
A computational framework for systematic exploration of biosynthetic 
diversity from large-scale genomic data 
 
Jorge C. Navarro-Muñoz1,2*, Nelly Selem-Mojica3*, Michael W. Mullowney4*, Satria Kautsar1, 

James H. Tryon4, Elizabeth I. Parkinson5$, Emmanuel L.C. De Los Santos6, Marley Yeong1, Pablo 

Cruz-Morales3, Sahar Abubucker7, Arne Roeters1, Wouter Lokhorst1, Antonio Fernandez-Guerra8, 

Luciana Teresa Dias Cappelini4, Regan J. Thomson4, William W. Metcalf5, Neil L. Kelleher4, 

Francisco Barona-Gomez3#, Marnix H. Medema1# 

 
1 Bioinformatics Group, Wageningen University, The Netherlands. 
2 Fungal Natural Products Group, Westerdijk Fungal Biodiversity Institute, The Netherlands 
3 Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), 

Cinvestav-IPN, Irapuato, México. 
4 Department of Chemistry, Northwestern University, Evanston, Illinois, United States. 
5 Carl R. Woese Institute for Genomic Biology and Department of Microbiology, University of 

Illinois at Urbana-Champaign, Urbana, Illinois, United States. 
6 Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom. 
7 Novartis Institutes for BioMedical Research, Cambridge, United States. 
8

 Microbial Genomics and Bioinformatics, Max Planck Institute for Marine Microbiology, Bremen, 

Germany. 

 

*Joint first authors 

 

#Joint corresponding authors 

Email: francisco.barona@cinvestav.mx / marnix.medema@wur.nl 

 

$ Current address: Department of Chemistry, Purdue University, West Lafayette, Indiana, United 

States 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 17, 2018. ; https://doi.org/10.1101/445270doi: bioRxiv preprint 

https://doi.org/10.1101/445270


Abstract 
Genome mining has become a key technology to explore and exploit natural product diversity 
through the identification and analysis of biosynthetic gene clusters (BGCs). Initially, this was 
performed on a single-genome basis; currently, the process is being scaled up to large-scale 
mining of pan-genomes of entire genera, complete strain collections and metagenomic datasets 
from which thousands of bacterial genomes can be extracted at once. However, no bioinformatic 
framework is currently available for the effective analysis of datasets of this size and complexity. 
Here, we provide a streamlined computational workflow, tightly integrated with antiSMASH and 
MIBiG, that consists of two new software tools, BiG-SCAPE and CORASON. BiG-SCAPE 
facilitates rapid calculation and interactive visual exploration of BGC sequence similarity networks, 
grouping gene clusters at multiple hierarchical levels, and includes a ‘glocal’ alignment mode that 
accurately groups both complete and fragmented BGCs. CORASON employs a phylogenomic 
approach to elucidate the detailed evolutionary relationships between gene clusters by computing 
high-resolution multi-locus phylogenies of all BGCs within and across gene cluster families 
(GCFs), and allows researchers to comprehensively identify all genomic contexts in which 
particular biosynthetic gene cassettes are found. We validate BiG-SCAPE by correlating its GCF 
output to metabolomic data across 403 actinobacterial strains. Furthermore, we demonstrate the 
discovery potential of the platform by using CORASON to comprehensively map the phylogenetic 
diversity of the large detoxin/rimosamide gene cluster clan, prioritizing three new detoxin families 
for subsequent characterization of six new analogs using isotopic labeling and analysis of tandem 
mass spectrometric data.  
 
Introduction 
Microbial specialized metabolites are key mediators of interspecies communication and 
competition in the environment and in the context of host microbiomes1,2. Their diverse chemical 
structures have been critical in the development of antibiotics, anticancer drugs, crop protection 
agents and ingredients for manufacturing. While tens of thousands of natural products have been 
discovered in past decades, recent evidence suggests that these represent a fraction of the 
potential natural product chemical space yet to be discovered3–8. 
    
Genome mining has emerged in the past decade as a key technology to explore and exploit 
natural product diversity. Key to this success is the fact that genes encoding natural product 
biosynthetic pathways are usually clustered together on the chromosome. These biosynthetic 
gene clusters (BGCs) can be readily identified in a genome. Moreover, in many cases, the 
chemical structures of their products can be predicted to a certain extent, based on the analysis 
and biosynthetic logic of the enzymes encoded in a BGC and their similarity to known 
counterparts9. 
 
Initially, genome mining was performed on a single-genome basis: a research group or consortium 
would sequence the genome of a single microbial strain and attempt to identify and characterize 
each of its BGCs one by one. This approach has revealed much about the metabolic capacities of 
model natural-product-producing organisms like Streptomyces coelicolor, Sorangium cellulosum 
and Aspergillus nidulans and has provided clues regarding the discovery potential from 
corresponding genera10–12. Computational tools for the identification of BGCs and the prediction of 
their products’ chemical structures, such as antiSMASH13–16 and PRISM17–19, have played a key 
role in the success of genome mining. These in silico approaches have been strengthened by 
comparative analysis of identified BGCs with rich empirical reference data, such as those provided 
by the MIBiG community effort, which has documented (meta)data on >1,000 BGCs connected to 
their products20. 
 
Fueled by rapid developments in high-throughput sequencing, genome mining efforts are now 
expanding to large-scale pan-genomic mining of entire bacterial genera4,21,22, strain collections23 
and metagenomic datasets from which thousands of metagenome-assembled genomes (MAGs) 
can be extracted at once24–27. Such studies pave the path towards systematic investigations of the 
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biosynthetic potential of broad taxonomic groups of organisms, as well as entire ecosystems. 
These large-scale analyses easily lead to the identification of thousands of BGCs with varying 
degrees of mutual similarity, ranging from widely distributed homologs of gene clusters for the 
production of well-known molecules to rare or unique gene clusters that encode unknown 
enzymes and pathways. 
 
To map and prioritize this complex biosynthetic diversity, several groups have devised methods to 
compare architectural relationships between BGCs in sequence similarity networks and group 
them into gene cluster families (GCFs), each of which contains BGCs across a range of organisms 
that are linked to a highly similar natural product chemotype4,28,29,. The presence or expression of 
such GCFs can be correlated to molecular families (MFs) identified from mass spectrometry data 
to match genes to their product molecules in a process termed metabologenomics4,30,31. However, 
current methods fail to correctly measure similarity between complete and fragmented gene 
clusters (which frequently occur in metagenomes and large-scale pan-genome sequencing 
projects based on short-read technologies); do not consider the complex and multi-layered 
evolutionary relationships within and between GCFs; require lengthy CPU-time on 
supercomputers when processing large datasets; and lack a user-friendly implementation that 
interacts directly with other key resources. These shortcomings preclude adoption by the broader 
scientific community and impede significant advances in natural product discovery. 
 
