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ABSTRACT 
Next-generation sequencing (NGS) technology enables discovery of nearly all genetic variants present in a genome. A subset 
of these variants, however, may have poor sequencing quality due to limitations in sequencing technology or in variant 
calling algorithms. In genetic studies that analyze a large number of sequenced individuals, it is critical to detect and remove 
those variants with poor quality as they may cause spurious findings. In this paper, we present a statistical approach for 
performing quality control on variants identified from NGS data by combining a traditional filtering approach and a machine 
learning approach. Our method uses information on sequencing quality such as sequencing depth, genotyping quality, and 
GC contents to predict whether a certain variant is likely to contain errors. We applied our method to two whole-genome 
sequencing datasets where one dataset consists of related individuals from families while the other consists of unrelated 
individuals. Results indicate that our method outperforms widely used methods for performing QC on variants such as VQSR 
of GATK by considerably improving the quality of variants to be included in the analysis. Our approach is also very efficient, 
and hence can be applied to large sequencing datasets. We conclude that combining a machine learning algorithm trained 
with sequencing quality information and the filtering approach is an effective approach to perform quality control on genetic 
variants from sequencing data. 

Introduction 
Over the past few years, genome-wide association studies (GWAS) have been playing an important role in identifying 
genetic variations associated with common diseases or complex traits [1, 2]. GWAS have found many associations between 
common variants and human diseases, such as schizophrenia[3], type 2 diabetes[4, 5] and Parkinson’s Disease[6]. However, 
these common variants typically explain only a small fraction of heritability for the complex traits[7, 8]. Rare variants are 
another type of genetic variants that have been considered as an important risk factor for complex traits and common 
diseases[9, 10, 11, 12]. With the next generation sequencing (NGS) technology, geneticists may now gain insights into the 
roles of novel or rare variants. For instance, deep targeted sequencing was applied to discover rare variants associated with 
inflammatory bowel disease[13]. Whole genome sequencing (WGS) has been used to identify rare variants associated with 
prostate cancer[14], and with whole exome sequencing, studies have also detected rare variants associated with LDL 
cholesterol[15] and autism[16]. 

NGS data are not, however, perfect, and the quality of variants detected by sequencing may be adversely influenced by 
several factors. First, genome sequencing is known to have errors or biases[17, 18, 19, 20, 21], which might cause inaccuracy 
in detecting variants. Second, sequence mappability of different regions may not be uniform, but correlated with 
sequence-specific biological features, leading to alignment biases. For instance, it is shown that introns have significantly 
lower mappability levels than exons[22]. Third, variant calling algorithms may be sources of errors as no algorithm is 100% 
accurate. For example, GATK HaplotypeCaller and GATKUnifiedGenotyper[23], which are the widely used variant callers, 
have sensitivity of about 96% and precision of about 98%[24]. Additionally, different variant callers may generate discordant 
calls on some variants[25], which indicates inaccuracy of those calls, and in certain cases, different versions of even the same 
software may generate inconsistent calls. All these factors may generate false positive sites or incorrect genotypes, which 
may then lead to false positive associations in the follow-up association test. For example, Alzheimer’s Disease Sequencing 
Project reports that they found spurious associations in the case-control analysis where one of the causes for the problem 
could be inconsistent variant calling processes for sequenced samples[26]. 

It is extremely important to perform quality control (QC) on genetic variants identified from sequencing to remove 
variants that may contain sequencing errors and hence are likely to be false positive calls. Traditionally, genetic studies have 
utilized two types of QC approaches; we call them, “filtering” and “classification” approaches. In filtering approaches, 
several filters are applied to remove problematic variants such as variants with high genotype missing rate (e.g. > 5%), low 
Hardy-Weinberg Equilibrium (HWE) p-value (e.g. < 1E-4), or very high or low allele balance of heterozygous calls (ABHet) 
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(e.g. > 0.75 or < 0.25). One main problem with this type of approaches is that these thresholds are arbitrarily determined 
without strong statistical justification. We may also remove variants whose metrics are very close to the thresholds (e.g. 
variants with missing rate of 5.1%). Another type of QC is a classification approach that attempts to learn variants with low 
quality using machine learning approaches. One example is VQSR of GATK[24,27] that uses a Gaussian mixture model to 
learn the multidimensional annotation profile of variants with high and low quality. However, one of issues with VQSR is 
that one needs training datasets acquired from existing databases on variants such as 1000 Genomes Project[29] and 
HapMap[30], which may be biased to keep known variants and filter out novel variants. Another issue is that those known 
databases of genetic variants may not be always accurate, which would lead to inaccurate classification of variants, and they 
may not even be available for some species. It may also be a challenge to apply VQSR to a variant call set generated by 
variant callers other than GATK as VQSR needs metrics of variants that are not often calculated by non-GATK variant 
callers. 

In this article, we present ForestQC for performing QC on genetic variants discovered through sequencing. Our method 
aims to identify whether a specific variant is of high sequencing quality (“good” variants) or of low quality (“bad” variants) 
by combining the filtering and classification approaches. We first apply a filtering approach to detect obviously good and bad 
variants from data. We use stringent filters such that those variants are truly good or bad while the rest of variants that are 
neither good nor bad are considered to have ambiguous quality (“gray” variants). Given this set of good and bad variants, we 
train a machine learning model whose goal is to classify whether gray variants are good or bad. With an insight that good 
variants would have higher genotype quality and sequencing depth than do bad variants, we use information of several 
sequencing quality measures of variants for model training. ForestQC then uses sequencing quality measures of gray variants 
to predict whether each gray variant has high or low sequencing quality. Our approach is different from the filtering strategy 
in that it only uses filters to identify truly good or bad variants and does not attempt to classify gray variants with filters. Our 
approach is also different from VQSR as our training strategy allows us to train our model without known datasets for 
variants and solves several aforementioned issues with VQSR. Another advantage of our approach is that it can be applied to 
standard Variant Call Format (VCF) files from any variant callers and is very efficient.  

To demonstrate accuracy of ForestQC, we apply it to two high-coverage WGS datasets; 1) large extended pedigrees 
ascertained for bipolar disorder (BP) from Costa Rica and Colombia[31], and 2) a sequencing study for Progressive 
Supranuclear Palsy (PSP). The first dataset includes 449 related individuals from families while the latter dataset consists of 
495 unrelated individuals. We show that ForestQC outperforms VQSR and a filtering approach based on ABHet as good 
variants detected from ForestQC have higher sequencing quality than those from VQSR and the filtering approach in both 
datasets. This suggests that our approach identifies high-quality variants more accurately than other approaches in both 
family and unrelated datasets. ForestQC is publicly available at https://github.com/avallonking/ForestQC  

Results 
Overview of ForestQC 
ForestQC takes a raw VCF file as input and determines whether each variant has “good” sequencing quality or “bad” quality. 
Our method combines a filtering approach that determines good and bad variants by a set of pre-defined filters and a 
classification approach that uses machine learning to classify whether a variant is good or bad. As illustrated in Figure 1, our 
method first calculates statistics of each variant for several filters that are commonly used in performing QC in GWAS. These 
statistics consist of ABHet, HWE p-value, genotype missing rate, Mendelian error rate for family data, and any user-defined 
statistics (details described in Method session). ForestQC then identifies three sets of variants using these statistics for filters: 
1) a set of good variants that pass all filters, 2) a set of bad variants that clearly fail filter(s), and 3) a set of gray variants that 
are neither good nor bad variants. We use stringent thresholds for filters (Supplementary Table 1 and 2), and hence we are 
highly confident that good variants are of high quality while bad variants are truly false positives or have unequivocally poor 
sequencing quality. The next step in ForestQC is to train a random forest machine learning model using the good and bad 
variants we detect from the filtering step. In ForestQC, seven sequencing quality metrics of good and bad variants are used as 
features to train the random forest model, including three related to sequencing depth, three related to genotype quality, and 
one related to the GC content. Finally, the fitted model predicts whether each gray variant is good or bad. We combine the 
predicted good variants from the random forest model and the good variants from the filtering step, and they are all good 
variants determined by ForestQC. The same procedure is applied to identify bad variants. 

