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Abstract 

Cholesterol metabolism is pivotal to cellular homeostasis, hormones production, and 

membranes composition. Its dysregulation associates with malignant reprogramming and 

therapy resistance. Cholesterol is trafficked into the mitochondria for steroidogenesis by the 

transduceome protein complex, which assembles on the outer mitochondrial membrane 

(OMM). The highly conserved, cholesterol-binding, stress-reactive, 18kDa translocator 

protein (TSPO), is a key component of this complex. Here, we modulate TSPO to study the 

process of mitochondrial retrograde signalling with the nucleus, by dissecting the role played 

by cholesterol and its oxidized forms. Using confocal and ultrastructural imaging, we 

describe that TSPO enriched mitochondria, remodel around the nucleus, gathering in 

cholesterol-enriched domains (or contact sites). This communication is controlled by HMG-

CoA reductase inhibitors (statins), molecular and pharmacological regulation of TSPO. The 

described Nucleus-Associated Mitochondria (NAM) seem to be implementing survival 

signalling in aggressive forms of breast cancer. This work therefore provides the first 

evidence for a functional and biomechanical tethering between mitochondria and nucleus, as 

being the basis of pro-survival mechanisms, thus establishing a new paradigm in cross-

organelle communication via cholesterol re-distribution.  
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Key Messages 

• Pathological alteration of cholesterol metabolism and upregulation of mitochondrial 

18kDa Translocator Protein expression triggers a pro-survival retrograde response; 

• This operates via physical interaction between remodelled mitochondria and the nucleus 

via cholesterol-rich domains; 

• Lowering cholesterol as well as chemical targeting of TSPO control the cholesterol driven 

efficacy of this pro-survival mitochondria to nucleus signalling; 
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Introduction 

Mitochondria actively take part in remodelling and reprogramming of mammalian cells.  In 

response to stressors, either of endogenous or exogenous nature, they retro-communicate 

with the nucleus to induce wide-ranging cytoprotective effects that sustain proliferation and 

death evasion. This process, which goes under the name of mitochondrial retrograde 

response (MRR) and exploited in pathological settings, is driven by deregulation of Reactive 

Oxygen Species (ROS), Ca2+ signalling and energy defects that promote nuclear 

stabilization of transcription factors (e.g. nuclear factor kappa-light-chain-enhancer of 

activated B cells, NF-kB), responsible to drive the metabolic rewiring and resistance 

mechanisms to therapy. In hormone-dependent tumours, such as those of the mammary 

gland, the therapeutic failure of therapy is now linked to alterations in the cholesterol 

metabolism1,2. The 18kDa mitochondrial protein TSPO3, which trasnlocates cholesterol from 

the outer into the inner mitochondrial environment, is overexpressed in these pathologies 

which it might contribute by impacting their MRR4,5 via core features of its recently enlighten 

molecular physiology5,6. 

The retrograde (mitochondria to nucleus) communication7 is indeed driven by mitochondrial 

dysfunction8-11 which associates with TSPO overexpression as this  leads to intracellular 

redox-stress (ii), raised cytosolic Ca2+ transients (iii), and organelle compartmentalization of 

cholesterol (iii). The metabolic rewiring12 which is a key step in the cancerous 

transformation13,14 is therefore secondary to deregulated mitochondrial function. Cholesterol 

and cholesterol-derived intermediates have been instead recently highlighted as a 

determinant in the oncogenic reprogramming1. Metastatic, endocrine therapy breast cancer 

cells, isolated from patients, show increased expression of CYP19A1, a member of the 

cytochrome C p450 monooxygenase enzymes2, which catalyses the last steps of oestrogen 

synthesis from cholesterol. This prompted the curiosity for the contribution cholesterol-

associated proteins such as TSPO could play in this process and how mitochondrial 
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trafficking of cholesterol could influence the MRR. TSPO which localises on the Outer 

