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Abstract Reaction–diffusion models describing the movement, reproduction and death of individuals within a popu-

lation are key mathematical modelling tools with widespread applications in mathematical biology. A diverse range of

such continuum models have been applied in various biological contexts by choosing different flux and source terms in

the reaction–diffusion framework. For example, to describe collective spreading of cell populations, the flux term may be

chosen to reflect various movement mechanisms, such as random motion (diffusion), adhesion, haptotaxis, chemokinesis

and chemotaxis. The choice of flux terms in specific applications, such as wound healing, is usually made heuristically,

and rarely is it tested quantitatively against detailed cell density data. More generally, in mathematical biology, the

questions of model validation and model selection have not received the same attention as the questions of model devel-

opment and model analysis. Many studies do not consider model validation or model selection, and those that do often

base the selection of the model on residual error criteria after model calibration is performed using nonlinear regression

techniques. In this work, we present a model selection case study, in the context of cell invasion, with a very detailed

experimental data set. Using Bayesian analysis and information criteria, we demonstrate that model selection and model

validation should account for both residual errors and model complexity. These considerations are often overlooked in

the mathematical biology literature. The results we present here provide a clear methodology that can be used to guide

model selection across a range of applications. Furthermore, the case study we present provides a clear example where

neglecting the role of model complexity can give rise to misleading outcomes.

Keywords Model selection · Bayesian inference · Information criteria · Continuum models · Collective cell spreading

Mathematics Subject Classification (2000) 62C10 · 62F15 · 35K57 · 92C17 · 92C37

1School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia. 2Mathematical Institute, University of Oxford,

Oxford, United Kingdom.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 16, 2018. ; https://doi.org/10.1101/444679doi: bioRxiv preprint 

https://doi.org/10.1101/444679


2 D. J. Warne et al.

1 Introduction

The development and testing of new theories to explain observations are keystones of the scientific method. In the

biological sciences, mathematical models have become increasingly important to develop and test various hypotheses

about putative mechanisms that drive biological processes. Furthermore, the interpretation of new biological data and

the development of new experimental protocols is increasingly being enhanced through the use of mathematical models

to explore questions of optimal data collection and optimal experimental design. However, for many applications in

mathematical biology, there is a diverse range of valid modelling approaches that can be taken, and it is not always

obvious which model is most appropriate for a particular application. Since all models are, by definition, a simplification

of reality, the choice of modelling approach strongly depends on the purpose of the model and the set of modelling tools

available. A complex model that accounts for many detailed mechanical, chemical and/or biological mechanisms may

provide no additional insight than a simple phenomenological model in certain situations. Conversely, overly simple

models that fail to capture key features of a particular process can lead to incorrect or incomplete conclusions.

An unresolved question in the field of mathematical biology is how to best determine when a model is sufficient.

Informally, we might anticipate that the appropriate degree of model complexity will be related to the complexity and

quality of the experimental data that we wish to model. However, judging the suitability of a model on its ability to match

experimental data alone will always favour additional complexity over model simplicity. While this best fit approach is

standard practice throughout the field of mathematical biology, we suggest that it is preferable instead to favour simple

models unless additional complexity is warranted. In our work, we investigate and demonstrate techniques to select

models, such as Bayesian analysis and information criteria, and give a practical illustration of the trade-off between con-

sistency, fitness and complexity. We choose to focus on the question of selection between different continuum models

that describe collective cell behaviour because this is a canonical modelling question of broad interest to the mathemat-

ical biology community.

In many biological applications, there can be multiple competing theories about the particular phenomenon that we

might wish to study. In these situations, mathematical models can be used to objectively evaluate the validity of these

potential theories by comparing model predictions with a set of experimental observations. Such an evaluation requires

a robust, reproducible and objective framework for choosing the model, out of a set of candidates, that best explains

the data. A typical approach to this model selection problem is to calibrate each candidate model to match a set of

experimental data; the most traditional calibration approach being the maximum likelihood estimator (MLE) which is

based on the minimisation of residuals. The model that fits the data “best” is selected as the model that best explains

the observations. For example, Bianchi et al. (2016) use such an approach to evaluate several possible mechanisms

that lead to wound healing failure through insufficient lymphangiogenesis. Mathematical models are also applied to

interpret experimental data. For this purpose, model calibration is used to estimate model parameters that cannot be

directly measured through experimentation (Sherratt and Murray, 1990). For example, estimates of the proliferation rate

of cells can be obtained by calibrating a mathematical model to match data derived from in vitro cell culture assays (Jin

et al., 2016b; Johnston et al., 2016; Maini et al., 2004). However, these parameter estimates depend implicitly upon the

structure of the model that is used to interpret the experimental data.
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1.1 Continuum models in cell biology applications

Continuum models of collective cell spreading and proliferation are used to study cancer, wound healing, embryonic

development, and tissue engineering (Murray, 2002). However, the details of the models are diverse (Jin et al., 2016b;

Simpson et al., 2011). The motility of cells can be modelled by: linear diffusion (Jackson et al., 2015; Maini et al., 2004;

Sengers et al., 2007; Simpson et al., 2007; Swanson et al., 2003); nonlinear diffusion where the diffusivity increases

with density (Bianchi et al., 2016; Flegg et al., 2009; Sengers et al., 2007), and nonlinear diffusion where the diffusivity

decreases with density (Cai et al., 2007; King and McCabe, 2003); nonlinear advection to describe directed motility,

such as chemotaxis (Bianchi et al., 2016; Flegg et al., 2010), haptotaxis (Marchant et al., 2001), and cell–cell adhe-

sion (Armstrong et al., 2009). Similarly, the proliferation of cells is often modelled using a logistic source term (Maini

et al., 2004; Sengers et al., 2007; Simpson et al., 2007), but there are also many other options for modelling carrying

capacity-limited proliferation (Browning et al., 2017; Gerlee, 2013; Tsoularis and Wallace, 2002). Furthermore, the

motility and proliferation of cells may also be coupled to diffusing chemical factors (Bianchi et al., 2016; Nardini et al.,

2016; Savla et al., 2004; Sherratt and Murray, 1990). Despite this diverse range of modelling possibilities, few studies

in the mathematical biology literature evaluate model uncertainty and many studies never consider any kind of model

selection at all.

To illustrate these ideas we point to the work of Sherratt and Murray (1990) who present several continuum mod-

els of epidermal wound healing. To describe the motility of a cell population with density C, one model uses linear

diffusion, with a constant nonlinear diffusivity function D(C) = D0, another model considers nonlinear diffusion so

that the motility of cells depends on cell density, D(C) = D0Cr, where r is an additional model parameter. Yet another

model Sherratt and Murray (1990) consider includes linear diffusion with activator/inhibitor chemical regulation of cell

proliferation. While Sherratt and Murray (1990) conclude that the chemical activator/inhibitor model provides the best

match to the experimental data, they also conclude that nonlinear diffusion models with r = 1 or r = 4 also fit the data

well, and even the simplest linear diffusion model, with r = 0, agrees with the data to some extent. Here, the model fit is

directly proportional to the model complexity; hence the conclusions could be a result of overparameterisation (Akaike,

1974; Box, 1976). Therefore, a relevant question for us to address is: given complex biological data with many sources

of uncertainty, how can we select models that provide a balance between model simplicity and agreement with data?

1.2 Challenges for model calibration

The study of the temporal growth, and the spatiotemporal spreading of cell populations provides us with a canonical

area within the mathematical biology literature where there are many different types of continuum models available

to interpret experimental data. For example, Sarapata and de Pillis (2014) catalog the most commonly used temporal

growth models of tumors (Gerlee, 2013) and calibrate them against data from both in vitro and in vivo assays. Inter-

estingly, Sarapata and de Pillis (2014) note that some of the MLE solutions lead to non-physical predictions about the

carrying capacity density. Through application of a Bayesian approach, Warne et al. (2017) demonstrate that parameter

uncertainty in such temporal models may be used to inform experimental design of proliferation assays. Sarapata and

de Pillis (2014) and Warne et al. (2017) focus on temporal growth dynamics only, and they note that data obtained

through standard experimental protocols may not contain sufficient information to resolve accurate and realistic esti-
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mates for all unknown parameters. Thus we expect that experimental design and model calibration requires detailed

spatial data to compensate for increased model complexity when considering spatial models that describe the spatiotem-

poral spreading of cell populations. However, very few studies that calibrate spatial models of collective cell spreading

use detailed cell density data. For example, Maini et al. (2004) and Sherratt and Murray (1990) simply use the location

of the moving cell front to calibrate spatial reaction–diffusion models without considering detailed spatial cell density

information. In both cases, Maini et al. (2004) and Sherratt and Murray (1990) use maximum likelihood estimation to

calibrate these reaction–diffusion models. In these instances, the MLE provides no information on how identifiable the

model parameters are from the moving front location alone. In a more recent study, Jin et al. (2016b) use detailed cell

density profiles to identify parameter estimates based on the MLE solution for two commonly used models of collective

cell spreading. The main point of Jin et al. (2016b) is to show that parameter estimates appear to depend strongly upon

the initial density of cells in the experiments, and this result is at odds with our intuitive expectation because typical

models implicitly assume that the parameters are independent of cell density. This indicates that a cautionary approach

must be taken to reliably estimate parameters and compare models, and provide a partial explanation about why cell

biology experiments are notoriously difficult to reproduce (Jin et al., 2016b).

The examples of Jin et al. (2016b) and Sarapata and de Pillis (2014) highlight a problem in model calibration and

parameter estimation that is also discussed extensively by Slezak et al. (2010). That is, the common protocol in which

candidate models are calibrated and compared using mathematical optimisation to determine the MLE from data can

be misleading. Not only can this approach lead to biologically unrealistic parameter estimates or model behaviour (Jin

et al., 2016b; Sarapata and de Pillis, 2014; Slezak et al., 2010) but comparison of maximum likelihood estimates is biased

towards complex models that essentially overfit through an overabundance of free parameters (Box, 1976; Gelman

et al., 2014; Johnson and Omland, 2004; Stoica and Selen, 2004). Furthermore, a traditional model selection process,

based on maximum likelihood estimates, fails to capture uncertainty (Warne et al., 2017). There are four key sources

of uncertainty when applying a mathematical model to interpret experimental data: 1) unknown model parameters that

require statistical estimation; 2) uncertainty in the choice of model; 3) uncertainty that arises from stochastic fluctuations

in the system dynamics; and 4) uncertainty resulting from systematic or measurement error in experimental work.

Careful treatment of all of these sources of uncertainty is important to reliably validate theory and analyse data. Bayesian

inference techniques are promising alternatives to MLE-based methods, since they can account for all relevant sources

of uncertainty. Bayesian frameworks have been demonstrated to be highly effective at determining optimal experimental

designs to minimise parameter uncertainty under the presence of systematic and measurement error (Browning et al.,

2017; Johnston et al., 2016; Liepe et al., 2013; Parker et al., 2018; Vanlier et al., 2012; Warne et al., 2017).

The Bayesian view, however, has its challenges, such as, potential subjectivity of inference and lack of a clear

decision process (Efron, 1986; Gelman, 2008a,b; Lambert, 2018). As a result, extensive statistical research to address

these problems is an ongoing endeavour (Akaike, 1974; Gelman et al., 2014; Schwarz, 1978; Spiegelhalter et al., 2002),

and there are now many alternative statistical techniques to traditional MLE-based methods or null hypothesis testing.

Johnson and Omland (2004) review a number of common approaches in the context of ecological and evolutionary

research, and Gelman et al. (2014) provide a more detailed review of model selection techniques from a statistical

theory perspective.
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1.3 Contribution

In this work we demonstrate how to apply a Bayesian framework to quantitatively compare and select a reaction–

diffusion model of collective cell behaviour using detailed in vitro assay data. We show that the Bayesian view of data-

driven model selection provides significantly more insight than traditional MLE approaches. A family of continuum

reaction–diffusion models that describe cell motility and cell proliferation are evaluated from a Bayesian perspective

through parameter uncertainty quantification. This exercise reveals important aspects of reliable model selection that are

often not easily identified otherwise. We also evaluate a number of widely used decision-marking processes for model

selection and compare the results with the intuition gained from the full Bayesian approach. In particular, we demon-

strate, using detailed experimental data, that a trade-off between model fit, complexity and consistency can be obtained

using a Bayesian framework. Furthermore, the techniques presented here valid for a wide class of models and are rel-

evant for model comparison of in stochastic settings such as those considered by Johnston et al. (2016) and Matsiaka

et al. (2018). Thus, we expect this work to be an exemplar of the Bayesian approach to the wider mathematical biology

community.

