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Abstract 

Regulatory DNA has the potential to be adaptive, and large numbers of expression 

quantitative trait loci (eQTLs) have recently been identified in humans. For the first time, 

a comprehensive study of adaptive eQTLs is possible. Many eQTLs have large allele 

frequency differences between populations, and these differences can be due to natural 

selection. Here, we combined population branch statistics with tissue-specific eQTL 

data to identify positively selected loci in human populations. Adaptive eQTLs tend to 

affect fewer tissues than non-adaptive eQTLs. Because the tissue breadth of an eQTL 

can be viewed as a measure of pleiotropy, these results suggest that pleiotropy can 

inhibit adaptation. The proportion of eQTLs that are adaptive varies by tissue, and we 

find that eQTLs that regulate expression in testis, thyroid, blood, or sun-exposed skin 

are enriched for adaptive outliers. By contrast, eQTLs that regulate expression in the 

cerebrum or female-specific tissues have a relative lack of adaptive outliers. These 

results reveal tissues that have been the targets of adaptation during the last 100,000 

years of human evolution. The strongest adaptive signal in many regions of the human 

genome is an eQTL, including an eQTL associated with the Duffy blood group and 

malaria resistance. Scans of selection also reveal that many adaptive eQTLs are closely 

linked to disease-associated loci. Taken together, our results indicate that adaptive 

eQTLs have played an important role in human evolution.  
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Introduction  

Regulatory mutations and changes in gene expression lead to functional differences in 

anatomy, physiology, and behavior that are evolutionarily important [1-6]. Polymorphic 

sites that influence gene expression are known as expression quantitative trait loci 

(eQTLs), and many of these sites are relevant to human health and disease [7-9]. 

Although identifying specific nucleotides that cause differences in gene expression can 

be challenging [10], many eQTLs have been identified in model and non-model 

organisms [11-13]. In recent years, hundreds of thousands of human eQTLs have been 

cataloged in the GTEx (Genotype-Tissue Expression project) and RegulomeDB 

databases [14-17]. Many of these eQTLs act in a tissue-specific manner, and by 

studying adaptive eQTLs it is possible to identify the tissues that have been the primary 

targets of recent human evolution. Although eQTL effect sizes and directions of effect 

tend to be conserved among human populations [18], array and sequence data reveal 

that gene expression patterns vary across populations [19, 20] (but see [21]). Many 

eQTLs have divergent allele frequencies across populations, and local adaptation may 

underlie these differences [22, 23]. Hereditary disease risks have evolved in the recent 

past [24], and many of these changes are likely to be due to positive selection acting on 

regulatory DNA. 

 Adaptation is a fundamental concern of evolutionary biology, and recent years 

have seen a contentious debate about whether adaptation tends to proceed via 

nonsynonymous changes in coding regions (amino acid changes) or due to changes in 

gene regulation [25-27]. Of particular relevance is the fact that less than only 1.5% of 
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the human genome is coding [28], and many scans of positive selection have implicated 

intergenic regions of the human genome [29, 30]. The functional consequences of 

Neanderthal introgression also tend to involve changes in gene expression, as opposed 

to protein changes [31]. Regardless of the proportion of the human genome that is 

functional [32, 33], there are multiple reasons why changes in gene expression may be 

beneficial. Unlike nonsynonymous changes that affect protein sequences across the 

body, eQTLs can modify gene expression in a tissue-specific manner. The amount and 

timing of gene expression can also be optimized for a given environment [34]. Many 

methods of detecting positively selected alleles exist, including population branch 

statistics (PBS) [35-37]. These within-species scans of selection use genetic distances 

between multiple populations to identify outlier loci that have undergone accelerated 

evolution along one branch of a population-level phylogenetic tree. Scans of selection 

that examine population differentiation, such as PBS, are well-suited for detecting 

selection that has occurred on a continental scale during the last 100,000 years [38]. 

Because PBS scores do not rely on extended haplotype heterozygosity, they are robust 

to whether adaptive alleles are due to new mutations or standing genetic variation. PBS 

scores are also able to detect partial sweeps. 

 Evolutionary theory informs our understanding about which types of eQTLs are 

expected to be adaptive. In the Fisher-Orr geometric model, adaptation tends to 

proceed via progressively smaller changes [39-41] (but see [42]). Because of this, we 

predict that adaptive eQTLs are unlikely to involve large changes in gene expression. 

Similarly, pleiotropy can inhibit adaptation [43], which leads to the prediction that most 
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adaptive eQTLs will affect a small number of tissues. Scans of selection in human 

genomes have revealed that immunity genes tend to be fast evolving [44, 45]. There is 

also evidence from Drosophila that testis-expressed genes evolve quickly [46], and 

reproductive genes have experienced elevated rates of evolution in many vertebrate 

lineages [47]. Because of this, eQTLs that affect fast-evolving tissues are expected be 

enriched for adaptive PBS outliers. Despite these predictions, multiple knowledge gaps 

exist. The extent to which eQTL effect sizes and tissue breadth constrain human 

adaptation has yet to be tested empirically. It is also unknown whether tissues that have 

been targets of recent human adaptation are the same tissues that experienced 

accelerated evolution over deeper timescales. Importantly, affordable sequencing has 

ushered in an era of population genomics, and thousands of tissue-specific eQTLs have 

recently been identified [16]. For the first time, a comprehensive understanding of 

adaptive eQTLs in human populations is possible. 

