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Abstract	

The	 rapid	 increase	 of	 omic	 data	 in	 the	 past	 decades	 has	 greatly	 facilitated	 the	 investigation	 of	

associations	between	omic	profiles	such	as	DNA	methylation	(DNAm)	and	complex	 traits	 in	 large	

cohorts.	 Here,	we	 proposed	 a	mixed-linear-model-based	method	 (called	MOMENT)	 that	 tests	 for	

association	between	a	DNAm	probe	and	trait	with	all	other	distal	probes	fitted	in	multiple	random-

effect	components	to	account	for	the	effects	of	unobserved	confounders	as	well	as	the	correlations	

between	distal	probes	induced	by	the	confounders.	We	demonstrated	by	simulations	that	MOMENT	

showed	a	lower	false	positive	rate	and	more	robustness	than	existing	methods.	MOMENT	has	been	

implemented	 in	 a	 versatile	 software	 package	 (called	 OSCA)	 together	 with	 a	 number	 of	 other	

implementations	for	omic-data-based	analysis	including	the	estimation	of	variance	in	a	trait	captured	

by	all	measures	of	multiple	omic	profiles,	omic-data-based	quantitative	trait	locus	(xQTL)	analysis,	

and	meta-analysis	of	xQTL	data.		
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Introduction	

The	rapid	proliferation	of	genetic	and	omic	data	in	large	cohort-based	samples	in	the	past	decade	

have	 greatly	 advanced	 our	 understanding	 of	 the	 genetic	 architecture	 of	 omic	 profiles	 and	 the	

molecular	mechanisms	 underpinning	 the	 genetic	 variation	 of	 human	 complex	 traits	 [1-3].	 These	

advances	 include	 the	 identification	 of	 a	 large	 number	 of	 genetic	 variants	 associated	 with	 gene	

expression	[4,	5],	DNA	methylation	[6,	7],	histone	modification	[8,	9],	and	protein	abundance	[10,	11];	

the	discovery	of	omic	measures	associated	with	complex	traits	[12,	13];	the	improved	accuracy	in	

predicting	a	trait	using	omic	data	[14,	15];	and	the	prioritization	of	gene	targets	for	complex	traits	by	

integrating	genetic	and	omic	data	in	large	samples	[3,	13,	16-18].	These	advances	have	also	led	to	the	

development	 of	 software	 tools,	 focusing	 on	 a	 range	 of	 different	 aspects	 of	 omic	 data	 analysis.	

Therefore,	a	software	tool	that	implements	reliable	and	robust	statistical	methods	for	comprehensive	

analysis	of	omic	data	with	high-performance	computing	efficiency	is	required.	

	

A	well-recognised	challenge	in	omic-data-based	analysis	is	to	control	for	false	positive	rate	(FPR)	in	

the	 presence	 of	 confounding	 factors,	 as	 failing	 to	 model	 the	 confounders	 may	 lead	 to	 spurious	

associations	[19-21]	and/or	a	loss	of	statistical	power	[22].	While	some	confounders	(e.g.,	age	and	

sex)	are	known	and	available	in	most	data	so	that	their	effects	can	be	accounted	for	by	fitting	them	as	

covariates	in	linear	models,	others	are	either	uncharacterised	or	difficult	to	measure.	For	example,	in	

DNA	 methylation	 (DNAm)	 data	 from	 whole	 blood,	 cell	 type	 compositions	 (CTCs)	 are	 evident	

confounders	 in	 a	methylome-wide	 association	 study	 (MWAS;	 also	 known	 as	 an	 epigenome-wide	

association	study	or	EWAS)	 [21,	 23,	 24]	 although	CTCs	may	be	useful	 for	 the	prediction	of	 some	

phenotypes.	CTCs	tend	to	be	correlated	with	the	DNAm	at	CpG	sites	that	are	differentially	methylated	

in	different	cell	types	(namely	differentially	methylated	sites)	and	have	been	shown	to	be	associated	

with	age	and	multiple	traits	and	diseases	[19,	21,	25,	26].	MWAS	analysis	without	accounting	for	CTCs	

could	give	rise	to	biased	test-statistics	unless	neither	CTCs	nor	DNAm	sites	are	associated	with	the	

trait	in	question.	Although	it	is	possible	to	measure	CTCs	directly	or	predict	them	by	reference-based	

prediction	methods	[27,	28],	reference-free	methods	that	are	able	to	correct	for	confounding	effects	

without	 the	 need	 of	 characterizing	 all	 the	 confounders	 have	 broader	 applications	 [22,	 29-32].	

Moreover,	the	predicted	CTCs	often	only	explain	a	certain	proportion	of	variation	in	CTCs	resulting	in	

biased	test-statistics	due	to	the	uncaptured	variation	in	CTCs.	Existing	reference-free	methods	are	

mainly	based	on	 the	 strategy	of	 fitting	a	number	of	 covariates	(estimated	 from	 factor	 analysis	 or	

similar	 approaches	with	or	without	 reference	 [22,	 29,	 31,	 32])	 in	 a	 fixed-effect	model	 or	 a	 set	 of	

selected	DNAm	probes	in	a	mixed	linear	model	(MLM)	[30].	However,	uncharacterized	confounders	
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with	small	to	moderate	effects	and	numerous	correlations	between	distal	DNAm	probes	(e.g.	those	

on	different	chromosomes)	induced	by	the	confounders	may	not	be	well	captured	by	either	a	fixed	

number	of	principal	features	or	a	subset	of	selected	probes.	

	

In	this	study,	we	proposed	a	reference-free	method	(called	MOA:	MLM-based	omic	association)	that	

fits	all	probes	as	random	effects	in	an	MLM-based	association	analysis	to	account	for	the	confounding	

effects,	including	the	correlations	among	distal	probes	induced	by	the	confounding.	We	then	extended	

the	method	to	stratify	the	probes	into	multiple	random-effect	components	(called	MOMENT:	multi-

component	 MLM-based	 omic	 association	 excluding	 the	 target)	 to	 model	 a	 scenario	 where	 some	

probes	 are	 much	 more	 strongly	 associated	 with	 the	 phenotype	 than	 others.	 We	 evaluated	 the	

performance	of	MOA	and	MOMENT	by	extensive	simulations	and	demonstrated	their	reliability	and	

robustness	in	comparison	with	existing	methods.	We	have	implemented	MOA	and	MOMENT	together	

with	 a	 comprehensive	 set	 of	 other	 methods	 for	 omic	 data	 analysis	 in	 an	 easy-to-use	 and	

computationally	efficient	software	package,	OSCA	(omic-data-based	complex	trait	analysis).	

Results	

Overview	of	the	OSCA	software	

OSCA	comprises	four	main	modules:	1)	data	management	for	which	we	designed	a	binary	format	to	

efficiently	store	and	manage	omic	data;	2)	linear-regression-	and	MLM-based	methods	(including	the	

methods	proposed	in	this	study)	to	test	for	associations	between	omic	measures	and	complex	traits;	

3)	methods	to	estimate	the	proportion	of	variance	in	a	complex	trait	captured	by	all	the	measures	of	

one	or	multiple	omic	profiles	(e.g.,	all	SNPs	and	DNAm	probes),	and	to	predict	the	trait	phenotype	in	

a	new	sample	based	on	the	joint	effects	of	all	omic	measures	estimated	in	a	discovery	sample;	and	4)	

an	 efficient	 implementation	 of	 the	methods	 to	 identify	 genetic	 variants	 associated	with	 an	 omic	

profile,	e.g.,	DNA	methylation	quantitative	trait	loci	(mQTL)	analysis.	We	will	describe	the	methods	

based	on	DNAm	data	but	the	methods	and	software	tool	are	in	principle	applicable	to	other	types	of	

omic	data	 including	gene	expression,	histone	modification,	and	protein	abundance.	The	computer	

code	 of	 OSCA	 is	 written	 in	 C++	 programming	 language	 and	 supports	 multi-threading	 based	 on	

OpenMP	 for	 high-performance	 computing.	 The	 compiled	 binary	 files	 are	 freely	 available	 at	

http://cnsgenomics.com/software/osca/.	