Here, we provide a streamlined computational workflow that tightly integrates two new software 
tools, BiG-SCAPE and CORASON, with the gene cluster identification and empirical biosynthetic 
data comparison possible through antiSMASH16 and MIBiG20 (Fig 1). BiG-SCAPE facilitates rapid 
calculation and interactive exploration of BGC sequence similarity networks (SSNs); it accounts for 
differences in modes of evolution between BGC classes, groups gene clusters at multiple 
hierarchical levels (families, clans and classes), introduces a ‘glocal’ alignment mode that supports 
complete as well as fragmented BGCs, and democratizes the analysis through a dramatically 
accelerated and interactive stand-alone user interface. As a complement to this, CORASON 
employs a phylogenomic approach to elucidate detailed evolutionary relationships between gene 
clusters by computing high-resolution multi-locus phylogenies of all BGCs within and across 
GCFs. Additionally, it allows researchers to comprehensively identify all genomic contexts in which 
gene cassettes of interest, which encode a specific function within a BGC, can be found. To 
validate the GCF classifications, we show that metabologenomic correlations accurately connect 
genes to mass features across metabolomic data from 363 strains. Furthermore, we demonstrate 
the power of the combined workflow, together with the EvoMining algorithm8, to comprehensively 
map diversity within gene cluster clans by identifying three new families responsible for the 
biosynthesis of new detoxins. 
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Results & Discussion 
 

 
Fig. 1 | The BiG-SCAPE/CORASON workflow. The BiG-SCAPE approach analyzes a set of biosynthetic gene 
clusters to construct a BGC similarity network and groups them into GCFs. Subsequently, CORASON-based multi-
locus phylogenetic analysis is employed to illuminate evolutionary relationships of BGCs within each GCF. 
 
A streamlined algorithm for large-scale network analysis and classification of biosynthetic 
gene clusters 
To provide a streamlined, scalable and user-friendly software for exploring and classifying large 
collections of gene clusters, we built the Biosynthetic Gene Similarity Clustering and Prospecting 
Engine (BiG-SCAPE), written in Python and freely available as open source software 
(https://git.wageningenur.nl/medema-group/BiG-SCAPE). BiG-SCAPE takes BGCs predicted by 
antiSMASH or annotated in MIBiG as inputs to automatically generate sequence similarity 
networks and assemble GCFs. 
In previous studies by Cimermancic et al.3 and Doroghazi et al.4, two sets of distance metrics had 
been independently developed to measure the (dis)similarity of pairs of BGCs. In BiG-SCAPE, we 
aimed to combine the respective strengths of both approaches. The strength of the former 
approach was the elegant compression of gene clusters into strings of Pfam domains, combined 
with the Jaccard index (JI) to measure domain content similarity (Fig 2a). However, in the metric of 
Cimermancic et al.3, a useful index for synteny conservation had been missing; to this end, we 
added an Adjacency Index (AI), which measures how many pairs of adjacent domains are shared 
between gene clusters. 
Finally, sequence identity is an important parameter, as Pfam domains are often very broad and 
frequently comprise a wide range of enzyme subfamilies with different catalytic activities or 
substrate specificities. Yet, all previously developed approaches suffered from extremely long 
compute times when including sequence identity calculations, requiring the use of supercomputers 
that would preclude day-to-day use by natural product scientists worldwide. The underlying issue 
is that comparing large numbers of protein sequences from many BGCs is an all-versus-all 
problem that scales quadratically when the size of the data increases. To mitigate this, we 
replaced all-versus-all calculations with all-versus-profile calculations, by aligning each protein 
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domain sequence to its profile Hidden Markov Model from Pfam using the hmmalign tool32. This 
leads to a marked speed increase compared to conventional multiple sequence alignment using 
Muscle: when calculating a network of the 1,393 BGCs in MIBiG version 1.3, an implementation 
with hmmalign took 15 minutes, while a Muscle implementation took 223 minutes [see online 
methods: Alignment Method Comparison]. With larger numbers of BGCs, the differences are 
considerably larger. We implemented the profile-based alignment into the domain sequence 
similarity (DSS) index, an updated version of the domain duplication index, which measures both 
Pfam domain copy number differences and sequence identity. The combination of JI, AI and DSS 
indices into a new combined metric constitutes a fast and informative method to calculate 
distances between BGCs. 
One notable limitation of a generic distance metric is that different classes of BGCs have different 
evolutionary dynamics. For example, the chemical structures of aryl polyenes have been shown to 
remain very stable across large evolutionary timescales, while the amino acid sequence identity 
between their key biosynthetic enzymes has become less than 30-40%3. On the other hand, the 
structures of rapamycin family polyketides exhibit major differences even when sequence 
identities are as high as ~80%33. Although there is not enough information available to construct 
individual metrics for each specific natural product family, we did calibrate specific weights of the 
JI, AI and DSS indices for BGCs encoding eight different BiG-SCAPE classes: type I polyketide 
synthases (PKS), other PKSs, nonribosomal peptide synthetases (NRPS), PKS/NRPS hybrids, 
RiPPs, saccharides, terpenes and others (see Fig. 2b and Table S5). In the output, separate 
networks are generated for each BiG-SCAPE class, along with an optional overall network that 
combines BGCs from all classes. 
Another problem of previous approaches for calculating distances between BGCs was how to 
handle comparisons between complete and partial BGCs (e.g., from fragmented genome 
assemblies), as well as comparisons with pairs of genomically adjacent BGCs that are merged 
into one cluster by antiSMASH or other cluster identification tools. Both global similarity (used in all 
previous methods) and local similarity lead to artifacts in such cases. To compare the appropriate 
corresponding regions between BGCs, we introduced a new ‘glocal’ alignment mode, which first 
uses a fast algorithm to find the longest common substring between the Pfam strings of a BGC 
pair, and then uses match/mismatch penalties to extend the alignment until the end of the 
matching region (Fig. 2c, Online Methods). Information about whether an antiSMASH16-annotated 
cluster is located at the edge of a contig can also be used to automatically select a third pairwise 
distance calculation mode that relies on global alignment for complete clusters and glocal 
alignment when at least one of the BGCs in a pair is fragmented. 
BGC sequence similarity networks are then generated by applying a cut-off to the distance matrix 
calculated by BiG-SCAPE, while rounds of affinity propagation clustering34 are used to group 
BGCs into GCFs, and GCFs into “Gene Cluster Clans” (GCCs). This process of categorization 
facilitates calculating metabologenomic correlations35,36 at multiple levels. 
Results can be further processed in downstream analysis or immediately visualized using an 
interactive HTML-based interface that permits dynamic exploration of the gene cluster network 
(see further below for more details). 
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Fig. 2 | Main concepts in the BiG-SCAPE algorithm. a, Input data comes from the genomic loci of BGCs, which are 
directly imported from antiSMASH and/or MIBiG. Nucleotide sequences are translated and represented as strings of 
Pfam domains; b, The three metrics that are combined in a single distance include the Jaccard Index (JI), which 
measures the percentage of shared types of domains; the Adjacency Index (AI), which measures the percentage of 
pairs of adjacent domains; and the Domain Sequence Similarity (DSS), which measures the identity of profile-aligned 
sequences in the conserved domains (details in Text S1); c, in “glocal” mode, BiG-SCAPE starts with the longest 
common subcluster of genes between a pair of BGCs and attempts to extend the selection of genes for comparison. 
 