Here, we combine continental allele frequencies from the 1000 Genomes Project 

with eQTL data from the GTEx project and RegulomeDB to identify adaptive eQTLs in 

human populations. We focus on five questions: 1) Which eQTLs exhibit signatures of 

local adaption? 2) Are pleiotropic eQTLs less likely to be positively selected? 3) Does 

the effect size of an eQTL affect whether it is adaptive? 4) Which tissues tend to be 

targets of local adaptation? 5) To what extent do adaptive eQTLs overlap with GWAS 

results? 
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Results  

Scans of selection identify adaptive eQTLs 

Many presently known eQTLs have large allele frequency differences between 

populations, and some of these eQTLs are targets of local adaptation. V7 GTEx eQTLs 

have a mean FST of 0.113 between African and European populations, 0.131 between 

African and East Asian populations, and 0.090 between European and East Asian 

populations. We calculated PBS scores for individuals from Africa, Europe, and East 

Asia at every biallelic SNP in the 1000 Genomes Project (Figure 1). We then identified 

the top 1% of all V7 GTEx eQTLs with respect to PBS for each population. Because 

many eQTLs are closely linked, we pruned this set of high PBS eQTLs to eliminate the 

effects of linkage disequilibrium. After LD-pruning, we found 614 eQTLs that are 

adaptive outliers for Africa, 561 eQTLs that are adaptive outliers for Europe, and 524 

eQTLs that are adaptive outliers for East Asia. Note that PBS outliers for the African 

branch also include SNPs that experienced large allele frequency changes after the out-

of-Africa migration, but prior to the split of European and Asian lineages. In Figure 1, 

LD-pruned adaptive eQTLs are represented by filled red circles, other eQTLs are 

represented by open black circles, and 1000 Genomes Project SNPs that are not 

eQTLs are represented by open gray circles. 

Scans of selection reveal that the strongest PBS signal in many adaptive regions 

of the genome is an eQTL (visualized as red-tipped peaks in the Manhattan plots of 

Figure 1). Overall, we find that GTEx eQTLs are 2.53 times as likely than random SNPs 

from the 1000 Genomes Project to have signatures of positive selection, i.e. PBS 
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scores above the red lines in Figure 1 (p-value < 0.0001, chi-square test of 

independence). This underscores the importance of regulatory DNA to recent human 

evolution. Many adaptive eQTLs are not in linkage disequilibrium with other sites 

(visualized as isolated red points with high PBS scores in Figure 1), while other 

putatively adaptive eQTLs appear to cluster in genomes (visualized as red and black 

points forming a peak in Figure 1). When positive selection acts on standing genetic 

variation there is enough time for recombination to break down LD between an adaptive 

allele and linked sites [48]. This can result in an adaptive peak that has only a single 

high-PBS site. By contrast, when positive selection acts on new mutations a single 

haplotype can increase in frequency. This results in adaptive peaks that have multiple 

high PBS sites. 

 

Pleiotropy and the tissue breadth of eQTLs 

Some eQTLs modify gene expression in a small number of tissues, while other eQTLs 

modify gene expression in many tissues. This can influence whether an eQTL is 

adaptive. eQTLs analyzed in this present study affect between 1 and 48 tissues, and 

tissue breadth (the number and types of tissues that each eQTL affects) can be viewed 

as a measure of pleiotropy. Here, we compare the number of tissues affected by 

adaptive and non-adaptive eQTLs.  Overall, adaptive eQTLs affect fewer tissues than 

non-adaptive eQTLs. This pattern occurs whether a SNP is adaptive in Africa, Europe, 

or East Asia (Figure 2). GTEx eQTLs affect a mean number of 5.97 tissues. By contrast, 

adaptive outliers affect a mean number of 4.08, 4.11 and 3.84 tissues (African, 
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European, and East Asian outliers, respectively). These differences between adaptive 

outliers and other eQTLs are statistically significant (p-value < 2.2 10-16 for all 

comparisons, Wilcoxon rank sum tests). Looking beyond the mean number of tissues, 

we find that adaptive outliers have cumulative distributions that are left-shifted, i.e. they 

tend to affect a smaller number of tissues (Figure 2). Many non-adaptive eQTLs modify 

expression in more than 10 tissues, while few adaptive eQTLs modify expression in 

more than 10 tissues. Furthermore, 55.3% of all LD-pruned adaptive outliers affect a 

single tissue. Similar patterns arise if a more stringent PBS score cutoff is used (Figure 

S1): roughly half (50.8%) of eQTLs that have PBS scores above the 99.9th percentile 

affect a single tissue. Taken together, our results indicate that pleiotropy appears to 

inhibit adaptation. 