Mitochondrial Membrane (OMM) is detected at greater levels in the aggressive forms of the 

mammary lesions15-17, and besides taking part in the synthesis the steroids by shuttling 

cholesterol18-20 into the mitochondria its also impairs mitophagy21,22 resulting in poor 

organelle respiration and handling of Ca2+22,23. Notably, TSPO is reported of anti-apoptotic 

activity24 and its ligands tested as chemotherapy co-adjuvant25 as well as PET-biomarkers of 

metastases26,27; however its role in the management of cholesterol and the MRR in the 

economy of cellular pathophysiology remains unexplored. Cholesterol synthesis inhibition 

improves  mitochondrial driven apoptosis of cancer cells28 but whether influences the 

efficacy of MRR is untested. The driving hypothesis for this work was therefore that in 

response to stressors cholesterol accumulates on the outer mitochondrial membrane (OMM) 

via TSPO priming mitochondria retrograde communication with the nucleus via the formation 

of cholesterol-rich domains which facilitate stabilization of pro-survival transcription factors29. 

Using a combination of imaging methods at cellular and ultrastructural level along with 

pioneering protocols of cholesterol dynamics analysis we are here detailing a molecular axis 

of communication between mitochondria and nucleus (i), provide evidences for hot-spots 

which link mitochondria with nucleus (ii) and to biochemically and pharmacologically control 

this route of signalling via the protein target TSPO (iii). 
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Results 

The association between TSPO and NF-kB was initially corroborated in primary human 

samples of mammary gland tumours in which we observed a positive correlation between 

TSPO expression and the aggressiveness of the lesions (Figure 1 a, b) mirrored by the 

pattern of NF-κB29,30 accumulation in the nucleus (Figure 1d, e). In agreement with this, 

transcriptomic analysis of >600 samples of breast cancer in the Cancer Genome Atlas 

(TCGA) showed higher NF-κB mRNA expression in the more aggressive HER positive and 

basal tumours which correlated mRNA expression of TSPO (Figure 1c, f) without detection 

of any mutation (SFigure 1a). The positive correlation between the highly conserved 

(SFigure 1d) TSPO, and aggressiveness of neoplastic conditions of the mammary gland is 

therefore retained across species (SFigure 1e-g).  

In order to elucidate the nature of this oncogenic capacity we moved the analysis to cell lines 

of human breast cancer15 and interrogated the biochemical mechanisms responsible for the 

interplay between NF-κB nuclear translocation and mitochondrial expression of TSPO.  We 

compare epithelial human breast cancer MCF-7 cells which features low TSPO levels and a 

more aggressive counterpart MDA-MB-231 (henceforth referred to as MDA) derived from 

breast cancer adenocarcinoma which instead express high levels of TSPO3 (Figure 1g-i). In 

MDA, TSPO was then knocked down (SFigure 1b) before exposing the cohorts of cells (with 

high and low TSPO) to Staurosporine (STS), used here as a mitochondrial stressor/apoptotic 

stimulus, and we observed an increase in TSPO expression as a reaction to the stressor 

(SFigure 1c). Application of STS led to nuclear translocation of NF-κB, which was tangibly 

reduced in those cells with reduced TSPO expression (Figure 1j, k). The same pattern was 

seen in the expression of NF-κB-regulated pro-survival genes Bcl-2 and c-FLIP (Figure 1l, 

m). Immunocytochemical analysis further highlighted the degree of nuclear translocation of 

the NF-κB upon STS treatment in presence of TSPO-expressing mitochondria and how 

pruning of the mitochondrial network via pharmacological activation of mitophagy via the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 17, 2018. ; https://doi.org/10.1101/445411doi: bioRxiv preprint 

https://doi.org/10.1101/445411


  

 7 

agent PMI31,32 reduced the efficacy of NF-κB translocation (Figure 1n, o). PMI, which we 

confirmed is able to reduce size of the mitochondrial network as well as the expression of 

TSPO (SFigure 1j), sensitizes human, feline and canine breast cancer cells to STS-induced 

apoptosis (SFigure 2k-m). Suggesting that the mass of the mitochondrial network is 

important in facilitating the transcriptomic capacity of NF-κB.  Notably also, is the ability of 

TSPO ligand PK11195 (which targets the cholesterol binding domain of the protein33) 

reduced the nuclear translocation of NF-kB when combined with STS (Figure 2a, b). 