Validation using natural product chemical similarity networks and large-scale 
metabolomics data 
To verify that BiG-SCAPE is able to group together BGCs that are known to be related, we 
constructed a chemical similarity network from all products of BGCs in MIBIG, and used this to 
derive a curated set of 376 compounds, which were manually classified into 92 groups (e.g. 14-
membered macrolides, benzoquinone ansamycins, quinomycin antibiotics etc.) and 9 classes (e.g. 
Polyketides, NRPs, RiPPs etc.). We then used BiG-SCAPE to group the corresponding BGCs into 
GCFs and observed good correspondence between manually curated families and those predicted 
by BiG-SCAPE (Supplementary Fig S5). 
 
Arguably, the greatest value of BiG-SCAPE lies in the practical utility of the predicted GCFs for 
discovery applications. Hence, we assessed the accuracy of correlations of BiG-SCAPE-predicted 
GCFs to MS ions from known natural product through metabologenomics31. First, we performed a 
BiG-SCAPE analysis of 74,652 BGCs from 3,080 actinobacterial genomes (see Methods), 
including 1,393 reference BGCs from MIBiG20. BiG-SCAPE grouped these BGCs into a total 
number of 17,718 GCFs and 801 GCCs using default parameters. Extracts from 363 actinomycete 
strains were analyzed using untargeted high-resolution LC-MS/MS4. The GCF annotations for 
these 363 strains from two BiG-SCAPE modes (global and glocal) at two similarity cutoffs (0.30 
and 0.50) were used to generate four rounds of metabologenomic correlations utilizing a binary 
scoring metric as described previously4,30. BiG-SCAPE’s gene cluster family annotations were 
then assessed against ion production patterns via two methods. First, a ‘golden dataset’ of nine 
known ion signals and their characterized gene clusters were manually tracked across the four 
correlation rounds. These ion signals corresponded to the following natural products; CE-108, 
benarthin, desertomycin, tambromycin, enterocin, tyrobetaine, chlortetracycline, rimosamide, and 
oxytetracycline. Second, a target-decoy approach was applied to estimate the false discovery rate 
(FDR) for each round to provide an overview of correlative power for the unknown ion to gene 
cluster family hypotheses generated (see Fig. S14). Decoy databases used for the target-decoy 
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approach were made for each round by randomizing the Boolean arrays for both ion detection 
patterns and GCF member detection patterns. Correlations run with glocal mode GCF annotations 
outperformed global mode correlations, with 4/9 and 5/9 golden dataset ion-GCF pairs observed 
above a 1% FDR at 0.30 and 0.50 glocal similarity score cutoffs, respectively. 
Based on the BGCs and molecules observed in the above data, gene cluster networks and 
molecular networks were generated. Exploration of these networks highlighted high diversity in 
both gene clusters and molecules, exemplified by the identification of 152 different BGCs (at <0.95 
overall similarity) related to known detoxin/rimosamide gene clusters (Fig. 3b), and 110 different 
molecules related to detoxins and rimosamides (Fig. 3c). 
 

 
Fig. 3 | a, Detail of a BiG-SCAPE NRPS BGC network (filtered for the presence of the TauD domain) containing BGCs 
related to the known gene clusters for detoxin/rimosamide biosynthesis. Color shades reflect BiG-SCAPE family 
classification related to the colored clades in Fig. 5, i.e. families with a rimosamide producer (turquoise), with a 
detoxins producer (orange), and two additional abundant families named the Amycolatopsis/P450 clade (violet), 
P450/enoyl clade (green) and the spectinomycin ‘supercluster’ clade (light green). Representative clusters for each 
clade are shown at bottom with the spectinomycin gene cluster from MIBiG displayed for reference. Gene colors 
reflect those in the CORASON tree of Fig. 5. Importantly, not all nodes in this families contain clusters from the high-
resolution clades of the CORASON tree due to the fragmented nature of the assemblies and the presence of relatively 
close Core Biosynthetic Genes detected by antiSMASH (see Fig. S10). b, Molecular network of tandem MS data from 
a 363 strain actinomycete library is colored by BiG-SCAPE clade and includes 103 putatively novel detoxins and 
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rimosamides. Known detoxin and rimosamide nodes are squares and diamonds, respectively, with solid bold outlines 
while novel detoxins detected from Streptomyces spectabilis NRRL 2792 (m/z 464.240, m/z 522.247 in light green) 
and Amycolatopsis jejuensis NRRL B-24427 (two isomers with m/z 506.287 in violet) are indicated by bold dotted 
outlines. c, Histogram of all ion-GCF correlation scores resulting from a metabologenomics round run with 0.30 glocal 
similarity score cutoffs. Known ion-GCF pair correlation scores are overlaid, with tyrobetaine, chlortetracycline, 
rimosamide, and oxytetracycline ion-GCF pairs identified above a 1% FDR threshold. 