 

Effect sizes and local adaptation 

The amount that an allele affects gene expression can potentially influence whether it is 

adaptive. For each tissue, we compared PBS statistics to the absolute value of 

normalized effect sizes under a fixed effect model. This allowed us to test whether 

adaptive eQTLs cause larger changes in expression than non-adaptive eQTLs. This set 

of analyses focused on LD-pruned eQTLs that only affect a single tissue. In general, 

adaptive eQTLs do not yield large changes in gene expression. For example, there is a 

weak negative correlation between PBS scores and effect sizes for eQTLs that modify 

expression in sun-exposed skin (Figures 3A, 3B and 3C). These patterns occur 

regardless of whether PBS statistics are calculated for African, European, or East Asian 
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individuals. Examining each of the tissues analyzed in our study, correlations between 

PBS and |bFE| values tend to be close to -0.2 (Figure 3D). Exceptions to this pattern 

arise for tissues that have a small number of LD-pruned single-tissue eQTLs (gray 

shading). For each combination of tissue and population we tested whether adaptive 

PBS outliers have different effect sizes than other eQTLs (Figure 3E). After correcting 

for multiple tests, we find that 143 out of 144 tissue-population combinations do not 

yield statistically significant differences in effect sizes between adaptive eQTLs and 

other eQTLs (Wilcoxon rank sum tests using Bonferroni corrections). Note that eQTLs 

with very small effect sizes (i.e. |bFE| close to zero) are unlikely to be identified in studies 

like GTEx. Similarly, eQTLs with negligible effect sizes are unlikely to be direct targets 

of selection. The Fisher-Orr model of adaptation posits that large phenotypic changes 

are less likely to be adaptive than small changes. Because we observe few adaptive 

eQTLs with large effect sizes and find weak negative correlations in Figure 3D, our 

results are consistent with the Fisher-Orr model. 

 

Tissue-specificity of adaptive eQTLs 

The proportion of eQTLs that are adaptive varies by tissue. Here, we used enrichment 

ratio scores to compare the observed and expected counts of adaptive PBS outliers for 

each tissue. Positive enrichment ratio scores indicate tissues that have an excess of 

adaptive eQTLs and negative enrichment ratio scores indicate tissues that have a 

relative lack of adaptive eQTLs. Because enrichment ratio scores use a natural log 
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scale, a difference of one unit translates to a 2.718-fold difference in the relative 

proportion of eQTLs that are adaptive outliers. 

 Focusing on individual tissues, testis eQTLs are the most likely to have high PBS 

scores, followed by eQTLs that modify gene expression in the thyroid, whole blood, and 

sun-exposed skin (Figure 4A). Our results suggest that recent human adaptation may 

have been driven by sexual selection, metabolism, pathogens, and local environmental 

conditions. We note that adipose, pancreas, and liver are moderately enriched for 

adaptive eQTLs - indicating that diet has also had an evolutionary impact. Focusing on 

sex-specific tissues, we find that testis eQTLs are enriched for adaptive PBS outliers. 

By contrast, we find that eQTLs that affect expression in the prostate, ovary, uterus or 

vagina have a relative lack of adaptive outliers. We also find that eQTLs that affect 

expression in the cerebellum are more likely to be adaptive than eQTLs that affect 

expression in the cerebrum. Pleiotropy contributes to tissue-specific differences in 

enrichment ratios. Tissues with high enrichment ratios tend to have eQTLs that affect a 

small number of additional tissues, and tissues with low enrichment ratios tend to have 

eQTLs that affect many other tissues (Figure 4B). For example, testis eQTLs that are 

adaptive tend to affect only a small number of additional tissues, if at all (Figures S3, 

S4, and S5). 

A large number GTEx eQTLs affect gene expression in thyroid tissue, tibial 

nerves, and sun-exposed skin (Figure S6). One implication of this is that some tissues 

may be common targets of adaptation simply because they have more eQTLs than 

other tissues. We also note that a number of tissues that have large enrichment ratios 
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also have large sample sizes. Despite differences in sample sizes between GTEx V6 

and GTEx V7, both of these versions of GTEx yield similar enrichment ratios (Figure 

S2). To further correct for sample size as a covariate, we linearly regressed tissue-

specific enrichment ratios against sample size (Figure S7), yielding a set of adjusted 

enrichment ratios (Figure S8). Fourteen tissues that have both positive enrichment 

ratios and positive adjusted enrichment ratios (i.e. they are above both the dotted black 

line and the solid red line in Figure S7). These tissues include testis, thyroid, liver, whole 

blood, transformed fibroblasts, and the cerebellum. It is also worth noting that there is 

no single optimal way to correct for sample size (nonlinear regression yields different 

adjusted enrichment ratios than linear regression). 

 

eQTLs with the highest PBS scores 

Here, we highlight the strongest signatures of adaptation for each population (Figure 5). 

Each of these eQTLs is an ancestry informative marker. rs2814778 has the highest 

PBS score for the African branch. This C/T SNP has a striking geographic pattern: 

African frequencies of the C allele are >96% and non-African allele frequencies of the C 

allele are <1%. rs2814778 affects gene expression of the DARC gene, also known as 

ACKR1. rs2814778 is in the promoter of the DARC gene, and the C allele at this 

regulatory locus confers a null phenotype [49]. DARC encodes the Duffy blood group 

antigen which is known to be adaptive with respect to Plasmodium vivax and malaria 

[50, 51]. rs2814778 is also predictive of neutrophil counts in African-Americans [52]. 