2 Cell culture protocols

In cell biology, in vitro cell culture assays are commonly used to measure and observe the behaviour of cell populations

in different environments. Typical examples are proliferation assays (Browning et al., 2017), scratch assays (Jin et al.,

2016b) and invasion assays (Haridas, 2017). In this work, we will focus on the scratch assay (Liang et al., 2007),

however, it is important to note that our methods are widely applicable to other assay types. Jin et al. (2016b) provide a

particularly detailed scratch assay data set using the PC-3 prostate cancer cell line. Each well in a 96-well tissue culture

plate are identically populated with a particular initial number of PC-3 cells. Cells are left to attach to the substrate for

a small amount of time so that a series of uniform monolayers have formed. Then, identical scratches, approximately

0.5 mm in width, are made in the monolayers. Images of the scratched region are then captured at regular time intervals

for a total duration of 48 hours. A particularly insightful feature of the protocol used by Jin et al. (2016b) is that they

performed multiple experiments to demonstrate how variation in the initial density of cells in the monolayer affect cell

invasion. Experiments were perform by initially placing either 10,000, 12,000, 14,000, 16,000, 18,000 or 20,000 cells

into the wells of the 96-well plate. For brevity, in our study, we focus on data from the experiments initialised with

12,000, 16,000 and 20,000 cells per well. Some example images from these datasets are summarised in Figure 1.

The data in Figure 1 demonstrate that the scratch closure rate depends on the initial density of cells. For the low

density initial condition of 12,000 cells per well, the scratch remains more than half its original size after 48 hours

(Figure 1(a),(d) and (g)). In contrast, for the medium initial density of 16,000 cells per well, the scratch area is notice-

ably smaller at 48 hours, but it is still not closed (Figure 1(b),(e) and (g)). Only the high initial density initial condition

of 20,000 cells per well leads to complete scratch closure after 48 hours (Figure 1(c),(f) and (i)). Most scratch assay

protocols do not consider varying the initial density of cells, and those studies that use mathematical models to inter-

pret experimental results from a scratch assay focus only on temporal data describing the position of the leading cell

front (Sherratt and Murray, 1990; Maini et al., 2004), indicated by the dashed green line in Figure 1(a)–(h). The study

of Jin et al. (2016b) is unique since they provide detailed cell density profiles from multiple experimental replicates
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Fig. 1 Example scratch assay data using the PC-3 prostate cancer cell line. Each column presents one experiment using an initial population of:

(a),(d) and (g) 12,000 cells; (b),(e) and (g) 16,000 cells; (c),(f) and (i) and 20,000 cells. The dimensions of each image are 1.43×1.97 [mm].

Images are shown at 24 [h] time intervals, however, the data is captured at 12 [h] intervals. Images are reproduced from Jin et al. (2016b), with

permission.

for each initial condition considered. These high resolution data enable us to pose and explore new questions about the

applicability of some commonly used continuum reaction–diffusion models to describe this dataset. We utilise a subset

of the original PC-3 scratch assay data (See Jin et al. (2016b)) to continue this line of reasoning using Bayesian analysis.

3 Continuum models of cell motility and proliferation

Fundamental features associated with cell invasion processes are the motility and proliferation of cells. Many different

intracellular and intercellular mechanisms are relevant to both motility and proliferation, depending on the specific

biological process. In the biological literature, it is not always clear which mechanisms are most important or relevant in

a particular situation. Furthermore, it may be difficult to identify the most appropriate mathematical model, especially

when a variety of models fit the experimental data both qualitatively and quantitatively. This is particularly true in the

area of modelling of epidermal wound healing (Maini et al., 2004; Murray, 2002; Sherratt and Murray, 1990; Simpson

et al., 2011).

3.1 Modelling cell populations with reaction–diffusion equations

Continuum models are routinely used to describe the evolution of a population of cells that undergo collective cell

spreading and proliferation. Such models are often based on partial differential equations (PDEs) that are reaction–
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diffusion equations of the form
∂C(x, t)

∂ t
=−∇ ·J(x, t)+S(x, t). (1)

Here, C(x, t), is the cell density at position, x, and time t, J(x, t) is the cell population density flux vector and S(x, t) is

a reaction term representing cell proliferation and loss. Both J(x, t) and S(x, t) are often functions of the cell density,

C(x, t), the cell density gradient vector, ∇C(x, t), or both; there is also usually a dependence on model parameters that

must be calibrated using experimental data. The functional forms of J(x, t) and S(x, t) used for modelling vary across

diverse applications in tumor growth/invasion, wound healing, and embryology. However, there are some common

choices. For the growth function, S(x, t), Gerlee (2013) and Sarapata and de Pillis (2014) describe many of the key

growth models in the context of tumor growth. A variety of options for the flux, J(x, t), are discussed by Murray (2002),

and Simpson et al. (2006) perform a simulations of these options and compare qualitatively with experimental data.

Of the available growth models, the most fundamental is the logistic growth model,

S(x, t) = λC(x, t)
(

1− C(x, t)
K

)
, (2)

where λ > 0 is the rate of cell proliferation, K > 0 is the carrying capacity density, that is, the cell population density

at which contact inhibition reduces the net population growth to zero. The logistic growth model is frequently used

to describe cell growth as it is the most fundamental model that describes the effect of contact inhibition of prolifera-

tion (Warne et al., 2017), however, general forms can also be considered in cell biology applications (Browning et al.,

2017; Sarapata and de Pillis, 2014; Tsoularis and Wallace, 2002). For the flux, J(x, t), the most common choice is

Fickian diffusion (Maini et al., 2004; Sherratt and Murray, 1990),

J(x, t) =−D0∇C(x, t), (3)

where D0 > 0 is a constant cell diffusivity. This formulation of the flux models cells for which motility is not affected

by cell density, that is, cells are behaving like Brownian particles.

When logistic growth (Equation (2)) and Fickian diffusion (Equation (3)) are substituted into (Equation (1)) we

obtain
∂C(x, t)

∂ t
= D0∇

2C(x, t)+λC(x, t)
(

1− C(x, t)
K

)
, (4)

which, in one dimension, is known as the Fisher–Kolmogorov–Petrovsky–Piscounov model (Fisher–KPP) (Murray,

2002). The Fisher–KPP model has been applied in many biological contexts (Murray, 2002). In cell biology, common

applications include the modelling of wound healing (Sherratt and Murray, 1990), tissue engineering (Sengers et al.,

2007), tumor growth (Swanson et al., 2002), cancer treatment (Jackson et al., 2015), and embryonic development (Simp-

son et al., 2007).

Maini et al. (2004) demonstrate there is experimental evidence for the standard Fisher–KPP model in the dynamics

of human peritoneal mesothelial cells. However, the standard Fisher–KPP model is often modified to capture application

specific features; most changes relate to the form of S(x, t) and J(x, t) in Equation (1). Savla et al. (2004) modify the

proliferation function to account for stretching that occurs in bronchial epithelial cells. The invasion of embryonic

neural crest cells through the intestine is modelled by Simpson et al. (2007) by considering a multi-species version

of Equation (4) where both species contribute to the carrying capacity. Swanson et al. (2003) model the growth and

invasion of gliomas using a spatially heterogeneous diffusivity to account for grey matter and white matter regions of
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the brain. Inclusion of growth factors and chemical gradients is also often handled through coupling activator/inhibitor

dynamics to models of chemical diffusion (Nardini et al., 2016; Sherratt and Murray, 1990).

A very common modification to the standard Fisher–KPP model is to incorporate density dependent diffusion of the

form J(x, t) = −D(C(x, t))∇C(x, t), where D(C(x, t)) is the nonlinear diffusivity function. Often, D(C(x, t)) is chosen

to be a monotonically increasing function with D(0) = 0 (Flegg et al., 2010; Simpson et al., 2011; Sengers et al., 2007).

It is also intriguing that other studies choose to focus on monotonically decreasing nonlinear diffusivity functions (Cai

et al., 2007). If D(C(x, t)) = D0C(x, t)/K, where D0 is the cell diffusivity, we obtain the Porous Fisher model (Gurney

and Nisbet, 1975; Murray, 2002):

∂C(x, t)
∂ t

= D0∇ ·
(

C(x, t)
K

∇C(x, t)
)
+λC(x, t)

(
1− C(x, t)

K

)
. (5)

Unlike the Fisher–KPP model (Equation (4)), diffusion is not solely derived by the random movement of cells. Instead,

cells exhibit movements that are directed away from crowded areas (Gurney and Nisbet, 1975), with a direct linear

relationship between motility and density. Some studies have also considered D(C(x, t)) = D0(C(x, t)/K)r, which can

be thought of as a Generalised Porous Fisher equation (Sherratt and Murray, 1990; Witelski, 1995),

∂C(x, t)
∂ t

= D0∇ ·
[(

C(x, t)
K

)r

∇C(x, t)
]
+λC(x, t)

(
1− C(x, t)

K

)
, (6)

where r is a constant that controls the density avoidance/attraction behaviour of cells. Here, the Fisher–KPP and Porous

Fisher models are recovered with r = 0 and r = 1, respectively. In applications, r is often selected quite arbitrarily (Jin

et al., 2016b; Sherratt and Murray, 1990) and there is little theory enabling its biological interpretation (Simpson et al.,

2011).

The interpretation of the power, r, indeed deserves further discussion. In effect, it models a nonlinear relationship

between the motility of cells and the cell density (Simpson et al., 2011). For r > 1, the relationship is superlinear;

the cell motility slowly increases with cell density at lower densities (Sherratt and Murray, 1990), but then rapidly

increases at higher densities. For 0 < r < 1, we have a sublinear relationship, that is, cells increase in motility faster

at low densities (Jin et al., 2016b). Some have also considered the case of “fast diffusion” (r < 0) where cells become

increasingly motile as the density decreases (King and McCabe, 2003).

For certain special choices of boundary conditions and initial conditions, the Fisher–KPP, Porous Fisher and Gener-

alised Porous Fisher models are known to have travelling wave solutions. These solutions are of general mathematical

interest and have been extensively studied (Harris, 2004; Witelski, 1995). However, since travelling waves only occur

as in the long-time limit and require rather special initial conditions, travelling waves are rarely observed experimen-

tally (Jin et al., 2016b; Vittadello et al., 2018). Therefore, we do not consider connecting any kind of travelling wave

solutions with experimental data in this work.

Different values of r also result in qualitatively different wave fronts (Murray, 2002). Figure 2(c), (g), (k) and (o)

compares the evolution of the Generalised Porous Fisher model in one spatial dimension for initial and boundary con-

ditions known to lead to travelling waves; parameters are selected to correspond to similar wave speeds. The travelling

wave of the Fisher–KPP model (Figure 2(c)) has no distinct leading edge, since C(x, t)> 0 for all x. However, the Porous

Fisher model (Figure 2(k)) exhibits a distinct interface, sometimes called the contact point, separating regions of zero

and non-zero density. This is the case for any r > 0. The shape of the wave front also changes with r. In particular, the

wave front is concave upward in Figure 2(a)–(h) and concave downward in Figure 2(i)–(p). This concavity change can
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be analysed using the exact solution to the Generalised Porous Fisher model (Equation (6)) when λ = 0 and the initial

density is a Dirac delta function. This exact solution (Figure 2(a), (e), (i) and (m)) can be used to show that the wave

front is concave upward for r < 1 and concave downward for r ≥ 1 (see Appendix A and Murray (2002)). Aside from

this exact solution (Figure 2(a), (e), (i) and (m)), all solutions in Figure 2 are computed numerically (see Appendix B

for details on the numerical scheme that includes the spatial and temporal step sizes used throughout this work).
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Fig. 2 Evolution of the solution of the Generalised Porous Fisher equation (solid blue) for various parameter values and initial conditions. The various initial conditions are shown (solid black). Arrows indicate the

direction of increasing t and profiles are shown at regular time intervals. Each row highlights the role of the exponent r: (a)–(d) r = 0; (e)–(h) r = 1/2; (i)–(l) r = 1; and (m)–(p) r = 2. Each column corresponds to a

different initial conditions: (a), (e), (i) and (m) show the exact solution to the diffusion only problem with a delta function initial condition and λ = 0 shown at 24-hour time intervals; (b), (f), (j) and (n) show the solution

of the diffusion-only problem for a spatially-extended initial condition, λ = 0 shown at 24-hour time intervals; (c), (g), (k) and (o) show the same initial condition and time intervals, but with logistic proliferation with

proliferation rate λ > 0 and carrying capacity density K (dashed black); (d), (h), (l) and (p) show a simplified, but typical, wound healing configuration shown at 12-hour time intervals.
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As stated previously, formal travelling wave solutions are almost never observed experimentally. Typical scratch

assays initial configurations lead to two opposingly-directed fronts, such as the profiles in Figure 2(d), (h), (l) and (p)

showing the evolution of the Generalised Porous Fisher model for several values of r. Note that, for typical scratch

widths, wound closure takes place before travelling waves have an opportunity to form (Jin et al., 2016b; Vittadello

et al., 2018). However, the value of r still impacts the wound closure rate and the shape of the moving font.