 
Fig. 4 | CORASON Workflow. a, Given a query gene in a reference cluster and a custom genomic annotated 
database, CORASON i) searches for query gene homologues, ii) creates the Cluster Variation Database (CVD) by 
filtering out all genomic vicinities not related to the reference BGC, including keeping fragmented clusters and iii) 
calculates the CVD gene core by multi bidirectional best hits. b, Then, CORASON infers a phylogenetic tree by 
curation and concatenation of the CVD gene core, and displays the CVD following the tree and calculates the 
frequency of occurrence for each gene family from the reference BGC. c, With the same reference BGC, if a new 
query gene is selected from accessory enzymes instead of the current CVD core, CORASON will visualize a new 
phylogeny with families containing the same molecular modifications, expanding the chemical universe within an 
evolutionary framework. 
 
Multi-locus gene cluster phylogenies resolve evolutionary relationships between related 
BGCs 
Genetic diversity of BGCs within GCFs is directly related to structural differences between their 
molecular products, and even small chemical variations can lead to different biological activities37. 
Hence, mapping the evolutionary relationships between BGCs within and across GCFs is crucial 
for the discovery process. To this end, we introduce the CORe Analysis of Syntenic Orthologues 
to prioritize Natural products biosynthetic gene clusters (CORASON) software, written in Perl and 
available as open source from https://github.com/nselem/corason. Given a query gene inside a 
BGC of interest, the CORASON pipeline identifies other genomic loci that contain homologues of 
this gene and calculates a multi-locus phylogeny of all loci based on their conserved core (Fig. 4). 
 
CORASON is available for users as a downloadable and easy-to-install software that allows 
tracing the evolutionary history of biosynthetic genes using customizable databases. Any subset of 
genes from a BGC may be selected to identify other genomic contexts across a set of prokaryotic 
genomes in which homologues of these genes are found. The selected query genes are then 
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visualized on a multi-locus approximate-maximum-likelihood phylogenetic tree46 that allows the 
user to identify all functional genomic contexts in which the corresponding gene families are found. 
In this way, the evolutionary relationships of each gene within a BGC across large numbers of 
genomes can be comprehensively analyzed. A version of the CORASON algorithm, called ‘family-
mode’, was also integrated with BiG-SCAPE, allowing to generate a multi-locus phylogeny of all 
BGCs within each GCF using the sequences of their common domain core. 
 
An integrated workflow and interactive visualization allow rapid exploration of biosynthetic 
diversity 
BiG-SCAPE and CORASON connect seamlessly with antiSMASH and MIBiG, as GenBank 
outputs of antiSMASH can be used directly as inputs for the workflow, and MIBiG reference data 
can be included in the analysis automatically. Although calculations on hundreds or thousands of 
genomes are too compute-intensive to provide them on a free public web server, we still wanted to 
make the results available in an interactive user-friendly HTML visualization that enables efficient 
exploration of biosynthetic diversity across large datasets for non-programmers. Hence, we 
constructed a powerful JavaScript-based visualization that provides an interactive output for every 
BiG-SCAPE run, which can be viewed offline on any web browser. In a single view, the 
visualization displays BGC nodes colored by GCF in interactive sequence similarity networks, 
side-by-side with arrow visualizations of the gene clusters, which contain gene annotation and 
Pfam domain details that appear on mouse-over. Networks can be searched by compound names 
of MIBiG reference clusters, Pfam domains of interest, or species names, with resulting match 
nodes instantly highlighted within the network. Each GCF is given its own view panel, which shows 
the CORASON-based multi-locus phylogeny of the underlying BGCs and includes links to related 
families within the same GCF. Finally, an overview page is provided that displays statistics on the 
BGCs identified, as well as a GCF absence/presence heatmap of the most frequently occurring 
gene clusters within the input dataset. 
 
To illustrate BiG-SCAPE/CORASON usage, we provide an example output of a run with 
antiSMASH-predicted BGCs from 103 complete Streptomyces genomes, including as outgroups 
the genomes of Catenulispora acidiphila and Salinispora arenicola: 
http://bioinformatics.nl/~xnava009/streptomyces_out/. To connect the absence/presence map of 
GCFs across these genomes to species phylogeny, a high-resolution multilocus whole-genome 
phylogeny (Fig.S11) was inferred from the Streptomyces conserved-core (Online Data: 
StreptomycesCore .), and the GCF absence/presence patterns were plotted onto the structure of 
the tree (Fig. S12). As has been observed before in other genera like Salinispora29, this shows 
high conservation of select GCFs across larger numbers of genomes, combined with large 
numbers of rare GCFs that are specific to one or a few genomes. 
 
Identification of novel detoxin/rimosamide analogues using BiG-SCAPE and CORASON 
To showcase the power of our workflow for the analysis of large BGC collections and high-
resolution mapping of GCF biosynthetic diversity, we focused on the detoxin and rimosamide 
GCFs38. Our comprehensive analysis of the selected actinobacterial genomes revealed these 
BGCs to be taxonomically widespread and architecturally diverse (Fig. 5). The conserved gene 
core of detoxin and rimosamide BGCs is composed of three genes: one NRPS, one NRPS/PKS 
hybrid, and a homologue of tauD, presumably recruited from the tauABCD operon in Escherichia 
coli39. as suggested by EvoMining analysis.  
 
The rimosamide BGC differs from those of the detoxins by having an additional NRPS, which 
encodes for further elaboration of the common detoxin/rimosamide core scaffold with isobutyrate 
and glycine38. Aside from the more common NRPS and PKS genes, the fact that the tauD gene 
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was present across all members of this family caught our attention. The product of the tauD gene 
belongs to the Fe(II)/α-ketoglutarate-dependent hydroxylase enzyme superfamily and is named for 
the commonly encoded α-ketoglutarate-dependent taurine dioxygenase involved in assimilation of 
sulphite by oxygenolytic release from the amino acid taurine40. Interestingly, this family also 
includes enzymes across fungi, bacteria and plants that catalyze hydroxylations, desaturations, 
ring expansions, and ring formations, among other transformations. To date, the role of tauD in 
detoxin and rimosamide biosynthesis is unknown, but it has been suggested to be responsible for 
the proline oxidation observed in some analogs38. 
 
