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Abstract	
	
Value-based	decision	making	is	a	process	in	which	humans	or	animals	maximize	their	
gain	by	selecting	appropriate	options	and	performing	the	corresponding	actions	to	
acquire	them.	Whether	the	evaluation	process	of	the	options	in	the	brain	can	be	
independent	from	their	action	contingency	has	been	hotly	debated.	To	address	the	
question,	we	trained	rhesus	monkeys	to	make	decisions	by	integrating	evidence	and	
studied	whether	the	integration	occurred	in	the	stimulus	or	the	action	domain	in	the	
brain.	After	the	monkeys	learned	the	task,	we	recorded	both	from	the	orbitofrontal	
(OFC)	and	dorsolateral	prefrontal	(DLPFC)	cortices.	We	found	that	the	OFC	neurons	
encoded	the	value	associated	with	the	single	piece	of	evidence	in	the	stimulus	domain.	
Importantly,	the	representations	of	the	value	in	the	OFC	was	transient	and	the	
information	was	not	integrated	across	time	for	decisions.	The	integration	of	evidence	
was	observed	only	in	the	DLPFC	and	only	in	the	action	domain.		We	further	used	a	
neural	network	model	to	show	how	the	stimulus-to-action	transition	of	value	
information	may	be	computed	in	the	DLPFC.	Our	results	indicated	that	the	decision	
making	in	the	brain	is	computed	in	the	action	domain	without	an	intermediate	
stimulus-based	decision	stage.	
	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 16, 2018. ; https://doi.org/10.1101/444646doi: bioRxiv preprint 

https://doi.org/10.1101/444646
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction	
	
	
We	often	have	to	make	choices	between	different	options	based	on	their	value.	
Naturally,	the	choices	are	tied	to	actions	that	are	used	to	acquire	the	options.	In	many	
cases,	the	evaluation	of	each	option	is	a	complex	process	in	which	one	has	to	take	
consideration	of	multiple	pieces	of	information	and	integrate	them.	Although	our	
subject	experience	may	suggest	that	we	only	carry	out	an	action	to	substantiate	a	
decision	after	it	is	made,	many	studies	have	shown	that	the	neurons	at	different	levels	of	
motor	pathway	may	reflect	the	decision-making	process	long	before	(Basso	and	Wurtz,	
1998;	Cisek	and	Kalaska,	2005;	Gold	and	Shadlen,	2000;	Hernández	et	al.,	2002;	Kim	
and	Shadlen,	1999;	Romo	et	al.,	2004;	Shadlen	and	Newsome,	2001).	These	studies	
inspired	the	hypothesis	that	decision	making	is	implemented	in	the	brain	as	an	action	
selection	process	in	which	values	for	competing	actions	are	calculated	and	compared.	
This	would	allow	actions	to	be	carried	out	as	soon	as	the	decisions	are	made,	which	
makes	sense	as	animals	in	the	real	world	need	to	make	responses	quickly	to	survive.	
	
It	has,	however,	been	argued,	that	some	decisions	are	made	in	the	brain	with	an	
intermediate	stage	where	the	decision-making	and	value	computation	process	is	
completely	dissociated	from	their	motor	contingency.	Recent	investigations	seem	to	
suggest	that	during	economic	decisions,	there	is	a	representation	of	value	in	the	brain	
that	is	independent	from	the	motor	contingency	(Cai	and	Padoa-Schioppa,	2014;	Chen	
and	Stuphorn,	2015;	Padoa-Schioppa	and	Assad,	2006;	Wallis	and	Miller,	2003).	For	
example,	Padoa-Schioppa	and	colleagues	reported	that	a	group	of	the	orbitofrontal	
(OFC)	neurons	encoded	the	value	of	the	chosen	option	regardless	of	the	direction	of	the	
eye	movement	used	by	the	animals	to	indicate	their	choice	(Padoa-Schioppa	and	Assad,	
2006,	2007;	Padoa-Schioppa	and	Conen,	2017).	Based	on	these	studies,	it	was	proposed	
that	the	brain	calculates	the	values	of	competing	options	during	decision	making	
independent	from	their	associated	actions	and	the	OFC	is	a	candidate	brain	area	for	
computing	value	in	an	action-independent	manner	(Padoa-Schioppa,	2007,	2011).	In	
addition,	lesions	in	the	OFC	were	shown	to	lead	to	deficits	in	stimulus-value	updating	
but	not	action-value	updating	(Rudebeck	et	al.,	2008).	
	
These	experiments	that	examined	the	value	representation	in	the	OFC	were	based	on	
the	behavior	tasks	with	a	distinct	aspect.	In	these	tasks,	the	decisions	were	based	on	
rather	simple	stimulus-reward	associations	(Cai	and	Padoa-Schioppa,	2014;	Kennerley	
et	al.,	2011;	Padoa-Schioppa	and	Assad,	2006;	Raghuraman	and	Padoa-Schioppa,	2014),	
which	could	be	computed	quickly	and	left	little	room	for	motor	preparation.		If	
decisions	have	to	be	calculated	in	an	extended	process	as	the	ones	investigated	in	many	
perceptual	decision	making	studies	(Gold	and	Shadlen,	2000;	Hernández	et	al.,	2002;	
Kim	and	Shadlen,	1999;	Shadlen	and	Newsome,	2001),	it	is	unclear	whether	they	could	
be	carried	out	entirely	independent	of	their	action	contingencies.	
	
Here,	we	investigate	the	question	with	a	task	in	which	monkeys	had	to	make	choices	
between	two	colored	targets	associated	with	probabilistic	rewards.	The	reward	
probability	of	each	color	was	indicated	by	a	sequence	of	simple	shape	pictures	that	
served	as	visual	cues.	The	monkeys	had	to	combine	information	from	these	shapes	to	
calculate	the	reward	probabilities	and	figure	out	the	more	rewarding	target.	Their	
choices	were	indicated	with	saccadic	eye	movements.	Critically,	both	red	and	green	
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targets	could	appear	on	either	the	left	or	the	right,	randomly	chosen	by	the	computer	in	
each	trial.	The	evidence	was	provided	regarding	to	the	target	color,	independent	from	
eye	movement	directions.	Because	the	saccade	circuitry	in	the	brain	uses	spatial	
coordinates,	we	investigate	how	the	value	information	regarding	to	the	color	(stimulus-
based)	is	transformed	into	the	value	information	regarding	to	the	spatial	location	
(action-based)	in	the	brain	to	form	decisions.	We	recorded	single	unit	activities	from	
the	DLPFC	and	the	OFC.		We	found	the	OFC	neurons	encoded	evidence	associated	with	
each	single	piece	of	evidence,	but	only	in	the	stimulus	domain.	The	integration	of	
evidence	was	only	represented	in	the	DLPFC	and	only	in	the	action	domain.	These	
results	argue	against	the	role	of	the	OFC	in	value	computation	during	decision	making	
and	suggest	that	the	decision	for	actions	is	calculated	in	the	brain	without	an	
intermediate	stimulus-based	decision	stage.	
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Results	
	
The	experiments	and	analyses	were	done	with	two	macaque	monkeys.	We	present	the	
results	here	based	on	the	data	combined	from	both	monkeys;	the	individual	monkeys’	
results	are	consistent	and	may	be	found	in	the	supplementary	figures.	
	
Behavior	
	
We	trained	the	monkeys	to	perform	a	probabilistic	reasoning	task	(Figure	1A).	The	task	
was	slightly	modified	from	a	previous	study	(Yang	and	Shadlen,	2007).	In	each	trial,	the	
animals	were	shown	a	sequence	of	four	shapes,	drawn	randomly	with	replacement	from	
a	pool	of	ten	shapes.	Each	shape	was	assigned	with	a	weight.	The	sum	of	the	weights	
was	the	log	odds	between	the	reward	probabilities	of	the	red	target	and	the	green	
target	(Eqs.	1	and	2).	Thus,	the	shapes	with	positive	weights	indicated	that	the	red	
target	had	the	larger	reward	probability,	whereas	the	shapes	with	negative	weights	
indicated	that	the	green	target	had	the	larger	reward	probability.	The	monkeys	
reported	their	choice	with	a	saccadic	eye	movement	toward	the	chosen	target.	The	
reward	was	delivered	probabilistically	based	on	the	summed	weight	of	the	shapes	in	
the	sequence.	The	red	and	the	green	targets	were	randomly	placed	either	on	the	left	or	
the	right	side	of	the	screen.		
	
Both	monkeys	learned	to	perform	the	task	(Figure	1B	and	Supplementary	Figure	1A,B).	
The	monkeys	chose	the	green	target	more	often	when	the	summed	color	weight	was	
negative,	and	the	red	target	more	often	as	the	summed	weight	was	positive.	To	assess	
how	each	shape	affected	the	monkeys’	choices,	we	applied	a	logistic	regression	with	the	
number	of	appearances	of	each	shape	as	the	regressors	(Eq.	4).	The	regression	
coefficients	showed	the	same	rank	order	as	the	assigned	weights,	indicating	the	monkey	
assigned	appropriate	weights	to	the	shapes	(Figure	1C	and	Supplementary	Figure	1C,D).		
	