One major challenge in classifying gray variants is to identify a set of sequencing quality metrics that are used as features 
to train the random forest model. We choose three sets of features based on quality metrics that variant callers provide and 
prior knowledge in genome sequencing. The first set of features is genotype quality (GQ) where we have three metrics: mean, 
standard deviation (SD), and outlier ratio. The outlier ratio is the proportion of samples whose GQ scores are lower than a 
particular threshold, and it measures a fraction of individuals who are poorly sequenced at a mutation site. A good variant is 
likely to have high mean, low SD, and low outlier ratio of GQ values. The second set of features is sequencing depth (DP) as 
low depth often introduces sequencing biases and reduces variant calling sensitivity[32]. We also use the same three sets of 
metrics for DP as those for GQ: mean, SD, and outlier ratio. The last set of features is related to genomic characteristics 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2018. ; https://doi.org/10.1101/444828doi: bioRxiv preprint 

https://doi.org/10.1101/444828
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

instead of sequencing quality, which is GC content. High or low GC content may decrease the coverage of certain regions[33, 
34] and thus may lower the quality of variant calling. Hence, a good variant would have moderate GC content. Given these 
three sets of features, ForestQC learns how those features determine good and bad variants and classifies gray variants 
according to rules that it learns.   

Comparison of different machine learning algorithms 
As there are many different machine learning algorithms available, we first seek to find the most accurate and efficient 
algorithm for performing QC on NGS variant data. To ensure the quality of training and prediction, we choose supervised 
learning algorithms rather than unsupervised algorithms. Several major types of supervised algorithms are selected for 
comparison: random forest, logistics regression, k nearest neighbors (KNN), Naive Bayes, quadratic discriminant analysis 
(QDA), AdaBoost, artificial neural network (ANN), Gaussian mixture, and support vector machine (SVM). We use the BP 
WGS dataset, which consists of large pedigrees from Costa Rica and Colombia, to compare the performance of different 
algorithms. We use the aforementioned three sets of features related to sequencing quality for all algorithms we test. We 
apply the filtering approach (Supplementary Table 1 and 2) to the BP data to identify good, bad, and gray variants, and we 
choose 100,000 good and 100,000 bad variants randomly for model training. We then choose another 100,000 good and 
100,000 bad variants randomly from the rest of variants for model testing. Each learning algorithm will be trained with the 
same training set and tested with the same test set. We use F1-score to measure classification accuracy during model testing, 
which is the harmonic average of precision (positive predictive value) and recall (sensitivity). The closer F1-score is to 1, the 
better the performance is. To assess efficiency of each algorithm, we measure its CPU time and real time during training and 
predicting. CPU time measures the total time across all threads and all CPUs while real time measures the clock time needed 
for executing an algorithm. For algorithms that cannot be parallelized, CPU time is supposed to be the same as real time. We 
use eight threads for algorithms that support parallelization. 

Results show that random forest is the most precise model in SNV classification with F1-score of 0.97, and the second 
most accurate model in indel classification with F1-score of 0.94 (Table 1). Its CPU time is 89.64 seconds while its real time 
is 16.65 seconds in model training and prediction (Table 1), which ranks as the fifth fastest algorithm in terms of real time 
and the sixth fastest algorithm in terms of CPU time. As random forest randomly divides the entire dataset into several 
subsets of the same size and constructs decision trees independently in each subset, it is highly parallelizable, and it has low 
error rates and high robustness with respect to noise[35]. As for other learning algorithms, SVM and ANN are highly 
accurate (both with F1-score of 0.97 in SNV classification) although they are not as efficient as random forest. Especially, 
SVM is the slowest algorithm because of its inability to parallelize, which is about 100x slower than random forest in real 
time and 20x slower in CPU time (Table 1). This suggests that it may be computationally very expensive to use SVM in 
large-scale WGS datasets that have tens of millions of variants. Logistic regression, Naive Bayes and QDA are more efficient 
than random forest, but their predictions are not as accurate as those of random forest. For example, Naive Bayes needs only 
0.23 seconds for training and prediction while its F1-score is the second lowest among all algorithms (0.90 and 0.87 in SNV 
and indel classification, respectively) (Table 1). This result demonstrates that random forest is both accurate and efficient, 
and hence we use it as the machine learning algorithm in our approach. To further improve the random forest algorithm, we 
test a different number of trees in the algorithm and we find that random forest with 50 trees balances efficiency and accuracy 
(Supplementary Figure 1). To identify good variants from gray variants, we use the probability of each gray variant being a 
good variant calculated from random forest, and we consider gray variants with the probability of being good variants > 50% 
as good variants as this probability threshold achieves the highest F1-score (Supplementary Figure 2). 

Measuring performance of QC methods on WGS data 
To evaluate the accuracy of ForestQC and other methods on WGS data, we calculate several statistics. For a family dataset, 
we calculate Mendelian error rate (ME) of each variant, which measures inconsistency in genotypes between parents and 
offspring. Another statistic we measure is genotype discordance rate between microarray and sequencing if individuals who 
are sequenced are also genotyped. In both WGS datasets we analyze, microarray data are available. These two statistics are 
important indicators of quality of variants because good variants would follow Mendelian inheritance patterns and their 
genotypes would be consistent between microarray and sequencing. In addition to these statistics, we measure several other 
statistics that are reported in sequencing studies such as the number of variants (SNVs and indels), transitions/transversions 
(Ti/Tv) ratio, the number of multi-allelic variants, genotype missing rate. We compute these QC-related statistics separately 
for SNVs and indels. We use these statistics to compare the performance of ForestQC with that of three approaches. The first 
is one without performing any QC (no QC). The second method is VQSR which is a classification approach that requires 
known truth sets for model training, such as HapMap or 1000 genomes. We use recommended resources and parameter 
settings to run VQSR as of 2018-04-04[36], but we also look at different settings. The third method is an ABHet approach, 
which is a filtering approach that retains variants according to allele balance of variants (see Methods).  
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Performance of ForestQC on family WGS data 

We apply ForestQC to the BP WGS dataset that consists of 449 subjects with the average coverage of 36. There are 25.08 
million (M) SNVs and 3.98M indels[31]. The variant calling is performed with GATK-HaplotypeCaller v3.5. This is an ideal 
dataset for assessing the performance of different QC methods because this dataset contains individuals from families who 
are both sequenced and genotyped. This study design allows us to calculate both ME rate and genotype discordance rate of 
variants between WGS and microarray. For this dataset, we test ForestQC with two different filter settings, one using ME 
rate as a filter and the other not using ME as a filter. The results of the former approach would filter out bad variants based on 
ME rate, and hence ME rate of good variants would be very low. However, we observe that both approaches have similar 
performance in terms of ME rate and other statistics (Supplementary Table 3, Supplementary Figures 3-4), and hence we 
show results of only ForestQC using ME rate as a filter. 

Results show that ForestQC outperforms ABHet and VQSR in terms of the quality of good SNVs while it detects fewer 
good SNVs than the other approaches. ForestQC identifies 22.23M (88%) good SNVs, which is fewer than 22.42M (89%) 
and 24.24M (97%) good SNVs from ABHet and VQSR, respectively (Table 2). However, ABHet has 3.57x and VQSR has 
9.99x higher ME rate on good SNVs than ForestQC (Figure 2 a), and ABHet has 1.50x and VQSR has 1.26x higher genotype 
discordance rate on good SNVs than ForestQC (Figure 2 b). In addition, ABHet and VQSR have 81.48x and 97.72x higher 
genotype missing rate on good SNVs than ForestQC, respectively (Figure 2 c), but it is important to note that genotype 
missing rate is used as a filter in ForestQC, which means SNVs with high genotype missing rate are filtered out. We observe 
that VQSR and ABHet have 319 thousand (K) (1.32%) and 235K (1.05%) good SNVs with very high genotype missing rate 
(>10%), respectively, and there are also 118K (0.49%, VQSR) and 53K (0.24%, ABHet) good SNVs with very high ME rate 
(>15%) while ForestQC has none of them due to its filtering approach. The better quality of good SNVs from ForestQC 
means that bad SNVs detected from ForestQC would have lower quality, and results show that bad SNVs detected by our 
method have higher genotype missing rate, higher ME rates and higher genotyping discordance rate than those of ABHet, and 
higher genotype missing rate than those of VQSR (Supplementary Figure 5 a, b, c). The no QC method keeps the greatest 
number of good SNVs (25.08M), but they have the highest ME rate, genotype missing rate, and genotype discordance rate as 
expected. 

