute abstinence, which is consistent with our findings [70]. The 

activation of these regions, which relate to reward system and also fall in the DMN domain, indicates 

the relation of DMN with cigarette craving. Our results combined with the above findings suggest 

dynamic modulation in functional coupling between DMN and task-positive networks when subjects 

smoke or go through withdrawal as compared to nonsmokers.  

 

 By correlating changes in oral microbial abundance with the smoking-related brain FNC 

component, we identified several microbiota related to brain function. Prevotella oris (class Bacteroidia), 

a common gram-negative, anaerobic bacterium of the normal oral flora has been associated with the 

development of brain absences and other neurological syndromes (i.e., Lemierre's syndrome) through 

production of IgA proteases to promote virulence and initiate an immune response [71, 72]. Another 

member of the class Bacteroidia, genus Bacteroides, has the ability to produce complex, pro-

inflammatory neurotoxins that may induce inflammation in oral cavity and further contribute to 

development of inflammation in the brain, increasing brain-blood-barrier permeability through the 

circulatory system [73]. Genus Neisseria, including species Neisseria meningitidis, stimulates the immune 

system through a variety of mechanisms  (e.g., the production of lipopolysaccharide endotoxin) and 

invades the neurological nervous system during infection [74]. Similarly, Treponema infects the brain via 

branches of the trigeminal nerve [75]. All of these bacteria, whose populations are influenced by 

smoking, affect the immune system and are capable of influencing neurological processes through 

either direct or indirect means. In this study, we demonstrate that these bacteria have significant 

associations with brain function alternated by smoking, suggesting  potential pathways (i.e., 

inflammatory pathways) exist for members of the oral microbiome to influence neurological signaling in 

the brain, similar to how gut microbiome-brain interactions occur [76]. Along the gut-brain axis, 

neurotransmitter signaling pathways play important roles in bidirectional modulation. Our functional 

pathway prediction analysis identified enrichment in several neurotransmitter-related pathways among 

oral microbiota such as glutamate-glutamine and glutamatergic synapse. Production of 

neurotransmitters from these pathways (i.e., glutamate and glutamine) is stimulated by smoking and 

they are highly involved in reward circuit neural functions for smoking dependence, or craving after 

smoking withdraw [77, 78]. The high correlations between some FNC-related microbiota and these 

neurotransmitters signaling pathways demonstrates the potential of these specific microbiota together 

with other oral microbiota to influence brain function through neurotransmitter signaling pathways. 

 This study explores the association between fluctuations within the oral microbiome and the 

brain functional network in smokers. While some associations were identified here, sampling of a larger 
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population would strengthen these findings. Additionally, although we tried to control for alcohol 

consumption and marijuana smoking score, their complex interactions with cigarette smoking with 

respect to the oral microbiome community and brain function may still confound our results. As such, 

follow on studies should employ stricter criteria for selection of the smoking and non-smoking control 

group are suggested. Despite these limitations, this study represents the first evidence of correlation 

between population shifts within the oral microbiome and changes in neurological signaling. As the oral 

cavity is an easily accessible environment, as compared to the gastrointestinal tract, further study offers 

opportunity for development of novel therapeutics for neurological syndromes.     
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