An EvoMining8 analysis of the TauD dioxygenase protein family showed specific specialized 
metabolism-related expansions of paralogues across genera such as Streptomyces, 
Rhodococcus, Frankia and Amycolatopsis (Fig S13). Within this expansion, one clade was shown 
to contain fifteen tauD homologues that are part of experimentally characterized BGCs from 
MIBiG, including the detoxin and rimosamides BGCs (Table S6). 
To identify novel detoxin and rimosamide-related natural product BGCs, we selected all BGCs 
containing a tauD homologue. The resulting 1175 gene clusters were then subjected to a 
combined BiG-SCAPE/CORASON analysis. This revealed that the detoxin and rimosamide GCFs 
are part of a larger gene cluster clan related to peptide biosynthesis that also comprises 
unexplored families across the phylum Actinobacteria (Fig 5). Metabolomic data was available for 
40 of the 152 strains identified to encode these BGCs. Tandem mass spectrometry molecular 
networking analysis of these strains indicated the presence of three known detoxins, four known 
rimosamides, and 103 putatively novel detoxin and rimosamide analogues (Fig. 3b), confirming 
the vast natural product chemical diversity suggested in the BiG-SCAPE/CORASON data. 
 
Based on inspection of genetic features unique to detoxin/rimosamide BGC phylogenetic clades 
identified by CORASON (Fig. 5, in red), there were three that captured our interest. The first was 
named the ‘P450/enoyl clade’ and contained two P450 genes and an enoyl-CoA 
hydratase/isomerase within its BGCs. Tandem mass spectrometry analysis of extracts from 
Streptomyces sp. NRRL S-325, which contains a BGC within this clade, led to the discovery of 
detoxin S1 (1; Figs. 5, S15-16) with a heptanamide side chain, a unique feature among the 
detoxins and rimosamides whose installation likely depends on the enoyl-CoA 
hydratase/isomerase. 
The second clade of interest, termed the ‘supercluster clade’ (Fig. 5, in light green), comprised 
BGCs that encode detoxins in a ‘supercluster’ that included the known spectinomycin BGC. Two 
detoxin-like BGCs within this clade in the genomic dataset, identified in the genomes of 
Streptomyces sp. NRRL B-1347 and Actinomycete sp. NRRL B-1348, were syntenic to a 
spectinomycin BGC (virtually identical to BGC0000715 in MIBiG) in a supercluster configuration 
(Fig. 5). Interestingly, the MIBiG spectinomycin cluster was included on the detoxin/rimosamide 
CORASON tree just beside the BiG-SCAPE-defined supercluster clade due to the presence of a 
tauD gene at its periphery that is homologous with those from the detoxins. The tauD gene is not 
known to be involved in spectinomycin biosynthesis, so we hypothesized that the strain from which 
the MIBiG entry was sourced, Streptomyces spectabilis NRRL 2792, must have a detoxin BGC 
beside the spectinomycin cluster and would also produce a detoxin-like product. With this, we 
acquired the producing strain to determine if CORASON analysis was powerful enough to predict 
metabolite production solely based on the presence of a query gene but in the absence of full 
genomic data or a complete BGC. Tandem mass spectrometry analysis of a S. spectabilis NRRL 
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2792 extract revealed production of six detoxin-like natural products, including detoxin N1 (2; Figs. 
5, S17) and its acetoxylated analog, detoxin N2 (3; Figs. 5, S19). Structural features unique to this 
novel detoxin subclass included the incorporation and formylation of tyrosine resulting in a 
formamido group. LC-MS analysis of cultures supplemented with stable isotope–labeled amino 
acids corroborated these structural predictions based on analysis of the BGC and tandem MS data 
(Figs. S18, S20). 
The third detoxin clade that we targeted occurred almost entirely within the genus Amycolatopsis 
and was named the ‘Amycolatopsis/P450 clade’ (Fig. 5, in blue). This clade drew our interest as its 
BGCs contained a cytochrome P450 gene unique among the detoxins and rimosamides that was 
predicted to be responsible for novel hydroxylation patterns. Though we did not have strains in our 
library with BGCs in the BiG-SCAPE-defined clade, CORASON analysis allowed the selection of a 
strain with a very similar BGC also containing the desired P450 gene (Fig. 5). Tandem MS 
analysis of this strain, Amycolatopsis jejuensis NRRL B-24427, revealed detoxin isomers P1 (4; 
Figs. 5, S21) containing a tyrosine, P2 (5; Figs. 5, S26) featuring a hydroxylated valine, as well as 
detoxin P3, a closely related analog free of hydroxylation (6; Figs. 5, S31). As before, validation of 
amino acid assignments observed in MS2 fragmentation data was achieved through several 
metabolic feeding experiments using stable isotope-labeled amino acids (Figs. S22–S25, S27–
S30, and S32). Detailed structural analysis of 1–6, including detailed interpretation of tandem MS 
spectra and results from feeding studies using stable isotope-labeled amino acids, can be found in 
the Supporting Information. 
 
Our results show how BiG-SCAPE can effectively identify sets of related BGCs across large 
numbers of genome sequences. Moreover, using CORASON to systematically map BGC 
evolutionary diversity and assemble gene cluster phylogenies proved to be a powerful approach 
for the discovery of novel clades of BGCs that are responsible for the biosynthesis of uncharted 
natural product chemistry. When focused toward the specific detoxin/rimosamide discovery effort 
in “query mode,” CORASON guided the discovery of six new detoxins by way of tauD phylogeny. 
Thus, CORASON enables rapid mapping and visualization of BGC relationships for more effective 
genome mining from large genomic libraries. Additionally, variation in BGC domain architecture 
corresponded to variation in chemical structure – presence of an enoyl-CoA hydratase/isomerase 
corresponded to the fatty acid amide detoxin S1 and presence of a unique P450 gene 
corresponded to evidence of hydroxylations in detoxins P1–P3.  
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Fig. 5 | CORASON phylogeny of detoxin/rimosamide-related BGCs. CORASON phylogenetic reconstruction with 
tauD as query gene and the Streptomyces sp. NRRL B-1347 BGC as query cluster. Some highly similar BGCs and 
those that were the most remote from the BiG-SCAPE-defined clades were removed from the original tree for 
readability. The representative structures for each clade illustrate the correspondence between molecular and 
genomic variations. The BGC tree is rooted with a TauD encoded in an unrelated (non-NRPS) BGC from 
Streptomyces sp. NC1. The genes encoding the NRPS, the NRPS/PKS hybrid, and the TauD homologue are highly 
conserved among detoxin and rimosamide BGCs. Highlighted sections on the tree indicate BiG-SCAPE-defined 
clades. Bolded strain/BGC names are those investigated in this study with dotted lines indicating those which were 
just outside the BiG-SCAPE-defined clades. Clusters in the ‘P450/enoyl clade’ contain a pair of P450 genes and an 
enoyl-CoA hydratase/isomerase which are putatively involved in biosynthesis of alkylated detoxins, the ‘supercluster 
clade’ is comprised of detoxin clusters and is immediately adjacent a spectinomycin BGC, and the 
‘Amycolatopsis/P450 clade’ possess a unique P450 enzyme that corresponds to the first examples of hydroxylation in 
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the detoxin/rimosamide class. Strain names are followed by their Genbank accession number when available. Genes 
not found in the reference cluster are colored based on BLAST analysis. 
 