Despite a lack of local recombination hotspots, rs2814778 has negligible amounts of 
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linkage disequilibrium with nearby SNPs. This hints that selection acting on the Duffy 

blood group may have acted on standing genetic variation [50]. rs2814778 only modifies 

expression in whole blood, and this tissue-specificity and lack of pleiotropy may 

contribute strong signatures of positive selection at this eQTL.  

 rs1043809 is the eQTL with the highest PBS score for the European branch. This 

C/T SNP is near the EPN2, B9D1, and RNF112 genes at 17p11. At present, the reason 

why this genomic region was positively selected in Europe is unknown. Many eQTLs 

that are closely linked to rs1043809 have similar PBS statistics (visualized as a plateau 

of points in Figure 5B), which suggests the existence of an adaptive haplotype, rather 

than a single SNP. 

 rs66899053 is the eQTL with the highest PBS score for the East Asian branch. 

This A/G SNP modifies expression of the EEF1A2, PPDPF, PTK6, and SRMS genes, 

and it is found in an adaptive haplotype at 20q13. Scans of selection have previously 

implicated this genomic region with respect to Helicobacter pylori infection and gastric 

cancer [53]. Consistent with this cause, rs66899053 affects gene expression in the 

stomach and many other tissues. Intriguingly, rs66899053 is found in a genomic region 

that has previously been shown to contain adaptively introgressed Neanderthal alleles 

in non-African populations [54, 55]. rs66899053 is also 427kb away from HAR1, a 

genomic region that has undergone accelerated evolution in humans following the split 

between human and chimpanzee lineages [56]. 

 

Overlap with GWAS results 
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We also tested the extent to which adaptive outliers overlap with loci that are associated 

with complex traits and disease susceptibility. An important consideration is that GWAS 

loci tag genomic regions that are associated with complex traits, i.e. they are sentinel 

SNPs [57]. Causal SNPs are often 10-100kb distant from sentinel SNPs [58]. A total of 

29 adaptive eQTLs are GWAS loci from the NHGRI-EBI Catalog (one shared, six 

African, twelve European, and ten East Asian PBS outliers). Traits associated with 

these adaptive eQTLs include white blood cell count, schizophrenia risk, BMI, and eye 

color. Many eQTLs are closely linked to GWAS loci. Indeed, the median distance of V7 

GTEx eQTLs to GWAS loci is 26.4kb. Adaptive PBS outliers have a similar median 

distance to GWAS loci (26.9kb). By contrast, random SNPs from the 1000 Genomes 

Project have a median distance to GWAS loci of 30.2kb. These differences are 

statistically significant: p-value < 2.2 x 10-16 for all eQTLs compared to 1000 Genomes 

Project SNPs, and p-value = 7.6 x 10-4 for adaptive PBS outliers compared to 1000 

Genomes Project SNPs (Wilcoxon rank sum tests). Colocalization of eQTLs and GWAS 

signals has previously been used to prioritize target genes that are associated with 

complex traits [59]. Although close proximity to GWAS loci need not imply that 

regulatory variants are causal, physical linkage can have implications for health 

inequities [60]. This is because local adaptation results in large allele frequency 

differences between populations for not only the direct targets of selection, but also 

linked loci [61]. The combination of positive selection acting eQTLs and genetic 

hitchhiking may contribute to population-level differences in functionally important traits, 

including hereditary disease risks. 
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Discussion  

Our study focused on general patterns of adaptive evolution tissue-specificity, rather 

than on individual populations. We found that highly pleiotropic eQTLs are less likely to 

be adaptive than eQTLs that affect a small number of tissues. We also identified tissues 

that are enriched for adaptive outliers. A number of these tissues are involved in 

resistance to pathogen pressure (e.g. blood, esophageal mucosa, and the skin), and 

there is prior evidence that immune response is an important selective pressure [62]. 

We note eQTLs that affect sun-exposed skin are more likely to be adaptive outliers than 

eQTLs that affect skin that has not been exposed to the sun, and there is evidence that 

sun-exposure has contributed to adaptation [63]. Many tissues that are not exposed to 

external environments have a relative lack of adaptive outliers (Figure 4). We also find 

that eQTLs that modify gene expression in the cerebellum are more likely to be adaptive 

than eQTLs that modify gene expression in other brain tissues. This pattern is 

consistent with morphological evidence that cerebellum volumes have increased more 

than neocortex volumes during the evolution of humans and other great apes [64].  

Focusing on sex-specific tissues, we note that the effective strength of selection 

is halved if an eQTL only affects expression in one sex. For example, testis-specific 

eQTLs contribute to male, but not female, fitness. This is offset by the potential of these 

tissues to be targets of sexual selection. We find that eQTLs that affect male-specific 

tissues (testis and prostate) are more likely to be adaptive than eQTLs that affect 
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female-specific tissues (uterus, ovary, and vagina). What might contribute to 

accelerated evolution of male eQTLs? One contributing factor is that eQTLs that affect 

female tissues tend to be more pleiotropic, i.e. they affect a larger number of additional 

tissues. There is also genetic evidence that spermatogenesis has been a key target of 

positive selection in human evolution [65]. An additional contributing factor is that 

variability in reproductive success is greater for males than females (Bateman's 

principle) [66]. This suggests that that the accelerated evolution of testis eQTLs may be 

driven by increased sexual selection acting on males. 

Our study focused on evolution that has occurred in the last 100,000 years. 

