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Abstract  

 High-throughput sequencing offers advantages over other quantification methods for 

microRNA (miRNA), yet numerous biases make reliable quantification challenging. Previous 

evaluations of reverse transcription or amplification bias in small RNA sequencing have been 

limited. Furthermore, little work has evaluated quantifications of isomiRs (miRNA isoforms) or 

the influence of starting amount on performance. We therefore evaluated quantifications of 

canonical miRNA and isomiRs using four library preparation kits, with various starting amounts 

(100ng to 2000ng), as well as quantifications following removal of duplicate reads using unique 

molecular identifiers (UMIs) to mitigate reverse transcription and amplification biases.  

Randomized adapter and adapter-free methods mitigated bias; however, the adapter-free 

method was especially prone to false isomiR detection. We demonstrate that using UMIs 

improves accuracy and we provide a guide for input amounts to improve consistency. Our data 

show differences and limitations of current methods, thus raising concerns about the validity of 

quantification of miRNA and isomiRs.   

 

Research of miRNA expression has been instrumental in identifying miRNAs involved in 

development and diseases 
1
, and identifying expression-signatures for use as biomarkers 

2–4
. 

Small RNA sequencing (sRNA-seq) allows for detection of novel miRNAs and altered canonical 

miRNA sequences, termed isomiRs 
5–7

. Despite this enhanced capability, sRNA-seq miRNA 

quantifications are often inconsistent across studies 
8
. This is likely in part due to differences 

between methods and/or variation in the detection by individual methods 
9
 (from library 

preparation to preprocessing to normalization, etc.). Furthermore, several aspects of sRNA-seq 

can lead to the preferential quantification of some miRNAs and reduced or completely lacking 

quantification of others, thus introducing biases that lead to misrepresentations of true miRNA 

expression levels. Evaluations and comparisons of the accuracy (how close measurements are 

to the truth) and consistency (how close measurements are across replicates) associated with 

current methods are critical for proper cross-study interpretation and for guiding 

methodological improvement. 

 

Evidence suggests that biases and inconsistencies in sRNA-seq based quantifications and group 

comparisons are largely based on study design and library preparation methods 
9
. The details of 

these issues have been reviewed elsewhere 
8,10–16

. Some of these issues are avoidable with 

proper study design. However, bias and inconsistency related to adapter ligation, cDNA 

synthesis, and amplification may principally be dependent on library preparation and 

preprocessing methods, which are less readily controlled.  

 

A considerable number of studies have evaluated adapter ligation bias in quantifications from 

several commercially available kits 
15,17–19

; however, to our knowledge, only one study has 

directly compared the performance of randomized adapter methods and adapter ligation-free 

methods 
15

. Furthermore, limited studies have investigated the influence of reverse 

transcription or amplification bias in sRNA-seq 
20,21 

and no study to date has evaluated the use 

of unique molecular identifiers (UMIs) in order to identify and remove duplicate reads to 

mitigate such biases in sRNA-seq biological samples. While a couple of studies have used UMIs 

in sRNA-seq 
20,21

, only one report has evaluated the reproducibility of sRNA-seq quantifications 
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obtained from utilizing UMIs to those without 
20

, in which the authors concluded that biological 

technical replicates had less variation when UMIs were used to remove duplicate reads 

compared to when either all or no duplicates were removed. However, no statistical tests were 

performed in this assessment, and no evaluation of the influence of the UMI deduplication on 

the accuracy of biological samples was performed. In the sRNA-seq literature there has also 

been little assessment of the influence of starting amount on the consistency of quantifications. 

While RNA editing detection has been evaluated 
17

, other aspects of isomiR analysis have not 

yet been performed. 

 

To complete the gap left by previous studies, we comprehensively evaluated and compared 

miRNA and isomiR quantifications from four commercially available library preparation 

methods, as well as those obtained following the removal of duplicate reads using UMIs. We 

also evaluated the consistency of the results using a variety of starting amounts. We assessed 

the similarity of the quantifications from each method, the diversity of the detection of 

different types of small RNAs by each method, as well as the accuracy and the consistency of 

the results obtained from each method within and across batch. Such evaluations are critical for 

optimizing sRNA-seq methods to obtain both reliably consistent and accurate results across 

batches and studies, and to therefore allow for more accurate and reproducible miRNA 

quantifications in disease states and conditions.  Based on these results, we offer suggestions 

for future study designs. 