Next, we obtain several statistics of good SNVs commonly used in sequencing studies to evaluate the performance of 
ForestQC. One such statistic is Ti/Tv ratio, which is expected to be around 2.0 over the whole genome[37]. If this ratio is 
smaller than 2.0, it means that there may be false positive variants in the dataset. We compute Ti/Tv ratio for each individual 
across all good SNVs and look at the distribution of those ratios across all individuals (sample-level statistics). We find that 
the mean Ti/Tv ratio of good known SNVs (present in dbSNP) is around 2.0 for all four methods, which suggests that they 
have similar accuracy on known SNVs in terms of Ti/Tv ratio (Supplementary Figure 6 a). However, results show that the 
mean Ti/Tv ratio of good novel SNVs (not in dbSNP) from ForestQC is better than that of those SNVs from other methods; 
the mean Ti/Tv ratio is 1.68 for ForestQC, which is closest to 2.0 among other methods (1.41 for VQSR, 1.53 for ABHet, and 
1.29 for no QC) (Figure 3 a). Paired t-tests for the difference in the mean Ti/Tv ratio between ForestQC and other methods 
are all significant (p-value < 2.2e-16 versus all other methods). This result suggests that novel SNVs predicted to be good by 
ForestQC are more likely to be true positives than those SNVs from other QC methods. Another statistic commonly used in 
sequencing studies is the percentage of multi-allelic SNVs, which are variants with more than one alternative allele. Given 
this sample size (449), many of them are likely to be false positives, and ForestQC has 33.96% and 42.62% smaller fraction 
of multi-allelic SNVs among good SNVs than do VQSR and no QC methods while the ABHet approach has the smallest 
fraction of such SNVs (Table 2). 

In addition to SNVs, we apply the four QC methods to indels. Similar to results of SNVs, ForestQC identifies fewer good 
indels than does VQSR, but the quality of those indels from ForestQC is better than that of good indels from ABHet and 
VQSR. Out of total 3.98M indels, ForestQC predicts 2.79M indels (70%) to have good sequencing quality while VQSR and 
ABHet find 3.21M (81%) and 2.67M (67%) good indels, respectively (Table 2). Good indels from VQSR and ABHet, 
however, have 8.54x and 3.18x higher ME rate, and 22.25x and 25.28x higher genotype missing rate, than those from 
ForestQC, respectively (Figure 2 d, e). Bad indels identified by ForestQC have 2.25x and 1.32x higher ME rate, and 1.48x 
and 2.36x higher genotype missing rate than those from VQSR and ABHet, respectively (Supplementary Figure 5 d, e). 
Besides, we observe that there are 95K (2.97%, VQSR) and 86K (3.23%, ABHet) good indels with very high genotype 
missing rate (>10%) and also 167K (5.21%, VQSR) and 44K (1.66%, ABHet) good indels with very high ME rate (>15%) 
while there are no such indels in ForestQC. This result suggests that many good indels detected by ABHet or VQSR may be 
false positives or indels with poor sequencing quality. One of the reasons why VQSR does not perform well on indels could 
be the database it uses for training its machine learning model as VQSR considers all indels found in the database (Mills gold 
standard call set[38] and 1000G Project[39]) to be true variants. This leads VQSR to have a significantly higher proportion of 
known indels among good indels (86%), compared with 80% from ForestQC and 82% from ABHet (Table 2). The poor 
performance of VQSR on indels may be because not all indels in the database are true variants, or because even if they are 
true indels, those indels would not necessarily have high sequencing quality in the sequencing dataset of interest. Hence, this 
result demonstrates one of the limitations of using known databases for finding good variants. It is also important to note that 
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in general, indels have much higher ME rate (0.41% for no QC) than that of SNVs (0.08% for no QC), which is expected 
given the greater difficulty of calling indels.  

Another major difference between ForestQC and the other approaches is the allele frequency of variants after QC as 
ForestQC keeps a greater number of rare variants in its good variant set. Our method has 1.77% and 1.64% higher proportion 
of rare SNVs, and 5.30% and 15.37% higher proportion of rare indels than ABHet and VQSR do, respectively 
(Supplementary Table 4). We also observe this phenomenon in the variant-level and sample-level statistics for the number of 
SNVs. The variant-level statistics show that the number of good SNVs detected by ForestQC is similar to those from ABHet 
(Table 2). However, the sample-level statistics show that each individual on average carries fewer alternative alleles of good 
SNVs from ForestQC (3.58M total SNVs) than those from VQSR and ABHet (3.99M and 3.77M total SNVs, respectively) 
(Figure 3 b, c, Supplementary Figure 6 b). We observe a similar phenomenon for indels between ABHet and ForestQC 
(Table 2, Figure 3 d, Supplementary Figure 6 c, d). This phenomenon could be explained by the higher fraction of rare 
variants among good variants from ForestQC, as individuals would carry fewer variants if there are a greater fraction of rare 
variants. One main reason why ForestQC has the higher proportion of rare variants is that common variants have higher ME 
rate, genotype discordance rate and genotype missing rate than do rare variants (Supplementary Figure 7); because common 
variants are more heterozygous, it is more difficult to accurately call them. This suggests that while a majority of common 
variants may be true variants, some of them may not necessarily have high sequencing quality, and hence their calls may not 
be accurate enough for downstream analyses. 

Performance of ForestQC on WGS data with unrelated individuals 
To evaluate the performance of ForestQC on WGS datasets that contain only unrelated individuals, we apply it to the PSP 
dataset that has 495 individuals who are whole-genome sequenced at average coverage of 29, generating 33.27M SNVs and 
5.09M indels. Among the 495 individuals who are sequenced, 381 individuals (77%) of them are also genotyped with 
microarray, which enables us to check the genotype discordance rate between WGS and microarray data. Because the PSP 
dataset contains only unrelated individuals, we do not report ME rate. Similar to BP WGS data, we apply four methods 
(ForestQC, VQSR, ABHet, and no QC) to the PSP dataset, although the parameter setting of VQSR has slightly changed. As 
the PSP dataset is called with GATK v3.2, the StrandOddsRatio (SOR) information from the VCF file is missing, which is 
recommended to use in VQSR, and hence this annotation is excluded from VQSR. However, we find that SOR information 
has little impact on the results of VQSR as we test VQSR without SOR information using the BP dataset and obtain similar 
results with one using SOR information (Supplementary Figure 8).  

Similar to the results of the BP dataset, ForestQC identifies good variants with higher quality although it detects fewer 
good variants than other approaches. ForestQC identifies 29.25M (88%) good SNVs, which is slightly fewer than 29.77M 
(89%) good SNVs from ABHet but about 2 million fewer than 31.28M (94%) good SNVs from VQSR (Table 3). However, 
good SNVs from ABHet and VQSR have 53.76x and 42.55x higher genotype missing rate than those from ForestQC, 
respectively (Figure 4 a), but it is important to note that missing rate is included as a filter in ForestQC. In addition, there are 
311K (0.99%, VQSR) and 331K (1.13%, ABHet) good SNVs with very high genotype missing rate (>10%), while ForestQC 
removes all these SNVs. We also observe that bad SNVs from ForestQC have 2.4x higher genotype missing rate than those 
from ABHet, although bad SNVs from GATK have slightly higher missing rate than those from ForestQC (Supplementary 
Figure 9 a). Good SNVs from ABHet and VQSR have 1.28x and 1.29x higher genotype discordance rate than those from 
ForestQC, respectively (Figure 4 b). As for the genotype discordance rate of bad SNVs, both ABHet and VQSR have higher 
genotype discordance rate than does ForestQC (Supplementary Figure 9 b), but this may be inaccurate because of the small 
number of bad SNVs genotyped with microarray (10,130, 4,121, and 553 such SNVs for ForestQC, ABHet, and VQSR, 
respectively). The variant-level and sample-level statistics also demonstrate the better quality of good SNVs from ForestQC. 
Although all methods have mean Ti/Tv ratio of good known SNVs above 2.0, the mean Ti/Tv ratio of good novel SNVs 
among all sequenced individuals is 1.65 for ForestQC, which is closer to 2.0 than other methods (1.27, 1.54, and 1.24 for 
VQSR, ABHet, no QC, respectively). (Supplementary Figure 10 a, Figure 5 a). Paired t-tests for the difference in the mean 
Ti/Tv ratio between ForestQC and other methods are all significant (p-value < 2.2e-16 versus all other methods). ForestQC 
has 16.67% and 33.33% smaller fraction of multi-allelic SNVs among good SNVs than do VQSR and no QC methods, 
respectively, while the ABHet approach has the smallest proportion of such SNVs (Table 3). Lastly, consistent with the 
results of the BP dataset, the sample-level statistics show that each individual on average carries fewer alternative alleles of 
good SNVs from ForestQC than those from VQSR and ABHet (Figure 5 b, c, Supplementary Figure 10 b). Rare SNVs in 
good SNVs from ForestQC account for 1.70% and 1.32% higher proportion, compared with those from ABHet and VQSR 
(Supplemental Table 5). This may be because rare SNVs have lower genotype missing rate and genotype discordance rate 
than do common variants (Supplementary Figure 11, a, b).  