Different eQTLs and tissues may have been locally adaptive over different timescales. 

That said, the patterns seen in our study mirror what is seen other primates: adaptive 

genetic changes are more likely to affect gene expression in testes than the brain [67]. 

There is also evidence that some regions of the genome are recurrent targets of 

adaptation (20q13, for example). Consistent with theoretical predictions [68], we find 

that most adaptive alleles do not have large effect sizes and that pleiotropy appears to 

inhibit adaptation. Here, we focused on positive selection, as opposed to other forms of 

selection. We note that gene expression is a trait that is often under stabilizing selection 

[69]. In addition, eQTLs can be subject to negative selection. Negative selection acting 

directly on eQTLs can result in lower values of FST. However, negative selection at 

linked sites reduces effective population sizes – causing FST statistics to be slightly 

elevated for genomic regions that experience background selection [70]. Regardless, 
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GTEx and RegulomeDB eQTLs with very large FST statistics and PBS scores are best 

explained by positive selection. 

The findings described here have implications for health and disease. Many 

GWAS risk alleles influence gene expression [59, 71, 72]. Furthermore, a large number 

of adaptive eQTLs are closely linked to loci that contribute to complex traits and disease 

risks in human populations. Because PBS outliers have highly divergent allele 

frequencies between populations, the combination of positive selection on gene 

expression and genetic hitchhiking can contribute to health inequities. In addition, 

hereditary disease risks have evolved over time [24], with a major contributing factor to 

this being changes in gene expression. One implication is that diseases affecting 

tissues that are enriched for PBS outliers are more likely have disease risks that have 

changed greatly over time. 

One caveat of our study is that the set of presently-known eQTLs is only the tip 

of the iceberg. Because the statistical power to detect eQTLs depends on effect size 

[73], many eQTLs with small effects sizes have yet to be detected. We also note that 

human eQTLs have largely been ascertained in individuals that have European 

ancestry. Despite this bias, similar patterns are observed for eQTLs that have 

signatures of positive selection in African, European, or East-Asian individuals (Figures 

S3-S5). Furthermore, we note that the GTEx project was able detect eQTLs like 

rs2814778, where the adaptive allele is rare outside of Africa. Many putatively adaptive 

alleles are actually eQTLs that have not yet been identified as such (how else to explain 

noncoding variants that have such divergent allele frequencies across populations?). 
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For example, the European PBS peak at 15q21.1 contains SNPs that affect 

pigmentation, but these SNPs were not classified as eQTLs because they did meet our 

stringent p-value filter of 10-9.  
An additional consideration is that rare alleles are underrepresented in the set of 

known eQTLs (Figure S9). This occurs because the statistical power to detect an eQTL 

is maximized when SNPs have large minor allele frequencies [74]. SNPs with large 

minor allele frequencies are also more likely to be high FST SNPs. Because of this, 

many presently known eQTLs have high FST statistics (Figure S10). Differences in 

genotyping technologies cause V7 GTEx eQTLs to have FST distributions that are left-

shifted compared to V6 GTEx eQTLs [75, 76].  With the exception of the lowest minor 

allele frequency bin, frequency-matched eQTLs have FST statistics that are similar to 

random SNPs from the 1000 Genomes Project (Figure S9). As sample sizes increase in 

the future, additional rare eQTLs will be able to be discovered. However, these rare 

eQTLs are unlikely to have high values of FST [77]. Finally, we note that highly stringent 

PBS cutoffs were used to identify adaptive eQTLs. For example: allele frequencies of 

60%, 10%, and 10% give PBS scores that are below the thresholds shown in Figure 1. 

 Going forward, future studies will lead to the discovery of eQTLs that affect 

additional tissues, examine whether decreasing or increasing expression is more likely 

to be adaptive, and identify the extent that eQTLs are found in adaptively introgressed 

haplotypes. In conclusion, we find that many eQTLs have been positively selected, and 

these adaptive eQTLs reveal important details about the recent evolution of our species.  
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Material and methods  

Population genomic data and eQTL datasets 

Allele frequencies at 80,701,406 autosomal SNPs were obtained from Phase 3 of the 

1000 Genomes Project [78]. Continental super-populations from the 1000 Genomes 

Project were used: Africa (ACB, ASW, ESN, GWD, LWK, MSL, and YRI), Europe (CEU, 

FIN, IBS, GBR, and TSI), and East Asia (CDX, CHB, CHS, KHV and JPT). Sample 

sizes varied for each continent population: 661 individuals of African descent 503 

individuals of European descent, and 504 individuals of East Asian descent. Biallelic 

SNPs from Phase 3 of the 1000 Genomes Project (ascertained via whole genome 

sequencing) were merged with rs # identifiers from the Illumina Omni 2.5M array, 

RegulomeDB, and Genotype-Tissue Expression (GTEx) Project. RegulomeDB scores 

of 1a, 1b, 1c, 1d, 1e, or 1f indicate that a SNP is a RegulomeDB eQTL [17]. For GTEx 

eQTLs, we required sample sizes of at least 70 individuals per tissue, yielding 44 

tissues for V6 and 48 tissues for V7. To correct for multiple statistical tests, V7 GTEx 

eQTLs were required to have a p-value ≤ 10-9 for at least one tissue. Allele frequency 

and eQTL data were merged using the dplyr package in R [79]. Genomic positions 

described here are from the GRCh37/hg19 assembly. Most analyses in this paper 

focused on V7 GTEx eQTLs. SNPs were also binned into 10% minor allele frequency 

(MAF) bins. European MAF bins were used because the majority of eQTLs have been 

ascertained in individuals that have European ancestry.  
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Genetic distances and scans of selection 