	

MLM-based	omic	association	analysis	methods	
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One	of	the	primary	applications	of	OSCA	is	to	test	for	associations	between	omic	measures	(e.g.,	DNAm	

probes)	and	a	complex	trait	(e.g.,	body	mass	index	(BMI))	correcting	for	confounding	effects.	In	an	

MWAS,	the	test-statistics	of	null	probes	can	be	inflated	because	of	the	associations	of	probes	with	

confounders	 that	 are	 correlated	 with	 the	 phenotype.	 Note	 that,	 even	 if	 the	 confounders	 are	 not	

directly	 associated	 with	 the	 phenotype,	 the	 presence	 of	 confounders	 (e.g.,	 CTCs	 or	 experimental	

batches)	 can	 cause	 correlations	between	 the	 trait-associated	probes	 and	 the	null	probes	 in	distal	

genomic	regions	or	even	on	different	chromosomes,	giving	rise	to	inflated	test-statistics	of	the	null	

probes	(see	the	simulation	results	below).	Existing	methods	that	fit	a	number	of	covariates	computed	

from	dimension	reduction	approaches	in	a	fixed-effect	model	[22,	31,	32]	or	a	set	of	selected	DNAm	

probes	in	an	MLM	[30]	may	not	be	sufficient	to	correct	for	confounding	effects	widely	spread	among	

a	 large	number	of	 probes	or	 correlations	between	distal	 probes	 induced	by	 the	 confounding.	We	

propose	 two	MLM-based	approaches	 (MOA	and	MOMENT)	 that	 include	 all	 the	 (distal)	 probes	 as	

random	effects	in	the	model	to	account	for	the	effects	of	the	confounders	on	the	trait	and	probes	as	

well	as	the	correlations	among	distal	probes.	We	show	by	simulations	(see	below)	that	both	MOA	and	

MOMENT	 are	more	 robust	 than	 existing	methods	 in	 controlling	 for	 false	 positive	 rate	 (FPR)	 and	

family-wise	error	rate	(FWER)	in	MWAS	(see	below).		

	

Here	we	start	with	a	general	MLM	that	fits	all	probes	as	random	effects,	i.e.,	

𝐲 = 𝐂𝛃 +𝐖𝐮+ 𝐞	 [1]	

where	y	is	an	𝑛 × 1	vector	of	phenotype	values	with	n	being	the	sample	size,	C	is	an	𝑛 × 𝑝	matrix	for	

covariates	(e.g.,	age	and	sex)	with	p	being	the	number	of	covariates,	𝛃	is	a	𝑝 × 1	vector	of	the	effects	

of	covariates	on	the	phenotype,	W	is	an	𝑛 ×𝑚	matrix	of	standardised	DNAm	measures	of	all	m	probes,	

𝐮	is	an	𝑚× 1	vector	of	 the	 joint	effects	of	all	probes	on	 the	phenotype,	and	e	 is	an	𝑛 × 1	vector	of	

residuals.	In	this	model,	𝛃	are	fixed	effects	whereas	𝐮	and	e	are	random	effects	with	𝐮~𝑁(𝟎, 𝐈𝜎56)	and	

𝐞~𝑁(𝟎, 𝐈𝜎86).	The	variance-covariance	matrix	for	y	is	var(𝐲) = 𝐕 = 𝐖𝐖′𝜎56 + 𝐈𝜎86.	This	equation	can	

be	re-written	as		

𝐕 = 𝐀𝜎@6 + 𝐈𝜎86	with	𝐀 = 𝐖𝐖′/𝑚	and	𝜎@6=	𝑚𝜎56	 	 [2]	

where	A	is	defined	as	the	omic-data-based	relationship	matrix	(ORM)	(Methods)	and	𝜎@6	is	the	

amount	of	phenotypic	variance	captured	by	all	probes.	The	variance	components	(𝜎@6	and	𝜎86)	in	

such	an	MLM	can	be	estimated	by	REML	algorithms	[33].	Analogous	to	the	method	for	estimating	

SNP-based	heritability	[34,	35],	the	proportion	of	variance	in	the	phenotype	captured	by	all	the	

probes	can	be	defined	as	𝜌6 = 𝜎@6/(𝜎@6 + 𝜎86).	We	name	this	variance-estimation	method	OREML	

following	the	nomenclature	of	GREML	[34].	The	estimated	joint	probe	effects	(𝐮D)	from	this	model	by	
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a	random-effect	estimation	approach	(e.g.,	BLUP	[36])	can	be	used	to	predict	the	phenotypes	of	

individuals	in	a	new	sample	based	on	omic	data,	i.e.,	𝐲EFGH = 𝐖FGH𝐮D .	We	call	this	OBLUP.	

	

Model	[1]	can	be	extended	to	test	for	association	between	a	probe	i	and	the	trait,	i.e.,		

𝐲 = 𝐰J𝑏J + 𝐂𝛃 +𝐖𝐮+ 𝐞	with	𝐕 = 𝐖𝐖′𝜎56 + 𝐈𝜎86	 [3]	

In	comparison	to	model	[1],	this	model	has	two	additional	terms,	𝐰J 	(an	𝑛 × 1	vector	of	standardised	

DNAm	measures	of	a	probe	i,	i.e.,	the	target	probe)	and	𝑏J	(the	effect	of	probe	i	on	the	phenotype;	fixed	

effect).	The	probe	effect	𝑏J	(together	with	the	covariates’	effects)	can	be	estimated	by	the	generalized	

least	 squares	 (GLS)	 approach,	 i.e.,	 L𝑏MJ	𝛃NO′ = (𝐗′𝐕QR𝐗)QR𝐗′𝐕QR𝐲 	and	varL𝑏MJ	𝛃NO
S
= (𝐗′𝐕QR𝐗)QR 	with	

𝐗 = [𝐰J	𝐂].	The	sampling	variance	(standard	error	(SE)	squared)	of	𝑏MJ	is	the	first	diagonal	element	of	

varL𝑏MJ	𝛃NO
S
.	The	null	hypothesis	(𝐻W: 𝑏J = 0)	can	be	tested	by	a	two-sided	t-test	(or	approximately	chi-

squared	test	if	sample	size	is	large)	given	𝑏MJ	and	its	SE.	We	call	this	method	MOA.	Applying	this	method	

to	 test	each	of	 the	probes	across	 the	genome	 is	extremely	computationally	expensive	because	 the	

variance	 components	𝜎56 	and	𝜎86 	need	 to	 be	 estimated	 repeatedly	 for	 each	 probe	 by	 REML	 that	

requires	the	computation	of	𝐕QR	(computational	complexity	of	𝑂(𝑛[))	multiple	times	in	an	iterative	

process.	To	speed	up	the	computation,	we	use	a	two-step	approach	as	in	[37]	to	compute	𝐕QR,	with	

the	first	step	to	perform	an	eigendecomposition	of	𝐖𝐖′	and	the	second	step	to	compute	𝐕QR	based	

on	the	eigenvalues	and	eigenvectors.	Since	the	eigendecomposition	only	needs	to	be	done	once	for	

the	whole	genome	scan,	this	two-step	approach	reduces	the	complexity	of	computing	𝐕QR	by	orders	

of	magnitude	when	testing	each	specific	probe.	Moreover,	as	the	proportion	of	phenotypic	variance	

attributable	 to	a	single	probe	 is	often	very	small,	we	can	 further	speed	up	 the	computation	by	an	

approximate	approach	(similar	to	the	approximate	MLM-based	GWAS	methods	[38,	39])	that	only	

requires	to	compute	𝐕QR	once,	assuming	that	the	estimates	of	𝜎56	and	𝜎86	under	the	null	(i.e.,	𝑏J = 0)	

are	approximately	equal	to	those	under	the	alternative	(i.e.,	𝑏J ≠ 0).	Both	the	approximate	and	exact	

MOA	approaches	have	been	implemented	in	OSCA.		