3.2 Model comparison

Traditional approaches to model calibration are usually based on regression (Johnson and Omland, 2004). Suppose

we have data that consists of n experimental observations, D =
{

Y (1)
obs ,Y

(2)
obs , . . . ,Y

(n)
obs

}
and a mathematical model,

y = M(x;θ), parameterised by θ ∈ Θ, where Θ is a k-dimensional space of valid parameter combinations. The

model makes predictions, P(θ) =
{

y(θ)(1),y(θ)(2), . . . ,y(θ)(n)
}

, with y(θ)(i) = M(x(i);θ) for i = 1,2, . . . ,n where

x(1),x(2), . . . ,x(n) are model inputs; for example, a model input may include initial conditions, boundary conditions, or

the spatiotemporal position of model predictions. The regression parameters, θ̂, are obtained through minimisation of

the residual error, that is,

θ̂ = argmin
θ∈Θ

E(θ), (7)

where E(θ) is the residual error,

E(θ) =
n

∑
i=1

(
y(θ)(i)−Y (i)

obs

)2
.

In Equation (7), θ̂ corresponds to the MLE under the assumption of Gaussian observational error. Non-linear mathemat-

ical optimisation techniques are applied to obtain numerical solutions to Equation (7). One of the limitations of the MLE

is that only a point estimate of the parameters is obtained, although bootstrapping may be applied to obtain confidence

intervals (Gelman et al., 2004). While this can be sufficient, without more effective handling of uncertainty in modelling

assumptions or experimental setup, the estimate can be biologically unrealistic (Slezak et al., 2010).

Based on detailed density data from a scratch assay (Figure 3(a)), it is unclear whether linear or nonlinear diffusion

is most relevant. Sherratt and Murray (Sherratt and Murray, 1990) find that linear Fickian diffusion (r = 0) with chem-

ically regulated proliferation provided a lower residual error than non-linear diffusion (with r = 4) using mammalian

epidermal wound closure data. However, Sherratt and Murray (1990) never considered varying the initial cell density in

the experiments or model simulations. Through multiple model calibrations using data with a range of initial densities,

Jin et al. (2016b) demonstrates that estimates of D0 are not constant under changes in initial cell density, suggesting that

the diffusion of PC-3 prostate cancer cells is density dependent.

The work of Jin et al. (2016b) highlights the need to calibrate models over multiple datasets to effectively compare

them. Figure 3(b) and (c) show scratch assay density profiles measured at 12-hour intervals superimposed on plots of

the solutions of the Fisher–KPP model and the Porous Fisher model using the parameter estimates reported by Jin et al.

(2016b). They used mathematical optimisation (Jin et al., 2016b) to find the MLE for the parameters, θ = {D0,λ},

assuming K is fixed at a value that they estimate independently using only regions far from the scratch area at late time,

t = 48 [h], so that the packing density they observed was close to the maximum possible packing density. Results in

Figure 3 show that both models fit the data well. The minimised residual error, E(θ̂), respectively, is E(θ̂) = 2.48×10−6

for the Fisher–KPP model, and E(θ̂) = 2.58×10−6 for the Porous Fisher model. If model selection were to be based on
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Fig. 3 Calibration of the (b) Fisher–KPP, (c) Porous Fisher, and (d) Generalised Porous Fisher models against (a) PC-3 scratch assay data

seeded with 20,000 cells (as obtained by Jin et al. (2016b)). (a)–(d) The experimental data are shown at times t = 0 [h] (black circles), t = 12

[h] (green circles), t = 24 [h] (orange circles), t = 36 [h] (light blue circles), and t = 48 [h] (magenta circles); (a) linear interpolation of data

are also shown. The obtained MLE parameter estimates are: (b) D0 = 1030 [µm2/h], λ = 6.4× 10−2 [1/h] for the Fisher–KPP model; (c)

D0 = 2900 [µm2/h], λ = 6.4×10−2 [1/h] for the Porous Fisher model; and (d) D0 = 2160 [µm2/h], λ = 5.8×10−2 [1/h], r = 5.2×10−1 for

the Generalised Porous Fisher model. The carrying capacity density is K = 1.7×10−3 [cells/µm2], determined using cell densities at t = 48

[h] within 200 [µm] from the left and right boundaries. The initial density profile (solid black) is determined through linear interpolation of

the data at time t = 0 [h].

the minimum residual error, the conclusion would be that the Fisher–KPP model explains the data the best, even if by

a small margin. However, we will show that this is an overly simplistic conclusion in this case. Since the Fisher–KPP

model (Equation (4)) and the Porous Fisher model (Equation (5)) are both special cases of the Generalised Porous Fisher

model (Equation (6)), the Generalised Porous Fisher model cannot have a higher residual error than either of the two

special cases. For example, the calibrated Generalised Porous Fisher model, shown in Figure 3(d), has a residual error of
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E(θ̂) = 2.47×10−6. However, we demonstrate that decreased residual error comes at a cost that is totally obscured by

taking this standard approach to model selection. As we show, the trade off between model fitness and model complexity

can be made very clear using Bayesian techniques.

It should be noted that there are other mechanisms that could be added to enhance the data fit. For example, diffusion

of growth factors and/or chemotaxis mechanisms could be included in the suite of potential models that we apply to the

experimental data (Bianchi et al., 2016; Nardini et al., 2016; Sherratt and Murray, 1990). Just as with the Generalised

Porous Fisher model, this always leads to extra parameters that will enable the model to fit the data better. We suggest this

improvement is meaningless without carefully considering the uncertainty in the parameter estimates and the increased

model complexity, and we will provide further discussion on this point in the Conclusions section.

4 A Bayesian framework for model comparison

In this section, we analyse the PC-3 scratch assay density profiles from a Bayesian perspective. We demonstrate that,

despite the MLE approach giving preference to the standard Fisher–KPP model, there are other reasons to consider the

Porous Fisher model as preferable in this case. This demonstration indicates that it is of benefit to include Bayesian

uncertainty quantification as a standard technique for model calibration and validation in biological applications.

4.1 Fundamentals of Bayesian analysis

The Bayesian approach is to consider unknown model parameters as random variables with their respective probability

distributions representing what is known about the parameters (Efron, 1986; Gelman et al., 2014; Lambert et al., 2018).

The conditional probabilities of the parameters given experimental observations represent the new knowledge obtained

from an experiment under the assumption of a given model.

Mathematically, this is expressed though Bayes’ Theorem (Gelman et al., 2014),

p(θ |D) =
L (θ;D)p(θ)

p(D)
, (8)

where θ is the vector of unknown parameters that exist in some parameter space, Θ, and D is the set of observa-

tions within some space of possible outcomes, D. The prior probability density, p(θ), represents any a priori knowl-

edge preceding observations, the likelihood, L (θ;D), is the probability density of the observations, D , and p(θ | D)

is the resulting posterior probability density representing new knowledge of the parameters after including observa-

tions. The evidence, p(D), is a probability density function (PDF) for the observations over all parameters, that is,

p(D) =
∫
Θ

L (θ;D)p(θ)dθ; from a practical perspective, the evidence is a normalisation constant.

Conceptually, the prior and the likelihood encode assumptions; the former is related to assumed knowledge of

parameters and the latter to the underlying mathematical model. One criticism of the Bayesian approach is that the

requirement of a prior leads to subjectivity since a strict “zero-information” test cannot be formally defined (Efron,

1986). On the other hand, the Bayesian approach is capable of dealing with arbitrarily complex models and priors, thus

providing a very general and consistent analysis framework (Efron, 1986).
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The Bayesian posterior PDF provides a natural way to describe uncertainty in parameter estimates. In this context,

the uncertainty in the ith parameter estimate, θi, is defined as the variance of θi with respect to the posterior distribution,

where

V [θi] =
∫
Θ
(θi−E [θi])

2 p(θ |D)dθ, (9)

and

E [θi] =
∫
Θ

θi p(θ |D)dθ.

Bayesian methods have been shown to be highly effective at informing experimental design and parameter infer-

ence (Browning et al., 2017; Johnston et al., 2016; Lambert et al., 2018; Silk et al., 2014; Vanlier et al., 2012; Warne

et al., 2017). Through the Bayesian formulation, experiments can be designed so as to minimise the level of uncertainty

in estimates of a given parameter set. Furthermore, routine experimental protocols can be analysed to identify areas for

potential improvement (Warne et al., 2017).

4.2 Scratch assay data informs continuum model comparison

To interpret scratch assay data we let Cobs(x, t) be the observed cell density at position x (in the one-dimensional profile)

and time t. We assume that observations are subject to additive noise,

Cobs(x, t) =C(x, t;θ)+η , (10)

where C(x, t;θ) is the true density as determined through the assumed continuum model with parameters, θ, as discussed

in Section 3, and η represents the combination of measurement error, systematic error and stochastic fluctuations. For

simplicity, we treat the error, η , as Gaussian noise with mean zero, and known variance σ2, that is, η ∼ N (0,σ2).

Furthermore, such an assumption ensures that our likelihood formulation corresponds to the likelihood implied by the

MLE interpretation of the non-linear regression approach to model calibration (Equation (7)). However, it should be

noted that the Bayesian techniques we apply here do not require this assumption, nor is it a requirement that σ be

known.

We also specify, for ease of description, that Cobs(x,0) = C(x,0;θ), that is, perfect observation is possible for the

initial condition. This is a reasonable and realistic assumption to make. However, it should be noted that our framework

can be extended to deal with cases of observation error in the initial conditions. The treatment of noise in the initial

condition observation error is an interesting point for discussion, so we provide further results and details in Appendix D.

Importantly, parameter uncertainty is amplified in this case. See also Jin et al. (2016b) and Warne et al. (2017) for further

details.

Processed scratch assay data are of the form, D = C1:N,1:M
obs , where C1:N,1:M

obs is an N×M matrix with elements that

are observations, as given by Equation (10), at NM position-time pairs taken from the Cartesian product of N spatial

points x1,x2, . . . ,xN with M temporal points t1, t2, . . . , tM . That is,

C1:N,1:M
obs =


Cobs(x1, t1) Cobs(x2, t1) · · · Cobs(xN , t1)

Cobs(x1, t2) Cobs(x2, t2) · · · Cobs(xN , t2)
...

...
. . .

...

Cobs(x1, tM) Cobs(x2, tM) · · · Cobs(xN , tM)

 . (11)
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The PC-3 cell line scratch assay datasets, described in Section 2, are derived from microscopy images that are taken

at times t1 = 0 [h], t2 = 12 [h], t3 = 24 [h], t4 = 36 [h], and t5 = 48 [h]. Densities are computed, for each point in time,

using rectangular areas with centerlines at x1 = 25,x2 = 75,x3 = 125, . . . ,x38 = 1925 [µm]. That is, N = 38 and M = 5.

These derived data are provided by Jin et al. (2016b), and are more detailed that the data used by Maini et al. (2004)

and Sherratt and Murray (1990). However, the data used by Maini et al. (2004) and Sherratt and Murray (1990) are still

more detailed than many studies in which microscopy images alone, without any quantitative measurements of density

or spatial position, are used to illustrate the outcomes of a scratch assay.