 

Conclusions and future perspectives 
The comprehensive computational workflow introduced here enables effective exploration of 
biosynthetic diversity across large strain collections, pan-genomes of entire bacterial or fungal 
genera, and metagenomic datasets with thousands of metagenome-assembled genomes. The 
combined BiG-SCAPE/CORASON platform overcomes key computational bottlenecks inherent in 
previous approaches, as it facilitates building GCFs with both partial and complete BGCs, 
accounts for class-specific differences between BGCs, incorporates sequence identify information 
within limited compute time, charts out evolutionary relationships between and within GCFs, and 
provides an interactive user interface to explore the outputs. Hence, we anticipate that it will soon 
facilitate metabologenomic correlation studies to systematically assign many gene clusters to 
many molecules at unprecedented scales. 
Additionally, the ability to perform phylogenetic analyses of large sets of complete BGCs, as well 
as their individual genetic components, a long-standing challenge that has remained unsolved 
since first posed by Fischbach, Walsh and Clardy in 200841, will constitute a key technology to 
facilitate fundamental studies on the evolutionary origins of natural product chemical innovations. 
For example, it provides a stepping-stone to perform detailed analyses of how gene cluster 
architectures have evolved (and are evolving) from their constituent independent enzymes and 
sub-clusters. A logical next step will be the unified classification of the millions of BGCs within 
publicly available genome sequences, and a Pfam-like database for the assignment of 
biosynthetic gene cluster families to known and unknown areas of natural product chemical 
diversity. 
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Online Data 
Online data is publicly available at DOI: 10.5281/zenodo.1237237 
 

Online Methods 
 
BGC network preparation. 
A set of 2,831 Actinobacterial genomes was downloaded from NCBI by querying for "Whole 
genome shotgun sequencing project" or "Complete genome" in combination with the taxonomic 
identifier for actinobacteria. The Propionibacteriales, Micrococcales, Corynebacteriales and 
Bifidobacteriales orders were excluded, as they contain large numbers of genomes without 
relevant natural product-producing capacity, with the exception of the Nocardiaceae family from 
the Corynebacteriales. To these set, 249 additional unpublished draft genomes from the Metcalf 
lab were added. All files were processed with antiSMASH v442 (no ClusterFinder or other special 
parameters enabled). Antismash-processed genome sequences are available as Online Data 
(antiSMASH_results_Metcalf_B, antiSMASH_results_Metcalf_J and antiSMASH_results_NCBI). 
 
To the resulting 73,260 predicted Biosynthetic Gene Clusters (BGCs), 1,393 more were added 
from the Minimum Information about a Biosynthetic Gene Cluster database (MIBiG20, release 1.3, 
August 2016, antiSMASH-analyzed versions from each individual entry) as reference data. 
These final BGC set was then analyzed with BiG-SCAPE using version 31 of the pfam database. 
The `hybrids` mode, which allows BGCs with mixed annotations be analyzed in their individual 
Class sets (e.g. a BGC annotated as lantipeptide-t1pks will be analyzed as both a RiPP and a 
PKSI) was enabled. Two results sets were created, one with the default "global" mode enabled, 
and the other with "glocal" mode enabled (See Fig. 2)  
 
The CORASON and EvoMining results used the same unpublished draft genomes but a reduced 
set of 1,668 Actinobacterial genomes from an older query on the NCBI website. (see Text S5). 
 
 
Alignment Method Comparison. 
To compare alignment methods for domain sequences, the normal version of BiG-SCAPE was 
used (snapshot https://git.wur.nl/medema-group/BiG-
SCAPE/commit/992b0c6a3c0a35ac46d56227018d5d17d5b7e789) against a custom-prepared 
version of the same snapshot using Muscle 3.8.155143 [Online Data: 
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AlignmentMethodComparison]. Both versions used default parameters and the --no-classify 
flag (so only sequence extraction, domain prediction and domain alignment were performed). The 
hmmalign version took 923s whereas the Muscle version took 13392s (3h:43m:12s) on a desktop 
PC with Intel Core i7-7700 CPU and 16 GB of RAM. 
 
 
Clustering algorithm optimization 
 
The election of the clustering algorithm was based on an initial analysis of the BGCs from the 
MIBiG database using BiG-SCAPE (--hybrid mode disabled). In this analysis, the network went 
through a targeted attack in order to first identify the most suitable cutoff for clustering algorithm 
evaluation (Fig. S2). Networks in terms of number of vertices/edges lost for each cutoff value, as 
well as the size of the connected components that emerged were calculated during the attack. 
c=0.75 was chosen as it maximized the number of nodes while minimizing the impact to the 
network structural integrity. Using this cutoff value, entropy was calculated for several clustering 
algorithms (Text S4, Figs. S3 and S4) using the Curated Compound data [Table S1]. The Affinity 
Propagation clustering method showed the most sensible results, producing clusters with low 
entropy and average size. See further details in Text S3. 
 
 
BiG-SCAPE algorithm implementation summary 
 

Input data set.  
The input of BiG-SCAPE are text files in GenBank format (.gbk extension, ideally processed with 
antiSMASH) as well as the Pfam database (already processed with hmmpress). 
 

Algorithm overview.  
After selecting and filtering (e.g. for certain size, in base pairs) the input GenBank files, protein 
sequences are extracted. All the sequences from each file are searched for conserved domains 
using a user-supplied external Pfam database. Overlapping domains are filtered based on the 
score calculated by hmmer. The sequences of every predicted domain type are aligned using 
each corresponding model by hmmalign. A distance matrix is created by calculating the distance 
between every pair of BGC in the data set. 
 