Furthermore, the cholesterol synthesis inhibitor, pravastatin (PVS) also reduces NF-κB 

translocation suggesting that the TSPO-cargo cholesterol, is likely to precipitate the 

Mitochondrial Retrograde Response induced nuclear translocation of NF-kB (Figure 2c). 

Confirmation of the interaction between TSPO, Cholesterol and NF-κB was elucidated by 

MDA cells constitutively knocked-out of NF-κB in which further outcome on STS induced cell 

death was exercised by the concomitant repression of TSPO (Figure 2d). NF-kB competent 

MDA are susceptible to the changes in TSPO expression as well as treatment with its 

ligands. TSPO deficient MDA cells (TSPO-) have therefore increased: i) sensitivity to 

apoptosis (Figure 2e), ii) proliferative capacity (Figure 2f), iii) accumulation of the pro-

apoptotic molecule BAX on their mitochondria (Figure 2 g, h) and iv) Cytochrome C release 

into the cytosol (Figure 2i, j). TSPO ligands (See Table 2) substantially increase 

susceptibility to STS (Figure 2k), Doxorubicin and Vincristine induced cell death (Figure 2l-

m).  

MCF-7 cells, which constitutively express lower TSPO levels, gain resistance to STS-

Induced apoptosis, when the gene is overexpressed but solely when the recombinant wild-

type isoform of the protein is inserted, whereas, the mutant lacking the Cholesterol Binding 

Domain CRAC (TSPO∆CRAC) fails confer this resistance (Figure 3a-c). This evidence 

further demonstrates that is the cholesterol-binding capacity of TSPO is key to cellular 

resistance to chemically induced cell death. Furthermore, MCF-7 cells which have 
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developed resistance to Tamoxifen due to their increased cholesterol bio-synthesis in 

response to long-term oestrogen deprivation, (MCF7-LTED 1,34,35) present a high expression 

of TSPO (Figure 3d, e). On the basis of this evidence we investigated whether 

pharmacological targeting of TSPO with FGIN-127 ligand could affect the nuclear pattern of 

the ERa in MCF7-LTED and their susceptibility to STS induced cell death. In both these 

parameters, the ligands was effective resulting in reducing ERa association with the nucleus 

(Figure 3g) and higher cell death (Figure 3h). Aligning with these observations, big-data 

analysis revealed that TSPO is over-expressed in cohorts of relapsed patients in whom 

endocrine therapy was no longer effective and cholesterol metabolism is escalated. 

(Supplementary Figure 3 a). 

Following co-immunocytochemical labelling of TSPO and the nuclear envelope protein 

Lamin-B we report that in MDA but not in MCF-7 cells, mitochondria are persistent in the 

perinuclear region forming an association with the nucleus similar to an infiltration (Figure 

4a,b). This increases in response to STS and is concurrent with the retro-translocation of 

TSPO into the nucleus (Figure 4c, d). The degree of nuclear association of mitochondria 

(nucleus-associated mitochondria: NAM) is enhanced by STS, and this can be limited by the 

mitophagy-driven reduction of the mitochondrial network when co-treated with PMI (Figure 

4e- g). TSPO trafficking into the nucleus was confirmed by immunogold staining followed by 

Transmission Electron Micrograph (TEM) where TSPO was observed to be present in 

mitochondrial OMM, nuclear envelope, as well as inside the nucleus. Also ultrastructural 

imaging revealed the inter-organellar coupling which establishing the NAM as an all-

encompassing structure in and around the nucleus (Figure 4h, i).  

The observed mitochondrial remodelling could crucially influence the efficiency of signalling 

via diffusible molecules such as ROS which are acknowledged activators of the retrograde 

response36 and increased both in mitochondrial and cytosolic compartments according to 

TSPO expression (Figure 4j-l) as shown in precedence.  
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Further TEM analysis confirmed that remodelled mitochondria, in response to cell challenge 

by STS, converge into the peri and intra- nuclear region promoting a large change in the 

median distance with the centre of the nucleus (Figure 4 m, Supplementary Figure 2 a. b). 