First, we consider the Fisher–KPP (Equation (4)) and Porous Fisher models (Equation (5)). The task is to construct a

Bayesian posterior PDF for the parameters θ = [D0,λ ,K] given each of the initial conditions and under the assumption

of each model. The resulting posterior PDFs may be compared visually to get intuition on the appropriateness of each

model given the PC-3 data. Most analyses of cell motility and proliferation assume the carrying capacity density K is

a known parameter (Warne et al., 2017), however, this is usually an approximation that is required due to short assay

timescales (Warne et al., 2017). In the case of the data of Jin et al. (2016b), K is more appropriately considered as

unknown since the data captures more of the long-time effects of contact inhibition (Sarapata and de Pillis, 2014; Warne

et al., 2017).

To keep subjective bias to a minimum, the aim is to assume as little as possible within the prior distributions, that is

we wish them to be uninformative. To this end, we select uniform prior distributions for each of the three parameters such

that the support extends well beyond biologically viable ranges. In the literature, typical ranges for each parameter are:

D0 = 155–6500[µm2/h]; λ = 0.01–0.07[1/h]; and K = 1.5×10−3–2.0×10−3[cells/µm2] (Browning et al., 2017; Maini

et al., 2004; Jin et al., 2016b). Therefore, we assume as priors D0 ∼U (0,Dmax), λ ∼U (0,λmax), and K ∼ U (0,Kmax)

where Dmax = 105 [µm2/h], λmax = 1 [1/h] and Kmax = 7×10−3 [cells/µm2]. As a joint PDF, we have

p(D0,λ ,K) = p(D0)p(λ )p(K), (12)

where

p(D0) =


1

Dmax
, if D0 ∈ [0,Dmax],

0, otherwise,
(13)

p(λ ) =


1

λmax
, if λ ∈ [0,λmax],

0, otherwise,
(14)

p(K) =


1

Kmax
, if K ∈ [0,Kmax],

0, otherwise.
(15)

It is important to note, however, that uniform priors are not always uninformative and care must be taken (Efron, 1986).

Under the aforementioned assumption of independent Gaussian observation error on the data (Equation (10) and

Equation (11)), the likelihood function is

L (C1:N,1:M
obs ;D0,λ ,K) =

1
(σ
√

2π)NM

N

∏
i=1

M

∏
j=1

exp
(
−
(Cobs(xi, t j)−C(xi, t j;D0,λ ,K))2

2σ2

)
, (16)

where C(xi, t j;D0,λ ,K) is the solution of the continuum model of interest, computed numerically (see Appendix B) at

point xi and time t j, given values for D0, λ and K. The model will be either the Fisher–KPP model (Equation (4)) or
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Porous Fisher model (Equation (5)). The observation error is such that σ ≈ 10−5 (cells/µm2), as obtained from previous

studies (Jin et al., 2016b; Warne et al., 2017). Comparing the non-linear regression problem in Equation (7) with this

likelihood (Equation (16)) reveals that the MLE parameter set in Equation (7) corresponds to the mode of the likelihood

as a function of the parameter vector, θ = [D0,λ ,K].

Substitution of the prior PDF (Equation (12)) and the likelihood (Equation (16)) into the right-hand side of Bayes’

Theorem (Equation (8)) yields the posterior PDF,

p(D0,λ ,K | C1:N,1:M
obs ) =

L (C1:N,1:M
obs ;D0,λ ,K)∫ Dmax

0
∫

λmax
0

∫ Kmax
0 L (C1:N,1:M

obs ;D0,λ ,K)dK dλ dD0
, (17)

when [D0,λ ,K] ∈ [0,Dmax]× [0,λmax]× [0,Kmax], otherwise p(D0,λ ,K | C1:N,1:M
obs ) = 0. From Equation (17), we can

construct the posterior marginal PDFs,

p(D0 | C1:N,1:M
obs ) =

∫∫
R2

p(D0,λ ,K | C1:N,1:M
obs )dK dλ ,

p(λ | C1:N,1:M
obs ) =

∫∫
R2

p(D0,λ ,K | C1:N,1:M
obs )dK dD0,

p(K | C1:N,1:M
obs ) =

∫∫
R2

p(D0,λ ,K | C1:N,1:M
obs )dλ dD0.

The posterior marginal PDFs represent the uncertainty in a single parameter taken over all possibilities of the remaining

parameters. The integrals are best computed using Monte Carlo integration. Specifically, we apply approximate Bayesian

computation (ABC) rejection sampling (Sunnåker et al., 2013) to obtain samples from the joint posterior density, then

apply Monte Carlo integration with kernel smoothing to estimate the posterior marginal densities (Silverman, 1986).

We leave the computational details to Appendix C, however, it is important to note that, for deterministic models with

additive noise, the ABC rejection sampler can be shown to be a exact (Wilkinson, 2013).

We compare the posterior marginal PDFs obtained under the assumption of the Fisher–KPP model (Equation (4)),

conditioned on data as given in Equation (11), against those obtained under the assumption of the Porous Fisher model

(Equation (5)). Posterior marginal PDFs are computed using ABC rejection sampling to generate n = 50,000 samples

from the joint posterior distribution as described in Appendix C. The results are presented in Figure 4. Leaving more

quantitative analysis for Section 5, we discuss here the qualitative aspects that are essential for, not only model selection

and comparison, but also experimental design.

The first point of interest is the trade-off between uncertainty in the proliferation rate, λ , and the carrying capacity

density, K. The uncertainty in λ increases as the initial cell density increases (Figure 4(b) and (e)), however, the reverse

is true for the uncertainty in K (Figure 4(c) and (f)). This behaviour is observed regardless of whether the Fisher–KPP

model (Figure 4(a)–(c)) or the Porous Fisher model (Figure 4(d)–(f)) is assumed. Further insight is obtained through the

posterior correlation coefficient matrix (see Appendix D, Table D.4), as λ and K are negatively correlated for all initial

densities. This result is consistent with the results of Warne et al. (2017) and demonstrates that different experimental

designs may be required to target different parameters. Lower initial densities result in data that only captures transient

dynamics which maximises information related to λ . On the other hand, higher initial densities enable more precise

estimation of limiting dynamics, that is, the effect of K can be observed. This feature would be difficult to elicit using

traditional MLE-based methods.

The modes of the posterior marginal PDFs for λ and K are in agreement across both models (Figure 4(b)–(c) and

(e)–(f)). However, the Porous Fisher model leads to lower uncertainty than the Fisher–KPP model in both of these
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Fig. 4 Marginal posterior probability densities obtained through Bayesian inference on the PC-3 scratch assay data under the (a)–(c) Fisher–

KPP model and (d)–(f) Porous Fisher model. The spread in marginal densities demonstrate the degree of uncertainty in the diffusivity, D0,

the proliferation rate, λ , and the carrying capacity, K, for each model under the three different initial conditions; 12,000 cells (solid green),

16,000 cells (solid orange), 20,000 cells (solid purple).

parameters, regardless of initial density. This indicates that the uncertainty in the diffusion parameter, D0, has more of

an impact on the other parameters under the Fisher–KPP model.

Comparing the posterior marginal PDFs for D0 requires some care. An initial inspection reveals the uncertainty in D0

looks significantly larger in the Porous Fisher model (Figure 4(a)) compared with the Fisher–KPP model (Figure 4(d)).

However, the role of D0 in the density dependent diffusion of the Porous Fisher model (Equation (5)) is not the same

as that in the Fickian diffusion of the Fisher–KPP model (Equation (4)). In the Fisher–KPP model, D0 is a constant cell

diffusivity whereas in the Porous Fisher model D0 is the maximum diffusivity. Perhaps it would be more appropriate to

give these two quantities different variables to make this point of distinction clear. Here, however, we have chosen to

use the same variable to denote both quantities to be consistent with previous literature Jin et al. (2016b).

The most important aspect for the purposes of model comparison is the qualitative change in the diffusion parameter,

D0, for different initial densities. For the Fisher–KPP model, not only does the uncertainty in D0 increase as the initial

density increases, the mode also increases: D0 = 305.3 [µm2/h] for low initial density; D0 = 850.9 [µm2/h] for medium

initial density; and D0 = 1371.4 [µm2/h] for high initial density (Figure 4(a)). This is a clear indication that D0 depends

on cell density, and this observation directly contradicts the implicit assumption made in invoking the Fisher–KPP model

which treats D0 as a constant. This analysis would indicate that PC-3 cells exhibit density dependent motility where the

diffusivity increases with the density. In contrast, the posterior marginal PDFs of D0 under the Porous Fisher model are

very similar across initial densities (Figure 4(d)). Furthermore, the variance is consistent across all three initial densities

considered. These results are in agreement with the observations of Jin et al. (2016b) who use the MLE to show that

the Fisher–KPP model is inconsistent with the data. However, our Bayesian approach provides more detail through the

reconstruction of the posterior PDF. Despite the fact that MLE model comparison selects the Fisher–KPP model as the

preferred model, direct visualisation of the parameter uncertainty indicates otherwise.
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4.3 Inference on the Generalised Porous Fisher model

The model comparison analysis performed in Section 4.2 is naturally extended by encoding model comparison as a

single Bayesian inference problem applied to the Generalised Porous Fisher model (Equation (6)) with the exponent in

the non-linear diffusion term, r, treated as an unknown parameter. This is essentially model comparison of a continuous

population of models. This is another advantage of the Bayesian approach: model uncertainty can be treated identically

to parameter uncertainty (Sunnåker et al., 2013).

The inference problem must now be slightly modified based on Section 4.2. The prior PDF becomes

p(D0,λ ,K,r) = p(D0)p(λ )p(K)p(r), (18)

where

p(r) =


1

rmax− rmin
, if r ∈ [rmin,rmax],

0, otherwise.
(19)

That is, r∼U (rmin,rmax). Equation (13), Equation (14) and Equation (15), respectively, specify p(D0), p(λ ) and p(K).

The limits that should be placed on r are unclear since r is has no physical interpretation and various values of r are used

with little justification (Murray, 2002; Sherratt and Murray, 1990; Simpson et al., 2011). Since the most common values

used in applications are r = 0 and r = 1, with the maximum known value used being r = 4, we take rmax = 8 so that

we conservatively consider twice the largest value used in the mathematical biology literature. We also set rmin =−1 to

allow for the possibility of r < 0, resulting in, so-called, “fast nonlinear diffusion” which is also thought to have some

relevance to biological and ecological applications (King and McCabe, 2003).

Using the same assumptions for observation error as given in Section 4.2, the resulting likelihood is

L (C1:N,1:M
obs ;D0,λ ,K,r) =

1
(σ
√

2π)NM

N

∏
i=1

M

∏
j=1

exp
(
−
(Cobs(xi, t j)−C(xi, t j;D0,λ ,K,r))2

2σ2

)
,

and the posterior PDF is

p(D0,λ ,K,r | C1:N,1:M
obs ) =

L (C1:N,1:M
obs ;D0,λ ,K,r)∫ Dmax

0
∫

λmax
0

∫ Kmax
0

∫ rmax
rmin

L (C1:N,1:M
obs ;D0,λ ,K,r)dr dK dλ dD0

, (20)

when [D0,λ ,K,r]∈ [0,Dmax]×[0,λmax]×[0,Kmax]×[rmin,rmax], otherwise p(D0,λ ,K,r |C1:N,1:M
obs )= 0. Here, C(xi, t j;D0,λ ,K,r)

is the numerical solution to the Generalised Porous Fisher equation, computed as per Appendix B. The posterior marginal

PDFs are

p(D0 | C1:N,1:M
obs ) =

∫∫∫
R3

p(D0,λ ,K,r | C1:N,1:M
obs )dr dK dλ ,

p(λ | C1:N,1:M
obs ) =

∫∫∫
R3

p(D0,λ ,K,r | C1:N,1:M
obs )dr dK dD0,

p(K | C1:N,1:M
obs ) =

∫∫∫
R3

p(D0,λ ,K,r | C1:N,1:M
obs )dr dλ dD0,

p(r | C1:N,1:M
obs ) =

∫∫∫
R3

p(D0,λ ,K,r | C1:N,1:M
obs )dK dλ dD0.