The	task	design	allowed	us	to	distinguish	the	stimulus-based	and	action-based	decision-
making	processes	in	the	brain.	The	shape	weights	indicated	the	reward	probability	of	
each	target	color.	Both	colors	could	appear	on	the	left	or	the	right.	Thus,	the	value	
associated	with	the	color	is	orthogonal	to	the	value	associated	to	the	eye	movement	
direction.	Because	the	eye	movement	circuitry	in	the	brain	carries	out	the	motor	
commands	using	spatial	coordinates,	the	outcome	of	the	decision	making	has	to	be	
transformed	into	the	spatial	domain	eventually.	The	critical	question	is	whether	the	
decision	process	of	where	to	move	the	eyes,	i.e.	the	integration	process	of	the	evidence,	
is	carried	out	in	the	action	or	the	stimulus	domain.	If	it	is	the	former,	we	should	observe	
that	the	evidence	associated	with	each	shape	is	first	transformed	into	the	action	domain	
and	then	integrated.	Thus,	the	representation	of	the	integrated	evidence	should	only	be	
found	in	the	action	domain	in	the	brain.	If	it	is	the	latter,	we	would	observe	the	
representation	of	the	integrated	evidence	in	the	stimulus	(i.e.	color)	domain,	which	
would	be	transformed	into	the	action	domain	at	a	later	stage.	An	alternative	scenario	of	
the	stimulus-based	decision	making	is	that	there	is	a	separate	motor	preparation	
process	during	the	stimulus-based	decision	making,	in	which	the	action	value	is	
calculated	from	the	stimulus	value.	In	this	scenario,	the	representation	of	the	integrated	
evidence	in	both	the	stimulus	and	the	action	domains	may	be	observed,	but	not	
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necessarily	the	representation	of	the	individual	piece	of	evidence	in	the	action	domain.	
Therefore,	with	this	behavior	paradigm,	we	may	find	out	how	the	decision	making	
unfolds	in	the	brain	by	investigating	in	which	domain	neurons	in	the	prefrontal	circuitry	
encode	evidence	(Figure	1C).	
	
For	the	convenience	of	discussion	of	the	neuron	data	below,	in	any	given	epoch,	we	use	
Wc	to	refer	to	the	weight	associated	with	the	particular	shape	appearing	in	that	epoch	
in	the	color	domain,	Wa	the	weight	associated	with	the	single	shape	in	the	action	
domain,	ΣWc	the	sum	of	the	weights	of	the	shapes	that	have	appeared	so	far	in	the	color	
domain,	and	ΣWa	the	sum	of	the	weights	of	the	shapes	that	have	appeared	so	far	in	the	
action	domain.		
	
Example	Neurons	
	
We	recorded	single	unit	activities	from	the	OFC	and	the	DLPFC.	Figure	2	shows	two	
representative	example	units	from	each	area,	respectively.	The	example	neuron	from	
the	DLPFC	showed	a	response	pattern	similar	to	what	was	previously	described	in	the	
LIP	(Kira	et	al.,	2015;	Yang	and	Shadlen,	2007).	The	neuron’s	responses	ramped	up	or	
down	as	the	evidence	grew	in	favor	or	against	the	target	associated	with	its	preferred	
eye	movement	direction.	When	we	sorted	the	trials	into	quartiles	according	to	the	ΣWa	
in	each	epoch,	we	observed	greater	responses	when	the	ΣWa	was	larger	(Figure	2A).	In	
contrast,	the	example	neuron	from	the	OFC	did	not	have	a	clear	ramping	activity	
pattern.	Its	responses	were	instead	modulated	by	the	Wc.	When	we	sorted	the	trials	by	
the	weight	of	the	shape	presented	in	each	epoch	regarding	to	color,	we	found	the	
neuron’s	responses	were	greater	when	the	evidence	was	more	in	favor	of	the	red	target	
(Figure	2B).	
	
The	example	neurons	showed	that	the	neurons	in	both	the	OFC	and	the	DLPFC	encoded	
relevant	information	for	decision	making.	To	fully	appreciate	the	roles	that	the	two	
areas	play	in	decision	making,	we	recorded	activities	of	277	cells	from	the	OFC	(121	and	
156	from	monkeys	K	and	E,	respectively)	and	of	384	cells	from	the	DLPFC	(170	and	214	
from	monkeys	K	and	E,	respectively).		
	
Population	Analyses:	Choices	
	
First,	we	asked	the	question	whether	the	choice	outcome	was	encoded	in	the	two	brain	
areas.	This	would	provide	us	clues	whether	they	were	involved	in	decision	making.	Just	
as	the	weights	are,	the	choice	outcome	could	also	be	in	the	color	domain	and	in	the	
action	domain.	We	looked	at	them	separately.	
	
We	sorted	all	trials	according	to	each	neuron’s	preference	of	either	color	or	eye	
movement	direction	and	compared	the	neurons’	responses	between	the	choice	
outcomes	(Figure	3).	We	found	that	the	OFC	neurons	barely	signaled	the	monkeys	
choice	in	either	the	color	or	the	action	domain	during	the	stimulus	presentation	period	
(Figure	3A).	The	DLPFC	neurons,	however,	were	strongly	modulated	by	the	monkeys’	
choice	outcome	regarding	to	the	eye	movement	direction	(Figure	3B).	The	modulation	
became	significant	at	280	ms	after	the	3rd	shape	epoch	and	was	maintained	till	the	end	
of	the	trial.	The	DLPFC	neurons	also	showed	a	difference	between	their	responses	to	the	
two	color	choices,	although	in	a	much	more	modest	and	less	consistent	manner.	The	
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representation	of	the	color	choice	in	the	DLPFC	did	not	precede	that	of	the	spatial	
choice.	
	
Population	Analyses:	Stimulus	Weights	
	
We	further	studied	whether	the	neuronal	responses	in	the	two	areas	captured	different	
stages	of	decision	making.	To	understand	the	complete	picture	of	how	neurons	in	the	
OFC	and	the	DLPFC	contributed	to	the	task,	we	resorted	to	the	regression	analyses	to	
find	out	how	each	relevant	variable	in	the	task	may	explain	the	populational	responses	
in	each	area.	More	specifically,	we	performed	linear	regressions	of	each	neuron’s	
responses	on	the	Wc,	Wa,	ΣWc,	and	ΣWa	from	each	of	the	four	epochs	in	a	trial	and	
looked	at	how	well	the	neurons’	responses	were	explained	by	each	variable	from	each	
epoch.	We	used	the	shuffled	data	to	test	for	significance	(See	Methods).	This	approach	
allows	us	to	consider	neurons	with	different	tuning	properties	together	and	estimate	
how	information	is	encoded	by	each	population.	
	
Among	the	four	variables,	OFC	prominently	encoded	the	Wc	(Figure	4A).	The	encoding,	
however,	was	not	sustained.		It	reached	significance	level	on	average	192	ms	across	the	
4	epochs	after	the	shapes’	onset,	and	disappeared	shortly	after	the	next	shape	appeared.	
There	was	little	overlapping	between	two	consecutive	shapes,	suggesting	a	lack	of	
information	integration.	Although	the	regression	showed	an	apparent	representation	of	
the	ΣWc	by	the	OFC	(Figure	4C),	it	was	weak	and	also	transient.	The	fact	that	the	OFC	
did	not	encode	the	color	choice	outcome	further	suggested	this	apparent	representation	
of	the	ΣWc	was	a	statistical	artifact,	which	might	be	due	to	the	inherent	correlation	
between	the	Wc	and	the	ΣWc.	Importantly,	the	encoding	of	the	weights	was	restricted	to	
the	stimulus	domain	and	not	observed	in	the	action	domain	(Figure	4B,D).	The	
individual	monkey	analyses	also	yielded	consistent	results	(Supplementary	Figure	S2).	
	
In	contrast	to	the	OFC	neurons,	DLPFC	neurons	exhibited	very	different	response	
patterns	(Figure	5).	First	of	all,	both	variables	in	the	action	domain	(Wa	and	ΣWa)	were	
strongly	represented	in	the	DLPFC	(Figure	5B,D).	In	addition,	their	representations	
were	sustained	till	the	end	of	the	trial.	The	representation	of	the	Wa	exhibited	a	
relatively	flat	pattern,	while	the	representation	of	the	ΣWa	showed	clear	ramping.	Such	
a	pattern	is	a	signature	of	the	integration	of	information	across	different	epochs.	The	
DLPFC	neurons	were	also	found	to	encode	the	Wc,	although	the	encoding	was	much	
weaker	than	that	of	the	Wa	(Figure	5A).	In	addition,	the	encoding	of	the	Wc	appeared	to	
be	transient	in	a	similar	fashion	as	in	the	case	of	the	OFC,	suggesting	a	lack	of	
integration	in	the	stimulus	domain.	Consistent	with	this	observation,	the	encoding	of	
the	ΣWc	in	the	DLPFC	was	very	weak,	if	it	existed	at	all	(Figure	5C).	These	results	were	
further	supported	by	the	individual	monkey	analyses	(Supplementary	Figure	S3).	
	
LASSO	
	
The	regression	analyses	carried	out	above	were	done	separately	for	each	variable	and	
for	each	epoch	(See	Methods).	This	might	cause	concerns,	because	the	weight	terms	and	
the	summed	weight	terms	were	linearly	dependent.	Therefore,	the	positive	findings	
above	should	be	interpreted	cautiously.	To	alleviate	this	problem	and	confirm	our	
findings,	we	applied	LASSO	on	a	model	containing	all	four	weight	variables	in	the	
previous	analyses,	as	well	as	the	two	choice	variables:	one	for	the	color	and	one	for	the	
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eye	movement	direction.	Because	of	the	penalty	term	in	the	LASSO,	it	tends	to	use	a	
smaller	number	of	variables	to	explain	the	data	(Tibshirani,	1996).	Therefore,	if,	for	
example,	a	neuron’s	responses	could	be	well	explained	by	ΣWa,	the	LASSO	analysis	
would	assign	the	Wa	terms	with	only	small	weights.	Thereby,	the	LASSO	analysis	may	
provide	us	further	information	on	whether	a	particular	neuron	population	encoded	the	
weights	or	the	summed	weights.	
	
To	compare	the	results	from	different	neuron	populations	and	across	different	
variables,	we	calculated	the	normalized	absolute	standard	regression	coefficients	
(|𝑆𝑅𝛽|)	to	evaluate	the	effects	of	each	individual	variable	(see	Methods),	which	is	
analogous	to	the	normalized	ΔR2	used	in	linear	regression	analyses.	They	are	plotted	in	
Figure	6	for	the	OFC	and	in	Figure	7	for	the	DLPFC,	and	in	Supplementary	Figure	S4	
and	S5	for	individual	monkeys.	Note	that	we	omitted	the	trace	of	the	first	epoch	in	all	
the	plots	of	the	summed	weights,	because	they	were	the	same	as	that	of	the	single	
weights	by	design	(see	Methods).		
	