For indels, our method predicts 3.42M indels (67% of total 5.09M indels) to be good variants, which is slightly more than 
3.31M (65%) good indels from ABHet and fewer than 3.68M (72%) good indels from VQSR (Table 3). Because the PSP 
dataset lacks ME rate as it contains only unrelated individuals and indels are not called in microarray, it is difficult to 
compare the performance of the QC methods on indels. We find that good indels from ABHet and VQSR have 27.02x and 
18.77x higher genotype missing rate than those from our method, respectively (Figure 4 c). Additionally, VQSR and ABHet 
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have 107K (2.91%) and 131K (4.08%) good indels with high genotype missing rate (>10%), respectively while ForestQC 
filters out all of these indels. Also, bad indels from ForestQC have 2.05x and 1.21x higher genotype missing rate than those 
from ABHet and VQSR, respectively (Supplementary Figure 9 c). This, however, may be biased comparison as ForestQC 
removes indels with high genotype missing rate in its filtering step. Consistent with the results of SNVs, the sample-level 
statistics indicate that each individual has fewer good indels from ForestQC than those from VQSR and ABHet (Figure 5 d, 
Supplementary Figure 10 c, d). Among good indels, ForestQC has 6% and 1% more novel indels than VQSR and ABHet, 
respectively (Table 3). In terms of allele frequency, rare indels detected by ForestQC accounts for 12.35% and 3.49% larger 
proportions than those by VQSR and ABHet, respectively (Supplementary Table 5). Similar to the results of the BP dataset, 
we also observe that the missing rate of rare indels is lower than that of common indels (Supplementary Figure 11 c). 

Feature importance in random forest classifier 
ForestQC uses several sequencing features in the random forest classifier to predict whether a variant with undermined 
quality is good or bad. To understand which sequencing features are more important indicators for quality of variants than 
other features, we analyze weight or importance of each feature that the random forest classifier learns during its model 
training. We first find that GC-content has the lowest importance in both BP and PSP datasets and also for both SNVs and 
indels (Supplementary Figure 12). This means that GC-content may not be as a strong indicator of quality of variants as other 
features related to sequencing quality such as depth (DP) and genotype quality (GQ). Second, the results show that 
classification results are not determined by one or two most important features as there is no feature with much higher 
importance than other features except GC-content. This suggests that all sequencing features except GC-content are 
important indicators for quality of variants and need to be included in our model. We also check correlation among features 
and find that while certain pairs of features are highly correlated, some features have moderate or low correlation to other 
features, suggesting that they may capture different information on quality of genetic variants (Supplementary Figure 13). 
Third, we observe that the same features have different importance between the BP dataset and the PSP dataset. For example, 
for SNVs, an outlier ratio of GQ feature has the highest importance for the PSP dataset while it has the third lowest 
importance for the BP dataset (Supplementary Figure 12 a). Also, the importance of features varies between SNVs and 
indels. One example is a SD of DP feature that has the highest importance for SNVs in the BP dataset, but it has the third 
lowest importance for indels (Supplementary Figure 12 a, b). Therefore, these results suggest that each feature may have a 
different contribution to classification results depending on sequencing data and types of genetic variants.  
 
Performance of VQSR with different settings 
For SNVs, GATK recommends three SNV call sets for training its VQSR model; 1) SNVs found in HapMap (“HapMap”), 2) 
SNVs in the omni genotyping array (“Omni”), and 3) SNVs in the 1000 Genomes Project (“1000G”). According to the 
VQSR parameter recommendation, SNVs in HapMap and Omni call sets are considered to contain only true variants while 
SNVs in 1000G contain both true and false positive variants[36]. We call this recommended parameter setting “original 
VQSR.” We, however, find that considering SNVs in Omni to contain both true and false positive variants considerably 
improves the quality of good SNVs from VQSR for the BP dataset. We call this modified parameter setting “Omni_Modified 
VQSR”. Results show that the mean Ti/Tv on good novel SNVs from Omni_Modified VQSR is 1.76, which is much higher 
than that from original VQSR (1.41) and slightly higher than that from ForestQC (1.68) (Supplementary Figure 14 a). We 
also find that the mean number of total SNVs from Omni_Modified VQSR is 3.68M which is much smaller than that from 
original VQSR (3.99M) but higher than that from ForestQC (3.58M) (Supplementary Figure 14 b). In terms of other 
statistics, good SNVs from original VQSR has 3.66x higher ME rate, 7.40x higher genotype missing rate, and 1.16x higher 
genotype discordance rate than those SNVs from Omni_Modified VQSR (Supplementary Figure 14 c-e). Interestingly, we do 
not observe the improved performance of Omni_Modified VQSR for the PSP dataset as the mean novel Ti/Tv on good novel 
SNVs of Omni_Modified VQSR is 1.23, which is slightly smaller than that of original VQSR (1.27) (Supplementary Figure 
14 a), although individuals have fewer good SNVs from Omni_Modified VQSR (3.53M) than that from original VQSR 
(3.75M) (Supplementary Figure 14 b). These results suggest that the performance of VQSR may change significantly 
depending on whether to consider a certain SNV call set to contain only true variants or both true and false positive variants, 
and it appears that the difference in performance is more noticeable in certain sequencing datasets than others.  

Although Omni_Modified VQSR has slightly better Ti/Tv on good novel SNVs and identifies more good SNVs than does 
ForestQC, good SNVs from Omni_Modified VQSR have 2.76x higher ME rate, 13.20x higher genotype missing rate, and 
1.09x higher genotype discordance rate than good SNVs from ForestQC (Supplementary Figure 14 c-e). Hence, the results 
show that good SNVs from ForestQC have higher quality than those from VQSR even with the modification in the parameter 
setting. 

Discussion 
We developed an accurate and efficient method called ForestQC to identify a set of variants with high sequencing quality 
from NGS data. ForestQC combines the traditional filtering approach for performing QC in GWAS and the classification 
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approach that uses a machine learning algorithm to classify whether a variant has good quality. Our method first uses 
stringent filters to identify good and bad variants that unequivocally have high and low sequencing quality, respectively. 
ForestQC then trains a random forest classifier using the good and bad variants obtained from the filtering step, and predicts 
whether a variant with ambiguous quality (a gray variant) is good or bad in an unbiased manner. We applied our method to 
two WGS datasets where one dataset consists of related individuals from families and the other dataset has unrelated 
individuals. We demonstrated that good variants identified from ForestQC in both datasets had higher sequencing quality 
than those from other approaches such as VQSR and a filtering approach based on ABHet. 

A main advantage of our approach over the traditional filtering approach is that our method does not attempt to classify 
gray variants using filters. It is difficult to determine the quality of those gray variants using filters if their QC metrics (e.g. 
genotype missing rate) are close to the thresholds of filters. Hence, ForestQC avoids a limitation of the traditional filtering 
approaches that determine the quality of every variant using filters, which may exclude some of good variants from the 
downstream analysis. We did not compare our approach with the traditional filtering approach used in GWAS that removes 
variants according to HWE p-values, ME rates and genotype missing rates. One main reason is that the performance of this 
approach changes dramatically depending on filters and thresholds for each filter, and there are numerous different thresholds 
of filters as well as many combinations of filters that could be tested. Another reason is that its performance could be 
arbitrarily determined depending on the filters we use. For example, if one filter is to remove any variants having more than 
zero Mendel errors, the ME rate of good variants would be zero, but we may be removing many other good variants. We 
checked the accuracy of a filtering approach based on ABHet as ABHet is often used in performing QC of NGS data and is a 
good indicator for variant quality [26, 40, 41]. Also, as this approach is not based on standard QC metrics such as genotype 
missing rate, its performance is independent of those metrics unlike the standard filtering approaches. We showed that our 
approach outperformed the ABHet approach as the quality of good variants from ForestQC was better than that from ABHet, 
regardless of similar total number of good variants, as demonstrated by ME rate, missing rate, genotype discordance rate and 
Ti/Tv ratio in the BP and PSP dataset. 

Although our approach is similar to VQSR as both approaches train machine learning classifiers to predict quality of 
variants, they have a few distinct differences. First, our approach trains the model using good and bad variants detected from 
sequencing data on which quality control is performed, while VQSR uses variants in existing databases, such as HapMap and 
1000 genomes, as its training set. As VQSR uses previously known variants for model training, good variants from VQSR 
are likely to contain more known (and likely to be common) variants than novel (and rare) variants. We showed in both WGS 
datasets that it did identify more common and known SNVs and indels as good variants than ForestQC. This may not be a 
desirable outcome for some sequencing studies if one of their main goals is to identify rare and novel variants not captured in 
chips. Another difference between ForestQC and VQSR is the set of features used in the classifiers. While both methods use 
features related to sequencing depth and genotyping quality, VQSR uses some features that are specifically calculated by 
GATK software while our method uses quality information reported in the standard VCF file. This suggests that our method 
is more generalizable than VQSR as it can be applied to VCF files generated from variant callers other than GATK. The last 
difference is the machine learning algorithms that ForestQC and VQSR use. Our method trains a random forest model while 
VQSR trains a Gaussian Mixture model. Using the BP dataset, we found that random forest model was more accurate and 
much faster than Gaussian Mixture model (Table 1, Supplementary Table 6). 