Computationally, low acceptance rates in the ABC rejection sampler render the technique ineffective for sampling this

posterior distribution (Equation (20)). As a result, we apply an ABC variant of a Markov chain Monte Carlo (MCMC)

sampler (Marjoram et al., 2003) (see Appendix C). While we find that the ABC MCMC sampler works well for this

problem, other advanced ABC-based Monte Carlo schemes are also possible, such as sequential Monte Carlo (Sisson
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et al., 2007) and multilevel Monte Carlo (Warne et al., 2018). Using the ABC MCMC sampler, the four parameter

posterior marginal PDFs derived from Equation (20) are estimated using the same data and observation error as in

Section 4.2. Results are presented in Figure 5.

Fig. 5 Marginal posterior probability densities obtained through Bayesian inference on the PC-3 scratch assay data under the Generalised

Porous Fisher model. The spread in marginal densities demonstrate the degree of uncertainty in the diffusivity, D0, the proliferation rate, λ ,

the carrying capacity, K, and the exponent of the non-linear diffusion, r, under the three different initial conditions; 12,000 cells (solid green),

16,000 cells (solid orange), 20,000 cells (solid purple).

The marginal posterior PDF for r, p(r |C1:N,1:M
obs ), displays (Figure 5(d)) an overall higher probability density around

r = 1 (corresponding to the Porous Fisher model) and very low probability density around r = 0 (corresponding to the

Fisher–KPP model). However, this analysis also shows that other values of r may be justifiable. The uncertainty in r

initially increases with increased initial density, but then decreases again with further increases in initial density. The

same pattern occurs for the mode, as it transitions from r ≈ 1 to r ≈ 2 then back to r ≈ 1.

The previously identified trade-off still exists between uncertainty in K and λ (Figure 5(b) and (c)) as the initial

density increases. However, there is a qualitative difference in the marginal posterior PDFs compared to those in Fig-

ure 4(b),(c),(e) and (f). There is less consistency in the estimates across initial conditions, especially with the mode of

λ apparently increasing as the initial density increases. For D0, almost no information is provided through the posterior

marginal PDF except for data with high initial cell densities. Further analysis of the multivariate posterior marginal

PDFs or the full joint posterior PDF would be required to obtain more information for this purpose. Such analysis is

significantly more complex, and it may still yield a large degree of uncertainty in D0. In Appendix D an analysis is per-

formed using bivariate marginal PDFs. It is clear the interactions between r and the other parameters are quite complex

(see Figure D.2). Furthermore, as seen in Table D.4, r and λ are positively correlated for low initial density, but nega-

tively correlated for high initial density; similarly, r and K are negatively correlated for low initial density, but positively

correlated for high initial density. This kind of behaviour is difficult to interpret biologically, and we conclude that it is

an artifact of using an overly complex model.
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We demonstrate that a full Bayesian approach can easily incorporate comparison of a population of models. How-

ever, significantly more detailed analysis is required to interpret the results. Conversely, comparison of two distinct

models though individual Bayesian inferences resulted in reasonable conclusions with minimal detailed analysis. A

generalised model will never provide an lower fit in MLE (Stoica and Selen, 2004), however, there must be a point

where the improved MLE is negligible (or non-existent) compared with the overall increase in uncertainty that must

come with the generalisation. This raises the question whether the increased information obtained through a generalised

model is worth the additional complexity.

5 Information criteria to balance model fit and complexity

In Sections 4.2 and 4.3, we observe that information gains from model generalisations may come at the cost of increased

complexity and parameter uncertainty. We demonstrate in Section 3 and 4.2 that the definition of a good model must be

based on more than the MLE alone. The theoretical underpinnings, explanatory power, biological feasibility, verifiability

and complexity of a model are all important factors to consider when performing model selection (Box, 1976; Jin et al.,

2016b; Sarapata and de Pillis, 2014; Slezak et al., 2010; Spiegelhalter et al., 2002). Overparameterised, complex models

may fit the data well, however, the principle of Occam’s razor dictates that a simple model should be preferred wherever

possible. In this section, we demonstrate the use of statistical measures, known as information criteria, that are designed

to deal with trade-off between complexity and model fit (Gelman et al., 2014; Johnson and Omland, 2004).

5.1 Information criteria

Information criteria can be considered as methods for the ranking of models. Of the wide variety of information criteria

available, many are based on rewarding models for lower residual error and penalising models for parameterisation (Gel-

man et al., 2014). Most information criteria are derived from decision theory and are based on the minimisation of some

measure of information loss (Gelman et al., 2014; Johnson and Omland, 2004; Stoica and Selen, 2004). The resulting

criteria, under suitable assumptions, are asymptotically proportional to information loss relative to an unknown true

model (Gelman et al., 2014). That is, the model with the lowest information criterion value has the lowest information

loss asymptotically. This is often taken to be a superior model from a decision theoretic perspective (Yang, 2005). How-

ever, caution must be taken when applying such measures because they are only guaranteed to inform correct decisions

in the large sample limit (Gelman et al., 2014).

The three most fundamental information criteria are considered here, each of which have district properties, advan-

tages and disadvantages. These information criteria have seen use in a limited set of biological applications (Johnson and

Omland, 2004), and we are unaware of any application of these measures in the study of collective cell migration. It is

important to note that there are many variants of the aforementioned criteria, however, we restrict ourselves the standard

formulations in this work; for further information, see Gelman et al. (2014). We compare and contrast the information

criteria results for the scratch assay data against the full Bayesian analysis performed in Section 4.
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5.2 The Akaike information criterion

Akaike (1974) was the first to propose a solution to the key problem with MLE-based approaches, that is, overparam-

eterised models will always be preferred (Akaike, 1974). Akaike considered the Kullback–Leibler (KL) information

measure (Gelman et al., 2014; Kullback and Leibler, 1951),

Hp(θ) = E
[

ln
(

ptrue(D)

p(D | θ)

)]
=
∫
D

ln
(

ptrue(D)

p(D | θ)

)
ptrue(D)dD , (21)

where ln(·) denotes the natural logarithm. The KL information measures the information loss, in the Shannon entropy

sense (Shannon, 1948), incurred by assuming a model, p(D | θ), of the data, D ∈ D, instead of the hypothetical true

model ptrue(D) 1. Therefore, given two candidate models, p(D | θ) and q(D | θ), comparing Hp(θ) and Hq(θ) would

reveal the model that minimises information loss. However, ptrue(D) is unknown, so it is not possible to evaluate Equa-

tion (21) in practice. By analysing an asymptotic expansion of the KL information about the true parameter set, Akaike

(1974) derives a penalty on the MLE based on the number of parameters that must be estimated. The result is the Akaike

information criterion (AIC),

AIC =−2ln
(
L̂ (θ;D)

)
+2k, (22)

where k is the dimensionality of θ and L̂ (θ;D) is the maximum likelihood estimate, that is,

L̂ (θ;D) = max
θ∈Θ

L (θ;D). (23)

Due to the penalty incurred by the number of model parameters, a more complex model must improve the agreement

with the data sufficiently to outperform a simpler model with an inferior maximum likelihood estimate. However, for

models with the same number of parameters, the AIC is equivalent to the maximum likelihood estimate. When models

have different numbers of parameters, the AIC favours simpler models. Unfortunately, the AIC is not an asymptotically

consistent estimator, that is, as n→∞, the AIC is not guaranteed to converge to a unique model (Yang, 2005). However,

the AIC will select the model with optimal residual error, since it may be viewed as the MLE with a bias correction to

compensate for overfitting (Yang, 2005).

5.3 The Bayesian information criterion

An alternative approach, the Bayesian information criterion (BIC), has different theoretical foundations (Schwarz, 1978).

Schwarz (1978) considered Bayes estimators instead of the KL information, thereby defining the model with the maxi-

mum a posteriori probability to be the optimal choice. The resulting BIC is,

BIC =−2ln
(
L̂ (θ;D)

)
+ k ln(n) , (24)

where k is the dimensionality of θ, n is the dimensionality of D and L̂ (θ;D) is the maximum likelihood estimate as

given in Equation (23). The BIC is a consistent approximation to the maximum a posteriori estimate (i.e., the mode of

the posterior PDF) and is independent of model priors provided k/n� 1. Compared with the AIC, the BIC attributes a

larger penalty for model complexity when n≥ 8, thus the BIC favours simplicity more than the AIC. The BIC also has

1 Many reject the notion that a true model exists (Box, 1976; Spiegelhalter et al., 2014). However, the concept is a useful one for the

purposes of deriving information criteria (Akaike, 1974; Spiegelhalter et al., 2002).
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the advantage of being consistent as n→∞. In addition, the BIC is asymtotically equivalent to the comparison of Bayes

factors, which are considered more correct by some (Pooley and Marion, 2018), however, others note that the usage of

Bayes factors assumes that the model prior covers the correct model (Gelman et al., 2004). The BIC, however, will not

always select the model with the optimal residual error compared with the AIC (Yang, 2005).

5.4 The deviance information criterion

The prevalence of Monte Carlo sampling in practical Bayesian applications was the motivation for Spiegelhalter et al.

(2002) to develop the deviance information criterion (DIC). The DIC has particular computational advantages for

MCMC sampling (Gelman et al., 2014; Spiegelhalter et al., 2002). Like the AIC, the DIC has its theoretical foun-

dation in minimsation of the KL information loss (Gelman et al., 2004). However, unlike the AIC and BIC, the DIC

does not require the maximum likelihood estimate to be computed, but is based on expectation calculations. As a result,

the DIC is ideal for Monte Carlo integration schemes (Gelman et al., 2014). The DIC is given by,

DIC = E [ f (θ)]+ peff, (25)

where f (·) is the deviance function,

f (θ) =−2ln(L (θ;D)) , (26)

and peff is the effective number of parameters,

peff = E [ f (θ)]− f (E [θ]). (27)

Importantly, the expectations are evaluated with respect to the posterior probability measure. The DIC is conceptually

quite different to the AIC and BIC. Firstly, the DIC uses an averaged likelihood rather than point estimates like the

AIC and BIC. Secondly, the DIC effective parameter term, peff, attempts to distinguish between information obtained

through the prior distribution rather than the data (Gelman et al., 2004).

Because the averaged likelihood is utilised, it can be considered more closely aligned with a Bayesian viewpoint that

aims to use information from the entire posterior distribution (Gelman et al., 2014). However, the use of the DIC as a

reliable information criterion has been debated in the literature, in particular there is concern that the DIC is inconsistent

with Bayes factors, that is, the DIC may fail to select the true model even if it is among the set of candidates (Pooley

and Marion, 2018; Spiegelhalter et al., 2014). However, due to simplicity of calculation via Monte Carlo integration and

applicability to hierarchical models, the DIC has been widely adopted for practical applications (Gelman et al., 2014;

Spiegelhalter et al., 2014).

5.5 Evaluation of continuum models using information criteria

We compute the AIC, BIC and DIC for the Fisher–KPP, Porous Fisher and Generalised Porous Fisher models given the

data derived from Jin et al. (2016b). The results are presented for each initial condition in Table 1.

Across all initial conditions, the BIC consistently selects the Porous Fisher model. The consistency of the BIC is

expected due to its theoretical basis of Bayes estimators (Schwarz, 1978; Spiegelhalter et al., 2014; Yang, 2005), that is,
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Table 1 Information criteria for initial conditions of 12,000 cells, 16,000 cells and 20,000 cells.

12,000 cells 16,000 cells 20,000 cells

Model DIC BIC AIC DIC BIC AIC DIC BIC AIC

Fisher–KPP -2386.08 -2377.06 -2386.13 -2367.03 -2358.00 -2367.07 -2268.60 -2259.54 -2268.61

Porous Fisher -2398.30 -2389.87 -2398.94 -2392.87 -2383.59 -2392.66 -2278.58 -2269.41 -2278.49

Generalised Porous Fisher -2399.07 -2387.92 -2400.01 -2390.88 -2378.84 -2390.93 -2279.36 -2267.59 -2279.69

if the true model was in the set of candidates, then BIC would asymptotically select that model. The BIC results are also

consistent with the full Bayesian analysis performed in Section 4.

The AIC and DIC are in very close agreement, preferring the Generalised Porous Fisher model for both low and

high density initial conditions (Table 1), but favouring the Porous Fisher Model for the intermediate initial density. The

agreement between the AIC and DIC is also expected theoretically since they are both derived from the KL information

loss. In fact, if E [ f (θ)] ≈ −2ln
(
L̂ (θ;D)

)
and peff ≈ k then Equation (22) and Equation (25) are approximately

equivalent. The results in Table 1 indicate these relationships likely hold in our case.