	

There	are	two	properties	of	the	MOA	method	worthy	of	consideration.	First,	the	target	probe	is	fitted	

twice	in	the	MOA	model,	once	as	a	fixed	effect	(𝑏J)	and	again	as	a	random	effect	(the	i-th	element	of	

u),	resulting	in	a	loss	of	power	to	detect	𝑏J	(a	recognised	issue	in	MLM-based	association	analysis	with	

SNP	data	[39,	40]).	This	problem	can	be	solved	by	leaving	out	probes	in	close	physical	proximity	of	

the	target	probe	(including	the	target)	from	the	random-effect	term	because	DNAm	status	of	CpG	sites	

in	close	physical	proximity	are	likely	to	be	regulated	by	the	same	mechanism	and	therefore	tend	to	

be	highly	correlated.	This	strategy	has	been	used	previously	in	both	GWAS	(genome-wide	association	
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study)	[39,	40]	and	MWAS	[30].	In	practice,	we	exclude	the	probes	<50Kb	from	the	target	probe.	Note	

that	the	distance	parameter	may	differ	for	other	types	of	omic	data	(e.g.,	a	window	size	of	100Kbp	is	

recommended	 for	 gene	 expression	 data;	 see	 below	 for	 details).	 Second,	 MOA	 assumes	 a	 single	

distribution	to	all	the	probe	effects	in	the	random-effect	term,	which	may	not	be	well	fitted	to	data	if	

some	probes	have	much	stronger	associations	with	the	trait	than	other	probes.	For	example,	if	CTCs	

are	associated	with	the	phenotype,	 then	all	 the	probes	 that	are	highly	differentially	methylated	 in	

different	cell	types	[41-43]	may	present	a	very	different	distribution	of	effects	from	the	other	probes.	

One	solution	to	this	issue	is	to	stratify	the	probes	into	multiple	groups	by	the	association	test	statistics	

(from	linear	regression)	and	fit	them	as	separate	random-effect	terms	in	the	model.	We	extended	the	

MOA	 method	 with	 the	 two	 modifications	 mentioned	 above	 and	 named	 it	 as	 MOMENT	 (multi-

component	MLM-based	omic	association	excluding	the	target).	The	MOMENT	model	can	be	written	

as		

𝐲 = 𝐰J𝑏J + 𝐂𝛃 + ∑ 𝐖 𝐮^^ + 𝐞	with	𝐕 = ∑ 𝐖𝐖 ′𝜎5_
6

^ + 𝐈𝜎86	 [4]	

where	𝐖 	is	an	𝑛 ×𝑚^	matrix	of	standardised	DNAm	measures	of	the	probes	in	the	j-th	group	with	

𝑚^	being	the	number	of	probes	in	the	group	(excluding	probes	within	50Kb	of	the	target	probe).	In	

practice,	the	probes	are	split	into	two	groups	by	association	p-values	from	a	linear	regression	model	

(i.e.,	 𝐲 = 𝐰J𝑏J + 𝐂𝛃 + 𝐞 )	 at	 a	 methylome-wide	 significant	 threshold	 (all	 the	 methylome-wide	

significant	probes	 in	 the	 first	 group	and	the	other	probes	 in	 the	 second	group).	The	GLS	method	

described	in	model	[3]	can	be	used	to	estimate	𝑏J	and	its	SE	for	hypothesis	testing.	Like	the	exact	MOA	

method,	MOMENT	is	also	computationally	intensive	when	applied	in	a	methylome-wide	analysis.	We	

can	use	a	similar	approximation	approach	as	described	above	(i.e.,	using	the	variance	components	

estimated	 under	 the	 null	 to	 compute	 𝑏MJ 	and	 SE)	 to	 reduce	 the	 computing	 cost.	 The	 variance	

components	are	re-estimated	when	one	or	more	probes	are	excluded	from	the	first	group	in	case	that	

the	proportion	of	phenotypic	variance	captured	by	some	of	the	probes	in	the	first	group	are	large.	

	

Simulation	analysis	

To	 quantify	 the	 false	 positive	 rate	 (or	 family-wise	 error	 rate)	 and	 statistical	 power	 of	MOMENT	

(implemented	 in	 OSCA),	we	 performed	 simulations	 based	 on	DNAm	 and	 CTCs	 [44]	measures	 on	

samples	 from	 the	 Lothian	 Birth	 Cohorts	 (LBC)	 in	 three	 scenarios	 (Supplementary	 Note	 1).	We	

simulated	 a	 phenotype	1)	with	 effects	 from	 a	 set	 of	 “causal	 probes”	 (randomly	 selected	 from	 all	

probes	on	the	odd	chromosomes)	but	no	direct	effects	from	the	CTCs;	2)	with	small	to	large	effects	

from	CTCs	but	no	effects	from	the	probes;	and	3)	with	effects	from	both	the	causal	probes	and	CTCs	

(Supplementary	Note	1).	Note	that	we	only	sampled	the	causal	probes	from	the	odd	chromosomes	
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in	scenarios	1	and	3,	leaving	the	probes	on	the	even	chromosomes	to	quantify	false	positive	rate	under	

the	null,	and	that	the	DNAm	measures	were	adjusted	for	age,	sex,	experimental	batches,	and	smoking	

status.	Results	from	our	models	were	compared	to	6	different	methods	including:	1)	Unadj:	 linear	

regression	without	adjustment;	2)	CTCadj:	linear	regression	with	CTCs	fitted	as	covariates.	3)	SVA:	

linear	regression	with	the	SVA	surrogate	variables	fitted	as	covariates	[22];	4)	LFMM2-ridge:	a	latent	

factor	mixed	model	(LFMM)	using	ridge	algorithm	for	confounder	estimation	[32];	5)	LFMM2-lasso:	

an	LFMM	using	lasso	algorithm	for	confounder	estimation	[32];	6)	ReFACTor:	linear	regression	with	

the	first	5	sparse	principal	components	(PCs)	from	ReFACTor	fitted	as	covariates	[31];	7)	5PCs:	linear	

regression	 with	 the	 first	 5	 PCs,	 computed	 from	 a	 principal	 component	 analysis	 (PCA),	 fitted	 as	

covariates;	and	8)	FaST-LMM-EWASher:	a	set	of	selected	probes	fitted	as	random	effect	in	an	MLM	

[30].	 For	 completeness	 of	 the	 analysis,	 we	 also	 included	 MOA	 (implemented	 in	 OSCA)	 in	 the	

comparison.	We	validated	using	a	subset	of	data	generated	from	simulation	scenario	1	that	the	test-

statistics	 from	 the	 approximate	MOA/MOMENT	 approach	were	 extremely	 highly	 correlated	with	

those	 from	 the	 corresponding	 exact	 approach	 (Pearson	 correlation	>0.999	 for	 causal	 probes	 and	

>0.998	for	null	probes;	Supplementary	Figure	1).	Hence,	for	the	ease	of	computation,	we	used	the	

approximate	MOA/MOMENT	approach	in	all	the	subsequent	analyses.	

	

In	simulation	scenario	1,	although	there	were	no	direct	effects	of	the	CTCs	on	the	phenotype,	the	test-

statistics	 from	Unadj	 at	 the	 null	 probes	were	 inflated	 (Figure	 1a	 and	 Supplementary	Table	 1)	

because	the	null	and	causal	probes	–	albeit	on	different	sets	of	chromosomes	–	are	correlated	through	

their	correlations	with	systematic	biases	such	as	CTCs.	The	mean	genomic	inflation	factor	(l)	[45]	of	

the	 null	 probes	 (on	 the	 even	 chromosomes)	 from	 100	 simulation	 replicates	 was	 7.67	 for	 Unadj	

(Supplementary	Table	1),	where	l	is	defined	as	the	median	of	c2	test-statistics	of	the	null	probes	

divided	 by	 its	 expected	 value.	 CTCadj	 reduced	 but	 not	 completely	 removed	 the	 inflation	 in	 test-

statistics	of	the	null	probes	(Figure	1a	and	Supplementary	Table	1),	suggesting	that	the	inflation	

was	caused	by	correlations	between	the	causal	and	null	probes	because	of	the	confounding	effects	of	

both	CTCs	and	other	unobserved	confounders.	While	all	the	other	methods	were	much	less	inflated	

compared	to	Unadj,	MOMENT	and	MOA	showed	the	least	inflation	with	a	mean	l	value	close	to	1.	It	is	

slightly	surprising	to	observe	that	the	family-wise	error	rates	(FWERs)	of	all	the	methods	except	MOA	

and	MOMENT	were	highly	inflated	(FWERs	>	0.6)	(Supplementary	Figure	2a	and	Supplementary	