The	results	further	confirmed	our	findings	with	the	linear	regressions.	Consistent	with	
our	analyses	above,	the	OFC	population	were	tuned	for	the	Wc	only	(Figure	6A).	The	
LASSO	also	revealed	very	little	representation	of	the	ΣWc	in	the	OFC,	which	agrees	with	
our	speculations	on	the	possible	artifacts	in	the	regression	analyses.	Also	consistent	
with	the	results	of	simple	linear	regression	analysis,	the	DLPFC	population	encoded	the	
Wa,	ΣWa,	and	Wc	(Figure	7A,	B,	D).	The	peaks	of	tuning	that	reached	significance	in	
these	plots	appeared	sequentially	in	the	proper	order.	On	the	contrary,	the	normalized	
|𝑆𝑅𝛽|s	of	the	ΣWc	were	not	only	more	noisy	and	weaker,	but	were	also	often	misplaced	
(Figure	7C).	One	may	notice	interesting	differences	between	the	results	from	the	LASSO	
and	the	simple	linear	regressions,	which	we	will	discuss	later	in	the	Discussion.	
	
Stimulus-to-Action	Transition	
	
The	recording	experiments	suggested	that	the	transition	between	the	stimulus-based	
signal	and	the	action-based	signal	occurred	at	the	single-weight	stage	in	the	DLPFC.	To	
understand	how	this	transition	may	be	implemented	by	a	neural	network,	we	created	a	
simple	neural	network	model	that	contained	a	hidden	layer	in	which	units	receive	
inputs	of	the	Wc	and	the	spatial	configuration	(Figure	8A).	In	the	model,	the	spatial	
configuration	refers	to	whether	the	red	target	is	on	the	left	or	the	green	target	is	on	the	
left	and	takes	the	values	of	±1.	If	we	define	the	Wa	as	positive	when	the	eye	movement	
is	toward	the	left,	the	Wa	should	equal	to	the	spatial	configuration	times	the	Wc.	The	
network	took	Wc	as	the	input	and	was	trained	to	transform	it	into	Wa	as	its	output.	
	
We	found	that	the	hidden	layer	may	be	reduced	to	having	only	two	types	of	units	(See	
Methods).	The	activity	of	the	first	type	of	units	encoded	the	Wc	under	only	one	spatial	
configuration	and	was	flat	across	the	different	shapes	under	the	other	configuration.	
The	activity	pattern	of	the	other	type	of	units	was	the	opposite.	Their	activity	encoded	
the	Wc	under	the	spatial	configuration	opposite	to	the	one	that	was	encoded	by	the	first	
type	of	units	(Figure	8B).	The	output	unit	pooled	the	inputs	from	these	two	types	of	
units	with	weights	of	opposite	signs.	
	
It	is	easy	to	see	that	the	bias	input	to	one	of	the	hidden	units	(e.g.	A)	was	cancelled	
under	one	configuration	(+1),	allowing	its	output	to	reflect	the	color	weight	input.	
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However,	the	other	hidden	unit	(B)	was	saturated	under	the	same	condition.	The	output	
unit	pooled	the	hidden	units’	responses	with	weights	in	opposite	signs	and	added	a	bias	
term	to	cancel	out	the	input	from	the	saturated	unit.	Under	the	other	configuration,	the	
two	units	were	reversed	so	that	now	A	was	saturated	and	B	encoded	the	weight.	The	
eventual	output	was	the	same	with	this	symmetry.	The	output	Y	≈	Conf	*	Wc,	which	was	
just	Wa.	
	
We	reasoned	that	we	would	see	some	DLPFC	neurons	exhibit	similar	activity	patterns	if	
the	DLPFC	were	where	the	good-to-action	transition	occurs.	To	identify	these	neurons,	
we	noticed	that	they	should	have	flat	tuning	curve	in	one	configuration	and	a	steep	
tuning	curve	in	the	other,	leading	to	a	big	difference	in	the	response	variances	under	the	
two	spatial	configurations.	We	defined	a	variance	difference	index	(VDI)	to	quantify	this	
pattern	(See	Methods).	We	set	a	threshold	of	V𝐷𝐼	at	0.4,	which	is	equivalent	to	the	
situation	that	the	variance	in	the	preferred	configuration	accounts	for	70%	of	the	total	
variance.	Among	the	total	of	384	DLPFC	neurons	we	recorded,	121	neurons	were	
selected	(Figure	8C).	We	further	divided	them	into	two	groups	according	to	whether	
they	had	larger	responses	under	the	configuration	with	more	variance	or	under	the	
configuration	with	less	variance.	The	mean	responses	to	each	shape	of	the	two	groups	
of	neurons	under	the	two	spatial	configurations	were	plotted	in	Figure	8D.	We	found	
that	the	two	groups	of	DLPFC	neurons	showed	activity	patterns	that	matched	the	two	
neuron	types	from	the	network	model.		
	
These	results	suggested	that	the	DLPFC	neurons	not	only	encoded	single	weights	in	
both	the	stimulus	and	the	action	domain,	they	showed	activity	patterns	that	could	
explain	the	computation	underlying	the	stimulus-to-action	transition.	
	
Motor	Preparation	
	
A	variation	of	the	stimulus-based	model	that	may	explain	the	choice	signal	in	the	action	
domain	during	decision	making	is	that	it	merely	reflects	a	motor	preparation	signal	
based	on	the	integration	of	information	in	the	stimulus	domain.	Our	results	do	not	
support	this	scenario.	For	that	to	be	true,	the	motor	preparation	signal	has	to	be	
calculated	online	based	on	a	decision	variable	in	the	stimulus	domain,	which	is	the	ΣWc	
in	our	experiment.	However,	we	did	not	find	evidence	that	either	the	OFC	or	the	DLPFC	
neurons	encoded	the	summed	weight	in	the	stimulus	domain	during	decision	making.	
Thus,	the	integration	of	information	happened	only	in	the	action	domain	in	the	DLPFC,	
and	it	did	not	arise	from	an	intermediate	stimulus-based	stage.	
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Discussion	
	
Here,	we	have	shown	how	the	stimulus-based	and	action-based	decision-making	signals	
were	represented	in	the	OFC	and	DLPFC.	These	results	supported	the	hypothesis	that	
the	decision	for	actions	is	computed	in	the	action	domain,	and	the	transition	between	
the	stimulus-based	and	action-based	value	information	occurs	in	the	DLFPC	at	the	stage	
of	single	piece	of	evidence.	
	
Good-based	vs	Action-based	
	
Several	previous	studies	argued	there	are	stages	in	the	brain	where	neural	activities	
reflected	an	abstract	good-based	decision	independent	of	the	motor	outcome	(Cai	and	
Padoa-Schioppa,	2014;	Chen	and	Stuphorn,	2015;	Padoa-Schioppa	and	Assad,	2006;	
Wallis	and	Miller,	2003).	Under	scrutiny,	their	observations	were	actually	compatible	
with	our	results.	In	those	studies,	the	decisions	were	based	on	simple	stimulus-reward	
associations.	This	is	analogous	to	the	single	color	weights	assigned	to	the	individual	
shapes	in	our	study.	In	this	sense,	we	indeed	also	observed	the	representations	of	good-
based	weights	in	both	the	OFC	and	the	DLPFC,	which	was	interpreted	as	evidence	for	
good-based	decision	making	in	the	previous	studies.	However,	in	our	more	
sophisticated	task	design,	decisions	depended	on	the	integration	of	information	
provided	by	a	sequence	of	stimuli.	Because	of	the	large	number	of	possible	stimuli	
combinations,	the	integration	was	most	likely	based	on	a	computation	online	instead	of	
on	established	stimulus-reward	associations.	What	we	did	not	observe	was	this	
integration	of	information	in	the	stimulus	domain.	Based	on	these	results,	we	believe	
that	the	previous	interpretations	based	on	simpler	task	designs	need	to	be	updated.		
	
Our	results,	however,	cannot	exclude	the	possibility	that	there	is	a	separate	system	in	
the	brain	that	carries	out	good-based	decision	making.	Such	a	system	is	obviously	
helpful	for	the	brain	to	establish	stimulus-reward	associations.	Similar	to	the	dichotomy	
of	the	ventral	and	dorsal	pathways	in	the	visual	systems,	the	brain	may	also	have	two	
separate	pathways	for	decision	making	(Rushworth	et	al.,	2012).	Several	studies	have	
pointed	out	that	the	ventral	PFC	areas	contain	a	stimulus-based	attention	system	
(Bichot	et	al.,	2015;	Wardak	et	al.,	2010).	Given	the	fact	that	attention	and	decision	
making	are	often	closely	tied,	these	studies	may	suggest	that	the	VLPFC	may	play	a	
similar	role	in	the	good-based	decision-making	circuitry	as	that	of	the	DLPFC	in	the	
action-based.	What	we	would	like	to	conclude	based	on	our	results	is	that	decision	for	
action	in	the	brain	is	not	based	on	an	intermediate	stage	in	which	the	decision	based	on	
good	is	first	formed.	Instead,	it	is	computed	entirely	in	the	action	domain.	
	
	
Regression	and	LASSO	
	
One	of	the	challenges	of	the	study	is	trying	to	disentangle	the	encodings	of	the	single	
weights	and	the	summed	weights	by	the	neurons.	We	achieve	this	by	combining	the	
simple	linear	regression	and	LASSO	analyses.		
	
