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Abstract

DNA methylation is measured using bisulfite sequencing (BS-seq). Bisulfite conversion can have low
e�ciency and a DNA sample is then processed multiple times generating DNA libraries with di↵erent
bisulfite conversion rates. Libraries with low conversion rates are excluded from analysis resulting in
reduced coverage and increased costs. We present a method and software, LuxRep, that accounts for
technical replicates from di↵erent bisulfite-converted DNA libraries. We show that including replicates
with low bisulfite conversion rates generates more accurate estimates of methylation levels and di↵eren-
tially methylated sites.
Availability: An implementation of the method is available at https://github.com/tare/LuxGLM/
tree/master/LuxRep
Contact: maia.malonzo@aalto.fi

1 Introduction

In the optimal case, the bisulfite conversion rate
of a DNA library is high (above 99%). However,
when an experiment yields a low conversion rate
the common lab practice is to exclude the DNA
library so as to avoid overestimation of methyla-
tion levels, resulting in additional costs or reduced
data depending on whether a replacement library
is prepared or not. An advanced computational ap-
proach to handle poor conversion rates would ren-
der exclusion of samples unnecessary. The methy-
lation analysis method LuxGLM (Äijö et al., 2016)
estimates methylation levels from bisulfite sequenc-
ing data using a probabilistic model that accounts
for bisulfite conversion rate. Though the previous
model was able to handle biological replicates with
a general linear model component, it assumed data
from each sample consisted of only a single bisulfite-
converted DNA library. In this work we propose
LuxRep, an improved method and software to allow
use of replicates from di↵erent DNA libraries with
varying bisulfite conversion rates. To make LuxRep
tool computationally e�cient and thus more appli-
cable to genome-wide analysis we also propose to
use variational inference.

2 Methods

We start by briefly reviewing the underlying sta-
tistical model (Äijö et al., 2016) and then intro-
duce our extension that can handle technical repli-
cates. Briefly, the conditional probability of a se-
quencing readout being “C” in BS-seq data is a
function of the experimental parameters that in-
clude sequencing error (seqerr) and bisulfite con-
version rate (BSe↵), and depends on the methy-

lation level ✓ 2 [0, 1]. If a read was generated
from an unmethylated cytosine (C), the conditional
probability pBS(“C”|C) is given by (1� BSe↵)(1�
seqerr) + BSe↵seqerr. The observed total number
of “C” readouts for a single cytosine is binomially
distributed, NBS,C ⇠ Bin(NBS, pBS(“C”)), where
NBS is the total number of reads and pBS(“C”) =
pBS(“C”|5mC)✓ + pBS(“C”|C)(1 � ✓). Finally,
LuxGLM uses a general linear model with ma-
trix normal distribution to handle covariates; see
(Äijö et al., 2016) for further details.

We extend the model to allow modelling of tech-
nical replicates wherein the methylation level ✓ is
the same for all di↵erent bisulfite-converted DNA
libraries from the same biological sample but the
experimental parameters (seqerr and BSe↵) vary. In
the modified model (Figs. 1a and S1a), NBS,C and
NBS represent the observed “C” and total counts,
respectively, from each of the Mi technical repli-
cates per biological sample i 2 {1, .., N}. Note that
the experimental parameters BSe↵ and seqerr are
sample and replicate-specific. See Supplementary
Materials for further details.

Äijö et al. (2016) used Hamiltonian Monte Carlo
(HMC) for model inference, whereas in variational
inference (VI) the posterior p(�|X) of a model is
approximated with a simpler distribution q(�; ⇢),
which is selected from a chosen family of distribu-
tions by minimizing divergence between p(�|X) and
q(�; ⇢). We use the automatic di↵erentiation varia-
tional inference algorithm (ADVI) from Kucukelbir
et al. (2015), which is integrated into Stan. ADVI
is used to generate samples from the approximative
posterior q(�; ⇢).