Table	1)	despite	the	relatively	small	genomic	inflation	at	the	null	probes	for	most	of	the	methods	

(Figure	1a).	Here,	FWER	is	defined	as	the	proportion	of	simulation	replicates	with	at	least	one	null	

probe	at	MWAS	p-value	<	0.05	/	m	with	m	being	the	number	of	null	probes,	which	can	be	interpreted	
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as	the	probability	of	observing	one	or	more	false	positives	at	a	methylome-wide	significance	level	in	

a	single	experiment.	There	was	no	inflation	in	FWER	for	MOMENT,	and	a	marginal	inflation	for	MOA	

(Supplementary	Figure	2a	and	Supplementary	Table	1),	 showing	 the	effectiveness	of	using	all	

(distal)	 probes	 to	 account	 for	 the	 probe	 correlations.	We	 also	 quantified	 the	 FPR,	 defined	 as	 the	

proportion	of	null	probes	with	p-values	<	0.05	in	each	simulation	replicate.	The	differences	in	FPR	

among	 the	 methods	 showed	 a	 similar	 pattern	 to	 the	 differences	 in	 genomic	 inflation	 factor	

(Supplementary	Figure	2b	and	Supplementary	Table	1).	We	then	compared	power	among	the	

methods.	Since	the	test-statistics	of	many	approaches	were	highly	inflated,	it	is	not	very	meaningful	

to	compare	power	without	accounting	for	the	inflation.	We	therefore	used	the	Area	Under	the	ROC	

Curve	(AUC)	to	compare	power	of	the	methods	given	the	same	level	of	FPR.	Apart	from	Unadj	and	

CTC,	 the	 AUCs	 of	 all	 the	 methods	 were	 on	 similar	 levels	 (Figure	 1b).	 The	 conclusions	 held	 in	

additional	 simulations	 varying	 the	 number	 of	 causal	 probes	 and	 the	 proportion	 of	 phenotypic	

variance	captured	by	the	causal	probes	(Supplementary	Figures	3	and	4)	despite	that	the	inflation	

in	FWER	for	the	existing	methods	appeared	to	increase	with	the	increase	of	the	proportion	of	variance	

captured	per	causal	probe.	Additionally,	we	applied	BACON,	a	summary-data	based	method	that	seeks	

to	remove	genomic	inflation	taking	the	true	positives	into	consideration,	to	the	test-statistics	of	all	

probes	produced	by	the	methods	tested	above.	We	showed	that	the	inflation	in	test-statistics	of	the	

null	 probes	 for	 Unadj	 was	 substantially	 reduced	 but	 not	 completely	 removed	 by	 the	 BACON	

adjustment	and	that	the	test-statistics	from	MOA	and	MOMENT	remained	almost	unchanged	after	the	

BACON	adjustment	(Supplementary	Figure	5).	

	

In	simulation	scenario	2	where	there	is	no	direct	probe-trait	association,	all	the	probes	are	null	and	

their	c2	test-statistics	are	expected	to	follow	a	c2	distribution	with	1	degree	of	freedom	if	the	effects	

of	CTCs	have	been	well	accounted	for.	The	results	showed	that	the	l	value	was	close	to	1	for	all	the	

methods	except	Unadj	and	FaST-LMM-EWASher	(Figure	2a).	It	seems	that,	for	some	of	the	methods	

(e.g.	 5PCs	 and	 ReFACTor),	 the	 l	 value	 slightly	 increased	 with	 the	 increase	 of	 the	 proportion	 of	

variance	explained	by	the	CTCs	(𝑅abac6 )	(Figure	2a).	The	FPRs	of	the	methods	were	highly	consistent	

with	the	genomic	inflation	factors	(Supplementary	Figure	6).	Nevertheless,	a	non-inflated	median	

test-statistic	does	not	necessarily	mean	that	 the	FWER	has	been	well	 controlled	 for.	 In	 fact,	most	

methods	 showed	 inflated	 FWER	 in	 this	 simulation	 scenario,	 and	 the	 FWERs	 of	 all	 the	 methods	

increased	 with	 increasing	𝑅abac6 	(Figure	 2b).	 The	 FWERs	 of	 5PCs,	 ReFACTor,	 LFMM2-ridge,	 and	

LFMM2-lasso	were	close	to	the	expected	value	(i.e.,	0.05)	when	𝑅abac6 = 0.005	and	increased	to	a	level	

between	0.15	and	0.2	when	𝑅abac6 = 0.05	(Figure	2b).	The	relationship	between	FWER	and	𝑅abac6 	
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was	relatively	flat	for	SVA	with	its	FWER	varying	from	0.05	to	0.1	when	𝑅abac6 	increased	from	0.005	

to	 0.05.	 Although	 FaST-LMM-EWASher	 showed	 the	 most	 deflated	 test-statistics	 among	 all	 the	

methods	(Figure	2a),	 its	FWER	was	substantially	higher	 than	all	 the	other	methods	except	Unadj	

(Figure	2b),	likely	due	to	its	feature	selection	strategy	(Supplementary	Note	2).	MOA	and	MOMENT	

performed	similarly	in	this	simulation	scenario	and	showed	the	lowest	inflation	in	FWER	among	all	

the	methods	with	their	FWER	being	lower	than	0.05	when	𝑅abac6 	=	0.005	and	increased	to	about	0.1	

when	𝑅abac6 	=	 0.05	 (Figure	 2b).	 In	 addition,	 we	 performed	 a	 linear	 regression	 analysis	with	 the	

known	CTCs	fitted	as	covariates;	as	expected,	the	FWER	of	was	close	to	0.05	irrespective	of	the	level	

of	𝑅abac6 	(see	below	for	the	analysis	with	predicted	CTCs).	

	

We	also	compared	the	methods	under	the	circumstance	(simulation	scenario	3)	where	there	were	

associations	between	the	phenotype	and	CTCs	(𝑅abac6 = 0.05)	and	the	null	probes	were	correlated	

with	distal	causal	probes	because	both	of	them	were	correlated	with	CTCs	(Supplementary	Note	1).	

The	results	were	similar	to	those	above	(Figure	1	and	Supplementary	Figure	2).	That	is,	the	FWER	

of	MOMENT	was	 close	 to	 the	 expected	value,	 demonstrating	 the	 reliability	 and	 robustness	of	 the	

method.	The	FWER	of	MOA	is	slightly	higher	than	that	of	MOMENT	but	much	lower	than	those	of	the	

other	methods	which	showed	strong	inflation	in	FWER	and/or	FPR	due	to	the	correlations	between	

causal	and	null	probes	(Supplementary	Figures	7a,	7c	and	7d,	and	Supplementary	Table	2).	All	

the	methods	showed	similar	levels	of	AUC	except	for	Unadj	and	CTCadj	(Supplementary	Figure	7b).	

The	 conclusions	held	with	different	 sample	 sizes	 (Supplementary	Figures	8	and	 9)	 or	different	

numbers	 of	 causal	 probes	 with	 smaller	 or	 larger	 variance	 explained	 per	 causal	 probe	

(Supplementary	Figures	10	and	11).	The	conclusions	also	held	if	we	simulated	confounding	effects	

on	 experimental	 batches	 in	 lieu	 of	 CTCs	 (Supplementary	 Figures	 12	 and	 13).	 We	 further	

demonstrated	that	the	result	from	MOA/MOMENT	analysis	of	the	whole	sample	was	consistent	with	

that	from	a	meta-analysis	of	summary	statistics	from	MOA/MOMENT	analyses	in	two	halves	of	the	

sample	 (Supplementary	 Figure	 14)	 and	 that	 the	 methods	 were	 applicable	 to	 case-control	

phenotypes	(Supplementary	Figures	15	and	16).	