We have ascertained such a change in shortening of the distance between mitochondria and 

the nucleus of 4.3µm (please refer to Table 1) between untreated and treated conditions as 

graphically represented in Figure 4 n). Confirmation of NAM as a means to assess the inter-

organelles coupling was corroborated in Mouse Embryonic Fibroblasts (MEFs) transiently 

overexpressing TSPO, in which hot-spots of contact between mitochondria and nucleus are 

appreciable (Figure 4 o). TSPO++ MEFs are also resistant to STS induced cell death 

(Figure 4 p) showing greater retention of cholesterol in the nuclear environment (Figure 4 

q). Most notably, this occurs following overexpression of the wild type TSPO whilst its 

mutant isoform DTSPO-CRAC mediates neither protection nor cholesterol retention during 

STS treatment.  

Reducing the distance between mitochondria and nucleus could be important to other 

signalling effectors downstream of impaired redox-stress and cholesterol metabolism. 

Localized pools of ROS on the nucleus may lead to greater oxidation of the cholesterol 

tethered by TSPO, thus establishing a relay between TSPO, cholesterol and ROS via the 

generation of oxysterols that underlie various conditions including malignant proliferation37,38. 

In keeping with this, exposure of MDA to 7-ketocholesterol (7 KC) (which is the second most 

abundant oxysterol found in mammals) increases TSPO expression (Figure 5 a-c) and re-

enforces the NAM (Figure 5 d, e). The same pattern of expression is mirrored by LXR-

b, ATAD3 and StAR (SFigure 2d-h), all of which are components of the steroidogenic 

protein complex- transduceome19. Subsequently, in Mito-RFP expressing MDA cells co-

labelled for Lamin B we imaged cholesterol pools via the cholesterol-binding fluorescent 

compound, Filipin observing their localization into focal spots on the nucleus following STS 

treatment which were instead prevented when TSPO expression was reduced (Figure 5f, 
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g). STS thus triggers a re-distribution of cholesterol out of the nucleus, which is already 

occurring in cells with reduced TSPO expression (Figure 5h) or treated with ligands of the 

protein (Figure 5i). This goes in line with the reduced expression of NF-κB regulated pro-

survival genes (c-FLIP, Bcl-2) recorded when MDA are treated with Lovastatin (Figure 5j, k) 

thus confirming the accumulation of cholesterol into the nucleus is pivotal for the 

transcription of pro-survival genes at the basis of Mitochondrial Retrograde Response 

(MRR). We also confirmed that pharmacological regulation of TSPO affects cholesterol 

dynamics by imaging the process with the fluorescent dye dehydroergosterol (Ergosta): a 

cholesterol surrogate39. By measuring the threshold percentage area of the Ergosta signal 

co-localized with mitochondria (demarked by Mitotracker Red) we reported that the TSPO 

ligand PK11195, prevents the invasion of the nuclear region by the lipid leaving this 

compartmentalised in the mitochondria (Figure 5l, m) which also present a more arborized 

network following the treatment (Figure 5 n,o). The conclusions of this evidence, are 

summarised in the final graphical model (Figure 5p) in which we highlight that the 

association of mitochondria with the nucleus relies on cholesterol-rich domains demarked, at 

least in our experimental model by TSPO which is therefore useful both for their traceability 

and regulation. 
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Discussion 

The characterization of molecular effectors in the mitochondrial retrograde communication 

with the nucleus is instrumental in understanding the origin of mammalian cells adaptation to 

stress and pro-pathological cues. In this work, we demonstrate that this conduit of 

communication relies on spatially confined biochemical events, secondary to remodelling of 

mitochondria that can associate with the nucleus. Localized accumulation of cholesterol is 

pivotal to this and in promoting expression of pro-survival genes. Hitherto, just the Reactive 

Oxygen Species (ROS) and Ca2+ were acknowledged7,11 pro-survival messengers operating 

between mitochondria and nucleus whilst we prove that cholesterol operates as an 

intermediate of equal if not greater relevance in this conduit of communication. 