Our software consists of two modules: 1) es-
timation of experimental parameters from control
data, and 2) inference of methylation level and dif-
ferential methylation using the fixed experimental
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Figure 1: (a) Plate diagram of the LuxRep model for estimating methylation level of a single cytosine with
technical replicates. The circles represent latent (white) and observed (gray) variables and the unbordered
nodes represent constants. (b) Methylation levels estimated using the full and reduced LuxRep models with
varying methylation level ✓ with input data from one good (“G”) and two bad (“B”) replicates (for the full
model) and one “G” replicate (for the reduced model). Boxplots of posterior means from n = 100 indepen-
dent simulated data sets are shown. Number of reads was 12 for each replicate and model was estimated
using ADVI. (c) Comparison of running times using ADVI and HMC for model evaluation and including
post-processing of output files. Input data used described in (b). (d) Accuracy in identifying di↵erential
methylation using the full and reduced LuxRep models measured by AUROCs based on 200 positive (�✓ 6= 0)
and 200 negative (�✓ = 0) datasets. Two groups (1 and 2) with four biological replicates and each biological
replicate with technical replicates as described in (b) with varying methylation di↵erence and levels (✓1 in
top panel and ✓2 in x-axis).

parameters.

3 Results

We simulated technical replicates with low (BSe↵ =
0.9) and high (BSe↵ = 0.995) BS conversion rates
(BCRs) with varying sequencing depth NBS and
methylation level (✓ 2 [0.1, 0.9]). Two scenarios
were simulated consisting of three technical repli-
cates each: (i) two replicates with high BCR (i.e.
good samples, ‘G’) and one with low BCR (i.e. bad
sample, ‘B’), and (ii) one ‘G’ replicate and two ‘B’
replicates. Each scenario was analyzed using (i)
the full LuxRep model and (ii) a reduced model
with experimental parameters fixed to BSe↵ = 1,
seqerr = 0 and BS⇤

e↵ = 0, and using the “C” and
“T” counts from only the ‘G’ samples to simulate
the traditional approach of not accounting for ex-
perimental parameters. Results from estimating
the models with HMC and ADVI were also com-
pared.

The variance of the estimates using the full
model was generally lower across ✓ and NBS val-
ues (Figs. 1b and S2a) demonstrating the utility
of using LuxRep with replicates of varying BCRs.
The decrease in variance was generally greater with
the second scenario. Improvements in the estimates
were comparable when using HMC and ADVI (Fig.

S2a), with significant reduction in running times
with the latter (Fig. 1c).

To test the utility of LuxRep in determining
di↵erential methylation with replicates with low
BCRs the experimental setups described above
were extended to simulate two groups with four
biological samples each (with each biological sam-
ple consisting of the technical replicates) and where
the two groups had varying methylation di↵erence
�✓ (0.1, 0.2 and 0.3). The full LuxRep model was
more accurate at identifying di↵erential methyla-
tion than the reduced model as shown by the higher
area under the ROC curves (AUROCs) when us-
ing either ADVI (Fig. 1d) or HMC (Fig. S3). The
improvement in AUROCs is notable with smaller
di↵erential methylation (i.e. �✓ = 0.1). The in-
crease in AUROC was also more pronounced with
the second scenario.

To test the utility of LuxRep on an actual bisul-
fite sequencing dataset, methylation levels were es-
timated from an RRBS dataset consisting of two
individuals and three replicates each (two low and
one high BCR). The replicate with high BCR was
analyzed with the full model while the two low-
BCR replicates were analyzed with both the full
and reduced models. The di↵erence in the esti-
mated methylation levels (1000 CpG sites) between
the high-BCR replicate and the low-BCR replicates
using the full and reduced models were measured
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by taking their euclidean distance which showed
greater similarity when using the full model (in-
dividual 1: reduced - 2.55, full - 2.49; individual 2:
reduced - 2.29, full - 2.23).

4 Conclusions

LuxRep tool described in this paper allows techni-
cal replicates with varying bisulfite conversion ef-
ficiency to be included in the analysis. LuxRep
improves the accuracy of di↵erential methylation
analysis and lowers running time of model-based
DNA methylation analysis.
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1 LuxRep model

LuxRep is organised into two modules for estimating (1) experimental and (2)
biological parameters from DNA bisulfite sequencing data. For estimation of
biological parameters, LuxRep retains the general linear model component of
LuxGLM (see Fig. 1a in main text) where the variables Y, D, B and E refer
to, respectively, the unnormalized methylation fractions, design matrix, param-
eter matrix and noise. To emphasize the new features, the level for only one
methylation modification (methylcytosine, 5mC) is included in this work.