	

To	 explore	 the	 applicability	 of	 the	 proposed	methods	 to	 other	 types	 of	 omic	 data,	we	 tested	 the	

methods	by	simulation	based	on	a	real	gene	expression	data	set	(19,648	gene	expression	probes	on	

1,219	Mexican	American	 individuals)	 from	 the	 San	 Antonio	 Family	Heart	 Study	 (SAFHS)	 [46-48]	

(Methods)	 under	 simulation	 scenario	 1	 (i.e.,	 quantitative	 phenotypes	 simulated	 based	 on	 the	

expression	 levels	 of	 100	 randomly	 selected	 causal	 probes;	 Supplementary	 Note	 1).	 The	 result	
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showed	that	both	MOMENT	and	MOA	performed	similarly	(in	comparison	to	the	other	methods)	as	

in	the	simulations	based	on	DNAm	data	(Supplementary	Figure	17).	

	

We	further	compared	the	computational	complexity	among	the	MWAS	methods	tested	in	this	study	

and	quantified	their	runtime	and	memory	usage	of	the	methods	using	simulated	and	real	phenotypes	

in	the	LBC	(Supplementary	Table	3).	We	found	that	MOA	and	MOMENT	showed	the	lowest	memory	

usage	among	all	the	methods.	The	approximate	MOA	approach	was	the	second	fastest	approach	(only	

slightly	 slower	 than	 LFMM2-ridge)	 and	 the	 approximate	 MOMENT	 approach	 was	 slower	 than	

LFMM2-ridge,	 approximate	 MOA	 and	 ReFACTor	 but	 much	 faster	 than	 SVA,	 LFMM2-lasso	 and	

EWASher.	

	

An	application	of	MOMENT	to	real	data		

We	applied	MOMENT	and	the	other	methods	to	four	real	quantitative	traits	in	the	LBC	cohorts.	These	

traits,	including	BMI,	height,	lung	function	(measured	in	the	highest	score	of	forced	expiratory	volume	

in	one	second),	and	walking	speed	(measured	in	the	time	taken	to	walk	6	meters),	were	standardised	

and	 corrected	 for	 age	 in	 each	 gender	 group	 within	 each	 sub-cohort	 (LBC1936	 or	 LBC1921)	

(Methods).	The	standardised	phenotypes	were	further	processed	by	a	rank-based	inverse-normal	

transformation.	The	DNAm	probes	were	adjusted	for	age,	sex,	and	experimental	batches.	We	did	not	

adjust	the	probes	for	CTCs	or	smoking	status	for	the	purpose	of	testing	methods	(see	below).	

	

Consistent	with	the	results	from	simulations,	the	test-statistics	from	MOA	and	MOMENT	were	not	

inflated	whereas	all	the	other	methods	showed	modest	inflation	for	all	the	traits	(Figure	3,	Table	1,	

and	 Supplementary	 Figures	 18-21).	 Three	 associations	 were	 identified	 by	 multiple	 methods,	

including	one	for	BMI	(cg11202345,	detected	by	all	methods),	in	line	with	a	previous	study	[49],	and	

two	 for	 lung	 function	 (cg05575921	 and	 cg05951221,	 detected	 by	 all	 methods	 except	MOMENT)	

(Supplementary	Table	4,	Supplementary	Figures	18	and	20).	It	should	be	noted	that	cg05575921	

was	reported	to	be	associated	with	smoking	in	a	previous	study	[50],	indicating	that	the	association	

between	cg05575921	and	lung	 function	might	be	confounded	by	smoking	status.	Moreover,	MOA,	

LFMM2-ridge,	LFMM2-lasso,	and	ReFACTor	consistently	identified	12	additional	probes	associated	

with	 lung	 function	but	most	 of	 the	probes	have	been	 linked	 to	smoking	 in	a	previous	 study	 [51].	

Almost	all	the	associations	were	not	significant	when	smoking	status	was	fitted	as	a	covariate	in	the	

models	(6.5%	of	variance	in	lung	function	associated	with	smoking	status;	Supplementary	Table	5	

and	Supplementary	Figure	22),	suggesting	that	most	(if	not	all)	of	the	probe	associations	with	lung	
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function	 identified	 by	 MOA,	 LFMM2-ridge,	 LFMM2-lasso	 and	 ReFACTor	 were	 owing	 to	 the	

confounding	of	smoking.	None	of	the	smoking-associated	probes	were	methylome-wide	significant	

for	lung	function	in	the	analysis	using	MOMENT	(Supplementary	Figure	20)	and	the	result	remained	

the	same	when	smoking	status	was	fitted	as	a	covariate	in	MOMENT	(Supplementary	Figure	22),	

again	demonstrating	 the	capability	of	MOMENT	 in	correcting	 for	unobserved	confounding	 factors.	

This	is	further	supported	by	the	finding	from	simulations	that	the	effects	of	null	probes	estimated	

from	MOMENT	were	much	 less	correlated	with	 the	phenotype	compared	to	 those	estimated	from	

MOA	(Supplementary	Figure	23).	

	

It	has	been	shown	in	previous	GWASs	that	MLM-based	association	analysis	methods	developed	for	

quantitative	traits	are	applicable	to	case-control	data	[37-39,	52].	We	have	shown	by	simulation	that	

both	MOMENT	and	MOA	are	applicable	to	case-control	phenotypes	regardless	of	whether	cases	are	

oversampled	(Supplementary	Figures	15	and	16).	To	demonstrate	the	applicability	of	the	proposed	

methods	 to	discrete	phenotypes,	we	analysed	smoking	status	(coded	as	0,	1	or	2	 for	non-smoker,	

former	smoker	or	current	smoker)	 in	the	LBC	by	MOA	and	MOMENT	 in	comparison	with	existing	

methods.	All	 the	methods	detected	a	 large	number	 (at	 least	112)	of	probes	 at	a	methylome-wide	

significance	 level	 (P	 <	 2.19e-7)	 except	 for	MOMENT	 and	 EWASher	which	 only	 identified	4	 and	2	

probes,	 respectively,	 at	 the	 methylome-wide	 significance	 level	 (Supplementary	 Figure	 24).	 To	

validate	the	association	signals	other	than	 those	 identified	by	MOMENT,	we	 fitted	 the	4	MOMENT	

probes	as	 fixed	covariates	in	MOA.	None	of	 the	additional	associations	remained	methylome-wide	

significant	conditioning	on	the	4	MOMENT	probes	(Supplementary	Figure	25),	suggesting	that	those	

additional	associations	detected	by	MOA	(and	other	methods)	were	driven	by	their	correlations	with	

the	4	MOMENT	signals.	MOA	failed	in	this	scenario	likely	because	the	associations	of	the	4	MOMENT	

signals	 were	 too	 strong	 to	 be	 fitted	 in	 a	 single	 normal	 distribution	 with	 the	 other	 probes.	 This	

conclusion	 is	 further	 supported	by	 the	 result	 that	 the	 accuracy	of	 predicting/classifying	 smoking	

status	in	a	cross-validation	setting	using	a	large	number	of	probes	detected	by	linear	regression	or	

MOA	 was	 even	 lower	 than	 that	 using	 a	 small	 number	 of	 probes	 detected	 by	 MOMENT	

(Supplementary	Table	6).	In	addition,	we	recoded	the	smoking	status	data	to	a	binary	phenotype	(0	

for	non-smoker	 and	1	 for	 former	or	 current	 smoker)	 and	applied	all	 the	methods	 to	 the	 recoded	

binary	phenotype;	the	conclusions	were	similar	as	above	but	it	seemed	that	the	analyses	with	the	

binary	 phenotype	 were	 less	 powerful	 than	 those	 with	 the	 categorical	 phenotype	 above	

(Supplementary	Figure	26).	All	these	results	show	the	applicability	of	MOMENT	to	discrete	traits	
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and	again	demonstrate	 the	robustness	and	reliability	of	MOMENT	 in	controlling	 for	 false	positive	

associations.		