Overall, the information criteria provide clear indications that the Fisher–KPP model does not sufficiently describe

the collective behaviour of the PC-3 cells for any initial density. In Table 1 we see there is good agreement between the

rankings suggested by the AIC and DIC, and some disagreement in the ranking suggested by the BIC. However, the

improvement in the AIC and DIC for the Generalised Porous Fisher model over the Porous Fisher model is negligible

compared with the improvement in the AIC and DIC for the Porous Fisher model over Fisher–KPP model. Furthermore,

the BIC consistently selects the Porous Fisher model for each initial density. Therefore, we conclude that the Porous

Fisher model represents the best trade-off between model fit and complexity.

6 Discussion and outlook

We have demonstrated in Section 3 that traditional MLE methods of model calibration and model selection do not

provide a satisfactory method to compare continuum models of collective cell spreading and proliferation since MLE

methods favour overparameterised models. The Bayesian approach presented in Section 4 and the analysis using infor-

mation criteria that is presented in Section 5 provide a significantly more robust methodology to evaluate the ability

of continuum models to explain collective cell behaviour. This methodology has enabled us to present a clear example

of when model generalisation leads to less consistent and more uncertain parameter estimation. The Bayesian analysis

presented in Section 4 indicates that the Porous Fisher model provides the most consistent parameter estimates, and

information criteria demonstrated in Section 5 suggest that the Porous Fisher model represents the optimal trade-off

between model fit and complexity.

Information criteria provide an objective approach to model selection that take into account model fitness and com-

plexity. However, reducing model comparison down to a single scalar comparison is bound to disregard some important

aspects of the model comparison problem (Gelman et al., 2014; Spiegelhalter et al., 2014). On the other hand, Bayesian

posterior distributions provide a rich source of information. For example, the shifts in modes and support in the diffusion

parameter, D0, for both the Fisher–KPP model (Figure 4(a)) and Generalised Porous Fisher model (Figure 5(a)) are not

directly identifiable using information criteria. If an objective decision rule is required, then a clear understanding on
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the assumptions and asymptotic properties of the criterion used is essential. We conclude, along with Yang (2005), that

the BIC is most appropriate to select the best overall model, whereas the AIC and DIC are better suited if the goal is

prediction over a short time-scale. Bayes factors are another alternative, however, their results can be highly sensitive to

the choice of model prior distributions, especially when model parameters are continuous (Gelman et al., 2014; Pooley

and Marion, 2018).

The Bayesian approach we take in Section 4 is the most direct and intuitive approach to model selection. Model

inconsistency across data sets is apparent, through comparing marginal posterior PDFs for different datasets. Parameters

that the data provides little information about are also highlighted this way. Of course, there are many extensions to

the analysis that could be performed. The correlation structures of the full joint posterior PDF can elicit connections

between model parameters that cannot be identified from the marginal posterior PDFs alone. Visualisation of bivariate

marginal posterior PDFs are also useful to see more details on these interactions. We have provided extended results in

Appendix D that were excluded from the main manuscript for clarity in our key points: 1) increasing model complexity

increases uncertainty in parameter estimates; and 2) model consistency must be evaluated using multiple datasets with

different initial conditions.

Jin et al. (2016b) and Warne et al. (2017) highlight the importance of modelling the uncertainty in the initial density

of cell culture assays. In particular, Jin et al. (2016b) demonstrate that variability in the initial density is not negligible

across identically prepared replicates. Warne et al. (2017) show that this variation, if properly modelled as a random

variable, greatly impacts the uncertainty in the estimates of carrying capacity, K. We extend this analysis in the context

of the continuum models considered in this work and include results in Appendix D. The key result is that parameter

uncertainty is amplified in this more realistic, but rarely considered, case.

While we have primarily focused on model selection across different cell motility mechanisms, others have proposed

models including generalisations of the source term in Equation (1) (Browning et al., 2017; Jin et al., 2016a; Tsoularis

and Wallace, 2002), the inclusion of growth factors (Jin et al., 2016b; Sherratt and Murray, 1990), or chemotaxis (Bianchi

et al., 2016). Such extensions are of interest and should be the subject of future research. We do not specifically inves-

tigate these here, though our analysis can be repeated in such cases at an increased computational expense. However,

given the significant increase in parameter uncertainty incurred by the Generalised Porous Fisher model, that included

only a fourth parameter, it is highly likely that scratch assay data is insufficient to provide any model certainty for

these more complex extensions involving many more parameters. For example, as discussed by Johnston et al. (2015),

chemotaxis amounts to setting J(x, t) =−D(C(x, t))∇C(x, t)+χC(x, t)∇G(x, t) in Equation (1), leading to

∂C(x, t)
∂ t

=−∇ · [−D(C(x, t))∇C(x, t)+χC(x, t)∇G(x, t)]+λC(x, t)
(

1− C(x, t)
K

)
,

∂G(x, t)
∂ t

= Dg∇
2G(x, t)+ k1C(x, t)− k2G(x, t),

where χ is the chemotatic sensitivity coefficient, G(x, t)> 0 is the concentration of a diffusive chemical signal, Dg > 0

is the diffusivity of the chemical, k1 > 0 and k2 > 0 are kinetic rate parameters for chemical production (by cells) and

degradation, respectively. If χ < 0, then cells are repelled by the diffusive signal, and if χ > 0, then cells are attracted

to it. Therefore, we have a minimum of seven parameters, with θ = [D0,λ ,K,χ,Dg,k1,k2]. Furthermore, the model

includes a single chemical species only and a realistic model would need to account more many interacting chemical

factors. Standard experimental protocols of cell culture assays do not measure this information. Cell density data alone
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will not be sufficient to calibrate this model without significant levels of uncertainty. Increased number of parameters

impacts the convergence time of MCMC samples (Gelman et al., 2014).

We do not advocate against the validity or utility of more complex models of collective cell motility and prolifer-

ation. There are many biologically based rationales for including extra biophysical and biochemical factors in a given

model (Bianchi et al., 2016; Nardini et al., 2016). However, our results do indicate that current in vitro cell culture assay

data are not informative enough to distinguish between these models in practice, a point that is rarely discussed in the

literature. This work is intended to motivate more detailed, Bayesian model selection within the mathematical biology

community, and provide evidence that higher quality experimental methods and image analysis tools are required to

validate and compare the biological hypotheses of the future.

Our results have broad implications for the mathematical biology community. Specifically, if a complex model is

to be applied, then sufficient data must be collected in order to produce meaningful calibrations. Studies that compare

hypotheses should also take model complexity and parameter uncertainty into account when making conclusions. The

Bayesian framework, as presented here, provides tools that are designed to assist in these aspects. We suggest such

techniques should be widely adopted.

Acknowledgements This work is supported by the Australian Research Council (DP170100474). Ruth E. Baker is a Royal Society Wolfson

Research Merit Award holder and a Leverhulme Research Fellow, and also acknowledges the Biotechnology and Biological Sciences Research

Council for funding via grant no. BB/R000816/1. Computational resources were provide by the eResearch Office, Queensland University of

Technology.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 16, 2018. ; https://doi.org/10.1101/444679doi: bioRxiv preprint 

https://doi.org/10.1101/444679


26 D. J. Warne et al.

Appendix A Analysis of wave front concavity

The Generalised Porous Fisher model (Equation (6) in the main text) with λ = 0, in one dimension is

∂C
∂ t

=
∂

∂x

[
D0

(
C
K

)r
∂C
∂x

]
, −∞ < x < ∞, (A.1)

where D0 is the free diffusivity and K the cell carrying capacity density. For the initial condition C(x,0) =C0δ (x), Equation (A.1) has an exact

solution,

C(x, t) =


K

h(t)

[
1−
(

x
d0h(t)

)2
]1/r

, |x| ≤ d0h(t),

0, |x|> d0h(t),

where d0 =C0Γ (1/r+3/2)/(K
√

πΓ (1/r+1)), t0 = d2
0 r/(2D0(r+2)), h(t) = (t/t0)1/(r+2) and Γ (x) is the Gamma function. This solution,

often called the source solution for the porous media equation, has compact support, x ∈ [−d0h(t),d0h(t)]. Here, |x| = d0h(t) are the contact

points. This solution is very different to the source solution for the linear diffusion equation, r = 0, which is a Gaussian function without

compact support (Barenblatt, 2003; Crank, 1975).

Without loss of generality, we now only consider the positive real line x ≥ 0. The cell density is always decreasing as we approach the

contact point, that is, ∂C/∂x < 0 for 0 < x < d0h(t). Specifically, we have

∂C
∂x

=
−2Kx

d2
0 h(t)3r

[
1−
(

x
d0h(t)

)2
]1/r−1

. (A.2)

From Equation (A.2) three different front properties are possible. As x→ d0h(t) we observe: (i) a smooth front, for 0< r < 1, as in Figure 2(e)–

(h), with ∂C/∂x→ 0; (ii) a sharp front with finite negative slope, for r = 1, as in Figure 2(i)–(l), with ∂C/∂x→−2K/(d2
0 h(t)3); and (iii) a

sharp front with unbounded negative slope, for r > 1, as in Figure 2(m)–(p), with ∂C/∂x→−∞.

To explore the concavity of the density profile, C(x, t), at the contact point, it is sufficient to show explore how the sign of ∂ 2C/∂x2 at the

contact point depends on r. The second derivative with respect to x, for r > 0, is

∂ 2C
∂x2 =− 2K

d2
0 h(t)3r

[
1−
(

x
d0h(t)

)2
]1/r


[

1−
(

x
d0h(t)

)2
]−1

− 2x2(1− r)
d2

0 h(t)2r

[
1−
(

x
d0h(t)

)2
]−2

 .

We have, for 0 < r < 1, that ∂ 2C/∂x2 > 0 as x→ d0h(t). For r ≥ 1, ∂ 2C/∂x2 < 0 as x→ d0h(t). Hence, at the contact point, x = d0h(t), the

solution is concave down for r ≥ 1, and concave up otherwise.
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Appendix B Numerical scheme

Here we describe our numerical scheme for the computational solution to the following reaction–diffusion equation:

∂C
∂ t

=
∂

∂x

[
D(C)

∂C
∂x

]
+S(C), 0 < t < T, 0 < x < L, (B.1)

with initial condition,

C(x, t) =C0(x), t = 0,

and boundary conditions,
∂C
∂x

= 0, x = 0 and x = L.

Consider N points in space, {xi}N
i=1, with x1 = 0, xN = L and ∆x = xi+1− xi for all i = [1,2, . . . ,N]. Similarly, define M temporal points,

{t j}M
j=1, with t1 = 0, tM = T and ∆ t = t j+1− t j for all j = [1,2, . . . ,T ]. Next, define the notation, Ci+k =C(xi + k∆x, t), and C j+s

i+k = C(xi +

k∆x, t j + s∆ t).

Let J(C) =−D(C)∂C/∂x and substitute into Equation (B.1) to yield

∂C
∂ t

=− ∂J
∂x

+S(C).

At the ith point, apply a first order central difference to ∂J/∂x with step ∆x/2. The result is the system of ODEs

dCi

dt
=

1
∆x

[
J(Ci+1/2)− J(Ci−1/2)

]
+S(Ci), i = 1,2, . . .N. (B.2)

Similarly, a first order central difference is applied to J(Ci+1/2) and J(Ci−1/2) using the step ∆x/2 yields

J(Ci+1/2) =
1

∆x
D(Ci+1/2)(Ci+1−Ci) , (B.3)

J(Ci−1/2) =
1

∆x
D(Ci−1/2)(Ci−Ci−1) . (B.4)

It is important to note that we will only obtain a solution for Ci+k at integer values of k, therefore the evaluation of the diffusion terms in

Equation (B.3) and Equation (B.4) cannot be directly computed since k =±1/2. We thus approximate with a linear interpolation,

D(Ci+1/2) =
1
2
(D(Ci+1)+D(Ci)) , (B.5)

D(Ci−1/2) =
1
2
(D(Ci)+D(Ci−1)) . (B.6)

After substitution of Equation (B.3), Equation (B.4), Equation (B.5) and Equation (B.6) into Equation (B.2), we have the coupled system of

non-linear ODEs defined in terms of our spatial discretisation,

dCi

dt
=

1
2∆x2

[(
D(C j+1

i+1 )+D(C j+1
i )

)(
C j+1

i+1 −C j+1
i

)
−
(

D(C j+1
i )+D(C j+1

i−1 )
)(

C j+1
i −C j+1

i−1

)]
+S(C j+1

i ), i = 1,2, . . . ,N.