The data consists of N biological samples (i 2 {1, . . . , N}), each of which
has Mi technical replicates corresponding to di↵erent bisulfite-converted DNA
library preparations. Samples prepared for BS-seq are typically spiked-in with
unmethylated control DNA (often Lambda phage genome) that allows estima-
tion of bisulfite conversion e�ciency BSe↵ . The LuxGLM model (Äijö et al.,
2016) was modified to determine experimental parameters for each technical
replicate separately (shown as the “replicates” plate in the diagram in Fig.
S1a). The circles represent latent (white) and observed (gray) variables and the
squares/unbordered nodes represent fixed values (for parameters and hyperpa-
rameters).

Incorrect bisulfite conversion rate, BS⇤
e↵
, was set to a fixed value (0.1%) (in

LuxGLM it was estimated from control data) because genome scale bisulphite
sequencing typically do not include methylated cytosine control data.

To facilitate genome wide analysis, in our model implementation the exper-
imental parameters are first computed from the control data since all cytosines
per replicate have the same value for these parameters. Methylation levels
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are then determined individually for each cytosine, and di↵erential methylation
thereafter, using the pre-computed experimental parameters as fixed input.

2 Estimating experimental parameters

Dummy control cytosine data were generated using the model illustrated in Fig.
S1b. Based on a cursory examination of an actual dataset generated from spiked-
in Lambda phage DNA (data not shown), bisulfite sequencing data for 444 con-
trol cytosine were simulated with number of reads per cytosine NBS 2 1 . . . 3.
Experimental parameters were set to fixed values while the methylation modi-
fication fractions ✓control were drawn from Dir(↵) (parameters listed in Fig. S1b).

Sequencing error and bisulfite conversion rates were estimated using the
model illustrated in the plate diagram in Fig. S1a with priors and hyperpriors
used listed beside.

3 Estimating methylation level and comparing
running time

Datasets (n = 100) were analysed with the full and reduced LuxRep model with
varying methylation levels (columns, values shown at topmost panel), varying
number of reads (rows, values shown on right panel), di↵erent combinations of
replicates with varying BCRs (‘G’ and ‘B’) (x-axis), and using either HMC or
ADVI to evaluate or approximate the posterior, respectively S2b). The datasets
were generated using the model illustrated in Fig. S2a with methylation levels
and experimental parameters randomly generated with the beta distribution
with parameters set to values listed to the right of the diagram. Simulations
consisted of two subsets with di↵ering combination of BCRs, ‘GGB’ and ‘GBB’.

For each simulated data set we estimated the methylation level ✓ using the
posterior mean of samples (S = 1000) drawn from the posterior (HMC) and
approximate (ADVI) posterior distribution. Fig. S2b shows boxplots of the
posterior means (n = 100). The hyperpriors used are listed below Fig. S2a.

Running times were measured using the Stan (Carpenter et al., 2017) time
records and by a Python function, and with or without the additional time
required for post-processing the output files (i.e. parsing relevant information),
with varying number of reads (Fig.S2c). The computations were performed
using a computing cluster; a single core with 2GB memory was used both for
HMC sampling and ADVI approximation (although HMC sampling could be
more e�ciently run with one core for each MCMC chain hence run time was
based on the slowest chain).
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Figure S1: Plate diagrams of LuxRep model for the module analyzing experi-
mental parameters from control data (a) and model generating dummy control
data (b).

4 Comparing accuracy in di↵erential methyla-
tion analysis

Accuracy in determining di↵erential methylation was measured by generating
data sets consisting of two groups (A and B) with varying �✓ (✓A and ✓B levels
are shown in top panels of Fig. S3e) and when one or two of three replicates
have low BCR (‘GGB’ and ‘GBB’, respectively). Each group consisted of four
biological replicates wherein each biological replicate had three technical repli-
cates each (with di↵erent sequencing read coverage, NBS = 10 or NBS = 6)
described in the main text and in Fig. S3a (where ✓ ⇠ Beta(↵,�), with distri-
bution parameters set to values shown in Fig. S2a).