	

Estimating	variance	in	a	phenotype	captured	by	all	probes	by	OREML		

We	 have	 demonstrated	 the	 performance	 of	 the	 omic-data-based	 association	 analysis	 methods	 in	

OSCA	by	simulation	and	real	data	analysis.	We	then	turned	to	evaluate	the	performance	of	OREML	in	

estimating	the	proportion	of	variance	in	a	complex	trait	captured	by	all	probes	(𝜌6)	by	simulation	in	

two	 scenarios	 (Supplementary	Note	 1).	 The	 results	 showed	 that	 under	 either	 scenario,	 OREML	

reported	an	unbiased	estimate	of	𝜌6	(Supplementary	Table	7).	Here	the	unbiasedness	is	defined	as	

that	the	mean	𝜌6	estimate	from	500	independent	simulations	is	not	significantly	different	from	the	𝜌6	

parameter	used	for	simulation.	There	are	two	methods	implemented	in	OSCA	to	compute	the	ORM	

(Methods).	Our	simulation	results	showed	that	the	estimates	of	𝜌6	based	on	the	two	methods	were	

similar	(Supplementary	Table	7).	

	

We	also	attempted	to	partition	and	estimate	the	proportions	of	phenotypic	variation	captured	by	all	

SNPs	 (i.e.,	ℎfgh6 )	 and	 all	 the	 DNAm	 probes	 respectively	 when	 fitted	 jointly	 in	 a	 model.	 We	 first	

investigated	 the	 correlation	 between	 genomic	 relationship	 matrix	 (GRM)	 and	 methylomic	

relationship	matrix	(MRM)	in	the	LBC	dataset.	We	found	that	the	off-diagonal	elements	of	the	GRM	

were	almost	 independent	of	those	of	 the	MRM	(r	=	0.0045;	Supplementary	Figure	27).	From	an	

OREML	analysis	that	fits	both	the	GRM	and	MRM,	we	estimated	that	all	the	DNAm	probes	captured	

6.5%	(SE	=	0.038)	of	the	variance	for	BMI	but	the	estimate	for	height	was	nearly	zero	(𝜌E6	=	-0.005	and	

SE	=	0.0086)	(Supplementary	Table	8).	These	results	are	in	line	with	the	finding	from	a	previous	

study	that	the	accuracy	of	genetic	risk	prediction	can	be	improved	by	incorporating	DNAm	data	for	

BMI	but	not	height	[14]. 	

Discussion	

In	this	study,	we	developed	a	versatile	software	tool—OSCA—to	manage	omic	data	generated	from	

high-throughput	experiments	in	large	cohorts	and	to	facilitate	the	analyses	of	complex	traits	using	

omic	data	(Supplementary	Note	4).	The	primary	applications	of	OSCA	are	to	identify	omic	measures	

associated	with	a	complex	trait	accounting	for	unobserved	confounding	factors	(MOMENT)	and	to	

estimate	the	proportion	of	phenotypic	variation	captured	by	all	measures	of	one	or	multiple	omic	

profiles	 (OREML).	 A	 by-product	 of	 the	 OREML	 application	 is	 to	 estimate	 the	 joint	 effects	 of	 all	

measures	of	one	or	multiple	omic	profiles	(i.e.,	OBLUP	analysis)	to	predict	the	phenotype	in	a	new	
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sample.	This	has	been	shown	to	be	a	powerful	and	robust	approach	 in	age	prediction	using	gene	

expression	or	DNAm	data	[53,	54].	We	have	also	provided	computationally	efficient	implementations	

in	OSCA	to	manage	large-scale	omic	data,	and	to	perform	omic-data-based	quantitative	 trait	 locus	

(xQTL)	analysis	and	meta-analysis	of	xQTL	summary	data.	OSCA	is	an	ongoing	software	development	

project	so	that	any	further	methods	or	functions	related	to	omic-data-based	analysis	can	be	included	

in	the	software	package	in	the	future.	

	

We	showed,	by	simulation,	a	surprisingly	high	error	rate	for	all	the	existing	MWAS/EWAS	methods,	

mainly	owing	to	the	correlations	between	distal	probes	induced	by	CTCs	(and/or	other	systematic	

confounders)	 in	 DNAm	data	 (Figure	 1).	 These	 correlations	 are	widespread	 at	 a	 large	 number	 of	

probes	across	the	methylome	(as	demonstrated	by	the	proportion	of	null	probes	with	PMWAS	<	0.05	in	

simulation	scenario	1;	Supplementary	Figure	28)	and	thus	are	not	adequately	accounted	for	by	a	

fixed	number	of	principal	features	computed	from	the	data	(e.g.	5PCs,	ReFACTor,	LFMM2,	and	SVA)	

nor	a	set	of	selected	probes	(e.g.	FaST-LMM-EWASher).	This	conclusion	is	likely	to	be	applicable	to	

other	types	of	omic	data	if	the	measures	in	distal	genomic	regions	are	correlated	due	to	unmeasured	

confounding	 factors	 such	 as	 systematic	 experimental	 biases	 or	 unwanted	 biological	 variation,	 as	

suggested	 by	 our	 simulations	 with	 gene	 expression	 data	 (Supplementary	 Figure	 17).	 This	

confounding	effect	can	be	corrected	for	by	fitting	the	target	probe	as	a	fixed	effect	and	all	the	other	

(distal)	 probes	 as	 random	 effects	 (i.e.,	 the	MOA	 or	MOMENT	method).	 In	 addition,	we	 tested	 the	

robustness	 of	 MOMENT	 to	 the	 change	 of	 window	 size	 used	 to	 exclude	 probes	 in	 close	 physical	

proximity	to	the	target	probe	in	either	direction.	We	varied	the	window	size	from	100Kbp	to	250bp	

in	the	MOMENT	analysis	of	data	generated	from	simulation	scenario	1	(Supplementary	Figures	29).	

We	 found	 that	 the	 results	 remained	 almost	 unchanged	 when	 the	 window	 sizes	 decreased	 from	

100Kbp	to	25Kbp	whereas	there	were	a	substantial	number	of	probes	showing	deflated	test-statistics	

when	the	window	size	decreased	to	500bp	or	250bp	(Supplementary	Figures	29).	These	results	

justify	the	use	of	50Kbp	as	the	default	window	size	for	MOMENT	when	applied	to	DNAm	data.	We	also	

quantified	the	decay	of	correlation	between	a	pair	of	gene	expression	probes	as	a	function	of	their	

physical	 distance	 (Supplementary	 Figure	 30),	 which	 suggests	 that	 100Kbp	 is	 an	 appropriate	

MOMENT	window	size	 for	gene	expression	data	although	the	results	remained	almost	unchanged	

when	 the	 window	 size	was	 varied	 from	 50Kbp	 to	 1Mbp	 in	 the	 simulated	 data	 (Supplementary	

Figure	31).	
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Our	simulation	also	showed	that,	 if	CTCs	or	batches	explain	a	 large	proportion	of	variation	in	the	

phenotype,	the	FWERs	of	all	the	methods	tended	to	be	inflated	(Supplementary	Figures	32	and	33)	

despite	that	the	genomic	inflation	factor	is	close	to	unity	for	most	methods	(Figure	2).	We	re-ran	the	

simulation	 under	 a	more	 extreme	 setting	with	𝑅abac6 	varying	 from	 10%	 to	70%.	 In	 this	 case,	 the	

genomic	inflation	factors	of	the	fixed-effect	models	(i.e.,	SVA,	ReFACTor,	LFMM2,	and	5PCs)	and	the	

FWERs	of	all	the	methods	increased	as	𝑅abac6 	increased	(to	a	lesser	extent	for	FaST-LMM-EWASher),	

suggesting	that	there	were	a	set	of	probes	strongly	associated	with	CTCs	(Supplementary	Figure	

34).	Note	that	even	in	this	extreme	case,	MOMENT	showed	the	lowest	FWERs	on	average	amongst	all	

the	methods.	 It	 is	also	of	note	 that	 the	FWERs	of	FaST-LMM-EWASher	were	relatively	 low	 in	 this	

scenario	(Supplementary	Figure	32),	opposite	to	its	performance	when	𝑅abac6 	was	low	(Figure	2),	

possibly	due	to	its	variable	selection	strategy	(Supplementary	Note	2).	The	inflation	in	FWER	was	

only	slightly	alleviated	by	fitting	the	predicted	CTCs	as	covariates	(Supplementary	Figures	35	and	

36).	The	results	also	suggest	that	it	may	be	worth	fitting	measured	CTCs	as	fixed-effect	covariates	in	