 

Results 

 

Study Design 

 

In this study we evaluated the influence of several potential sources of bias and inconsistency 

on miRNA quantifications (Fig. 1.A) by comparing the performance of four commercially 

available kits (Fig. 1.B) and two preprocessing methods (Fig. 1.C) using various starting amounts 

(100ng to 2,000ng) for each method (Fig. 1.D).  The following library preparation kits were 

compared: 1) the Clontech SMARTer smRNA-Seq Kit for Illumina, now owned by Takara Bio 

(Clontech), which incorporates adapter and index sequences during reverse transcription and 

amplification and is therefore ligase-free; 2) the Bioo Scientific NEXTflex Illumina Small RNA 

Sequencing Kit v3 (NEXTflex), now owned by Perkin Elmer and called NEXTFLEX, which utilizes 

adapter sequences with random nucleotide sequences adjacent to the miRNA binding location 

giving each miRNA a variety of adapter sequences to bind; 3) the Illumina TruSeq Small RNA 

Library Prep Kit (Illumina); and 4) the New England BioLabs Next Multiplex small RNA kit (NEB). 

Based on our literature search Illumina and NEB sRNA-seq kits appear to be the first and second 

most widely used kits to date, respectively. The NEB and the NEXTflex kits include polyethylene 

glycol in an effort to reduce adapter ligation bias by improving overall ligation efficiency.  

 

We also evaluated the influence of reverse transcription and amplification bias by utilizing the 

random sequences within the adapters of the NEXTflex kit (that are added prior to the cDNA 

synthesis and PCR amplification steps), as UMIs. These UMIs allow for the removal of duplicate 

reads introduced during amplification and possible mitigation for sequences that may have 
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been preferentially reverse transcribed (Fig. 1.C). We will hereinafter refer to these data as 

“Deduped”. To determine if differences identified between the Deduped data and the NEXTflex 

data were simply due to a reduction in the number of reads (as the UMI-based deduplication 

process reduces the data down to 5% of the original), we also included a random 5 % subset of 

the NEXTflex reads, hereinafter referred to as “Fivepercent,” for comparison.  

 

We evaluated two types of samples (Fig. 1.D-E) and processed the data following the methods 

outlined in Fig. 1.E. See the online methods for more details of our experimental approach. We 

then evaluated several questions shown in Fig. 1.F about the similarity of the quantifications 

obtained from the 6 tested methods (Fig. 1. B), the accuracy of those quantifications using 

synthetic miRNAs in equimolar concentration, the ability of each method to detect a variety of 

miRNAs and isomiRs, and the consistency of the quantifications by each method of technical 

replicates within the same batch and across two batches. 
 

Similarity - Overall quantifications are similar, yet results for individual miRNAs are quite 

divergent across methods 

 

We first performed a general evaluation of the similarity of the resulting miRNA quantifications 

from each method (Fig. 1.B) and of major contributors to overall variability using the data 

derived from the same human brain sample across technical replicates (Fig. 1.F.Similarity). 

Hierarchical cluster analysis indicated that the samples generally clustered by method and 

starting amount (Fig. 2.A). Differential analysis and correlation analysis (Supplementary Fig. 1) 

of the miRNA expression estimates revealed that the methods (Fig. 1.B) produce overall 

relatively similar results, however some individual miRNAs showed very different 

quantifications with intensity ratios ranging as extreme as -9 to 6 (Fig. 2.B).  

 

Evaluating the top 20 abundant miRNAs from each method (Supplementary Table 1), only 6 

miRNAs (30%) overlapped across all methods (however the top 20 for Fivepercent were 

identical to the top 20 from the raw full NEXTflex data). Thus, emphasizing only the most 

abundant miRNAs for further study may be problematic. The overlap between the most 

abundant miRNAs detected by Clontech and the other methods was lower (45% to 55%) than 

the overlap between Illumina, NEB, and NEXTflex (60-65%). The Deduped method resulted in an 

85% overlap with the raw NEXTflex data.  

 

Sum of squares analysis revealed that method choice was the largest contributor to miRNA 

count variability (on average 82% variance explained for individual miRNAs (Fig. 2.C) when 

evaluating the data from all methods (excluding the Fivepercent control). This further 

exemplifies the lack of consistency in quantifications that may occur when different methods 

are utilized.  