Dissipation of cholesterol from the nucleus emerges therefore as an indicator of the degree 

of successful apoptosis whilst its retention of the very opposite. This is not surprising, 

though, as cholesterol is known to be involved in the expression of genes by stabilizing their 

transcription40. However, discovery that cholesterol is trafficked via hot-spots at the interface 

between the organelles is truly novel even though similar to other communication platforms 

such as ER-MAMs.  

In malignant models of analysis presenting altered cholesterol metabolism such as the MDA 

the association between Mitochondria and the Nucleus which we called NAM (Nucleus-

Associated Mitochondria) results in greater exposure of the nucleus to hydrogen peroxide 

(H2O2), superoxide (O2
-) as well as hydroxyl radical (OH-) generated in excess by defective 

mitochondria -as happen to occur in those overexpressing TSPO. That mitochondrial O2
- 

and OH- can travel for less than a micron in their very short half-life (represented in Figure 

4n) (which can be estimated based on their diffusion co-efficient41) prevents these reactive 

species from causing excessive damage or uncontrolled signalling in steady state. However, 

the formation of NAM, by bringing mitochondria within angstroms range with the nuclear 

DNA, will facilitate the efficient transmission of these molecules36. NAM will equally benefit 
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the stabilization in the nucleus of transcriptional factor such as NF-κB11 boosting the 

transcription of the regulated pro-survival genes. In this manner, NAM may represent a 

defensive mechanism in response to apoptotic cues in the short term, whilst long-term 

exposure of the nucleus to free radicals, will compromise DNA integrity leading to genomic 

alterations. This ties well into observations that cytoskeletal reorganization and cellular 

morphology are key factors in determining the cellular resistance to apoptosis as well as in 

regulating the NF-κB led signalling42,43. Equally, nuclear pleomorphism of tumours which is 

proposed as a biomarker of malignancy for breast cancer44,  could be due to  the continuous 

exploitation of this mechanism thus resulting in resistance generating somatic mutations.  

We report that in response to pro-apoptotic stressors mitochondria re-organise and 

overwhelm the nuclear envelope. OMM based proteins such as TSPO, may even being 

trafficked into the nucleus delivering their lipid cargo (e.g. cholesterol). The putative 

concurrence of ROS in the nucleus along with cholesterol implies that auto-oxidative 

products of cholesterols (oxysterols) may be also involved in the signalling route and the 

pattern of LRX receptors19, mirroring that of TSPO, stands as confirmation. All this is 

nonetheless secondary to inefficient mitochondrial quality control, which accumulates 

inefficient organelles and their bypassed respiratory products. TSPO suppresses PINK1-

PARKIN driven mitophagy by impairing the ubiquitination of proteins21. The mitochondria 

which overexpress TSPO are therefore far more prone to repositioning, as systematically 

evading control by autophagy, increasing nuclear stabilization of the NF-κB. A correlation 

which is retained cross the aggressive cell lines investigated as well as the histopathological 

samples (both of human and non-human origin) analysed. 

The previously described de-ubiquitinating properties of TSPO22, lead us to speculate that 

trafficking of TSPO onto the nuclear envelope could replicate a similar inhibitory role for the 

nucleophagy in dying cells and the undulated nuclear envelope we observe ultrastructurally 

could be consequence of this. However, the alteration in lipid composition of the membranes 
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to which TSPO localises (mitochondria) or relocalises (nucleus) may be key to this as well as 

to the altered organellar life cycle and interactome. Certain is that Mitochondrial network 

remodelling, cholesterol sequestration on the perinuclear region and cell death evasion are 

all avoidable by downregulation of TSPO or its pharmacological counteraction via PK11195, 

FGN-127. TSPO is thus further overexpressed in mammary gland cell lines that have 

developed resistance to Endocrine Therapy (ET). Its recombinant overexpression confers 

resistance to those cells still susceptible to ET whilst the DTSPO-CRAC mutant unable to 

bind and collect cholesterol fails to mediate similar outcome. These experiments confirm 

therefore a critical role for the TSPO cargo cholesterol in the regulation of MRR, which is 

executed both by physical re-organization of the mitochondrial network on the nucleus and 

accumulation of cholesterol in specific domains. These findings shed new light on the 

resistance behaviour primed by MRR providing a mechanistic base which occurs via the 

regulation of cholesterol.  