Distance calculation 
Pairwise distance calculation is divided between three values that measure a) percentage of 
shared domain types (Jaccard Index), b) Similarity of aligned domain sequences (Domain 
Sequence Similarity index; domains from the same type are first matched for best similarity using 
the Munkres algorithm, as implemented in Scikit-Learn library44) and c) Similarity of domain pair-
types (Adjacency Index). For specific details of each index, see Text S1. 
 
There are two ways of selecting the domains predicted within each BGC for the calculation of 
distance. In the global mode, all domains are considered. For cases where difference in size is 
large (due to e.g. one BGC being placed at the edge of a contig or when comparing curated BGCs 
with shorter gene borders), we implemented the so-called glocal mode, where a selection of 
domains is used in the distance calculation. In this mode, genes in each BGC are represented as 
a concatenated string of Pfam domains, and each BGC in the pair is represented as a list of those 
domain concatenations (strandedness is not taken into account). 
BiG-SCAPE then uses the SequenceMatcher method from Python's difflib library to to find the 
longest match (internally called the LCS or "Longest Common Subcluster"). The second BGC is 
tried in the reverse orientation and the orientation with the largest LCS is kept. 
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To proceed to the next step, the LCS must be either three genes long, or contain at least one gene 
marked by antiSMASH as "Core Biosynthetic". 
In the extension stage the selection of domains is extended for the BGC with least number of 
genes up(down)stream. The remaining BGC domain selection (per side) will be tried for expansion 
according to the following scoring algorithm in the Alignment Stage: for every gene in the 
reference BGC, a gene with the same domain organization is searched for in the remaining BGC. 
If such a gene is found, the score will be added a bonus (match=5) plus a penalty proportional to 
the distance from the current position (number of genes * gap penalty where gap=-2) and the 
current position will be moved to the position of the matching gene. If a gene with the same 
domain organization is not found, the score will be decreased with a penalty (mismatch=-3). 
 

GCF clustering  
Once the distance matrix is calculated for each BiG-SCAPE class (see Table S5), Gene Cluster 
Family (GCF) assignment is performed for every cutoff distance selected by the user (the 
interactive visualization of BiG-SCAPE will show the one with the largest number) with 0.3 being 
the default. For every cutoff, BiG-SCAPE creates a network using all distances lower or equal than 
the current cutoff. The Affinity Propagation clustering algorithm34 is applied to each subnetwork of 
connected components that emerge from this procedure. The similarity matrix for Affinity 
Propagation includes all distances between members of the subnetwork (i.e. it includes those with 
distance greater than the current cutoff). 
Gene Cluster Clan (GCC) setting (enabled by default) will perform a second layer of clustering on 
the GCFs. For this, Affinity Propagation will be applied again but network nodes are represented 
by the GCFs, defined at the cutoff level specified in the first value of the --clan_cutoff 
parameter (Default: 0.3). Clustering will be applied to the network of all GCFs connected by a 
distance lower or equal than the GCC cutoff (second value of the --clan_cutoff parameter; 
larger distances are discarded. Default: 0.7). Inter-GCF distance is calculated as an average 
distance between the BGCs within both families. Affinity propagation parameters: damping=0.9, 
max_iter=1000, convergence_iter=200. 
 

Output. 
BiG-SCAPE produces high-quality SVG figures for every BGC as well as text files from each of its 
algorithm (hmmer domtable results, filtered domain results, aligned domain sequences, clustering 
results and the distance network). As part of the output, BiG-SCAPE also offers an interactive 
visualization where the user can see an overview of the distance network generated by the highest 
cutoff selected. BGCs connected and clustered into GCFs have a page on their own for closer 
inspection. 
	

CORASON-like GCF tree. 
As part of BiG-SCAPE’s visual output, a CORASON-like tree is generated for every GCF page. 
This tree is created using the sequences of the Core Domains in the GCF. These are defined as 
the domain type(s) that a) appear with the highest frequency in the GCF and b) are detected in the 
central (or “exemplar”) cluster, defined by the Affinity Propagation cluster. All copies of the Core 
Domains in the exemplar are concatenated, as well as those from the best matching domains of 
the rest of the BGCs in the GCF (aligned domain sequences are used). The tree is constructed 
using FastTree (default options). Alignment is attempted using the position of the Longest 
Common Information from the distance calculation step (between the exemplar BGCs and each of 
the other clusters) 
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Availability.  
BiG-SCAPE is written in Python and currently compatible with Python 2 and Python 3. It is freely 
available at https://git.wageningenur.nl/medema-group/BiG-SCAPE. More extensive details of the 
algorithm are available at the repository’s wiki: https://git.wageningenur.nl/medema-group/BiG-
SCAPE/wikis/home 
 
 
 
Weight optimization methods 
	
Tuning of weights for each BiG-SCAPE class was calculated by a brute-force approach, by 
choosing the weight combination that maximized the correlation between BGC and Compound 
distances for every pair of BGCs in the same class in a manually curated Compound Group table 
(Table S1). The data set comprised all BGCs from the MIBiG database (v1.3) that had linked 
compound SMILES and had at least 2 predicted domains to filter out minimal gene cluster entries. 
BGC distances were calculated by moving in steps of 0.01 between the Jaccard, Domain 
Sequence Similarity, the original Goodman-Kruskal45, and Adjacency indices, such that 
JI+DSS+GK+AI=1. The anchorboost parameter of DSS was allowed to change in the range [1,4] 
with steps of 0.5. For the DSS index, only the original 4 anchor domains were considered 
(Condensation Domain, PF00668; Beta-ketoacyl synthase N-terminal, PF00109; Beta-ketoacyl 
synthase C-terminal domain, PF02801 and the Terpene synthase N-terminal, PF01397). 
Compound distances were calculated only once, between all BGCs in the MIBiG 1.3 that had an 
annotated SMILES string representing the molecule. Their pairwise distance was calculated by 
using RDKit (Tanimoto coefficient based on Morgan fingerprinting, radius=4). The nine original 
curated Compound classes was used to tune the weights of 7 BiG-SCAPE classes (the Terpene 
BiG-SCAPE class was originally included in the Others Compound class due to a low number of 
points and was assigned default values of Jw = 0.2, DDSw = 0.75, AIw = 0.05). 
Results indicated clear tendencies to favor different indices in each case, and corroborated that 
the proposed Adjacency Index was more significant than the original Goodman-Kruskal synteny 
metric (additional details in Text S2 and Fig. S1). 
 