In addition to SNVs, we applied our method to indels in both WGS datasets and found that indels had much lower 
sequencing quality than do SNVs as the fraction of good indels detected by ForestQC was considerably smaller than that of 
SNVs. This is somewhat expected because indel or structural variant calling is much more difficult than SNV calling from 
sequencing data, and some of them are likely to be false positives [42, 43]. It is, however, important to note that VQSR 
classifies many more indels as good variants than does ForestQC or ABHet, but those good indels from VQSR may not have 
high sequencing quality. We showed that good indels from VQSR had similar Mendelian error rate to that without 
performing QC, indicating the poor performance of VQSR on indels. VQSR considers indels from Mills gold standard call 
set[38] as true variants, and while those indels might represent true variant sites, it does not necessarily mean that genotyping 
on those sites is accurate. Therefore, genetic studies need to perform stringent QC on indels to remove those erroneous calls 
and not to have false positive findings in their downstream analysis. 

We found that the performance of VQSR was improved dramatically for the BP dataset when we considered SNVs in 
Omni genotyping array to have both true and false positive sites, compared with when they were assumed to have all true 
sites. We, however, did not observe this performance enhancement for the PSP dataset. This suggests that users may need to 
try different parameter settings to obtain optimal results from VQSR for specific sequencing datasets they analyze. Another 
issue with VQSR and also with ABHet is that some of good SNVs or indels have high genotype missing rate and ME rate, 
which may not be suitable for the downstream analysis such as association analysis. Thus, those variants need to be filtered 
out separately, which means users may need to perform an additional filtering step in addition to applying VQSR and ABHet 
to the dataset. As the filtering step is incorporated in ForestQC, our method does not have this issue. 

Our approach is an extension of a previous approach that uses a logistic regression model to predict the quality of variants 
in the BP dataset[31]. While our approach is similar to the previous approach in that they both combine filtering and 
classification approaches, ForestQC uses a random forest classifier that has higher accuracy than a logistic regression model, 
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according to our simulation results. It includes more bad variants for model training, leading to predictions with fewer biases. 
ForestQC also includes more features than the previous approach as well as more filters to improve the quality of good 
variants. Additionally, compared with the previous approach, ForestQC is more user-friendly and generalizable because users 
can choose or define different features and filters and tune the parameters according to their research goals. 

ForestQC is efficient, modularized and flexible with following features. First, users are allowed to change thresholds for 
filters as needed. This is important because filters that are stringent for one dataset may not be stringent for another dataset. 
For example, variants from sequence data with very small sample size (e.g. < 100) may not have statistical power to have 
significant HWE p-values, and hence higher p-value thresholds may need to be used, compared with studies with larger 
sample size. If filters are not stringent enough, there may be many bad variants, and ForestQC would train a very stringent 
classifier, leading to the possible removal of good variants. On the contrary, if the filters are too stringent, there would be too 
few good variants or bad variants, which would lower the accuracy of our random forest classifier. In this study, after the 
filtering step, 4.39% of SNVs and 15.72% of indels in the BP dataset, and 5.06% of SNVs and 15.66% of indels in PSP 
dataset, were determined as bad variants. Empirically, we suggest filters for ForestQC such that after the filtering step, a 
fraction of bad variants is about 4-16%. Second, users are allowed to use their own filters and features provided that they 
specify values for those new filters and features at each variant site, and our software also allows users to remove existing 
filters and features. As there may be filters and features that capture sequencing quality of variants more accurately than 
current set of filters and features, this option allows users to improve ForestQC further. Third, ForestQC generates the 
probability of each gray variant being a good variant. This probability needs to be greater than a certain threshold for a gray 
variant to be predicted to be good, and it can also be used to analyze sequencing quality of certain variants. If studies find that 
a certain gray variant is associated with a phenotype, they may consider checking whether its probability of being a good 
variant is high enough. Lastly, ForestQC allows users to change the probability threshold for determining whether each gray 
variant is good or bad. Users may lower this threshold if they are interested in obtaining more good variants at the cost of 
including more bad variants.  

Methods 
ForestQC 
ForestQC consists of two approaches: a filtering approach and a machine learning approach based on a random forest 
algorithm. 
 
Filtering Given a variant call set from next generation sequencing data, ForestQC first applies several stringent filters to 
identify good, bad, and gray variants. Good variants are ones that pass all filters while bad variants fail any of them 
(Supplementary Table 1, 2). Gray variants are variants that neither pass filters for good variants nor fail filters for bad 
variants. We use following filters in the filtering step. 

• Mendelian error (ME) rate. The Mendelian error occurs when a child’s genotype is inconsistent with genotypes from 
parents. ME rate is calculated as the number of ME among all trios divided by the number of trios for a given variant. 
Note that this statistic is only available for family-based data. 

• Genotype missing rate. This is the proportion of missing alleles in each variant.  

• Hardy-Weinberg equilibrium (HWE) p-value. This is a p-value for hypothesis testing whether a variant is in 
Hardy-Weinberg equilibrium. Its null hypothesis is that the variant is in Hardy-Weinberg equilibrium. We use the 
algorithm used in an open-source software, VCFtools[44] for the calculation of Hardy-Weinberg equilibrium p-value.  

•  ABHet. This is allele balance for heterozygous calls. ABHet is calculated as the number of reference reads from 
individuals with heterozygous genotypes divided by the total number of reads from such individuals, which is 
supposed to be 0.50 for good variants. For variants in chromosome X, we only calculate ABHet for females. 

Random forest classifier Random forest algorithm is a machine learning algorithm that runs efficiently on large datasets 
with high accuracy[35]. Briefly, random forest builds several randomized decision trees, each of which is trained to classify 
the input objects. For classification of a new object, the fitted random forest model passes the input vector down to each of 
the decision trees in the forest. Each decision tree has its classification result, then the forest would output the classification 
that the majority of the decision trees make. Balancing efficiency and accuracy, we train a random forest classifier using 50 
decision trees (Supplementary Figure 1) and 50% as probability threshold (Supplementary Figure 2).  

To train random forest, we use good and bad variants identified from the previous filtering step as a training dataset, after 
balancing their sample size by random sampling. Normally, good variants are much more numerous than bad variants, so we 
randomly sample from good variants with the sample size of bad variants. Hence, the sample size of the balanced training set 
would be twice as large as the sample size of bad variants. We also need features in training random forest, which 
characterize datasets, and we use following features. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2018. ; https://doi.org/10.1101/444828doi: bioRxiv preprint 

https://doi.org/10.1101/444828
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

• Mean and standard deviation of depth (DP) and genotyping quality (GQ). Depth and genotyping quality values are 
extracted from DP and GQ fields of each sample in VCF files, respectively, and mean and standard deviation are 
calculated over all samples for each variant.  

• Outlier depth and outlier genotype quality. These are the proportions of samples whose DP or GQ is lower than a 
particular threshold. We choose this threshold as the first quartile value of all DP or GQ values of variants on 
chromosome 1. We use DP and GQ of variants on only chromosome 1 to reduce the computational costs. 

•  GC content: We first split a reference genome into window size of 1,000 bp and calculate GC content for each 
window as (# of G or C alleles) / (# of A, G, C or T alleles). Then, each variant is assigned a GC content value 
according to its position in the reference genome. 

After training random forest with the training dataset using above features, we next use the fitted model to make 
predictions on gray variants on being good variants. Gray variants with the predicted probability of being good larger than 
50% are labeled as predicted good variants. Then the predicted good variants and good variants from the previous filtering 
step are combined to form the final set of good variants. We apply the same procedure to identify bad variants. 