While the observation that the mitochondrial interactome is crucial to cellular health is not 

new, here we suggest, that what has previously been simply described as perinuclear 

arrangement of mitochondria, has deeper consequences for molecular signalling, cellular 

health and survival. Furthermore, we identify cellular conditions of stress where the 

interaction can be controlled and is exploited for cell survival. Amongst the family of 

intracellular organelles, mitochondria are particularly dynamic. In particular, their ability to 

communicate with the nucleus, is not just intraorganellar communication, but a conversation 

strategy between two genomes to retain homeostasis. And it is no coincidence that an  

highly conserved and ancient protein as TSPO emerges as core to this. 
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Methods 

Immunohistochemistry/Immunocytochemistry: Immunofluorescence: Cells were fixed 

in 4% PFA (10 mins, RT) followed by 3 five-minute washes in PBS. Permeabilization was 

performed with 0.5% Triton-X in PBS (10 mins, RT) followed by washing. Blocking was 

carried out for 1h at RT in 10% Goat Serum and 3% BSA in PBS. Primary antibody 

incubations were conducted overnight for 16 h at 4˚C in blocking solution as described. 

After a further wash step, secondary antibodies were incubated for 1 h in blocking solution, 

before a final wash step.  Cells were then mounted on slides with DAPI mounting medium 

(Abcam, ab104139). Cells were stained with the following primary antibodies: ATPB 

(Abcam ab14730) 1:400, Lamin B2 (Abcam ab8983) 1:500; TSPO (Abcam, ab109497) 
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1:200, NF-kB (AbCam, ab16502) 1:500, 1:1000 ATAD3 (Gift from Dr Ian Holt, Biodonista, 

1:400 LXRb (Abcam ab28479), 1:500 STAR (AbCam ab58013); and the following 

secondary antibodies: α-mouse Alexa 555 (Life Technologies, A21424) 1:1000; α-rabbit 

Alexa 488 (Life Technologies, A11008) 1:1000.  

Single dye immunofluorescence was used to stain paraffin sections of human mammary 

tissues with different TSPO antibody (ab109497) / NF-kB (ab32360) 

. The binding of mouse primary antibodies was detected using Alexa Fluor 488 (or 594) 

fluorochrome-conjugated goat anti-mouse IgG. Tissue sections were mounted with 

Floroshield Mounting Medium with DAPI to show  

 

Cell Culture: Human mammary cell lines MDA-MB-231 and MCF7 canine mammary line 

CF41 and feline mammary line K248P, were maintained at 37˚C under humidified 

conditions and 5% CO2 and grown in Dulbecco’s modified Eagle medium (Life 

Technologies, 41966-052) supplemented with 10% foetal bovine serum (Life Technologies, 

10082-147), 100 U/mL penicillin, and 100 mg/mL streptomycin (Life Technologies, 15140-

122). K248P cells were additionally supplemented with 10 µg/ml insulin (sigma-aldrich). 

Cells were transiently transfected with genes of interest or siRNA using a standard Ca2+ 

phosphate method as described previously 45 or using manufacturers’ instructions for 

Lipofectamine 3000 (Thermofisher 18324010).  

Cell Fractionation: Cells were lysed in cold isotonic buffer (250 mM Sucrose, 10 mM KCl, 

1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 20 mM HEPES, pH 7.4) containing protease 

inhibitor cocktail (Roche, 05892791001) by passing through a 26-gauge needle 10 times 

using a 1 ml syringe, followed by 20 minutes incubation on ice. Nuclei were separated by 

centrifugation at 800g for 5 minutes at 4°C. For nuclear fractions, pellets were washed 

once in isotonic buffer followed by centrifugation 800g for 10 minutes at 4°C. Pellets were 

suspended in standard lysis buffer (150 mM NaCl, 1% v/v Triton X-100, 20 mM Tris pH 7.4) 

plus 10% glycerol and 0.1% SDS and sonicated for 5 seconds to dissolve pellet. For 
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mitochondrial fractions, supernatants were transferred to fresh tubes and centrifuged at 

10000g for 10 minutes at 4°C, Subsequent supernatants were collected as the cytosolic 

fractions while mitochondrial pellets were washed once in cold isotonic buffer then 

centrifuged at 10000g for 10 minutes at 4°C. Finally, mitochondrial pellets were lysed in 

lysis for 30 minutes on ice. 