The	regression	analyses	with	single	factors	gave	the	strongest	argument	when	a	
negative	result	is	found.	The	negative	finds	would	not	be	changed	when	other	factors	
were	added	into	the	regression,	regardless	of	their	linear	dependencies.	Thus,	the	lack	
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of	representations	of	the	summed	weights	in	the	color	domain	in	the	OFC	or	DLPFC	is	
strongly	supported	by	our	regression	analyses.	
	
The	positive	findings	from	the	regression,	however,	should	be	taken	more	cautiously	
because	of	the	inherent	correlation	between	the	single	weights	and	the	summed	
weights.	This	problem	cannot	be	easily	addressed	by	throwing	both	in	the	same	
regression.	Even	for	a	hypothetical	neuron	that	only	encodes	the	summed	weights,	
adding	the	single	weights	into	the	regression	can	still	improve	the	regression	results.	
This	is	because	the	system	cannot	be	perfect.	There	might	be	noise	in	the	system,	or	the	
monkeys	do	not	calculate	the	combined	weights	perfectly	linearly.	A	small	overweight	
or	underweight	during	the	integration	of	information	for	a	particular	piece	of	evidence	
may	be	better	accounted	for	by	adding	single	weights	into	the	regression.	We	used	
LASSO	as	a	way	to	balance	the	contributions	between	the	single	weights	and	the	
summed	weights.	The	LASSO	provided	results	largely	consistent	with	the	simple	linear	
regression	analyses	and	strengthened	our	conclusions.	
	
The	temporal	dynamics	of	the	encoding	provides	additional	clues	for	us	to	interpret	
these	results.	If	we	believe	a	neuron	combines	the	information	from	multiple	cues	and	
encode	the	combined	evidence,	its	encoding	for	both	the	single	weights	and	the	total	
weights	should	be	persistent.	This	is	indeed	observed	in	the	DLPFC	neurons	in	the	
action	domain.	In	contrast,	the	encoding	of	the	single	weights	in	the	OFC	was	only	
transient	and	lasted	little	longer	than	the	presentation	of	each	single	cue.	The	OFC	
neurons	did	not	maintain	the	information	long	enough	for	integration.	Thus,	they	most	
likely	did	not	directly	calculate	the	combined	evidence.	
	
It	is	interesting	to	further	compare	the	subtle	differences	in	the	positive	findings	
between	the	simple	linear	regression	and	the	LASSO	analyses.	Note	that	the	
representations	of	Wa	in	the	DLPFC	described	by	the	LASSO	appeared	to	be	transient.	
This	did	not	mean	that	the	representations	of	Wa	were	also	transient	in	the	DLPFC.	
Instead,	it	was	due	to	the	fact	that	the	sustained	representations	of	the	single	weights	
observed	in	the	linear	regressions	may	be	better	explained	by	the	summed	weights	in	
the	LASSO	in	the	later	period,	suggesting	a	computing	process	from	the	single	weights	
to	the	summed	weights.	For	similar	reasons,	the	growing	choice	outcome	signal	largely	
cancelled	out	the	ramping-up	pattern	of	the	ΣWa	observed	in	the	linear	regression	
analysis,	so	the	representation	of	the	ΣWa	also	appeared	to	be	transient	in	LASSO.	This	
suggest	that	the	representations	of	the	summed	weights	in	the	DLPFC	were	later	
replaced	by	the	representation	of	the	binary	choice	signal.	The	similarities	between	the	
results	from	the	LASSO	and	the	linear	regression	analyses	confirmed	our	conclusions,	
while	their	differences	added	refined	points	provided	uniquely	by	each	analysis.	
	
	
OFC	and	Value	
	
Many	studies	have	shown	that	the	OFC	is	important	for	dynamically	updating	and	
tracking	stimulus-value	association	(Morrison	et	al.,	2011;	Rolls	et	al.,	1996;	Rudebeck	
et	al.,	2008,	2017;	Thorpe	et	al.,	1983).	Here	we	showed	that	the	OFC	did	not	integrate	
and	update	value	information	during	decision	making.	How	shall	we	reconcile	our	
results	with	the	others?	
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We	believe	the	key	difference	here	is	the	stimuli	we	used	in	our	experiment.	In	our	
study,	the	reward	value	calculated	based	on	multiple	pieces	of	evidence	was	not	directly	
associated	with	a	concrete	stimulus.	We	used	a	set	of	10	shapes	that	comprised	a	total	
of	10,000	possible	sequences	in	our	behavior	test.	It	is	unlikely	that	the	monkeys	
remembered	every	sequence	and	its	associated	value.	In	other	words,	their	brain	most	
likely	did	not	establish	an	association	between	each	sequence	and	its	corresponding	
reward.	It	is	conceivable	that	with	enough	training,	the	monkeys	might	finally	memorize	
all	the	sequences,	and	the	OFC	presumably	would	encode	the	value	associated	with	each	
sequence	as	a	result.	
	
Such	reasoning	may	be	extended	to	the	situation	in	which	an	animal	tries	to	assess	a	
concrete	object	that	is	unfamiliar	to	it	such	as	a	novel	food	item.	Because	there	is	no	
established	value	association	yet,	the	animal	has	to	resort	to	other	means	to	assess	its	
value,	possibly	by	examining	its	individual	features	such	as	color,	shape,	and	smell.	In	
this	case,	we	would	like	to	argue	that	the	OFC	is	not	directly	involved	in	the	calculation	
of	its	value	initially.	Instead,	it	encodes	the	value	of	the	individual	features	that	the	brain	
is	familiar	with.	The	DLPFC	may	play	the	role	of	integrating	information	from	these	
features	and	calculate	the	object’s	value.	After	the	animal	gaining	enough	experience,	
the	OFC	may	start	to	encode	the	value	associated	with	the	object	as	a	whole.	
	
OFC	and	Sequential	Processing	
	
Several	recent	studies	point	to	the	possibility	that	the	OFC	processes	value	information	
in	a	sequential	manner,	which	may	be	guided	by	attention	(McGinty	et	al.,	2016;	Rich	
and	Wallis,	2016;	Xie	et	al.,	2018).	Notably,	Rich	and	Wallis	showed	that	the	OFC	neural	
activity	alternates	between	representing	the	value	of	each	option	during	decision	
making.	In	our	study,	the	stimuli	were	presented	sequentially.	Still,	our	finding	of	the	
lack	of	sustained	encoding	of	the	stimulus	value	or	the	accumulated	evidence	in	the	OFC	
adds	to	the	body	of	evidence	supporting	that	the	OFC	encodes	value	information	in	a	
sequential	manner	and	the	integration	of	information	occurs	outside	the	OFC.	In	this	
sense,	the	OFC	may	be	regarded	as	an	extension	of	the	ventral	stream	of	the	visual	
system,	which	further	translates	object	identity	information	into	its	behavior	relevance.	
	
	
Mixed	selectivity	
	
We	created	a	neural	network	model	in	order	to	understand	how	value	information	
regarding	to	color	is	transformed	into	the	action	domain	in	the	DLPFC.	The	results	
suggested	that	neurons	with	mixed	selectivity	were	essential.	The	importance	of	such	
mixed	selectivity	has	been	demonstrated	both	experimentally	and	theoretically	(Barak	
et	al.,	2013;	Blanchard	et	al.,	2018;	Cheng	et	al.,	2015;	Rigotti	et	al.,	2013;	Zhang	et	al.,	
2018).	Our	results	again	confirmed	the	existence	of	neurons	with	mixed	selectivity	in	
the	DLPFC.	In	addition,	we	provided	clues	on	the	computation	underlying	their	mixed	
selectivity.	
	
	
DLPFC	vs.	LIP	
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Previous	studies	using	a	similar	behavior	paradigm	showed	that	the	LIP	neurons	also	
encoded	the	combined	evidence	(Kira	et	al.,	2015;	Yang	and	Shadlen,	2007).	The	
similarities	between	the	DLPFC	and	the	LIP	were	also	observed	in	experiments	using	
random	dot	motion	discrimination	tasks(Kim	and	Shadlen,	1999;	Roitman	and	Shadlen,	
2002).	The	new	results	again	raise	the	question	of	the	relative	roles	that	the	DLPFC	and	
the	LIP	play	in	decision	making.		
	
Here	we	reported	that	the	DLPFC	neurons	were	found	to	encode	single	weights	in	both	
the	color	and	the	action	domain	in	addition	to	the	summed	weights	in	the	action	
domain.	On	the	surface,	the	DLPFC	by	itself	seems	to	possess	all	the	necessary	pieces	for	
stimulus-to-action	computation.	If	this	is	true,	the	decision-making	signal	found	in	the	
LIP	may	be	inherited	from	the	DLPFC.	A	recent	study	that	failed	to	find	decision	making	
impairments	in	monkeys	with	LIP	lesions	provided	additional	support	to	this	argument.	
(Katz	et	al.,	2016).		
	
However,	we	do	not	believe	that	is	the	case.	The	choice	signal	that	we	observed	in	the	
DLPFC	started	to	reach	significance	1280	ms	after	the	first	shape	onset	(Figure	3B).	This	
latency	was	much	larger	than	that	found	in	the	LIP,	which	was	reported	to	be	~150-200	
ms	after	the	shape	onset	in	a	study	that	used	a	very	similar	behavior	paradigm	(Yang	
and	Shadlen,	2007).	The	very	long	latency	of	the	choice	signal	in	the	DLPFC,	if	verified,	
would	be	too	late	to	contribute	to	decision	making.	Such	long	latency	was	not	observed	
in	a	comparable	previous	study	(Kim	and	Shadlen,	1999).	The	difference	between	our	
results	and	the	Kim	and	Shadlen	study	may	be	understood	if	we	interpret	the	observed	
choice	signal	in	the	DLPFC	as	a	motor	related	signal	that	would	only	start	~1.5	sec	
before	the	actions.	The	trials	in	our	study	were	much	longer	than	those	in	Kim	and	
Shadlen.	The	choice	actions	occurred	at	more	than	2.5	sec	after	the	shape	onset.	Thus,	
the	onset	of	the	observed	choice	signal	was	also	pushed	back	a	lot	compared	to	the	
random	dots	task	used	in	Kim	and	Shadlen.	
	