 
Methods for CORASON algorithm 
 
CORASON inputs are a custom genomic database, a reference cluster and a query gene located 
within the reference cluster. The genomic database is a collection of either genomes or BGCs in 
GenBank format. CORASON will identify the conserved core of the reference BGC within the 
genomic database. To calculate the conserved core, a generalization of best bidirectional hits 
(BBH) comparison was used. The BBH relationship is a property among two sets of genes, that 
can genomes, metagenomes or as in this case BGC. This relationship was generalized in a 
stricter algorithm that consideres instead of two BGC, every BGC in a collection. As a result, in this 
particular case, families of the conserved core are composed only by genes that are BBH of the 
corresponding orthologue for every BGC in the genomic database. This strict criterium is needed 
to remove paralogues and to conserve only real orthologues. Multidirectional best hits are those 
genes in a list that are best bidirectional hits all versus all, in contrast with best bidirectional hits 
were only pairs of genes are compared. The BGC gene core facilitates reconstructing the BGC 
evolutionary history in a multilocus tree. The query gene assures that at least one element will be 
present in the conserved core. The query gene will also be used to visually align the BGCs in the 
graphical output. 
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Identification of reference BGC variations on the genomic DB 
CORASON uses BlastP, with an E-value cutoff of 0.001 to find all query enzyme homologues 
within the genomic database. The genomic contexts of the query enzyme homologues are 
expanded 10 genes at each side and stored in a temporary database. Next, sequences from the 
reference BGC located within less than n genes (default: n=10) from the query enzyme are 
blasted against the temporary database using the same E-value cutoff. Genomic context size, E-
value and bit score cutoffs are user-adjustable parameters. Finally, all genomic contexts with at 
least two homologues, including the query enzyme and at least one additional homologue from the 
reference cluster, are kept as the Cluster Variations Database (CVD) for further analysis. 
 

Gene core determination 
To reconstruct the phylogeny of the BGC variations, the conserved core is calculated. The core is 
strongly dependent on the taxonomic diversity of the organisms considered and also on the 
genome quality. For instance, if the BGCs are not closely related, the core can be reduced to only 
the query gene. A set of homologous genes are considered part of the conserved-core if and only 
if they are shared among the cluster variations internal database (all BGCs) and are 
multidirectional best hits i.e. if they are best n-directional hits in an all vs all manner.  
 
Within a set of 𝑁𝑁 BGCs variations, if the set 𝐻𝐻 of homologous genes is defined as follows: 
 

𝐻𝐻 = {ℎ! | ℎ! ∈  𝐵𝐵𝐵𝐵𝐶𝐶!  ∀  𝑖𝑖 ∈ {1,2, . . . 𝑁𝑁}}	
 
then, 𝐻𝐻  belongs to the conserved core if and only if  
 

ℎ! is ℎ! best bidirectional hit ∀  𝑖𝑖, 𝑗𝑗 ∈ {1,2, . . . 𝑁𝑁} 

Phylogenetic reconstruction and gene cluster alignment 
For each BGC, its conserved core sequences are concatenated and then aligned using Muscle 
version 3.8.31 43. The alignments are curated using Gblocks 48 with a minimum block length of 5 
positions, a maximum of 10 contiguous nonconserved positions and considering only positions 
with a gap in less than 50% of the sequences in the final alignment. If the curation turns out to be 
empty, then the noncurated alignment will be used for the tree. If the alignment itself is empty, it is 
recommended to the reduce the score cutoff or the scope of the taxonomic diversity on the 
genomic database. Without the alignment, BGCs will be drawn but not sorted. Approximately-
maximum-likelihood phylogenetic trees are inferred using FastTree 46 version 2.1.10 from the 
curated amino acid alignment. 
 

BGC prioritization graphical output.  
CORASON produces a Scalable Vector Graphics (SVG) file containing the BGC variations sorted 
as stated by the phylogenetic reconstruction and aligned according to the query enzyme. The 
newick tree is converted to SVG applying Newick Utilities version 1.6 47 and each BGC is drawn 
with the Perl module SVG. As an additional feature to facilitate even more visual differentiation of 
BGC families within BGC clans, genes on each cluster are visually represented with a color 
gradient according to the sequence similarity to their homologous gene on the reference cluster. 
Other CORASON outputs include the Newick tree, the genbank files of the BGC variations and the 
conserved core report. 
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CORASON was developed on Perl:5.20 and is available as free software on GitHub 
(https://github.com/nselem/corason) and as a downloadable image on dockerhub 
(https://hub.docker.com/r/nselem/corason/). A CORASON tutorial is available on-line at 
https://github.com/nselem/corason/wiki. 
 
 
Methods of BGCs families on Streptomyces dispensable genome 
Sequences from 103 complete Streptomyces genomes were retrieved from NCBI by querying for 
"Streptomyces" and "complete genome" not “segment”. The conserved core was extracted and 
curated with the CORASON algorithm. The tree was constructed using FastTree with default 
values over a matrix of 114,051 amino acids in size, from 446 conserved gene families(Online 
Data: StreptomycesCore). 
 
Phylogenomic analysis 
For the TauD expansions tree (Fig S13), a tauD sequence from Escherichia coli K12 as query to 
conduct a blast search against the reduced genomic database of 1917 Actinobacteria genomes 
(e-value .001), followed by an EvoMining analysis and a search for recruitments on MIBiG 
database (e-value 0.001). Recovered tauD orthologues were aligned with Muscle 3.8.31 43 and 
alignments were curated using Gblocks 48 in the same manner as described above. An unrooted 
Approximately-maximum-likelihood was built using FastTree46, an algorithm specialized on very 
large protein families. Tree was colored using Newick Utilities47 according to BiG-SCAPE families.  
 
The CORASON tree has as query enzyme TauD from the reference cluster of the organism 
Streptomyces NRRL B-1347 (Accession JOJM01). CORASON trees are unrooted, but this tree 
was posteriorly rooted with the BGC from the genome Streptomyces sp NC1, because this BGC is 
different from all other clusters in the dimeric peptide clan, as it does not share the core but the 
accessory enzymes with other BGC clan members. 
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