The no-flux boundaries are enforced using first order forward differences

C1−C0

∆x
= 0, and

CN+1−CN

∆x
= 0,

where C0 and CN+1 represent the solution at “ghost nodes” that are not a part of the domain.

The ODEs are discretised in time using a first order backward difference method leading to the backward-time, centered-space (BTCS)

scheme,

C j+1
1 −C j+1

0
∆x

= 0,

C j+1
i −C j

i
∆ t

=
1

2∆x2

[(
D(C j+1

i+1 )+D(C j+1
i )

)(
C j+1

i+1 −C j+1
i

)
(B.7)

−
(

D(C j+1
i )+D(C j+1

i−1 )
)(

C j+1
i −C j+1

i−1

)]
+S(C j+1

i ), i = 1, . . . ,N,

C j+1
N+1−C j+1

N

∆x
= 0.
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While this scheme is first order in time and space, it has the advantage of unconditional stability.

Since the scheme is implicit, a non-linear root finding solver is required to compute solution at t j+1 given a previously computed

solution at time t j . To achieve this we apply fixed-point iteration. We re-arrange the system to be of the form C j+1 = G(Cj+1) where

C j+1 =
[
C j+1

0 ,C j+1
1 , . . . ,C j+1

N+1

]T
. That is,

G(C j+1) =
[
g0(C j+1),g1(C j+1), . . . ,gN+1(C j+1)

]
,

where

g0(C j+1) =C j+1
1 ,

gi(C j+1) =C j
i +

∆ t
2∆x2

[(
D(C j+1

i+1 )+D(C j+1
i )

)(
C j+1

i+1 −C j+1
i

)
(B.8)

−
(

D(C j+1
i )+D(C j+1

i−1 )
)(

C j+1
i −C j+1

i−1

)]
+S(C j+1

i ), i = 1, . . . ,N,

gN+1(C j+1) =C j+1
N .

We then define the sequence {Xk}k≥0, generated through the non-linear recurrence relation Xk+1 = G(Xk) with X0 = C j . This sequence is

iterated until ‖Xk+1−Xk‖2 < τ , where τ is the error tolerance and ‖ · ‖2 is the Euclidean vector norm. Once the sequence has converged, we

set C j+1 = Xk+1 and continue to solve for the next time step.

For a given set of model parameters, the spatial and temporal step sizes, ∆x and ∆ t, need to be selected. In particular, the following

condition must hold to ensure accuracy, maxC∈[0,K] D(C)< ∆x2/∆ t. We then refine ∆x and ∆ t together to ensure solutions are independent of

the discretisation. Note that as r increases, higher values of D(C) become valid, therefore particular attention is required to generate Figure 5 in

the main text. The values of ∆x, ∆ t and τ used for the simulations in this work are shown in Table B.1. Note, that is all cases the discretisation

is more refined than required to solve the given problem accurately.

Table B.1 Discretisation and tolerance for numerical simulations.

Application ∆x [µm] ∆ t [h] τ

Example evolutions (Figure 2) 12.80 6.0×10−3 1.0×10−4

Inference on Fisher–KPP (Figure 4) 9.95 3.0×10−3 1.0×10−6

Inference on Porous Fisher (Figure 4) 9.95 1.5×10−3 1.0×10−6

Inference on Generalised Porous Fisher (Figure 5) 8.22 7.5×10−4 1.0×10−6
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Appendix C Computational inference

The Bayesian inference problems described in the main text all require the computation of the posterior PDF. Up to a normalisation constant,

the posterior PDF is given by

p(θ |D) ∝ L (θ;D)p(θ). (C.1)

If the posterior distribution can be sampled, the posterior PDF may be determined by using Monte Carlo integration. Thus, the main requirement

is a method of generating N independent, identically distributed (i.i.d.) samples from the posterior distribution.

For many applications of practical interest, Equation (C.1) cannot be used directly to generate the samples required since the likelihood is

often intractable. Approximate Bayesian computation (ABC) techniques resolve this complexity through the approximation (Sunnåker et al.,

2013)

p(θ | d(D ,Ds)< ε) ∝ P(d(D ,Ds)< ε | θ)p(θ), (C.2)

where d(D ,Ds) is a discrepancy metric between the true data, D , and simulated data, Ds ∼ L (θ;Ds) and ε is the discrepancy threshold.

ABC methods have the property that p(θ | d(D ,Ds)< ε)→ p(θ |D) as ε → 0. This leads directly to the ABC rejection sampling algorithm

(Algorithm C.1).For deterministic models, under the assumption of Gaussian observation errors, ε/σ � 1, and d(D ,Ds) taken as the sum of

the squared errors, it can be shown that ABC methods are equivalent to exact posterior sampling (Wilkinson, 2013).

Algorithm C.1 ABC rejection sampling
1: for i = 1, . . . ,N do

2: repeat

3: Sample prior, θ∗ ∼ p(θ).

4: Generate data, Ds ∼L (θ∗;Ds).

5: until d(D ,Ds)≤ ε

6: Set θi← θ∗.

7: end for

In some cases, the acceptance probability in Algorithm C.1 is computationally prohibitive for small ε . In such situations, an ABC extension

to Markov Chain Monte Carlo sampling may be applied (Marjoram et al., 2003). The resulting ABC MCMC sampling method (Algorithm C.2),

under reasonable conditions on the proposal kernel K(θi | θi−1), simulates a Markov Chain with p(θ | d(D ,Ds) < ε) (Equation (C.2)) as its

stationary distribution. It is essential to simulate the Markov Chain for a sufficiently long time such that the NT dependent samples are

effectively equivalent to the required N i.i.d. samples.

Algorithm C.2 ABC Markov chain Monte Carlo sampling
1: Given initial sample θ1 ∼ p(θ | d(D ,Ds)< ε).

2: for i = 2, . . . ,NT do

3: Sample transition kernel, θ∗ ∼ K(θ | θi−1).

4: Generate data, Ds ∼L (θ∗;Ds).

5: if d(D ,Ds)≤ ε then

6: Set h←min
(

p(θ∗)K(θi−1 | θ∗)/p(θi−1)K(θ∗ | θi−1),1
)
.

7: Sample uniform distribution, u∼U (0,1).

8: Set θi←

θ∗, u≤ h,

θi−1, u > h.
9: else

10: Set θi← θi−1.

11: end if

12: end for
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Using either ABC rejection sampling (Algorithm C.1) or ABC MCMC sampling (Algorithm C.2), we can apply Monte Carlo integra-

tion to compute the posterior PDF as given in Equation (C.2). For simplicity, we focus on the approximation of the jth marginal posterior

PDF (Silverman, 1986),

p(θ j |D)≈ 1
Nb

N

∑
i=1

K

θ j−θ
(i)
j

b

 , (C.3)

where θ j is the jth element of θ, θ
(i)
j are the jth elements of θ(i) i.i.d∼ p(θ |D), b is the smoothing parameter and K(x) is the smoothing kernel

with property
∫

∞

−∞

K(x)dx = 1.
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Appendix D Additional results

In this appendix, we present extended results that are excluded from the main text for brevity. We provide more detailed information on the

Bayesian analysis presented in Sections 4.2 and 4.3. Furthermore, we extend the Bayesian inference problem, as provided in Section 4.2, to

account for the treatment of uncertainty in the initial condition.

D.1 Joint posterior features

Here we report various descriptive statistics for the joint posterior PDFs computed in Section 4. For each posterior distribution we report the

posterior mode, the posterior mean, the variance/covariance matrix and the correlation coefficient matrix.

Given cell density data, D , a set of continuum model parameters, θ, in parameter space Θ⊆Rk with k > 0, and a model implied through a

likelihood function, L (θ;D), then summary statistics can be computed from the joint posterior, p(θ |D), to obtain estimates and uncertainties

on the true parameters. The maximum a posteriori (MAP) parameter estimate is the parameter set with the greatest posterior probability density

as given by the posterior mode,

θ̂mode = argmax
θ∈Θ

p(θ |D).

The posterior mean is the central tendency of the parameters,

θ̄ = E [θ] =
∫
Θ
θp(θ |D)dθ.

The variance/covariance, matrix Σ ∈Rk×k , provides information on the multivariate uncertainties, that is the spread of parameters. The (i, j)th

element of Σ , denoted by σi, j , is given by

σi, j = C
[
θi,θ j

]
= E

[
(θi−E

[
θ j
]
)(θ j−E [θi])

]
=
∫
Θ
(θi−E

[
θ j
]
)(θ j−E [θi])p(θ |D)dθ,

where θi and θ j are the ith and jth elements of θ. Note that C [θi,θi] =V [θi] and σi, j = σ j,i. Lastly, the correlation coefficient matrix R∈Rk×k

measures the linear dependence between parameter pairs. The (i, j)th element of R, denoted by ρi, j , is given by

ρi, j =
σi, j(

σi,i,σ j, j
)1/2 .

Note ρi,i = 1 for all i ∈ [1,k], and ρi, j = ρ j,i. The results of all these statistics, for the inference problems considered in the main text, are

presented in tables D.1, D.2, D.3, and D.4.

Table D.1 MAP parameter estimates (posterior modes) from posterior PDFs using initial conditions of 12,000 cells, 16,000 cells and 20,000

cells.

Inference problem MAP parameter estimate (posterior mode)

Model Initial condition D0 [µm2/h] λ [1/h] K [cells/µm2] r [−]

Fisher–KPP 12,000 325 3.05×10−2 1.85×10−3 -

Fisher–KPP 16,000 1,010 3.14×10−2 1.49×10−3 -

Fisher–KPP 20,000 1,354 3.56×10−2 1.65×10−3 -

Porous Fisher 12,000 3,425 3.17×10−2 2.58×10−3 -

Porous Fisher 16,000 3,134 3.77×10−2 1.56×10−3 -

Porous Fisher 20,000 4,933 5.32×10−2 1.69×10−3 -

Generalised Porous Fisher 12,000 7,857 2.66×10−2 1.01×10−2 1.37

Generalised Porous Fisher 16,000 90,234 2.43×10−2 7.18×10−3 1.58

Generalised Porous Fisher 20,000 11,990 3.46×10−2 2.10×10−3 1.65
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Table D.2 Joint posterior means for posterior PDFs using initial conditions of 12,000 cells, 16,000 cells and 20,000 cells.

Inference problem Joint posterior mean

Model Initial condition D0 [µm2/h] λ [1/h] K [cells/µm2] r [−]

Fisher–KPP 12,000 457 3.58×10−2 3.21×10−3 -

Fisher–KPP 16,000 847 4.29×10−2 2.20×10−3 -

Fisher–KPP 20,000 1,444 5.78×10−2 1.88×10−3 -

Porous Fisher 12,000 3,249 3.44×10−2 2.86×10−3 -

Porous Fisher 16,000 3,279 4.23×10−2 1.95×10−3 -

Porous Fisher 20,000 3,347 6.13×10−2 1.75×10−3 -

Generalised Porous Fisher 12,000 103,682 2.76×10−2 2.40×10−2 1.80

Generalised Porous Fisher 16,000 23,556 3.52×10−2 2.55×10−3 2.02

Generalised Porous Fisher 20,000 4,845 4.77×10−2 1.89×10−3 0.94
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Table D.3 Variance/covariance matricies for posterior PDFs using initial conditions of 12,000 cells, 16,000 cells and 20,000 cells.