 
Comparison of different machine learning algorithms  
We compare nine different machine learning algorithms, in order to identify the best algorithm used for ForestQC. They are 
1) k-nearest neighbors for supervised 2-class classification (8 threads); 2) logistic regression (8 threads); 3) support vector 
machine with Gaussian kernel function and penalty parameter C of 1 (1 thread); 4) random forest with 50 trees (8 threads); 5) 
naïve Bayes without any prior probabilities of the classes (1 thread); 6) artificial neural network with sigmoid function as 
activation function (8 threads); 7) AdaBoost with 50 estimators and learning rate of 1, which uses SAMME.R real boosting 
algorithm (1 thread); 8) quadratic discriminant analysis without any prior on classes. Its regularization is 0 and its threshold 
for rank estimation is 1e-4 (1 thread); and 9) Gaussian mixture assuming that each component has its own diagonal 
covariance matrix (1 thread). Other parameters of these machine learning algorithm are default, as described in the 
documentations of Python scikit-learn package [45]. All learning algorithms use the seven aforementioned features: mean 
and standard deviation of sequencing depth, mean and standard deviation of genotype quality, outlier depth, outlier quality 
and GC content. 

To test these nine machine learning algorithms, we obtain training and test datasets from the BP dataset, using filters 
described in Supplementary Table 1 and 2. There are 21,248,103 good SNVs and 2,257,506 good indels while there are 
1,100,325 bad SNVs and 624,965 bad indels. We sample 100,000 variants randomly from good variants and 100,000 variants 
from bad variants to generate a training set. Similarly, 100,000 good variants and 100,000 bad variants are randomly chosen 
from the rest of variants to form a test set. Each machine learning model shares the same training and test sets. We train the 
machine learning models and measure training time at a training stage, and then test their accuracy and measure prediction 
time at a testing stage. We measure both CPU time and real time of each algorithm where CPU time is the sum of all CPU 
time over all threads and real time measures the elapsed clock time between the start and end of each algorithm. To assess the 
performance of each algorithm, we compute F1-score for the test set. F1-score is the harmonic average of precision and 
recall, which is calculated as 2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) . The closer F1-score is to 1, the higher 
classification accuracy is. Recall is the fraction of true positive results over all samples that should be given positive 
prediction. Precision is the number of true positive results divided by the number of positive results predicted by the 
classifier. 
 
ABHet approach and VQSR  
We compare ForestQC with two other approaches for performing QC on genetic variants. One is a filtering approach based 
on ABHet and the other is a classification approach called VQSR from GATK software. For the ABHet approach, we 
consider variants with ABHet > 0.7 or < 0.3 as bad variants, and the rest as good variants. We chose this threshold setting of 
ABHet (> 0.3 and < 0.7) because the ADSP project could not reliably confirm heterozygous calls with ABHet > 0.7 with 
Sanger sequencing[26]. We also exclude variants with small ABHet values (< 0.3) to ensure high quality. For GATK, we use 
recommended arguments as of 2018-04-04[36]. For SNVs, VQSR takes SNVs in HapMap 3 release 3, 1000 Genome Project 
and Omni genotyping array as training resources, and dbSNP135 as known sites resource. HapMap and Omni sites are 
considered as true sites, meaning that SNVs in these datasets are all true variants, while 1000 Genome Project sites are 
regarded as false sites, meaning that there could be both true and false-positive variants. The desired level of sensitivity of 
true sites is set to be 99.5%. In the BP dataset, we run VQSR version 3.5-0-g36282e4 with following annotations; quality by 
depth (QD), RMS mapping quality (MQ), mapping quality rank sum test (MQRankSum), read position rank sum test 
(ReadPosRankSum), fisher strand (FS), coverage (DP) and strand odds ratio (SOR) to evaluate the likelihood of true positive 
calls. In the PSP dataset, we use VQSR version 3.2-2-gec30cee that uses all previous annotations and additional inbreeding 
coefficient (InbreedingCoeff) except SOR because variants in PSP dataset do not have the SOR annotation. For indels, 
VQSR takes indels in Mills gold standard call set[38] as true training resource, and dbSNP135 as known sites resource. The 
desired level of sensitivity of true sites is set to be 99.0%. We use VQSR version 3.5-0-g36282e4 with QD, DP, FS, SOR, 
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ReadPosRankSum and MQRankSum annotations to evaluate the likelihood of true positive calls in the BP dataset, while we 
run VQSR version 3.2-2-gec30cee with the same annotations and additional InbreedingCoeff except SOR for the PSP 
dataset. 
 
Performance metrics 
21 sample-level metrics and 20 variant-level metrics are defined to measure the sequencing quality of the variant call set after 
performing quality control (Supplementary Table 7). Variant-level metrics provide us with a summarized assessment report 
of the sequencing quality of a variant call set, such as total SNVs of the whole dataset. They are calculated based on the 
information of all variants in a variant call set. For example, the number and the proportion of multi-allelic SNVs are counted 
for the entire dataset, each of which is identified according to its reference and alternate alleles. On the other hand, 
sample-level metrics enable the inspection of the sequencing quality for sequenced individuals in a variant call set. For 
instance, we check the distribution of novel Ti/Tv or other quality metrics among all individuals in the study. Sample-level 
metrics are calculated for each sample, using its genotype information on all variants in the dataset, and a distribution of 
those metrics across all individuals is shown as a box plot. For example, the number of SNV singletons on a sample level 
shows the distribution of the number of SNV singletons across all sequenced individuals. In this study, both sample-level and 
variant-level metrics are used to evaluate the sequencing quality of WGS variant datasets. 
 
BP and PSP WGS datasets 
The BP WGS dataset is for studying bipolar disorder whose average coverage is 36. This study recruited individuals from 11 
Colombia (CO) and 15 Costa Rica (CR) extended pedigrees in total. 454 subjects from 10 CO and 12 CR families are both 
whole genome sequenced and genotyped with microarray. There are 144 individuals diagnosed with BP1 and 310 control 
samples that are unaffected or have non-BP traits. GATK-HaplotypeCaller 3.5-0-g36282e4 according to the GATK best 
practices[23] is used to call variants for the BP dataset and the reference genome is HG19. After initial QC on individuals, 
five individuals are removed because of poor sequencing quality and possible sample mix-ups. Finally, 449 individuals are 
included in an analysis, resulting in 25,081,636 SNVs and 3,976,710 indels. 1,814,326 SNVs in the WGS dataset are also 
genotyped with microarray, which are used to calculate genotype discordance rate. In this study, we use the BP dataset before 
any QC performed on genetic variants. In a previous study [31], genetic variants in the BP WGS dataset are first processed 
with VQSR and then filtered with a trained logistic regression model to remove variants with low quality. 

The PSP WGS dataset is for studying progressive supranuclear palsy with average coverage of 29. 544 unrelated 
individuals are whole genome sequenced, 518 of whom are also genotyped with microarray. Among them, 119 individuals 
have 547,644 SNPs and 399 individuals have 1,682,489 SNPs genotyped with microarray, respectively. That 119 individuals 
would be excluded when calculating genotype discordance rate in case of biases caused by fewer SNPs. There are 356 
individuals diagnosed with PSP and 188 individuals as controls. Variant calling for the PSP dataset is performed by 
GATK-HaplotypeCaller 3.2-2-gec30cee with the GATK best practices pipeline where the reference genome is HG19. 49 
samples are found to have high missing rate or high relatedness with other samples, or are diagnosed with diseases other than 
PSP, so they are removed. Next, we extract variant data with only 495 individuals with VCFtools. Monomorphic variants are 
then removed. After preprocessing, the PSP WGS dataset has 33,273,111 SNVs and 5,093,443 indels. There are 1,682,489 
SNVs from 381 samples genotyped by both microarray and WGS, which are used for calculating genotype discordance rate. 
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Figure 1: Workflow of ForestQC. ForestQC takes a raw variant call set in the VCF format as input. Then it calculates the 
statistics of each variants, including MAF, mean depth, mean genotyping quality, etc.. In the filtering step, it separates the 
variant call set into good, bad, and gray variants by applying various hard filters, such as Mendelian error rate and genotype 
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missing rate. In classification step, good and bad variants are used to train a random forest model, which is then applied to 
assign labels to gray variants. Variants predicted to be good among gray variants are combined with good variants from the 
classification step for the final set of good variants. The same procedure applies to find the final set of bad variants. 

  
Figure 2: Overall quality of good variants in the BP dataset detected by four different methods, including no QC applied, 
ABHet approach, VQSR and ForestQC. The average Mendelian error rate and genotype missing rate for SNVs and indels, 
and genotype discordance rate to microarray data for SNVs are shown. 
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Figure 3: Sample-level quality metrics of good variants in the BP dataset identified by four different methods, including no 
QC applied, ABHet approach, VQSR and ForestQC. (a) Ti/Tv ratio of SNVs not found in dbSNP. (b) Total number of SNVs. 
(c) The number of SNVs not found in dbSNP. (d) Total number of indels. The version of dbSNP is 150. 