Di↵erential methylation was analysed using the full and reduced LuxRep
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Figure S2: (a) Plate diagram of model for generating dummy data for estimat-
ing methylation level, (b) boxplots of estimates of methylation levels, and (c)
comparison of running times using HMC and ADVI for model evaluation.
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models (see Figs. 1a and S3c, respectively, and, for additional details of hyper-
priors used, Äijö et al. (2016)) evaluated with HMC and ADVI (x-axis in Fig.
S3a). Fig. S3d shows the design matrix D and parameter matrix B used in the
general linear model component (Bayes factors were computed using the Savage-
Dickey density ratio estimator using samples of b2,1 and b2,2, S = 1600 and
S = 1000 from the posterior distributions approximated with HMC and ADVI,
respectively). AUROCs were calculated based on ⇠ 200 positive (�✓ 6= 0) and
⇠ 200 negative (�✓ = 0) samples. Select ROC curves generated from the full
and reduced models (with technical replicates ‘GBB’ and ‘G’, respectively, and
posterior approximation with variational inference) are shown in Fig. S3f where
✓1 = 0.2 and ✓2 was set to 0.3, 0.4 and 0.5 (top, middle and bottom panels,
respectively).

5 Choosing parameters for variational inference

There are a few parameters which can be tuned to make the ADVI algorithm
(Kucukelbir et al., 2015) fast but accurate. These parameters are the number
of samples used in Monte Carlo integration approximation of expectation lower
bound (ELBO), the number of samples used in Monte Carlo integration ap-
proximation of the gradients of the ELBO, and the number of samples taken
from the approximative posterior distribution. The default values for gradient
samples NG and ELBO samples NE are 100 and 1 respectively. Here we com-
pare the computation times and accuracy of the di↵erential expression analysis
computed using HMC and ADVI with di↵erent NE and NG values. The tested
values for NE were 100, 200, 500 and 1000 and for NG 1, 10 and 100. To make
the HMC and ADVI methods comparable, the total number of samples retrieved
from the approximative posterior distribution is set to 6000 for both methods.

To choose the best number of gradient samples and ELBO samples, simu-
lation tests on LuxGLM model were executed. These tests were conducted in
the following way: First, simulated data from the LuxGLM model was gener-
ated. The number of reads and replicates were varied (the tested values were
6, 12, 24 reads and 6, 10, 20 biological replicates, respectively) and for each
combination data sets were generated. The calculation of the Bayes factors was
made using di↵erent NE and NG values. For each setting 200 data sets with dif-
ferential methylation and without di↵erential methylation were simulated and
Bayes factors were calculated. Using the computed Bayes factors, ROC curves
and AUROC statistics were produced. Also, the computation times for each
parameter value combination were taken down. The results of these tests for
the case of 12 reads and 10 replicates are shown in figures S4 and S5.

In Fig. S4 the computation times for di↵erent parameter values are shown.
In Fig. S5 computation time was plotted as a function of accuracy of the method
when compared to the HMC approach. The average computation time for the
HMC method is plotted in red. From the figures we can see that with all tested
parameter combinations computing Savage-Dickey estimate with ADVI is faster
than with HMC. In Fig. S5, on the left side of the dashed line are the parameter
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Figure S3: Plate diagram of model for generating dummy data for di↵erential
methylation analysis (a), beta parameters used in generating ✓ (b), plate dia-
gram of the reduced LuxRep model (c), design matrix and parameter matrix
(d), AUROCs of di↵erential methylation calls (e), and select ROC curves (f).
In (c),

P
NBS,C and

P
NBS denote sums over technical replicates of “C”s and

total read counts, respectively.
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combinations which gave better precision than HMC approach.

Figure S4: A barplot of the computation times for ADVI with di↵erent param-
eters NE and NG. The red line shows the mean computation time with HMC
sampler.
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Figure S5: A scatterplot of the computation times with ADVI as function of
di↵erence of AUROC values. The di↵erent parameter parameter values NE and
NG . The red line shows the mean computation time for HMC sampler. The dots
on the left side of the black dotted line show higher accuracy than Savage-Dickey
calculated with HMC and the dots on the right side show lower accuracy than
HMC Savage-Dickey. The computation times are plotted in logarithmic scale,
and it can be seen that the computation times for ADVI are one magnitude
smaller than for HMC when using a good choice of parameters. The graph
suggests that ADVI is almost as precise or even more precise as HMC even
when the computations are done considerably faster than with HMC.
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