MLM-based	association	analyses	such	as	MOA	and	MOMENT	 in	practice	although	this	approach	 is	

likely	to	be	conservative	as	indicated	by	the	deflated	l	and	FWER	(Supplementary	Figure	37).	These	

conclusions	 are	 likely	 to	 be	 applicable	 to	 other	 confounding	 factors	 such	 as	 smoking	 status,	 as	

demonstrated	 in	 the	 analysis	 of	 lung	 function	 data	 in	 the	 LBC	 (Supplementary	 Figure	 22).	 Our	

results	also	caution	the	interpretation	of	associations	identified	from	MWAS	for	traits	that	are	highly	

correlated	 with	 CTCs	 and/or	 other	 biological	 confounders.	 In	 addition,	 although	 our	 simulation	

shows	 that	 both	MOMENT	 and	MOA	 are	 applicable	 to	 case-control	 phenotypes	 (Supplementary	

Figures	15	and	16),	direct	application	of	linear	model	approaches	to	0/1	traits	is	not	ideal.	If	the	

underlying	model	is	causal	(i.e.,	omic	measures	have	causal	effects	on	the	trait),	a	more	appropriate	

analysis	is	to	use	a	link	function	(e.g.,	a	probit	or	logit	model)	that	connects	the	0/1	phenotype	to	a	

latent	continuous	trait,	as	in	the	methods	recently	developed	for	the	analysis	of	case-control	data	in	

GWAS	[55-58].	Since	OSCA	is	an	ongoing	software	development	project,	the	non-linear	link	functions	

can	be	incorporated	in	the	MOMENT/MOA	framework	in	the	future.	

	

In	conclusion,	we	showed	by	simulation	the	inflation	in	test-statistics	of	the	existing	MWAS	methods	

because	of	 the	ubiquitous	 correlations	between	distal	 probes	 caused	by	 confounding	 factors,	 and	

developed	 two	 new	 MWAS	 methods	 (MOA	 and	 MOMENT)	 to	 correct	 for	 the	 inflation.	 We	

demonstrated	the	reliability	and	robustness	of	MOMENT	by	simulations	in	a	number	of	scenarios	and	

real	data	analyses.	We	recommend	the	use	of	MOMENT	in	practice	because	of	its	robustness	in	the	

presence	 of	 unobserved	 confounders	 despite	 that	 it	 is	 slightly	 less	 powerful	 than	 MOA.	 We	
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implemented	both	MOA	and	MOMENT	in	a	computationally	efficient	and	easy-to-use	software	tool	

OSCA	together	with	many	other	functions	for	omic-data-based	analyses	(Supplementary	Figure	38).	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/445163doi: bioRxiv preprint 

https://doi.org/10.1101/445163
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	 	
	

17	
	

Methods	

Omic-data-based	relationship	matrix	(ORM)	

We	have	described	in	equations	[1]	and	[2]	the	OREML	model	to	estimate	the	proportion	of	variance	

in	a	phenotype	captured	by	the	DNAm	probes	all	together.	In	equation	[1],	i.e.,	𝐲 = 𝐂𝛃 +𝐖𝐮+ 𝐞,	we	

define	W	as	a	matrix	of	standardised	DNAm	measures	of	all	probes,	and	in	equation	[2]	we	define	

the	ORM	as	𝐀 = 𝐖𝐖′/𝑚.	Therefore,	the	omic	relationship	between	individual	𝑗	and	𝑘	(the	jk-th	

element	of	A)	can	be	computed	as	𝐴^l =
R
m
∑ (𝑥J^ − 𝜇J)(𝑥Jl − 𝜇J)/𝜎J6J ,	where	𝑥J^	is	the	

unstandardised	DNAm	level	of	probe	i	in	individual	j,	𝜇J 	and	𝜎J6	are	the	mean	and	variance	of	the	i-th	

probe	over	all	the	individuals	respectively,	and	𝑚	is	the	number	of	probes.	This	model	implicitly	

assumes	that	the	probes	of	smaller	variance	in	DNAm	level	(unstandardised)	tend	to	have	larger	

effects	on	the	phenotype	(strictly	speaking,	stronger	associations	with	the	phenotype),	and	that	

there	is	no	relationship	between	the	proportion	of	trait	variance	captured	by	a	probe	and	the	

variance	of	the	probe.	We	also	provide	in	OSCA	an	alternative	method	to	compute	the	ORM,	i.e.,	

𝐴^l = ∑ (𝑥J^ − 𝜇J)(𝑥Jl − 𝜇J)J /∑ 𝜎J6J .	If	we	use	this	definition	of	ORM	in	the	OREML	analysis,	we	

implicitly	assume	that	there	is	no	relationship	between	the	probe	effect	on	the	trait	and	the	variance	

of	the	probe	but	the	proportion	of	trait	variance	associated	with	a	probe	increases	as	the	variance	of	

the	probe	increases.	We	showed	by	simulation	and	real	data	analysis	that	the	difference	between	

OREML	results	using	the	two	methods	was	very	small	(Supplementary	Tables	7	and	8).	

		

OREML:	estimating	the	proportion	of	trait	variance	captured	by	all	DNAm	probes		

We	have	shown	in	equations	[1]	and	[2]	an	OREML	model	with	one	random-effect	component	to	

estimate	the	proportion	of	trait	variance	captured	by	all	DNAm	probes.	The	model	is	flexible,	which	

can	be	extended	to	partition	the	trait	variance	into	components	associated	with	different	sets	of	

probes	(e.g.	a	model	with	22	components	with	all	the	probes	on	each	chromosome	as	a	component).	

A	flexible	OREML	model	can	be	written	as		

𝐲 = 𝐂𝛃 + ∑ 𝐖J𝐮JJ + 𝐞	with	var(𝐲) = 𝐕 = ∑ 𝐖J𝐖J
q𝜎5r
6

J + 𝐈𝜎86 = ∑ 𝐀J𝜎@r
6

J + 𝐈𝜎86	

where	the	definitions	of	all	the	parameters	and	variables	are	similar	to	those	in	equations	[1]	and	

[2].The	variance	components	can	be	estimated	by	REML	[33],	and	the	proportion	of	the	trait	

variance	captured	by	the	i-th	component	can	be	computed	as	𝜌J6 = 𝜎@r
6 /(∑ 𝜎@r

6
J + 𝜎86).	

	

The	multi-component	OREML	model	can	be	applied	to	partition	the	trait	variance	into	components	

associated	with	multiple	omic	profiles.	For	example,	if	SNP	genotype,	DNAm,	and	gene	expression	

data	are	available	for	all	the	individuals	in	a	cohort,	a	multi-component	OREML	model	can	be	used	
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to	estimate	the	proportion	of	trait	variance	captured	by	all	SNPs	(i.e.,	the	SNP-based	heritability),	

the	expression	levels	of	all	genes,	and	the	DNAm	levels	at	all	the	CpG	sites.	The	model	can	be	written	

as	𝐲 = 𝐂𝛃 +𝐖s𝐮s +𝐖t𝐮t +𝐖m𝐮m + 𝐞	with	var(𝐲) = 𝐀s𝜎s6 + 𝐀t𝜎t6 + 𝐀m𝜎m6 + 𝐈𝜎86	

where	𝐖s,	𝐖t,	and	𝐖m	are	the	matrices	of	standardised	SNP	genotypes,	gene	expression	measures,	

and	DNAm	levels,	respectively,	with	the	corresponding	effects	𝐮s ,	𝐮t 	and	𝐮m;	𝐀s = 𝐖s𝐖s
q/𝑚s	is	the	

genomic	relationship	matrix	(GRM)	with	𝑚s	being	the	number	of	SNPs,	𝐀t = 𝐖t𝐖t
q/𝑚t	is	the	

transcriptomic	relationship	matrix	(TRM)	with	𝑚t	being	the	number	of	transcripts,	and		𝐀m =

𝐖m𝐖m
q /𝑚m	is	the	methylomic	relationship	matrix	(MRM)	with	𝑚m	being	the	number	of	DNAm	

probes.	Note	that	the	model	can	be	reduced	by	dropping	any	of	the	variance	components	or	

expanded	by	including	other	types	of	omic	profiles	(e.g.,	protein	abundance).	