  
Figure 4: Overall quality of good variants in the PSP dataset detected by four different methods, including no QC applied, 
ABHet approach, VQSR and ForestQC. The average genotype missing rate for both SNVs and indels, and genotype 
discordance rate to microarray data for SNVs are shown.   
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Figure 5: Sample-level quality metrics of good variants in the PSP dataset identified by four different methods, including no 
QC applied, ABHet approach, VQSR and ForestQC. (a) Ti/Tv ratio of SNVs not found in dbSNP. (b) Total number of SNVs. 
(c) The number of SNVs not found in dbSNP. (d) Total number of indels. The version of dbSNP is 150.   

  
Table 1: Performance of nine different machine learning algorithms, including F1-score, total CPU time and real time cost of 
model fitting and prediction, ranked by F1-score for SNV classification. Random forest, ANN, logistic regression and KNN 
are set to run with eight threads. “ANN”: artificial neural network. “SVM”: support vector machine. “KNN”: K-nearest 
neighbors classifier. “QDA”: quadratic discriminant analysis. 

�

1.1

1.3

1.5

1.7

No QC ABHet VQSR ForestQC
Method

N
ov

el
 T

i /
 T

v

Novel Ti / Tv #

3500000

4000000

4500000

No QC ABHet VQSR ForestQC
Method

To
ta

l S
N

Vs

Total SNVs

+

30000

60000

90000

No QC ABHet VQSR ForestQC
Method

N
ov

el
 S

N
Vs

Novel SNVs /

4e+05

6e+05

8e+05

No QC ABHet VQSR ForestQC
Method

To
ta

l i
nd

el
s

Total indels

Machine learning algorithms CPU time (sec) Real time (sec) F1-score for indel classification F1-score for SNV classification

Random Forest 89.64 16.65 0.9428 0.9737
ANN 1210.54 221.36 0.9439 0.9725
SVM 1696.19 1698.15 0.9383 0.9702
AdaBoost 34.18 34.17 0.9288 0.9676
Logistics Regression 3.05 2.91 0.9080 0.9665
KNN 45.83 7.46 0.9197 0.9482
QDA 0.57 0.37 0.8998 0.9201
Native Bayes 0.22 0.23 0.8724 0.8964
Gaussian Mixture 54.49 45.57 0.8343 0.2688
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Table 2: Variant-level quality metrics of good variants in the BP dataset processed by different methods, including no QC 
applied, ABHet approach, VQSR and ForestQC. There are 20 metrics in total, which are described in Methods section in 
detail. “Known” stands for variants found in dbSNP. “Novel” stands for variants not found in dbSNP. The version of dbSNP 
is 150 

  

No QC ABHet VQSR ForestQC

Total SNVs 25,081,636 22,415,368 24,239,357 22,227,503

Known SNVs 21,165,051 19,665,276 20,675,746 19,361,635

Known SNVs (%) 84.38% 87.73% 85.30% 87.11%

Novel SNVs 3,916,585 2,750,092 3,563,611 2,865,868

Novel SNVs (%) 15.62% 12.27% 14.70% 12.89%

Known Ti / Tv 2.0751 2.1541 2.1161 2.1678

Novel Ti / Tv 1.5262 1.7987 1.6182 1.7790

Total indels 3,976,710 2,670,647 3,212,886 2,789,037

Known indels 3,094,271 2,188,996 2,758,783 2,237,002

Known indels (%) 77.81% 81.97% 85.87% 80.21%

Novel indels 882,439 481,651 454,103 552,035

Novel indels (%) 22.19% 18.03% 14.13% 19.79%

Multiallelic SNVs 153,836 26,549 128,894 77,693

Multiallelic SNVs (%) 0.61% 0.12% 0.53% 0.35%

Known multiallelic SNVs 134,108 24,880 116,698 75,107

Known multiallelic SNVs (%) 0.63% 0.13% 0.56% 0.39%

Singletons in SNVs 3,983,906 3,650,571 3,958,584 3,801,389

Singletons in SNVs (%) 15.88% 16.29% 16.33% 17.10%

Singletons in indels 485,453 395,798 325,532 433,222

Singletons in indels (%) 12.21% 14.82% 10.13% 15.53%

Metric No QC ABHet VQSR ForestQC

Total SNVs 33,273,111 29,771,182 31,281,620 29,352,329

Known SNVs 25,960,464 24,142,744 24,910,728 23,514,257

Known SNVs (%) 78.02% 81.09% 79.63% 80.11%

Novel SNVs 7,312,647 5,628,438 6,370,892 5,838,072

Novel SNVs (%) 21.98% 18.91% 20.37% 19.89%

Known Ti / Tv 2.1202 2.1811 2.1643 2.1990

Novel Ti / Tv 1.6253 1.8236 1.7089 1.8131

Total indels 5,093,443 3,311,136 3,682,319 3,418,242

Known indels 3,679,990 2,532,899 3,012,662 2,567,879

Known indels (%) 72.25% 76.50% 81.81% 75.12%

Novel indels 1,413,453 778,237 669,657 850,363

Novel indels (%) 27.75% 23.50% 18.19% 24.88%

Multi-allelic SNVs 250,418 6,685 188,180 146,247

Multi-allelic SNVs (%) 0.75% 0.02% 0.60% 0.50%

Known multi-allelic SNVs 219,411 6,210 174,818 138,890

Known multi-allelic SNVs (%) 0.85% 0.03% 0.70% 0.59%

Singletons in SNVs 14,768,613 13,849,361 14,390,515 14,055,519

Singletons in SNVs (%) 44.39% 46.52% 46.00% 47.89%

Singletons in indels 1,582,090 1,350,433 1,242,934 1,393,736

Singletons in indels (%) 31.06% 40.78% 33.75% 40.77%
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Table 3: Variant-level quality metrics of good variants in the PSP dataset processed by four different methods, including no 
QC applied, ABHet approach, VQSR and ForestQC. There are 20 metrics in total, which are described in Methods section in 
detail. “Known” stands for variants found in dbSNP. “Novel” stands for variants not found in dbSNP. The version of dbSNP 
is 150 

 
 

 
Supplementary Figure 1: Relationship between the number of trees in random forest model and the performance of ForestQC. 
Relationship between the number of trees and (a) CPU time and (b) F1-score. 
 

 
Supplementary Figure 2: Relationship between the probability threshold for predicting a variant to be good and the precision 
of ForestQC. If the probability of a variant predicted to be good is larger than the probability threshold, this variant would be 
labeled as a good variant. Classification precision changes along with the probability threshold in SNV classification (a) and 
indel classification (b). The precision of ForestQC is measured in F1-score. 
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Supplementary Figure 3: Overall quality of good and bad variants in the BP dataset identified by ForestQC using ME rate as 
a filter or not. The average Mendelian error rate and genotype missing rate for SNVs and indels, and genotype discordance 
rate to microarray data for SNVs are shown. 
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Supplementary Figure 4: Sample-level quality metrics of good variants in the BP dataset identified by ForestQC using ME 
rate as a filter or not. (a) Total number of SNVs. (b) The number of SNVs found in dbSNP. (c) the number of SNVs not 
found in dbSNP. (d) Ti/Tv ratio of SNVs found in dbSNP. (e) Ti/Tv ratio of SNVs not found in dbSNP. (f) Total number of 
indels. (g) the number of indels found in dbSNP. (h) the number of indels not found in dbSNP. The version of dbSNP is 150. 
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Supplementary Figure 5: Overall quality of bad variants in the BP dataset detected by four different methods, including no 
QC applied, ABHet approach, VQSR and ForestQC. The average Mendelian error rate and genotype missing rate for SNVs 
and indels, and genotype discordance rate to microarray data for SNVs are shown. 
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Supplementary Figure 6: Sample-level quality metrics of good variants in the BP dataset identified by four different methods, 
including no QC applied, ABHet approach, VQSR and ForestQC. (a) Ti/Tv ratio of SNVs found in dbSNP. (b) The number 
of SNVs found in dbSNP. (c) The number of indels found in dbSNP. (d) The number of indels not found in dbSNP. The 
version of dbSNP is 150. 

 
Supplementary Figure 7: Overall quality of rare variants (MAF < 0.03) and common variants (MAF ≥ 0.03) in the BP 
dataset. The average Mendelian error rate and genotype missing rate for SNVs and indels, and genotype discordance rate to 
microarray data for SNVs are shown. 
 