We	admit	that	the	measure	of	latency	is	noisy	and	may	succumb	to	statistical	artifacts.	
Yet,	it	is	undeniable	the	representation	of	the	decision	variable	in	the	LIP	is	more	
consistent	and	less	heterogeneous	than	that	in	the	DLFPC.	Given	the	extensive	
connections	between	the	DLPFC	and	the	LIP,	it	is	entirely	possible	that	the	LIP	is	where	
the	integration	first	occurs	and	the	DPLFC	inherits	the	results	for	the	purpose	of	motor	
preparation.	Future	investigations	are	still	required	to	distinguish	the	roles	that	the	two	
areas	play	in	decision	making.	
	
	
Summary	
	
Our	study	explored	the	roles	of	the	OFC	and	the	DLPFC	play	in	decision	making.	We	
discovered	that	the	computation	of	decisions	of	eye	movements	is	carried	out	entirely	
in	the	action	domain.	We	further	provided	the	evidence	supporting	the	hypothesis	that	
the	DLPFC	is	where	the	stimulus-to-action	transition	occurs.	We	showed	that	the	OFC	
encoded	value	in	a	transient	manner	and	did	not	integrate	information	across	time.	
Taken	together,	our	results	showed	that	the	OFC	and	the	DLPFC	play	distinct	roles	
during	value-based	decision	making.	
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Methods	
	
Subjects	and	Materials	
	
Two	naïve	male	rhesus	monkeys	(Macaca	mulatta)	were	used	in	the	study	(K	and	E).	
They	weighed	on	average	6-7	kg	during	the	experiments.	All	procedures	followed	the	
protocol	approved	by	the	Animal	Care	Committee	of	Shanghai	Institutes	for	Biological	
Sciences,	Chinese	Academy	of	Sciences	(Shanghai,	China).		
	
In	each	experimental	session,	the	monkeys	were	seated	in	a	primate	chair	viewing	a	
23.6-inch	video	monitor,	which	was	placed	at	60	cm	distance.	An	infrared	oculometer	
system	(EyeLink	1000)	was	used	to	monitor	the	eye	positions	at	a	sampling	rate	of	500	
Hz.	Juice	or	water	reward	was	given	to	the	monkeys	based	on	their	preference.	The	
liquid	delivery	was	controlled	by	a	computer-controlled	solenoid.	The	monkeys	drank	
~150-250	ml	per	experimental	session.		
	
	
Behavioral	Task	
	
We	trained	two	monkeys	(K	and	E)	to	perform	a	probabilistic	reasoning	task.	The	
monkeys	started	each	trial	by	fixating	and	maintaining	their	gaze	on	a	central	fixation	
point	(FP)	(0.2°	in	diameter)	on	a	computer	monitor.	After	the	monkeys	acquired	
fixation	for	500	ms,	a	green	and	a	red	target	showed	up	on	the	left	and	right	side	of	the	
FP	at	the	eccentricity	of	6°.	Both	colors	could	appear	on	either	side,	which	was	
randomly	selected	from	trial	to	trial.	After	another	500	ms,	four	shapes	were	shown	
sequentially	near	the	FP.	For	monkey	K,	the	center	of	the	shapes	was	the	same	as	the	FP,	
while	for	monkey	E,	the	center	of	the	shapes	was	at	a	random	location	chosen	from	the	
4	vertices	of	an	invisible	1°	by	1°	grid	centered	on	the	FP.	The	shapes	were	white	line	
drawings	and	approximately	1.5°	by	1.5°.	Each	shape	was	presented	for	300	ms.	
Between	two	consecutive	shape	presentations,	there	was	a	200	ms	delay	in	which	only	
the	FP	and	the	targets	were	on	the	screen.	Thus,	each	shape	epoch	was	500	ms	long.	The	
FP	disappeared	700	ms	after	the	offset	of	the	forth	shape,	instructing	the	monkeys	to	
report	their	choice.	The	monkeys	had	to	make	a	saccadic	eye	movement	toward	one	of	
the	targets	within	1	sec	and	hold	their	fixation	on	it	for	another	560	ms.	The	juice	
reward	would	be	delivered	at	the	end	of	the	fixation	of	the	target.	
			
The	reward	was	determined	probabilistically.	The	probabilities	of	getting	a	reward	by	
choosing	the	red	and	the	green	target	were:	

P(R|𝑠., 𝑠0, 𝑠1, 𝑠2) =
.5∑ 78

9
8:;

.<.5∑ 78
9
8:;

	 	 	 	 (1)	

and	
P(G|𝑠., 𝑠0, 𝑠1, 𝑠2) = 1 − P(R|𝑠., 𝑠0, 𝑠1, 𝑠2),	 	 	 (2)	

	
where	𝑠@ 	represents	the	shape	shown	in	the	𝑖-th	epoch,	𝑤@ 	represents	the	weight	
assigned	to	𝑠@ ,	and	P(R|𝑠., 𝑠0, 𝑠1, 𝑠2)	and	P(G|𝑠., 𝑠0, 𝑠1, 𝑠2)	are	the	reward	probabilities	of	
the	red	target	and	the	green	target	given	the	shape	sequence	𝑠., 𝑠0, 𝑠1, 𝑠2,	respectively.	
P(R|𝑠., 𝑠0, 𝑠1, 𝑠2)	and	P(G|𝑠., 𝑠0, 𝑠1, 𝑠2)	add	up	to	1.	The	infinitive	weights	with	opposite	
signs	may	cancel	each	other.	The	reward	probability	for	the	red	target	is	1	with	non-
cancelled	+∞	shape	sequences	and	is	0	with	non-cancelled	-∞	shape	sequences.	
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Surgery	
	
The	monkeys	received	a	chronic	implant	of	a	titanium	headpost	with	standard	
procedures	before	the	training.	After	their	performance	reached	a	satisfactory	level,	we	
performed	a	second	surgery	to	implant	an	acrylic	recording	chamber	over	the	
prefrontal	region,	inside	of	which	a	craniotomy	was	made.	The	chamber	had	an	inner	
size	of	19.5mm×24mm	and	was	centered	over	the	left	principle	sulcus.	All	surgery	
procedures	were	done	under	aseptic	conditions.	The	monkeys	were	sedated	with	
ketamine	hydrochloride	(5–15	mg/kg,	i.m.)	and	anesthetized	with	isoflurane	gas	(1.5–
2%,	to	effect).	Their	body	temperature,	heart	rate,	blood	pressure,	and	CO2	were	
monitored	during	the	surgeries.	
	
MRI		
	
Before	and	after	the	recording	chamber	was	implanted,	we	scanned	the	monkeys	with	a	
Siemens	3T	scanner	to	identify	and	verify	recording	locations.	The	monkeys	were	
sedated	with	ketamine	hydrochloride	(5–15	mg/kg,	i.m.)	and	anesthetized	with	
isoflurane	gas	(1.5–2%,	to	effect)	during	the	scanning.	
	
Behavioral	Analyses	
	
We	computed	the	percentage	of	choosing	red	target	and	fit	a	psychometric	curve	with	
the	least	square	method:	

𝑃DEF = 	
.5H

.<.5H
	,		 	 	 	 	 (3)	

where	Q = 𝛽5 + 𝛽. ∑ 𝑤@2
@K. .	Trials	with	the	shapes	of	infinite	weights	were	excluded.	

Unless	otherwise	mentioned,	these	trials	were	also	excluded	in	all	the	analyses	here	
after.		
	
To	test	the	effects	of	individual	shapes	on	the	monkeys’	choices,	we	applied	a	logistic	
regression,	where	the	regressors	were	the	appearance	counts	of	each	shape	presented	
in	a	trial:	

𝑃DEF = 	
.5H

∗

.<.5H∗
	,	 	 	 	 	 (4)	

where	𝑄∗ = 𝛽5 + ∑ 𝑤@∗𝑁@.5
@K. ,	and	𝑁@	is	the	appearance	count	for	the	i-th	shape.	We	

defined	the	fitted	coefficients	𝑤@∗	as	the	subjective	weights.	All	10	shapes	were	included	
in	this	analysis.	
	
The	behavior	analyses	were	based	on	the	same	sessions	of	the	electrophysiology	
recordings	used	in	the	analyses	below.	
	
	
Electrophysiology	
	
The	recording	procedures	were	described	in	our	previous	study	(Xie	et	al.,	2018).	
Briefly,	neuronal	responses	were	recorded	using	single	electrodes	(FHC	or	
AlphaOmega)	with	an	AlphaLab	SnR	System	(AlphaOmega).	Only	units	with	reasonable	
isolated	wave	forms	were	recorded.	Offline	sorting	was	used	to	further	improve	the	
data	quality	(NeuroExplorer).	2-4	single	electrodes	were	used	in	each	session.	The	
microelectrodes	were	driven	by	a	multi-channel	micromanipulator	(Alpha	Omega	EPS).	
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We	recorded	single	unit	activities	from	277	cells	in	the	OFC	(121	and	156	from	monkeys	
K	and	E,	respectively),	and	384	cells	in	the	DLPFC	(170	and	214	from	monkeys	K	and	E,	
respectively).	According	to	MRI	results	and	the	neural	activities	observed	during	
penetrations,	the	OFC	recording	locations	were	on	the	ventral	surface	of	the	frontal	lobe	
between	the	lateral	and	medial	orbital	sulci,	roughly	corresponding	to	Walker’s	areas	
11	and	13	(Walker,	1940).	The	DLPFC	recording	were	from	both	banks	of	the	posterior	
portion	of	the	principal	sulcus,	in	the	Brodmann	areas	9	and	46d.	
	