Weir and Cockerham's Fst was calculated for each pairwise combination of populations 

(AFR-EUR, AFR-EAS, and EUR-EAS) [77, 80]. This method of calculating genetic 

distances corrects for small sample sizes. Five types of SNPs were analyzed: SNPs 

from the 1000 Genomes Project (ascertained via whole genome sequencing), SNPs on 

the Illumina Omni 2.5M array, V6 and V7 GTEx eQTLs, and RegulomeDB eQTLs. 

Empirical cumulative distribution functions and mean values of Fst and were found for 

each type of SNP and population pair. To identify adaptive SNPs, population branch 

statistics (PBS) [36, 37] were then calculated for V6 and V7 GTEx eQTLs using the 

following equations: 

 

𝑃𝐵𝑆$%& =
()*(,(%-.,0123452)()*(,(%-.,012340-)7)*(,(%-.,452340-)

8
      (1a) 

 

𝑃𝐵𝑆9:& =
( ;<=,(%-.,0123452>(;<=,(%-.,452340->7;<=,(%-.,012340->

8
      (1b) 

 

𝑃𝐵𝑆9$? =
()*(,(%-.,012340-)()*(,(%-.,452340-)7)*(,(%-.,0123452)

8
      (1c) 

 

Undefined and negative values of Weir and Cockerham's Fst were treated as zero for 

PBS calculations. Genome-wide distributions of PBS scores were calculated for each 

branch (Africa, Europe, and East Asia). In total, this yielded 1,826,392 PBS scores for 

V6 GTEx eQTLs and 1,154,731 PBS scores for V7 GTEx eQTLs. Negative PBS scores 

were treated as zero. Adaptive eQTL outliers were required to have PBS scores above 

the 99th percentile for a particular branch. To correct for the effects of linkage 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/444737doi: bioRxiv preprint 

https://doi.org/10.1101/444737
http://creativecommons.org/licenses/by-nd/4.0/


Adaptive eQTLs  Page 20 

disequilibrium, we selected the eQTL with the top PBS score in each 100kb genomic 

window. This yielded a total of 614 (African), 561 (European), and 524 (East Asian) LD-

pruned adaptive eQTL outliers. Due to greater amounts of linkage disequilibrium [78], 

high PBS eQTLs tend to cluster more in non-African genomes. This causes the African 

branch to have a larger number of LD-pruned adaptive eQTLs. An LD-pruned cutoff of 

the top 1% yields enough PBS outliers per tissue to examine the tissue-specificity of 

adaptation. As an additional control, we repeated our analyses of adaptive outliers using 

a cutoff of the top 0.1% PBS scores (LD-pruned). However, we note that using a top 

0.1% PBS score cutoff prevents accurate inference of tissue-specific enrichment ratios 

(this is because 19 tissues have less than 10 LD-pruned adaptive outliers that meet this 

stringent threshold). 

 

Pleiotropy and tissue breadth 

Highly pleiotropic eQTLs modify expression a large number of tissues. We generated 

tissue breadth scores for each eQTL by finding the number of tissues with p-values ≤ 

10-9. This yielded tissue breadth scores between 1 and 48 for V7 GTEx eQTLs. To 

identify whether adaptive eQTLs affect a different number of tissues than non-adaptive 

eQTLs, empirical cumulative distribution functions and mean values of tissue breadth 

scores were found for non-adaptive eQTLs and adaptive PBS outliers. 

 

eQTL effect sizes 
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We tested whether eQTLs with large allele frequency differences between populations 

also yield large differences in gene expression. Here, we focused on LD-pruned eQTLs 

(i.e. eQTLs with the highest PBS score per 100kb window) that only affect a single 

tissue. Effect sizes for each eQTL and tissue combination were quantified by taking the 

absolute value of normalized effect size (NES) under a fixed effect model, i.e. |bFE|. For 

each LD-pruned GTEx eQTL, PBS scores were plotted against |bFE|. The “ggscatter” 

function in the ggpubr R package was used for local regression (loess) fitting and to 

assess the extent to which PBS scores and |bFE| values are correlated. Note that loess 

fitting allows non-linear relationships to be identified. This analysis was repeated for 

three different continental populations (African, European, and East Asian) and all 48 

tissues in the V7 GTEx dataset. Wilcoxon rank sum tests were used to determine 

whether single tissue eQTLs with PBS scores in the top 1% have effect sizes that differ 

from eQTLs with PBS scores in the bottom 99%. 

 

Tissue-specific adaptation 

Here, PBS outliers are LD-pruned eQTLs that have PBS scores in the top 1% of all 

GTEx eQTLs. The proportion of eQTLs that are LD-pruned PBS outliers was found by 

taking the geometric mean the number of outliers divided by the number of eQTLS for 

each tissue: 

 

𝑜𝑢𝑡𝑙𝑖𝑒𝑟	𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 = J∏ LM?	NOP)QRSTUVW,X
*X

Y
QZ,

[                    (2) 
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where k is the total number of tissues and n is the total number of eQTLs for tissue i. 