 
Supplementary Figure 8: (a) Ti/Tv ratio of SNVs not found in dbSNP, (b) the number of total SNVs and (c) the number of 
total indels in the BP dataset processed with VQSR using “SOR” or not. SOR stands for StrandOddsRatio, which is a metric 
for strand bias measured by the Symmetric Odds Ratio test. The version of dbSNP is 150. 
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Supplementary Figure 9: Overall quality of bad variants in the PSP dataset detected by four different methods, including no 
QC applied, ABHet approach, VQSR and ForestQC. The average genotype missing rate for both SNVs and indels, and 
genotype discordance rate to microarray data for SNVs are shown. 
 

  
Supplementary Figure 10: Sample-level quality metrics of good variants in PSP dataset identified by four different methods, 
including no QC applied, ABHet approach, VQSR and ForestQC. (a) Ti/Tv ratio of SNVs found in dbSNP. (b) The number 
of SNVs found in dbSNP. (c) The number of indels found in dbSNP. (d) The number of indels not found in dbSNP. The 
version of dbSNP is 150. 
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Supplementary Figure 11: Overall quality of rare variants (MAF < 0.03) and common variants (MAF ≥ 0.03) in the PSP 
dataset. The average genotype missing rate for SNVs and indels, and genotype discordance rate to microarray data for SNVs 
are shown. 

  
Supplementary Figure 12: Feature importance of each feature in the random forest model of ForestQC applied to the BP and 
PSP datasets. DP stands for sequencing depth. GQ stands for genotyping quality. SD means standard deviation. Outlier DP or 
GQ means the proportion of samples having genotyping quality or sequencing depth lower than the first quartile of depth or 
genotyping quality in chromosome 1. GC stands for the GC content of a 1000-bp window where the variant is located. (a) 
Feature importance in SNV classification. (b) Feature importance in indel classification. 
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Supplementary Figure 13: Pearson’s correlation coefficients between each pair of features in the BP and PSP dataset. 
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Supplementary Figure 14: Quality of good SNVs identified by VQSR with two different settings of training resources and 
ForestQC. (a) Ti/Tv ratio of SNVs not found in dbSNP v150 and (b) total number of SNVs in the BP and PSP dataset. (c)-(e) 
Average Mendelian error rate, average genotype missing rate, and average genotype discordance rate of good SNVs in the 
BP dataset. “Omni_Modified VQSR”: SNVs in Omni chip array call set are considered to contain both true and false positive 
sites. “original VQSR”: SNVs in Omni chip array call set are considered to contain only true sites. 
 

 
Supplementary Table 1: Thresholds of four filters for the selection of good variants from the original dataset. Each good 
variant must satisfy all thresholds. 
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Supplementary Table 2: Thresholds of four filters for the selection of bad variants from the original dataset. ALL means all 
thresholds should be satisfied. ANY means variants are considered bad if they satisfy any one of the thresholds. Note that 
rare variants (MAF < 0.03) and common variants (MAF ≥ 0.03) have different thresholds.  

  
Supplementary Table 3: Sample-level quality metrics of variants in the BP dataset processed by ForestQC using ME rate as a 
filter or not. There are 20 metrics in total, which are described in Methods section in detail. “Known” stands for variants in 
dbSNP. “Novel” stands for variants not in dbSNP. The version of dbSNP is 150. 
 

 
Supplementary Table 4: The number and fraction of rare variants (MAF < 0.03) and common variants (MAF ≥ 0.03) in all 
good variants identified by different methods in the BP dataset. 
 

Condition Filter Rare variants (MAF < 0.03) Common variants (MAF � 0.03)

ALL

Mendelian error rate > 3 / (# of trios) > 5 / (# of trios)

Missing rate > 2% > 3%

HWE p-value < 0.005 < 0.0005

ABHet > 0.75 or < 0.25 > 0.75 or < 0.25

ANY

Mendelian error rate > 8 / (# of trios) > 10 / (# of trios)

Missing rate > 8% > 10%

HWE p-value < 0.001 < 1e-8

Metric ForestQC ForestQC (No ME)

Total SNVs 22,227,503 22,301,653
Known SNVs 19,361,635 19,401,450
Known SNVs (%) 87.11% 87.00%
Novel SNVs 2,865,868 2,900,203
Novel SNVs (%) 12.89% 13.00%
Known Ti / Tv 2.1678 2.1620
Novel Ti / Tv 1.7790 1.7577
Total indels 2,789,037 2,813,369
Known indels 2,237,002 2,251,421
Known indels (%) 80.21% 80.03%
Novel indels 552,035 561,948
Novel indels (%) 19.79% 19.97%
Multi-allelic SNVs 77,693 78,220
Multi-allelic SNVs (%) 0.35% 0.35%
Known multi-allelic SNVs 75,107 75,378
Known multi-allelic SNVs (%) 0.39% 0.39%
Singletons in SNVs 3,801,389 3,804,176
Singletons in SNVs (%) 17.10% 17.06%
Singletons in indels 433,222 433,035
Singletons in indels (%) 15.53% 15.39%

Method Rare SNVs Common SNVs Rare indels Common indels

No QC 16,304,019 (65.00%) 8,777,577 (35.00%) 2,219,301 (55.81%) 1,757,402 (44.19%)

ABHet 14,682,507 (65.50%) 7,732,821 (34.50%) 1,655,360 (61.98%) 1,015,280 (38.02%)

VQSR 15,908,575 (65.63%) 8,330,751 (34.37%) 1,667,942 (51.91%) 1,544,939 (48.09%)

ForestQC 14,952,779 (67.27%) 7,274,684 (32.73%) 1,876,432 (67.28%) 912,598 (32.72%)
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Supplementary Table 5: The number and fraction of rare variants (MAF < 0.03) and common variants (MAF ≥ 0.03) in all 
good variants identified by different methods in PSP dataset. 
 

 
Supplementary Table 6: Running time of ForestQC and VQSR in the BP and PSP datasets, measured in real time. 

 
Supplementary Table 7: Definition of 23 metrics for sequencing quality control calculated for sample-level and variant-level. 
Only three metrics, (Het / Hom, % Total SNVs and % total indels) are only calculated for sample-level. Other metrics are 
measured for every variant site and every sample. The version of dbSNP used in this study is 150. 

 

Method Rare SNVs Common SNVs Rare indels Common indels

No QC 24,864,011 (74.73%) 8,409,100 (25.27%) 3,381,339 (66.39%) 1,712,104 (33.61%)

ABHet 22,005,560 (75.04%) 7,321,250 (24.96%) 2,337,310 (72.66%) 879,481 (27.34%)

VQSR 23,593,775 (75.42%) 7,687,845 (24.58%) 2,349,383 (63.80%) 1,332,936 (36.20%)

ForestQC 22,525,090 (76.74%) 6,827,239 (23.26%) 2,603,084 (76.15%) 815,158 (23.85%)

Method BP SNV BP indel PSP SNV PSP indel

ForestQC 17.00 min 3.74 min 23.24 min 5.82 min
GATK-VQSR 6.03 h 1.21 h 8.30 h 1.44 h

Metric Definition
Sample-level

or Variant-level

Het / Hom (count of heterozygous calls) / (count of homozygous non-reference calls) Sample-level only

Total SNVs Number of SNVs calls (i.e. non-reference genotypes) that were examined Both

Total SNVs (%)
The proportion of total SNVs of a sample in total SNVs of the entire

variant dataset
Sample-level only

Known SNVs Number of SNVs found in dbSNP Both

Known SNVs (%) The proportion of SNVs in dbSNP Both

Novel SNVs Number of SNVs not in dbSNP Both

Novel SNVs (%) The proportion of SNVs not in dbSNP Both

Known Ti / Tv The Ti / Tv ratio of the SNV calls made at dbSNP sites Both

Novel Ti / Tv The Ti / Tv ratio of the SNV calls made at non-dbSNP sites Both

Total indels Number of indels that were examined Both

Total indels (%)
The proportion of total indels of a sample in total indels of the entire

variant dataset
Sample-level only

Known indels Number of indels in dbSNP Both

Known indels (%) The proportion of indels in dbSNP Both

Novel indels Number of indels not in dbSNP Both

Novel indels (%) The proportion of indels not in dbSNP Both

Multi-allelic SNVs Number of multi-allelic SNVs Variant-level only

Multi-allelic SNVs (%) The proportion of multi-allelic SNVs Variant-level only

Known multi-allelic SNVs Number of multi-allelic SNVs in dbSNP Both

Known multi-allelic SNVs (%) The proportion of multi-allelic SNVs in dbSNP Both

Singletons in SNVs Number of singletons in SNVs Both

Singletons in SNVs (%) The proportion of singletons in SNVs Both

Singletons in indels Number of singletons in indels Both

Singletons in indels (%) The proportion of singletons in indels Both
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