Example	neuron	PSTH	
	
The	firing	rate	of	the	example	neurons	was	calculated	with	a	200ms	sliding	window.	
The	trials	were	sorted	into	4	quartiles	by	the	variable	under	discussion	(summed	spatial	
weight	in	Figure	2A	and	single	color	weight	in	Figure	2B)	in	each	epoch.		
	
Choice	Analyses	
	
To	see	how	the	neuronal	activities	in	the	DLPFC	and	OFC	reflected	the	monkeys’	choice,	
we	calculated	the	firing	rate	differences	of	each	neuron	between	the	trials	of	different	
choice	outcomes	(Figure	3).	Specifically,	for	each	neuron,	we	first	grouped	the	trials	by	
the	final	choices	regarding	to	either	the	color	or	the	eye	movement	direction.	The	
average	firing	rate	for	each	choice	was	then	calculated.	We	defined	the	choice	with	the	
larger	mean	firing	rate	within	the	time	window	from	2	-	2.5	sec	after	the	first	shape	
onset,	which	was	the	delay	period	after	the	presentation	of	the	last	shape	and	before	the	
offset	of	the	FP,	as	the	neuron’s	preferred	choice.	Then	we	plotted	mean	firing	rate	
difference	between	the	preferred	and	the	non-preferred	choice	across	the	population.	
For	the	control,	we	shuffled	the	label	of	choices	and	repeat	this	procedure	for	100	times.	
The	significance	was	tested	with	a	one-way	analysis	of	variance	(ANOVA)	with	
unbalanced	data	at	every	time	point	between	the	experimental	data	with	each	unit	as	a	
sample	and	the	shuffled	data	with	each	unit	in	each	shuffle	as	a	sample.	The	significance	
level	was	0.01	and	no	correction	of	multiple	comparison	was	used.	The	latency	of	the	
choice	signal	was	defined	as	the	first	time	point	when	a	continuous	significant	choice	
signal	longer	than	100	ms	was	found.	
	
Because	of	how	we	defined	the	choice	preference,	even	for	the	shuffled	data,	the	
difference	between	the	preferred	and	the	nonpreferred	choices	was	larger	than	0.	
	
Linear	regression	
	
We	performed	linear	regressions	on	four	variables	for	each	shape	epoch:	single	color	
weight	(Wc),	summed	color	weight	(ΣWc),	single	action	weight	(Wa),	summed	action	
weight	(ΣWa).	The	single	and	summed	weights	were	the	same	in	the	first	epoch	by	
definition.	For	each	neuron,	we	convoluted	its	firing	rate	(FR)	with	a	200ms	square	
wave	at	10	ms	steps.	We	then	regressed	the	FR	at	each	time	step	on	the	respective	
variable	in	epoch	i	(Factori).	
	
𝐹𝑅 =	𝛽@ ∗ 𝐹𝑎𝑐𝑡𝑜𝑟@ + 𝛽5	.																																									(5)	
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Note	that	the	regression	covered	the	whole	trial	length	when	the	particular	factor	was	
only	associated	with	the	shape	presented	in	epoch	i.	The	results	preceding	the	epoch	i	
reflect	the	noise	level,	while	the	results	following	the	epoch	i	onset	reflect	how	the	
information	was	sustained.		
	
Normalized	∆R2	
	
The	normalized	∆R2	was	calculated	similarly	to	the	procedure	described	by	Cai	and	
Padoa-Schioppa	(Cai	and	Padoa-Schioppa,	2014).	Briefly,	to	obtain	∆R2,	we	first	subtract	
the	R2	of	the	regression	model	in	Eq.	5	by	the	R2	of	the	shuffled	regression	model	in	
which	the	pairing	of	the	𝐹𝑅	and	𝐹𝑎𝑐𝑡𝑜𝑟@	was	shuffled.	In	order	to	convert	∆R2	into	a	
normalized	Z	score,	we	shuffled	the	spike	count	in	a	control	baseline	period	(300	–	0	ms	
before	the	target	onset)	across	all	trials	for	1000	times.	We	calculated	the	∆R2	for	the	
shuffled	samples	and	then	obtained	the	distribution	for	the	baseline	∆𝑅VW0 .	For	each	
neuron	and	each	factor	𝑖,	the	normalized	∆R2	was:	
𝑛𝑜𝑟𝑚∆𝑅@0 =

∆Z8
[\]E^_(∆Z`a

[ )
b∆c`a

[
,	 	 																																									(6)	

where	𝑚𝑒𝑎𝑛(∆𝑅VW0 )	and	𝜎∆Z`a[ 	are	the	mean	and	the	standard	deviation	of	(∆𝑅VW
0 ),	

respectively.	Following	the	same	procedure,	we	calculated	the	normalized	population	
average	of	∆R2	by	further	normalizing	the	𝑛𝑜𝑟𝑚∆𝑅@0:	
	
	
𝑝𝑜𝑝_𝑛𝑜𝑟𝑚∆𝑅@0 = ∑𝑛𝑜𝑟𝑚∆𝑅@0/𝑠𝑞𝑟𝑡(𝑁),																																	(7)	
	
	
where	N	is	the	number	of	neurons.	Thus,	the	population	∆R2,	at	the	chance	level,	has	an	
expected	value	of	0	and	a	standard	deviation	of	1,	and	is	comparable	across	different	
populations	or	brain	areas.	
	
A	one-tailed	t-test	was	used	to	test	the	significance	of	the	difference	between	the	
population	normalized	∆R2	and	0.	In	addition,	a	cluster-size-based	thresholding	method	
was	used	to	address	the	multi-comparison	problem	(Forman	et	al.,	1995).	Specifically,	a	
continuous	period	is	considered	as	significant	if	and	only	if	the	p-value	computed	from	
the	t-test	at	every	time	point	in	this	period	is	smaller	than	0.1995	and	the	length	of	this	
period	exceeds	270ms.	The	combination	of	the	p	threshold	(p<0.1995)	and	the	cluster	
size	threshold	(t>270ms)	holds	the	probability	of	falsely	detecting	a	significant	cluster	
from	noise	at	0.05.	
	
The	latency	of	a	particular	variable	was	defined	as	the	first	time	point	of	the	first	cluster	
that	was	found	to	be	significant.	
	
	
Lasso	
	
To	alleviate	the	effects	of	inter-dependency	of	the	variables	on	the	simple	linear	
regression	analyses,	we	created	a	full	model	using	LASSO	(Tibshirani,	1996)	that	
contained	the	single	weight,	the	summed	weight	and	the	choice	regressors:		
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𝐹𝑅(𝑡) = 	𝛽5,j + ∑ 𝛽@,j𝑤@
(k)2

@K. + ∑ 𝛽l<1,j	𝛴𝑤l
(k)2

lK0 + 𝛽n,j𝐶𝐻(k) + ∑ 𝛽q<n,j	𝑤q
(^)2

qK. +
∑ 𝛽W<..,j	𝛴𝑤W

(^)2
WK0 + 𝛽.r,j𝐶𝐻(^),	 	 	 	 (8)	

	
where	𝐹𝑅(𝑡)	is	the	firing	rate	of	the	neuron	at	time	t,	𝛽@,j 	are	the	fitted	coefficients	at	
time	t,	𝑤@

(k)	and	𝑤@
(^)	represent	the	individual	weights	associated	with	the	shape	in	the	𝑖-

th	epoch	in	the	color	and	the	action	domain,	respectively,		𝛴𝑤@
(k)	and		𝛴𝑤@

(^)	represent	
the	summed	weights	in	the	𝑖-th	epoch	in	the	color	and	the	action	domain,	respectively.	
Thus,		𝛴𝑤@

(k) = ∑ 	𝑤l
(k)@

lK. 	and		𝛴𝑤@
(^) = ∑ 	𝑤l

(^)@
lK. .	Note	that	𝛴𝑤. = 𝑤.,	therefore	we	did	

not	include	𝛴𝑤.in	the	model.	𝐶𝐻(k)	and	𝐶𝐻(^)	are	the	choices	in	regard	to	the	color	and	
the	eye	movement	direction,	respectively.		
	
While	the	summed	weights	are	completely	dependent	on	the	single	weights,	adding	an	
L1-norm	penalty	of	the	coefficients	in	the	loss	function	encourages	the	fitting	algorithm	
to	use	a	smaller	number	of	regressors,	thus	the	LASSO	model	biases	toward	the	
summed	weights	(𝛴𝑤@

(k)	and		𝛴𝑤@
(^))	when	they	can	explain	the	data	by	themselves.	

	
The	LASSO	model	was	fitted	independently	for	each	neuron	at	each	time	point.	All	the	
vectors	of	regressor	samples	were	normalized	into	unit	vectors	before	model	fitting.	We	
used	the	built-in	function	of	MATLAB,	lasso,	to	fit	our	data.	A	10-fold	cross	validation	
procedure	is	used	to	determine	the	regularization	parameter	𝜆.	Specifically,	we	grid	
searched	𝜆	in	the	log	space,	from	10-2	to	100.6	by	a	step	of	100.2.	For	each	single	unit,	we	
found	the	𝜆	that	made	the	most	time	points	to	have	the	smallest	mean	squared	error	
and	used	the	𝜆	as	the	penalty	parameter	of	this	unit.		
	
To	estimate	the	effect	size	of	each	factor,	we	use	the	absolute	value	of	the	standard	
regression	coefficient	computed	with	the	following	equation:	

|𝑆𝑅𝛽|@,j = |
t8,ubv8
bwc(u)

|,	 	 	 	 	 (9)	

where	𝜎x8	is	the	standard	deviation	of	the	𝑖-th	regressor,	and	𝜎yZ(j)	is	the	standard	
deviation	of	FR(t).	Again,	to	make	the	|𝑆𝑅𝛽|	comparable	across	different	neuronal	
populations,	we	followed	the	normalization	procedure	described	by	Cai	and	Padoa-
Schioppa	(Cai	and	Padoa-Schioppa,	2014).	An	800	ms	time	window	before	the	first	
shape	onset	was	used	as	the	control	baseline	period,	which	was	shuffled	100	times	to	
obtain	the	mean	and	the	standard	deviation	of	the	𝑆𝑅𝛽.	The	significance	of	the	
normalized	|𝑆𝑅𝛽|	was	determined	similarly	as	the	analysis	above	for	the	normalized	
∆R2	in	the	linear	regressions.		
	