Western Blot: Sample proteins were quantified using a BCA protein assay kit (Fisher 

Scientific, 13276818).  Equal amounts of protein (10-30 µg for whole cell lysates/cytosolic 

fractions; 10 µg for mitochondrial. Nuclear fractions) were resolved on 12% SDS-PAGE 

gels and transferred to nitrocellulose membranes (Fisher Scientific, 10339574). The 

membranes were blocked in 3% non-fat dry milk in TBST (50 mM Tris, 150 mM NaCl, 

0.05% Tween 20, pH 7.5) for 1 h then incubated with the appropriate diluted primary 

antibody at 4˚C overnight: LC3 (Abcam, ab48394) 1:1000; TSPO (Abcam, ab109497) 

1:5000; Actin (ab8266). 1:2000; ATPB (Abcam, ab14730) 1:5000, BAX (Abcam, ab32503) 

1:1000; CytC (ab13575) 1:1000; Histone H3 (ab8580) 1:1000 NF-kB (ab32360 1:1000; 

Lamin B1 (ab16048) 1:1000; MTCO1 (ab14705) 1:1000. Membranes were washed in 

TBST (3 x 15 mins at RT) and then incubated with corresponding peroxidase-conjugated 

secondary antibodies (Dako, P0447, P0448) for 1h at RT. After further washing in TBST, 

blots were developed using an ECL Plus western blotting detection kit (Fisher Scientific, 

12316992). Immunoreactive bands were analyzed by performing densitometry with ImageJ 

software.  

Confocal Imaging/ImageJ: Fluorescent labeling was observed through a LSM 5 Pascal 

confocal microscope (Zeiss, Oberkochen, Germany) and images were recorded with the 

Pascal software (Zeiss). All image analysis was done using Fiji (ImageJ; NCBI, USA) and 

corresponding plug-ins. All staining was checked for non-specific antibody labeling using 

control samples without primary antibody. None of the controls showed any signs of 

nonspecific fluorescence. For ICC and IHC imaging, single optical sections were analyzed. 

The infiltrate analysis was done using orthogonal rendering 3D optical stacks and counting 
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the number of infiltrates per cell nucleus. The mitochondrial network analysis was 

performed using the ‘skeletonize’ plugin.  

Cell Proliferation assays: Cell proliferation assay were performed using the WST-1 Cell 

Proliferation Assay Kit (ab65473) and assessed on a standard plate reader (Tecan 

SUNRISE) 

Cell Death Assays: Cells were fixed in 4% PFA for 10 mins at, RT followed by 3 five-

minute washes in PBS. Permeabilization was performed with 0.2% Triton-X100 in PBS for 

10 mins at RT followed by washing. Death assays TUNEL Assay Kit - in situ Direct DNA 

Fragmentation (ab66108) as per the manufacturer’s instructions. Alternatively, cells were 

live stained with Hoechst 33342 (Sigma H6024) and Propidium iodide (Sigma 25535) to 

mark apoptosing cells and imaged on an inverted fluorescence microscope.  

Fluorescence imaging: Cells were incubated with 5 µM dihydroethidium (DHE, Life 

Technologies, D-1168) or 5 µM MitoSOX (Life Technologies, M-36008) in recording media 