We then found the expected number of adaptive PBS outliers for each tissue: 

 

𝑃𝐵𝑆	𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠9]^,PQTTOR = 𝑛PQTTOR × (𝑜𝑢𝑡𝑙𝑖𝑒𝑟	𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛)              (3) 

 

The number of adaptive PBS outliers was compared to the total number of eQTLs for 

each tissue. This allowed us to identify the primary targets of adaptive evolution. 

Enrichment ratio statistics were calculated for each tissue by comparing the observed 

number of adaptive PBS outliers to the expected number of adaptive PBS outliers: 

 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	𝑟𝑎𝑡𝑖𝑜PQTTOR = 𝑙𝑛 eLM?	NOP)QRSTUVW,fXWWgh
LM?	NOP)QRST4ij,fXWWgh

k            (4) 

 

The geometric mean used in Equation 2 ensures that the sum of all tissue-specific 

enrichment ratios generated using Equation 4 is zero. Positive enrichment ratios 

indicate tissues with a relative excess of adaptive eQTLs, and negative enrichment 

ratios indicate that tissues with a relative lack of adaptive eQTLs. Enrichment ratio 

statistics were calculated for 48 V7 GTEx tissues and 44 V6 GTEx tissues. 95% 

confidence intervals for enrichment ratios were found by using the Agresti-Coull 

approach to find lower and upper bounds for tissue-specific outlier proportions [81]. 

We also adjusted for sample size as covariate via the following equation: 

 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	𝑟𝑎𝑡𝑖𝑜PQTTOR,lmnOTPRm = 𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	𝑟𝑎𝑡𝑖𝑜PQTTOR − (𝑚 ∙ 𝑛PQTTOR + 𝑏)            (5) 
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where ntissue is the number of individuals sampled per tissue, and m and b are the slope 

and intercept of the regression line in Figure S7 (i.e. m = 0.0012 and b = -0.2517).  

Adjusted enrichment ratios measure how much a given tissue is above or below the 

regression line in Figure S7, i.e. they are the residuals. 

 

Overlap with GWAS loci 

We assessed overlap between adaptive eQTLs and GWAS loci by downloading data 

from the NHGRI-EBI GWAS Catalog [82, 83]. For this analysis, LD-pruned sets of V7 

GTEx eQTLs with PBS scores in the top 1% were considered to be adaptive. Distances 

between adaptive eQTLs and GWAS loci were found using the “closest” function in 

BEDTools [84]. 
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Figures 
 

 
 
Figure 1. Genome-wide scans of selection identify adaptive eQTLs in human 
populations. Manhattan plot of Population branch statistics (PBS) vs. genomic position 
for each population: (A) Africa, (B) Europe, and (C) East Asia. All variants in the 1000 
Genomes Project, including V7 GTEx eQTLs, are shown here. LD-pruned adaptive 
eQTLs are represented by filled red circles, other eQTLs are represented by open black 
circles, and 1000 Genomes Project SNPs that are not eQTLs are represented by open 
gray circles. 
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Figure 2. Highly pleiotropic eQTLs are less likely to be adaptive. Cumulative 
distributions and mean number of tissues are shown for adaptive and non-adaptive 
eQTLs. Here, adaptive outliers are LD-pruned eQTLs that have PBS scores in the top 
1% of all GTEx eQTLs. In general, adaptive eQTLs modify gene expression in fewer 
tissues than non-adaptive eQTLs. For each population, differences in the number of 
tissues affected by adaptive outliers and the overall set of GTEx eQTLs are statistically 
significant (p-value < 2.2 10-16 for all comparisons, Wilcoxon rank sum tests).  
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Figure 3. Most adaptive eQTLs do not have a large effect on gene expression. Plots of 
PBS score vs. |bFE| are shown. Each data point represents an LD-pruned SNP that only 
modifies gene expression in a single tissue, i.e. eQTLs that affect multiple tissues were 
omitted from this analysis. eQTLs that modify expression in skin exposed to the sun are 
shown in panels (A), (B), and (C). Curve fitting of scatter plots uses local regression 
(indicated by red lines). 99th percentiles of PBS scores are indicated by horizontal gray 
lines in each scatter plot. Population-specific correlations for each tissue are shown in 
panel (D). Results of Wilcoxon rank sum tests comparing the effect sizes of adaptive 
and non-adaptive eQTLs are shown in panel (E), with uncorrected (p-value < 0.05) and 
Bonferroni corrected p-value cutoffs indicated by dotted black and red lines. Gray 
shading indicates tissues that have fewer than 200 LD-pruned single-tissue eQTLs. 
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Figure 4. Tissue enrichment of adaptive eQTLs. Positive enrichment ratio scores 
indicate a relative excess of adaptive eQTLs for a particular tissue (red), and negative 
enrichment ratio scores indicate a relative lack of adaptive eQTLs for a particular tissue 
(black). (A) Tissues are ranked by enrichment ratio score. Here, adaptive outliers are 
LD-pruned eQTLs that have PBS scores in the top 1% of all GTEx eQTLs. 95% 
confidence intervals for each enrichment ratio are shown. (B) Tissues with high 
enrichment ratios tend to have eQTLs that affect less than 10 tissues, and tissues with 
low enrichment ratios tend to have eQTLs that affect more than 40 tissues. 
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Figure 5. Adaptive eQTLs with strong signatures of positive selection. Genomic regions 
flanking eQTLs with the highest PBS score for each continental population are shown 
panels (A), (B), and (C). LD-pruned adaptive eQTLs are represented by filled red 
circles, other eQTLs are represented by open black circles, and 1000 Genomes Project 
SNPs are represented by open gray circles. hg19 coordinates are shown. Population-
specific 99th percentiles of PBS scores are represented by dashed red lines. Panels (D), 
(E), and (F) show allele frequencies for 26 populations from the 1000 Genomes Project 
(modified from the Geography of Genetic Variants Browser [85]).  
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Supplemental Material 
 