Inference problem Variance/Covariance Matrix

Model Initial condition D0 λ K r

Fisher–KPP 12,000 D0 5.32×104 −5.60×10−1 8.68×10−2 -

λ −5.60×10−1 5.93×10−5 −8.22×10−6 -

K 8.68×10−2 −8.22×10−6 1.84×10−6 -

r - - - -

Fisher–KPP 16,000 D0 1.48×105 −3.26 1.57×10−1 -

λ −3.26 1.51×10−4 −6.93×10−6 -

K 1.57×10−1 −6.93×10−6 4.93×10−7 -

r - - - -

Fisher–KPP 20,000 D0 4.41×105 −1.23×101 1.47×10−1 -

λ −1.23×101 4.72×10−4 −5.44×10−6 -

K 1.47×10−1 −5.44×10−6 9.29×10−8 -

r - - - -

Porous Fisher 12,000 D0 1.14×106 −3.03 5.95×10−1 -

λ −3.03 1.48×10−5 −2.55×10−6 -

K 5.95×10−1 −2.55×10−6 5.90×10−7 -

r - - - -

Porous Fisher 16,000 D0 1.05×106 −5.71 2.29×10−1 -

λ −5.71 5.25×10−5 −1.96×10−6 -

K 2.29×10−1 −1.96×10−6 1.04×10−7 -

r - - - -

Porous Fisher 20,000 D0 1.14×106 −1.51×101 1.23×10−1 -

λ −1.51×101 2.61×10−4 −2.16×10−6 -

K 1.23×10−1 −2.16×10−6 2.89×10−8 -

r - - - -

Generalised Porous Fisher 12,000 D0 6.22×109 −1.15×102 6.24×102 6.46×103

λ −1.15×102 3.05×10−5 −6.53×10−5 4.87×10−3

K 6.24×102 −6.53×10−5 6.80×10−4 −1.45×10−2

r 6.46×103 4.87×10−3 −1.45×10−2 1.32

Generalised Porous Fisher 16,000 D0 3.20×108 −8.04×101 6.54 7.23×103

λ −8.04×101 8.55×10−5 −7.50×10−6 2.40×10−3

K 6.54 −7.50×10−6 1.12×10−6 −3.82×10−4

r 7.23×103 2.40×10−3 −3.82×10−4 7.72×10−1

Generalised Porous Fisher 20,000 D0 5.96×106 −1.54×101 1.87×10−1 8.97×102

λ −1.54×101 6.69×10−5 −8.99×10−7 −1.96×10−3

K 1.87×10−1 −8.99×10−7 1.46×10−8 2.04×10−5

r 8.97×102 −1.96×10−3 2.04×10−5 1.66×10−1
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Table D.4 Correlation coefficient matricies for posterior PDFs using initial conditions of 12,000 cells, 16,000 cells and 20,000 cells.

Inference problem Correlation coefficient Matrix

Model Initial condition D0 λ K r

Fisher–KPP 12,000 D0 1.00 −3.15×10−1 2.77×10−1 -

λ −3.15×10−1 1.00 −7.86×10−1 -

K 2.77×10−1 −7.86×10−1 1.00 -

r - - - -

Fisher–KPP 16,000 D0 1.00 −6.90×10−1 5.83×10−1 -

λ −6.90×10−1 1.00 −8.04×10−1 -

K 5.83×10−1 −8.04×10−1 1.00 -

r - - - -

Fisher–KPP 20,000 D0 1.00 −8.50×10−1 7.27×10−1 -

λ −8.50×10−1 1.00 −8.21×10−1 -

K 7.27×10−1 −8.21×10−1 1.00 -

r - - - -

Porous Fisher 12,000 D0 1.00 −7.36×10−1 7.25×10−1 -

λ −7.36×10−1 1.00 −8.61×10−1 -

K 7.25×10−1 −8.61×10−1 1.00 -

r - - - -

Porous Fisher 16,000 D0 1.00 −7.68×10−1 6.90×10−1 -

λ −7.68×10−1 1.00 −8.36×10−1 -

K 6.90×10−1 −8.36×10−1 1.00 -

r - - - -

Porous Fisher 20,000 D0 1.00 −8.76×10−1 6.80×10−1 -

λ −8.76×10−1 1.00 −7.87×10−1 -

K 6.80×10−1 −7.87×10−1 1.00 -

r - - - -

Generalised Porous Fisher 12,000 D0 1.00 −2.64×10−1 3.03×10−1 7.12×10−2

λ −2.64×10−1 1.00 −4.53×10−1 7.67×10−1

K 3.03×10−1 −4.53×10−1 1.00 −4.83×10−1

r 7.12×10−2 7.67×10−1 −4.83×10−1 1.00

Generalised Porous Fisher 16,000 D0 1.00 −4.86×10−1 3.45×10−1 4.60×10−1

λ −4.86×10−1 1.00 −7.65×10−1 2.96×10−1

K 3.45×10−1 −7.65×10−1 1.00 −4.10×10−1

r 4.60×10−1 2.96×10−1 −4.10×10−1 1.00

Generalised Porous Fisher 20,000 D0 1.00 −7.72×10−1 6.35×10−1 9.03×10−1

λ −7.72×10−1 1.00 −9.10×10−1 −5.88×10−1

K 6.35×10−1 −9.10×10−1 1.00 4.15×10−1

r 9.03×10−1 −5.88×10−1 4.15×10−1 1.00
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D.2 Bivariate marginal posterior PDFs

In the main text we computed only univariate marginal posterior PDFs, we extend this analysis by providing bivariate marginal PDFs here. For

the Fisher–KPP and Porous Fisher models we have three bivariate marginal posterior PDFs,

p(D0,λ | C1:N,1:M
obs ) =

∫
R

p(D0,λ ,K | C1:N,1:M
obs )dK,

p(λ ,K | C1:N,1:M
obs ) =

∫
R

p(D0,λ ,K | C1:N,1:M
obs )dD0,

p(D0,K | C1:N,1:M
obs ) =

∫
R

p(D0,λ ,K | C1:N,1:M
obs )dλ ,

where p(D0,λ ,K | C1:N,1:M
obs ) is as given in Equation (17). Similarly, for the Generalised Porous Fisher Model, we have six bivariate marginal

posterior PDFs,

p(D0,λ | C1:N,1:M
obs ) =

∫∫
R2

p(D0,λ ,K,r | C1:N,1:M
obs )dr dK,

p(D0,K | C1:N,1:M
obs ) =

∫∫
R2

p(D0,λ ,K,r | C1:N,1:M
obs )dr dλ ,

p(D0,r | C1:N,1:M
obs ) =

∫∫
R2

p(D0,λ ,K,r | C1:N,1:M
obs )dK dλ ,

p(λ ,K | C1:N,1:M
obs ) =

∫∫
R2

p(D0,λ ,K,r | C1:N,1:M
obs )dr dD0,

p(λ ,r | C1:N,1:M
obs ) =

∫∫
R2

p(D0,λ ,K,r | C1:N,1:M
obs )dK dD0,

p(K,r | C1:N,1:M
obs ) =

∫∫
R2

p(D0,λ ,K,r | C1:N,1:M
obs )dλ dD0.

The resulting PDFs using the three initial density conditions are shown for: the Fisher–KPP model (Figure D.2); the Porous Fisher model

(Figure D.2); and the Generalised Porous model (Figure D.2).
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Fig. D.1 Plot matrix of univariate and bivariate marginal posterior probability densities obtained through Bayesian inference on the PC-3

scratch assay data under the Fisher–KPP model for the three different initial conditions; 12,000 cells (solid green), 16,000 cells (solid orange),

20,000 cells (solid purple). Univariate marginal densities, on the main plot matrix diagonal, demonstrate the degree of uncertainty in the

diffusivity, D0, the proliferation rate, λ , and the carrying capacity, K. Off diagonals are contour plots of the pairwise bivariate posterior PDFs,

these demonstrate the relationships between parameters.
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Fig. D.2 Plot matrix of univariate and bivariate marginal posterior probability densities obtained through Bayesian inference on the PC-3

scratch assay data under the Porous Fisher model for the three different initial conditions; 12,000 cells (solid green), 16,000 cells (solid

orange), 20,000 cells (solid purple). Univariate marginal densities, on the main plot matrix diagonal, demonstrate the degree of uncertainty in

the diffusivity, D0, the proliferation rate, λ , and the carrying capacity, K. Off diagonals are contour plots of the pairwise bivariate posterior

PDFs, these demonstrate the relationships between parameters.
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Fig. D.3 Plot matrix of univariate and bivariate marginal posterior probability densities obtained through Bayesian inference on the PC-3

scratch assay data under the Porous Fisher model for the three different initial conditions; 12,000 cells (solid green), 16,000 cells (solid

orange), 20,000 cells (solid purple). Univariate marginal densities, on the main plot matrix diagonal, demonstrate the degree of uncertainty in

the diffusivity, D0, the proliferation rate, λ , the carrying capacity, K, and the power, r. Off diagonals are contour plots of the pairwise bivariate

posterior PDFs, these demonstrate the relationships between parameters.
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D.3 Uncertainty in initial condition

In the main text, the assumption was made that Cobs(x,0) = C(x,0;θ). That is, we use initial observations as the initial density profile to

simulate the model given parameters θ. Since the model is deterministic, the final form of the likelihood is a multivariate Gaussian distribution,

which simplifies calculations considerably. Both Jin et al. (2016b) and Warne et al. (2017) indicate that such an assumption could result in

underestimation of the uncertainties in parameter estimates.

Following from Warne et al. (2017), we take Cobs(x,0) = C(x,0;θ)+η0, where η0 is a Gaussian random variable with mean C(x,0;θ)

and variance σ2
0 . Note that we do not require σ0 = σ , in fact, there are many reasons to consider σ0 > σ . Since Cobs(x,0)∼N (C(x,0;θ),σ2

0 ),

it is also true that C(x,0;θ) ∼N (Cobs(x,0),σ2
0 ). Therefore, our models are to be treated as random PDEs with deterministic dynamics, but

random initial conditions.

Since the initial conditions are random, the initial condition is a latent variable that must be integrated out. Thus, the likelihood becomes

L (C1:N,1:M
obs ;θ) =

∫
RN

1
(σ
√

2π)NM

N

∏
i=1

M

∏
j=1

exp
(
−
(Cobs(xi, t j)−C(xi, t j;θ))2

2σ2

)
p(C(xi,0;θ) | σ0)dC(xi,0;θ),

where σ0 is assumed to be known and p(C(xi,0;θ) | σ0) is a Gaussian PDF with mean Cobs(xi,0) and variance σ0. This likelihood integral

must be computed using Monte Carlo methods. Computationally, we apply directly the ABC MCMC method as given in Algorithm C.2. The

only algorithmic difference being that simulated data, Ds, is generated though solving the model PDE after a realisation of the initial density

profile has been generated. Overall, this leads to slower convergence in the Markov chain and hence longer computation times.

The inference problem using random initial density profiles was solved using ABC MCMC under the Fisher–KPP model and the Porous

Fisher model for initial densities based on 16,000 initial cells only. We take σ0 = 2σ . Univariate and bivariate marginal posterior PDFs are

shown in Figures D.4 and D.5. In the Fisher–KPP model, the additional uncertainty seems to have a significant effect on the uncertainty in the

carrying capacity, K, in agreement with Warne et al. (2017). However, the diffusion coefficient, D0, and proliferation rate, λ , are not affected

as significantly.

For the Porous Fisher model, both D0 and K are greatly affected. This is not surprising, since motility is density dependent for the Porous

Fisher model. By contrast the Fisher–KPP model is almost unaffected in the marginal posterior PDF of D0, since it is independent of initial

cell density.
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Fig. D.4 Plot matrix of univariate and bivariate marginal posterior probability densities obtained through Bayesian inference on the PC-3

scratch assay data under the Fisher–KPP model for the fixed initial conditions (solid green) and random initial conditions (solid orange). Uni-

variate marginal densities, on the main plot matrix diagonal, demonstrate the degree of uncertainty in the diffusivity, D0, the proliferation rate,

λ , and the carrying capacity, K. Off diagonals are contour plots of the pairwise bivariate posterior PDFs, these demonstrate the relationships

between parameters.
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Fig. D.5 Plot matrix of univariate and bivariate marginal posterior probability densities obtained through Bayesian inference on the PC-3

scratch assay data under the Porous Fisher model for the fixed initial conditions (solid green) and random initial conditions (solid orange).

Univariate marginal densities, on the main plot matrix diagonal, demonstrate the degree of uncertainty in the diffusivity, D0, the prolifera-

tion rate, λ , and the carrying capacity, K. Off diagonals are contour plots of the pairwise bivariate posterior PDFs, these demonstrate the

relationships between parameters.
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