(125 mM NaCl, 5 mM KCl, 1 mM NaH2PO4, 20 mM HEPES, 5.5 mM glucose, 5 mM 

NaHCO3, and 1 mM CaCl2, pH 7.4) for 30 minutes at 37 ⁰C. Cells were washed once in 

recording medium then transferred to a Leica SP-5 confocal microscope (63X  oil objective 

lens) for imaging and fluorescence intensity was measured through continuous recording 

for at least 10 mins. Settings were kept constant between experiments. Mitochondrial ROIs 

were selected, and the corresponding fluorescence intensities calculated. For the transport 

of cholesterol assay, Ergosta (dehydroergosterol- ergosta-5,7,9(11),22-tetraen-3β-ol) was 

prepared and loaded as previously described 46. Briefly, Ergosta was added to an aqueous 

solution of MβCD (3mM Ergosta and 30mM MβCD). This mixture was overlaid with 

nitrogen, continuously vortexed under light protection for 24 h at room temperature and 

filtered through a 0.2 μm filter to remove insoluble material and Ergosta crystals. Then, 20 

μg of DHE was added to the cells in the form of DHE-MβCD complexes and allowed to 

incubate for 90 minutes at room temperature in PBS. Prior to imaging, cells were washed 
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three times with culture media before being incubated with 20 nM MitoTracker™ Red 

CMXRos. Cell were washed and then imaged. 

Statistical analysis: Data are presented as mean ± standard deviation of the mean. One-

way analysis of variance (ANOVA) was used in multiple group comparisons with 

Bonferroni’s post hoc test to compare two data sets within the group and a p value less 

than 0.05 was considered significant.  All analyses were performed in Microsoft Office 

Excel 2010 and GraphPad Prism 7. *p = <0.05, **p = <0.01, ***p = <0.001 

Preparation of cells for Electron Microscopy (TEM and Immunogold TEM)  

For TEM analysis, MDA-MB-231 cells (control and treated with 0.5 µm for 16 h) were fixed at 

room temperature with 2.5% glutaraldehyde (v/v) in 0.1 M sodium cacodylate buffer (pH 7.4) 

for 3 h. The cells were pelleted by centrifugation, washed in buffer and post-fixed for 1 h with 

1% osmium tetroxide in 0.1 M sodium cacodylate buffer. Samples were thoroughly rinsed, 

dehydrated in a graded series of ethanols and embedded in epoxy resin (TAAB 812). 

Ultrathin sections (70-90 nm) were cut using a Leica UC7 ultramicrotome mounted on 150 

mesh copper grids and contrasted using Uranyless (TAAB) and 3% Reynolds Lead citrate 

(TAAB). Sections were examined at 120kV on a JEOL JEM-1400Plus TEM fitted with a 

Ruby digital camera (2kx2k). For TEM immunogold labelling, cell samples were fixed with 

4% (w/v) paraformaldehyde, 0.1% (v/v) glutaraldehyde in 0.1M phosphate buffer (pH 7.4) for 

4 h at room temperature and spun down on 20% gelatine. Gelatine cell pellets were 

cryoprotected by incubating in 2.3M sucrose overnight at 4°C. Gelatine blocks containing 

cells were cut further into 1-2mm cubes, mounted on aluminium pins and cryofixed by 

plunging into liquid nitrogen. Samples were stored in liquid nitrogen prior to cryosectioning. 

Ultrathin sections (70-90 nm thick) were cut using a Leica EM FC6 cryo-ultramicrotome and 

mounted on pioloform film-supported nickel grids according to the Tokuyasu method (1). 

Sections were immunolabeled using anti-TSPO (Abcam, ab109497) (1:200) followed by a 

12nm-colloidal gold anti-rabbit secondary antibody (Jackson ImmunoResearch) (1:40). Grids 
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were examined at 120 kV on a JEOL JEM-1400Plus TEM fitted with a Ruby digital camera 

(2kx2k). 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Half lifetime and diffusion distance of ROS 

ROS Half- 

Life 

Diffusion 

distance 

H2O2 500 s 1732 µm 

OH- 35 µs 4.58 µm 

O2-- 10 ns 0.244 µm 

 

Diffusion distance can be estimated by Einstein-Schomulochowski equation41,  
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 where x is the quadratic mean of the diffusion distance in 3-D space, D is 

the diffusion co-efficient, and t is the time, taken as the molecule half-life. A half-life is the 

time for a decrease in concentration of 1/e or 37% 

 

 

 

 

 

Table 2: Chemical Structures of the Compounds Used 
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