	

Dataset	

The	LBC	 cohorts	 [59,	60]	 consisted	of	 individuals	born	 in	1921	 (LBC1921)	and	1936	 (LBC1936),	

mostly	living	in	Edinburgh	city	and	the	surrounding	Lothian	region	of	Scotland.	Blood	samples	were	

collected	with	informed	consent.	The	use	of	human	participants	in	this	study	was	approved	by	The	

University	of	Queensland	Human	Research	Ethics	Committee	B	(approval	number:	2011001173).	The	

LBC	individuals	underwent	several	waves	of	SNP	genotyping	and	DNAm	measures.	DNAm	levels	at	

485,512	CpG	sites	across	the	genome	were	measured	on	3,191	whole	blood	samples	from	3	waves	

using	 the	 Illumina	 HumanMethylation450	 BeadChip.	 Duplicates	 or	 samples	 with	 an	 excessive	

proportion	of	low	confidence	calls	across	all	probes	(>5%)	were	removed.	Probes	with	an	excessive	

proportion	of	low	confidence	calls	across	all	individuals	(>5%)	or	probes	located	in	sex	chromosomes	

were	 excluded.	 In	 addition,	 probes	 encompassing	 SNPs	 annotated	 in	 dbSNP131	 using	 hg19	

coordinates	or	identified	as	potentially	cross-hybridized	methylation	probes	by	a	previous	study	[61]	

were	 also	 excluded.	 After	 these	 QC	 steps,	 3,018	 samples	 and	 307,360	 probes	 remained	

(Supplementary	Note	3).	We	included	in	the	analysis	only	the	first	wave	(wave1)	of	the	LBC	data	

consisting	 of	 436	 individuals	 from	 LBC1921	 (average	 age	 of	 79	 years)	 and	 906	 individuals	 from	

LBC1936	 (average	 age	 of	 70	 years)	 (Supplementary	Table	 9).	We	 removed	 probes	with	 almost	

invariable	beta	values	across	individuals	(standard	deviation	<	0.02)	and	retained	1,342	individuals	

and	228,694	probes	for	analysis.	

	

There	 were	 a	 number	 of	 covariates	 available	 in	 the	 LBC	 data	 including	 age,	 sex,	 batches	 of	 the	

experiment	 (i.e.	 plate	 and	position	 of	 the	 sample	on	 a	 chip),	 and	 CTCs.	 The	 blood	 cell	 counts	 for	

different	cell	types,	including	basophils,	eosinophils,	monocytes,	lymphocytes,	and	neutrophils,	were	
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quantified	 using	 an	 LH50	 Beckman	 Coulter	 instrument	 on	 the	 same	 day	 of	 blood	 collection.	 In	

addition	to	the	covariates,	there	are	a	number	of	traits	measured	on	the	LBC	individuals	including	

height	 (measured	without	shoes),	body	mass	index	(BMI),	 lung	 function	(measured	 in	the	highest	

score	of	forced	expiratory	volume	in	one	second),	and	walking	speed	(measured	in	the	time	taken	to	

walk	 6	metres)	 and	 smoking	 status	 (never	 smoked,	 ex-smoker	 or	 current	 smoker)	 [62,	 63].	 The	

numbers	 of	 missing	 measurements	 are	 noted	 in	 Supplementary	 Table	 10.	 For	 each	 trait,	 we	

adjusted	 the	phenotype	 for	 age	 in	 each	 gender	 group	of	 each	 cohort	 (LBC1921	or	LBC1936)	 and	

standardised	 the	 residuals	 by	 rank-based	 inverse	normal	 transformation,	which	 removed	 the	 age	

effect	and	potential	difference	in	mean	and	variance	between	two	gender	groups	or	cohorts.	

	

The	LBC	wave1	individuals	were	also	genotyped	by	Illumina	610-Quadv1	BeadChip.	The	QC	process	

of	 the	 SNP	 genotype	 data	 has	 been	 detailed	 elsewhere	 [14].	 After	 excluding	 SNPs	 from	 sex	

chromosomes	and	SNPs	with	 low	allelic	 frequency	(MAF	<	0.01),	we	retained	523,062	genotyped	

SNPs	for	analysis.	

	

We	also	used	a	set	of	gene	expression	data	available	at	EMBL-EBI	(URLs)	from	the	San	Antonio	Family	

Heart	Study	(SAFHS).	Sample	recruitment,	data	generation	and	quality	controls	of	the	SAFHS	data	

have	been	detailed	elsewhere	[46-48].	We	used	the	processed	and	standardized	gene	expression	data	

of	 19,648	 autosomal	 probes	 on	 1,240	non-diseased	Mexican	 American	 participants.	 Age,	 sex	 and	

smoking	status	were	available	in	the	data.	We	removed	21	samples	with	unknown	smoking	status	

and	retained	1,219	individuals	for	analysis.		

	

URLs	

OSCA,	http://cnsgenomics.com/software/osca	

ReFACTor,	https://www.cs.tau.ac.il/~heran/cozygene/software/refactor.html	

EWASher,	https://www.microsoft.com/en-us/research/project/fast-lmm-software-papers/	

SVA,	https://bioconductor.org/packages/release/bioc/html/sva.html	

LFMM2,	https://bcm-uga.github.io/lfmm/	

The	LBC	data:	https://www.ebi.ac.uk/ega/studies/EGAS00001000910	

The	SADHS	data:	https://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-305/	
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Figure	 1	 Power	 and	 false	 positive	 rate	 for	 the	 MWAS	 methods	 in	 simulation	 scenario	 1.	 The	

phenotypes	were	simulated	based	on	the	effects	from	100	causal	probes	but	no	direct	effects	from	

the	CTCs.	(a)	Mean	genomic	inflation	factor	from	a	method	across	100	simulation	replicates	with	an	

error	bar	representing	+/-	SE	of	the	mean.	The	dashed	line	at	1	shows	the	expected	value	if	there	is	

no	inflation.	(b)	Box	plot	of	AUCs	for	each	method	from	100	simulation	replicates.		
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Figure	2	Genomic	inflation	factor	and	family-wise	error	rate	for	the	MWAS	methods	in	simulation	

scenario	2	(effects	from	CTCs	but	no	causal	probes).	Shown	on	the	horizontal	axis	are	the	𝑅abac6 	values	

used	 to	 simulate	 the	phenotype.	 (a)	 Each	 dot	 represents	 the	mean	𝜆 	value	 from	 1000	 simulation	

replicates	given	a	specified	𝑅abac6 	value	for	a	method	with	an	error	bar	representing	+/-	the	SE	of	the	

mean.	(b)	Each	dot	represents	the	family-wise	error	rate,	calculated	as	the	proportion	of	simulation	

replicates	with	one	or	more	null	probes	detected	at	a	methylome-wide	significance	level.	
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Figure	3	QQ	plot	of	p-values	from	MWAS	analysis	for	4	quantitative	traits	in	the	LBC	data.	The	

DNAm	measures	were	adjusted	for	age,	sex,	and	batches.	The	phenotypes	were	stratified	into	

groups	by	sex	and	cohort	and	were	adjusted	for	age	and	standardised	to	z-scores	by	rank-based	

inverse	normal	transformation	in	each	group.	The	phenotypes	are	(a)	BMI,	(b)	height	(c)	lung	

function,	and	(d)	walking	speed.	
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Table	1	Genomic	inflation	factors	reported	by	different	MWAS	methods	for	the	4	traits	in	the	

Lothian	Birth	Cohorts.	

	 BMI	 Height	 Lung	
function	

Walking	
speed	

Unadjusted	 1.68	 1.30	 0.98	 1.28	
5PCs	 1.11	 0.96	 1.06	 1.04	
SVA	 1.04	 0.95	 1.06	 1.01	

LFMM2-ridge	 1.09	 1.00	 1.10	 1.04	
LFMM2-lasso	 1.08	 0.99	 1.09	 1.03	
ReFACTor	 1.13	 0.97	 1.09	 1.02	
EWASher	 1.11	 0.96	 1.09	 0.96	
MOA	 0.99	 1.02	 0.97	 0.99	

MOMENT	 1.00	 1.02	 0.98	 1.00	
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