Neural	Network	Model	
	
The	neural	network	had	two	input	units,	one	output	neuron,	and	one	hidden	layer	with	
tanh	units.	The	feedforward	rule	of	this	network	was	described	by	the	following	
equations:	
	

𝑌 = 𝑾𝒚𝒉𝑯 + 𝑏� 	 	 	 	 	 (10)	
𝑯 = tanh(𝒂)	 	 	 	 	 	 (11)	
𝒂 = 𝑾𝒉𝒙𝑿 + 𝒃𝒙	 	 	 	 	 (12)	
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Here,	the	symbols	in	bold	represent	matrices	or	vectors.		Y	is	the	output	neuron	activity.	
𝑾𝒚𝒉	is	a	1-by-n	connection	matrix	representing	the	connection	weights	from	the	hidden	
layer	units	to	output	neuron,	and	n	is	the	number	of	hidden	layer	units.	𝑯	is	an	n-by-1	
vector	representing	the	activities	of	the	hidden	units,	𝒂	is	an	n-by-1	vector	representing	
the	state	of	the	hidden	units,	𝑾𝒉𝒙	is	an	n-by-2	connection	matrix	representing	the	
connection	weights	from	input	𝑿	to	the	hidden	layer,	and	𝑿	is	a	2-by-1	vector	consists	of	
a	single	color	weight	(ranging	from	-1	to	1)	input	unit	and	a	target	configuration	(+1	or	-
1)	input	unit.	Both	𝑏�	and	𝒃𝒙	are	bias	terms.	A	gradient-descent	algorithm	was	used	to	
minimize	the	mean	squared	error	between	the	output	of	the	network	and	the	target	
output	(Wa).		
	
We	started	testing	with	n=16	hidden	layer	units	and	gradually	reduced	the	number	
until	2,	with	the	network	performance	being	maintained.	The	reduced	network	helped	
us	to	understand	how	the	network	worked.	By	studying	the	connection	weights	and	the	
bias	terms	in	the	trained	model,	we	extracted	its	key	features	depicted	as	in	Figure	8A.	
The	reduced	network	could	be	described	by	the	following	equations:	
	

𝑌 = [𝐺 −𝐺] �𝐴𝐵� + 𝑏�	 	 	 	 (13)	

�𝐴𝐵� = tanh ��𝑤 𝐿
𝑤 𝐿� �

𝑥
𝐶𝑜𝑛𝑓� + �

−𝐿
𝐿 ��	 	 (14)	

	
where	𝑌	is	the	output	of	the	network	(Wa),	input	𝑥	is	the	single	color	weight	(Wc),	𝐶𝑜𝑛𝑓	
is	the	target	configuration,	A	and	B	are	the	activities	of	the	two	hidden	units,	G	is	the	
connection	weight	between	the	hidden	units	and	the	output,	bh	is	a	bias	term	added	to	
the	output	unit	Y,	L	is	a	bias	term	that	is	large	enough	to	saturate	the	tanh	function,	and	
w	is	the	connection	weight	between	the	input	x	and	the	hidden	layer	units	that	is	small	
enough	so	that	tanh(𝑤𝑥)	≈ 𝑤𝑥.	We	set	L=100,	w=0.1,	G=bh=10.	
	
Mixed	Selectivity	Analysis	
	
We	used	response	variance	to	quantify	the	mixed	selectivity	of	the	DLPFC	neurons.	The	
hypothetic	neurons	are	not	sensitive	to	the	Wc	under	one	spatial	configuration,	which	
lead	to	a	small	response	variance.	Their	response	variance	is	much	larger	under	the	
other	spatial	configuration	when	they	are	modulated	by	the	Wc.	We	defined	a	variance	
difference	index	VDI	as:	

𝑉𝐷𝐼@ = 𝑎𝑏𝑠 ��8,;\�8,�;
�8,;<�8,�;

�,	 	 	 	 (15)	
where	𝑉@,±.	is	the	variance	of	the	normalized	responses	of	neuron	i	to	the	different	
shape	cues	when	the	target	configuration	equals	±1,	respectively.	To	compute	the	𝑉@,±.	
of	a	neuron,	we	followed	these	procedures.	We	counted	the	spikes	within	an	800	ms	
time	window	after	each	shape’s	onset	and	sorted	them	by	the	shape	identity	and	the	
target	configuration.	We	normalized	the	responses	by	subtracting	the	minimal	response	
and	then	dividing	them	by	the	range:	

𝑆𝑝𝑘@,l,q∗ =
��q8,�, \¡¢£¤��q8,�, ¥� 

¡¦§¤��q8,�, ¥� \¡¢£¤��q8,�, ¥� 
,	 (16)	

where	𝑆𝑝𝑘@,l,q	is	the	averaged	spike	count	of	neuron	𝑖	to	shape	j	and	under	
configuration	𝑘,	𝑆𝑝𝑘@,l,q∗ 	is	the	normalized	response,	min(… )lq 	and	max(… )lq 	are	the	
minimum	and	maximum	values	across	all	combinations	of	shapes	and	configurations.		
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The	variance	of	response	for	neuron	i	and	configuration	k	is	then	computed:	

𝑉@,q = Var(𝑆𝑝𝑘@,l,q∗ )l	 	 	 	 (17)	
Var(… )l 	is	the	operation	computing	the	variance	across	all	shapes.	
	
With	𝑉@,q,	we	computed	𝑉𝐷𝐼@ 	for	each	neuron	𝑖	based	on	equation	15.	Large	𝑉𝐷𝐼′s	
indicate	a	response	pattern	similar	to	that	of	the	hidden	units	in	the	network	model.	
Shapes	with	infinitive	weights	were	included	in	this	analysis.	
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Legends	
	
Figure	1.	(A)	Task	design.	Four	shapes	were	presented	sequentially	on	the	computer	
screen	while	the	monkey	fixated	at	the	FP.	After	the	FP	was	turned	off,	the	monkey	
made	a	saccade	to	either	the	red	or	green	choice	target.	The	shapes	were	selected	
randomly	with	replacement	in	each	trial	from	a	set	of	ten.	Each	of	them	was	assigned	
with	a	unique	weight	(inset).	The	reward	probability	was	calculated	by	the	sum	of	the	
weights	associated	with	the	four	shapes.	Positive	weights	indicated	the	red	target	had	a	
reward	probability	larger	than	0.5.	The	blue,	red,	green,	and	yellow	shadings	along	the	
time	axis	indicate	the	stimulus	representation	periods	1~4.	(B)	Monkey	performance.	
The	percentage	of	red	choices	is	plotted	against	the	summed	weight	of	the	four	shapes	
(black	dots).	The	curve	is	a	fitted	logistic	function.	(C)	Subjective	weights.	We	used	a	
logistic	regression	to	assess	the	effects	of	each	shape	on	the	monkeys’	choice	and	define	
the	coefficients	as	the	subjective	weights.	Positive	weights	indicate	a	tendency	to	choose	
the	red	target.	(D)	Two	competing	decision-making	hypotheses.	In	stimulus-based	
decision	making,	the	information	regarding	to	color	(Wc)	is	first	integrated	to	the	ΣWc,	
which	is	then	used	to	generate	the	action-independent	color	choice	and	finally	
translated	into	the	actions.	In	contrast,	the	action-based	decision	making	hypothesis	
assumes	that	the	Wc	is	first	transformed	into	the	action	domain	(Wa),	which	is	then	
accumulated	into	the	ΣWa	and	forms	the	choice	and	actions.	In	addition,	the	stimulus-
based	decision	making	may	be	complemented	by	a	motor	preparation	process,	in	which	
the	ΣWa	is	calculated	from	the	ΣWc	during	the	decision	making	process.	
	
Figure	2.	Example	neurons.	(A)	The	activity	of	a	DLPFC	neuron	encoded	the	
ΣWa.	Response	averages	are	aligned	to	the	shape	onsets	and	extended	100	ms	into	the	
next	shape	period.	The	trials	are	divided	into	quartiles	by	the	ΣWa	(indicated	by	the	
redness)	and	the	neuron’s	response	averages	are	computed.	The	width	indicates	the	
s.e.m.	across	trials.	The	gray	shades	indicate	the	period	when	the	shape	was	displayed	
(300	ms).	(B)	The	activity	of	an	OFC	neuron	encoded	the	Wc.	Response	averages	are	
aligned	to	the	shape	onsets	and	extended	100	ms	into	the	next	shape	period.	The	trials	
are	divided	into	quartiles	by	the	Wc	(indicated	by	the	color)	and	the	neuron’s	response	
averages	are	computed.	The	width	indicates	the	s.e.m	across	trials.	The	gray	shades	
indicate	the	shape	presentation	period	(300ms).	
	
Figure	3.	Representation	of	choice.	(A)	The	average	firing	rate	difference	of	the	OFC	
neurons	in	trials	with	different	choice	outcomes.	Green:	spatial	choice;	yellow:	color	
choice;	black:	shuffled	data.	The	green	and	yellow	shaded	areas	indicate	the	s.e.m.,	and	
the	grey	shaded	area	indicates	the	s.d.	of	the	100	shuffles.	The	green	and	yellow	
horizontal	lines	mark	the	periods	in	which	the	spatial	or	color	choice	curve	is	
significantly	different	from	the	shuffled	data	(p<0.01,	one-way	ANOVA).	The	four	color	
shaded	boxes	indicate	the	shape	presentation	period	in	the	four	epochs,	with	the	
dashed	lines	indicating	the	shape	onset.	The	rightmost	dashed	line	in	dark	red	marks	
the	average	saccade	time.	The	grey	bar	on	the	horizontal	axis	represents	the	period	
from	which	the	mean	firing	rates	were	calculated	to	define	the	neurons’	preferred	
choices.	(B)	The	average	firing	rate	difference	of	the	DLPFC	neurons	for	different	
choices.	
	