 
 
Figure S1. Pleiotropy results are robust to the use of a more stringent adaptive outlier 
threshold. Here, adaptive outliers are LD-pruned eQTLs that have PBS scores in the top 
0.1% of all GTEx eQTLs. Cumulative distributions and mean number of tissues are 
shown for adaptive and non-adaptive eQTLs. In general, adaptive eQTLs modify gene 
expression in fewer tissues than non-adaptive eQTLs. For each population, differences 
in the number of tissues affected by adaptive outliers and the overall set of GTEx 
eQTLs are statistically significant (p-value < 2.2 10-16 for all comparisons, Wilcoxon rank 
sum tests). 
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Figure S2. Enrichment ratios are similar for different versions of GTEx. 44 tissues have 
data for V6 and V7 of GTEx. Each data point is a single tissue. Positive enrichment 
ratios indicate a relative excess of adaptive eQTLs and negative enrichment ratios 
indicate a relative lack of adaptive eQTLs.  
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Figure S3. Tissue-specificity of African PBS outliers. A grid of 48 rows and 614 columns 
is shown, where each row corresponds to a different tissue and each column 
corresponds to a different adaptive eQTL for the African branch. Filled cells reveal 
which tissues are affected by each adaptive eQTL. Background colors indicate the 
number of tissues affected by each adaptive eQTL (e.g. red indicates eQTLs that 
modify expression in a single tissue). Tissues are rank-ordered by total number of 
adaptive eQTLs.   
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Figure S4. Tissue-specificity of European PBS outliers. A grid of 48 rows and 561 
columns is shown, where each row corresponds to a different tissue and each column 
corresponds to a different adaptive eQTL for the European branch. Filled cells reveal 
which tissues are affected by each adaptive eQTL. Background colors indicate the 
number of tissues affected by each adaptive eQTL (e.g. red indicates eQTLs that 
modify expression in a single tissue). Tissues are rank-ordered by total number of 
adaptive eQTLs. 
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Figure S5. Tissue-specificity of East Asian PBS outliers. A grid of 48 rows and 524 
columns is shown, where each row corresponds to a different tissue and each column 
corresponds to a different adaptive eQTL for the East Asian branch. Filled cells reveal 
which tissues are affected by each adaptive eQTL. Background colors indicate the 
number of tissues affected by each adaptive eQTL (e.g. red indicates eQTLs that 
modify expression in a single tissue). Tissues are rank-ordered by total number of 
adaptive eQTLs.  
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Figure S6. Numbers of known eQTLs vary by tissue. Each point represented a different 
tissue, with the size of each point indicating sample size (numbers of individuals). Here, 
adaptive outliers are LD-pruned eQTLs that have PBS scores in the top 1% of all V7 
GTEx eQTLs. Larger sample sizes result in a greater number of eQTLs being detected.  
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Figure S7. Enrichment ratios plotted against sample sizes per tissue. Equation for the 
regression line: Enrichment Ratio = 0.0012 x (Sample Size) – 0.2517. Tissues with 
positive adjusted enrichment ratios are above the solid red line, and tissues with 
negative adjusted enrichment ratios are below the solid red line. 
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Figure S8. Tissue enrichment results after correcting for sample size differences using 
a linear model. Here, adaptive outliers are LD-pruned eQTLs that have PBS scores in 
the top 1% of all GTEx eQTLs. 95% confidence intervals for each adjusted enrichment 
ratio are shown. Adjusted enrichment ratios are the residuals from Figure S7. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/444737doi: bioRxiv preprint 

https://doi.org/10.1101/444737
http://creativecommons.org/licenses/by-nd/4.0/


Adaptive eQTLs  Page 47 

 
 
Figure S9 Genetic distances between populations vary by minor allele frequency 
(MAF). Panel (A) shows the proportion of each type of SNP that is found in each 
European MAF bin. Conditioning on MAF bin, mean FST values between different pairs 
of populations are shown for different types of SNPs in panels (B) African and European 
populations, (C) African and East Asian populations, and (D) European and East Asian 
populations. 
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Figure S10. Presently known eQTLs tend to have higher values of FST statistics than 
random SNPs from the 1000 Genomes Project. Genetic distances between different 
pairs of populations were calculated using Weir and Cockerham’s FST: (A) African and 
European populations, (B) African and East Asian populations, and (C) European and 
East Asian populations. Cumulative distributions and mean values of FST are shown for 
each type of SNP. 
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