Figure	4.	Representations	of	the	shape	weights	in	the	OFC.	(A-D)	The	normalized	
explained	variance	of	Wc,	Wa,	ΣWc,	and	ΣWa	of	the	OFC	neurons.	Blue,	red,	green,	and	
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yellow	indicate	the	1st,	2nd,	3rd,	and	4th	epoch,	respectively.	The	solid	sections	of	each	
curve	indicate	significance	(p<0.05	with	multiple	comparison	corrections),	and	the	
dashed	sections	are	not	significant.		
	
Figure	5.	Representations	of	the	shape	weights	in	the	DLPFC.	(A-D)	The	normalized	
explained	variance	of	Wc,	Wa,	ΣWc,	and	ΣWa	of	the	DLPFC	neurons.	Blue,	red,	green,	
and	yellow	indicate	the	1st,	2nd,	3rd,	and	4th	epoch,	respectively.	The	solid	sections	of	
each	curve	indicate	significance	(p<0.05	with	multiple	comparison	corrections),	and	the	
dashed	sections	are	not	significant.		
	
Figure	6.	Representations	of	the	shape	weights	in	the	OFC	with	LASSO.	(A-D)	The	
normalized	|SRβ|	of	Wc,	Wa,	ΣWc,	and	ΣWa	of	the	OFC	neurons.	Blue,	red,	green,	and	
yellow	indicate	the	1st,	2nd,	3rd,	and	4th	epoch,	respectively.	The	solid	sections	of	each	
curve	indicate	significance	(p<0.05	with	multiple	comparison	corrections),	and	the	
dashed	sections	are	not	significant.	The	traces	of	the	ΣWc	and	ΣWa	from	the	first	epoch	
in	were	omitted	(see	Methods).	
	
Figure	7.	Representations	of	the	shape	weights	in	the	DLPFC	with	LASSO.	(A-D)	The	
normalized	|SRβ|	of	Wc,	Wa,	ΣWc,	and	ΣWa	of	the	OFC	neurons.	Blue,	red,	green,	and	
yellow	indicate	the	1st,	2nd,	3rd,	and	4th	epoch,	respectively.	The	solid	sections	of	each	
curve	indicate	significance	(p<0.05	with	multiple	comparison	corrections),	and	the	
dashed	sections	are	not	significant.	The	traces	of	the	ΣWc	and	ΣWa	from	the	first	epoch	
in	were	omitted	(see	Methods).	
	
Figure	8.	(A)	The	feedforward	network	model.	Two	types	of	hidden	neurons	receive	
inputs	from	a	Wc	neuron	and	a	spatial	configuration	neuron.	They	also	receive	a	bias	
input.	The	hidden	neurons	send	projections	to	the	output	neuron	Y,	which	encodes	Wa	
(see	Methods).	(B)	The	response	patterns	of	the	two	types	of	hidden	neurons	from	the	
model.	Each	type	has	an	asymmetric	response	pattern,	in	which	its	response	under	one	
spatial	configuration	is	flat	but	not	under	the	other.	(C)	The	distribution	of	VDI	of	the	
DLPFC	neurons.	The	shaded	area	indicates	the	neurons	with	VDI	greater	than	0.4.	
(D)The	response	patterns	of	the	DLPFC	neurons	that	had	the	largest	variance	
disparities	between	the	two	spatial	configurations.	The	neurons	that	had	the	greater	
responses	under	the	spatial	configuration	with	the	larger	variance	(blue)	than	that	with	
the	smaller	variance	(red)	are	plotted	in	the	left	panel,	and	the	neurons	that	had	weaker	
responses	under	the	spatial	configuration	with	the	larger	variance	(red)	than	that	with	
the	smaller	variance	(blue)	are	plotted	in	the	right	panel.																
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Figure 1. (A) Task design. Four shapes were presented sequentially on the computer screen while the monkey 
�xated at the FP. After the FP was turned o�, the monkey made a saccade to either the red or green choice 
target. The shapes were selected randomly with replacement in each trial from a set of ten. Each of them was 
assigned with a unique weight (inset). The reward probability was calculated by the sum of the weights 
associated with the four shapes. Positive weights indicated the red target had a reward probability larger 
than 0.5. The blue, red, green, and yellow shadings along the time axis indicate the stimulus representation 
periods 1~4. (B) Monkey performance. The percentage of red choices is plotted against the summed weight 
of the four shapes (black dots). The curve is a �tted logistic function. (C) Subjective weights. We used a logistic 
regression to assess the e�ects of each shape on the monkeys’ choice and de�ne the coe�cients as the 
subjective weights. Positive weights indicate a tendency to choose the red target. (D) Two competing deci-
sion-making hypotheses. In stimulus-based decision making, the information regarding to color (Wc) is �rst 
integrated to the ΣWc, which is then used to generate the action-independent color choice and �nally trans-
lated into the actions. In contrast, the action-based decision making hypothesis assumes that the Wc is �rst 
transformed into the action domain (Wa), which is then accumulated into the ΣWa and forms the choice and 
actions. In addition, the stimulus-based decision making may be complemented by a motor preparation 
process, in which the ΣWa is calculated from the ΣWc during the decision making process.
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Figure 2. Example neurons. (A) The activity of a DLPFC neuron encoded the ΣWa. Response averag-
es are aligned to the shape onsets and extended 100 ms into the next shape period. The trials are 
divided into quartiles by the ΣWa (indicated by the redness) and the neuron’s response averages are 
computed. The width indicates the s.e.m. across trials. The gray shades indicate the period when the 
shape was displayed (300 ms). (B) The activity of an OFC neuron encoded the Wc. Response averag-
es are aligned to the shape onsets and extended 100 ms into the next shape period. The trials are 
divided into quartiles by the Wc (indicated by the color) and the neuron’s response averages are 
computed. The width indicates the s.e.m across trials. The gray shades indicate the shape presenta-
tion period (300ms).
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Figure 3. Representation of choice. (A) The average �ring rate di�erence of the OFC neurons in trials with 
di�erent choice outcomes. Green: spatial choice; yellow: color choice; black: shu�ed data. The green and 
yellow shaded areas indicate the s.e.m., and the grey shaded area indicates the s.d. of the 100 shu�es. The 
green and yellow horizontal lines mark the periods in which the spatial or color choice curve is signi�cantly 
di�erent from the shu�ed data (p<0.01, one-way ANOVA). The four color shaded boxes indicate the shape 
presentation period in the four epochs, with the dashed lines indicating the shape onset. The rightmost 
dashed line in dark red marks the average saccade time. The grey bar on the horizontal axis represents the 
period from which the mean �ring rates were calculated to de�ne the neurons’ preferred choices. (B) The 
average �ring rate di�erence of the DLPFC neurons for di�erent choices.
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Figure 4. Representations of the shape weights in the OFC. (A-D) The normalized explained variance of Wc, Wa, Σ
Wc, and ΣWa of the OFC neurons. Blue, red, green, and yellow indicate the 1st, 2nd, 3rd, and 4th epoch, respective-
ly. The solid sections of each curve indicate signi�cance (p<0.05 with multiple comparison corrections), and the 
dashed sections are not signi�cant. 
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Figure 5. Representations of the shape weights in the DLPFC. (A-D) The normalized explained variance of Wc, Wa, 
ΣWc, and ΣWa of the DLPFC neurons. Blue, red, green, and yellow indicate the 1st, 2nd, 3rd, and 4th epoch, 
respectively. The solid sections of each curve indicate signi�cance (p<0.05 with multiple comparison corrections), 
and the dashed sections are not signi�cant. 
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Figure 6. Representations of the shape weights in the OFC with LASSO. (A-D) The normalized |SRβ| of Wc, Wa, ΣWc, 
and ΣWa of the OFC neurons. Blue, red, green, and yellow indicate the 1st, 2nd, 3rd, and 4th epoch, respectively. 
The solid sections of each curve indicate signi�cance (p<0.05 with multiple comparison corrections), and the 
dashed sections are not signi�cant. The traces of the ΣWc and ΣWa from the �rst epoch in were omitted (see Meth-
ods).
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Figure 7. Representations of the shape weights in the DLPFC with LASSO. (A-D) The normalized |SRβ| of Wc, Wa, 
ΣWc, and ΣWa of the OFC neurons. Blue, red, green, and yellow indicate the 1st, 2nd, 3rd, and 4th epoch, 
respectively. The solid sections of each curve indicate signi�cance (p<0.05 with multiple comparison correc-
tions), and the dashed sections are not signi�cant. The traces of the ΣWc and ΣWa from the �rst epoch in were 
omitted (see Methods).
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Figure 8. (A) The feedforward network model. Two types of hidden neurons receive inputs from a Wc 
neuron and a spatial con�guration neuron. They also receive a bias input. The hidden neurons send 
projections to the output neuron Y, which encodes Wa (see Methods). (B) The response patterns of the 
two types of hidden neurons from the model. Each type has an asymmetric response pattern, in which 
its response under one spatial con�guration is �at but not under the other. (C) The distribution of VDI of 
the DLPFC neurons. The shaded area indicates the neurons with VDI greater than 0.4. (D)The response 
patterns of the DLPFC neurons that had the largest variance disparities between the two spatial con�gu-
rations. The neurons that had the greater responses under the spatial con�guration with the larger 
variance (blue) than that with the smaller variance (red) are plotted in the left panel, and the neurons 
that had weaker responses under the spatial con�guration with the larger variance (red) than that with 
the smaller variance (blue) are plotted in the right panel. 
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