 

Accuracy - Reduction of numerous biases improves accuracy 

 

To assess the accuracy of each method (Fig. 1.F.Accuracy), we investigated how consistently 

each kit detected 962 equimolar synthetic miRNA sequences. We calculated the difference of 
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each miRNA count from the mean count for all miRNAs for each method, which we called 

“accuracy error”. The six methods showed significant differences in accuracy (F = 40.00, p < 

2.2e-16). The Deduped data had significantly less accuracy error compared to all other methods 

(up to ≈ 8% less error, with an effect size Hedge’s g of 0.59), followed by comparable accuracy 

for Clontech, NEXTflex, and Fivepercent methods (which did not significantly differ from one 

another in post hoc analysis), but worse accuracy for the NEB and Illumina methods. This 

suggests that the Illumina and NEB methods detect different sequences with less validity than 

the other methods. This was expected, given the known adapter ligation bias associated with 

these methods. Our results suggest that the methods utilized by the Clontech and NEXTflex kits 

both diminish bias – likely due to a reduction in adapter ligation bias. Using UMI sequences for 

deduping resulted in additional error reduction (the raw NEXTflex data had 2.81% more error) 

(Fig. 3.A and Supplementary Table 2), which may be due to a reduction in reverse transcription 

and/or amplification bias. This is consistent with our analysis of the overall variance of the 

counts for these synthetic sequences (Fig. 3.B). The concordance of the rank of the sequences 

with higher accuracy error across the methods was poor (Supplementary Fig. 2 and 

Supplementary Table 3), suggesting that different sequences were prone to bias for each of the 

methods.  
 

We thus analyzed the overall contribution of different sequence characteristics to the variance 

of the count estimates of the synthetic miRNAs and found that indeed different characteristics 

were associated with variability for the different methods (Fig. 3.C, Fig. 3.D, Supplementary 

Table 4). The secondary structure Gibbs free energy (Supplementary Fig. 3) was highly 

influential for Clontech (explaining ≈ 7% of the variance), and the NEXTflex-based methods 

(explaining ≈ 10 % of the variance for each). The identity of the last 2 bases was influential for 

all methods (Supplementary Fig. 4), but in particular for the NEB and Illumina methods 

(explaining ≈ 6 % of the variance for each), suggesting that adapter ligation of the 3’ end 

particularly introduces bias of miRNA quantifications, in agreement with previous work 
22

. The 

identity of the first 2 bases (5’) was most influential for Clontech and explained ≈ 8% of the 

variance (Supplementary Fig. 5), suggesting that the SMART template-switching of the 5’ end 

may introduce more bias. The number of Cs within a sequence also accounted for a relatively 

large percentage of the variance (2.5-5% for all methods except for Clontech) (Supplementary 

Fig. 6). Interestingly, GC content only accounted for ≈ 1% of the variance for each method. 

 
 

 

Detection of RNA classes - Libraries generated using the Clontech Kit had very low miRNA 

mapping rates 

 

We next assessed the percentage of reads that mapped to miRNA or other small RNA species 

for each of our brain-derived samples using bowtie 
23

 (Fig 1.F. Detection Diversity). We 

excluded the Deduped data and its control, as alignment was required to produce these data. 

There was a significant difference in the miRNA mapping rate of the 1000ng starting input data 

across the kits (F = 108.9, p-value = 5.73e-09). The NEXTflex and NEB methods had the highest 

rates, while the Clontech method had the lowest mapping rate, with only 1-2% of all reads 
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mapping to miRNAs (Fig. 4.A-B), as previously described 
15

 (Supplementary Table 5). There was 

a significant difference for all the tested types of RNA across the methods except for small Cajal 

body-specific RNAs (scaRNA) after multiple testing correction. The Clontech reads largely 

aligned to ribosomal RNA (rRNA) and had significantly higher rates of small nucleolar RNAs 

(snoRNA) and small nuclear (snRNA) mapping than the other methods, while the NEXTflex 

method resulted in the largest number of P-element induced wimpy testis (PIWI)-interacting 

RNA (piRNA) reads (Supplementary Table 6). All of the kits had quite consistent mapping rates 

across the various starting amounts (Fig. 4.B). Mapping rates of the synthetic RNA were much 

more comparable among the methods, suggesting that the differences seen with the biological 

samples are largely due to differences in detection of other biological RNAs (Supplementary 

Table 7).  

 

Detection of unique miRNAs - The Deduped data and Clontech data had the best detection 

rates  

 

To discern if any of the methods have an advantage in detecting a diversity of unique miRNAs, 

we compared the detection rate of miRNA sequences (Fig 1.F. Detection Diversity). Here we 

define a miRNA as detected if the miRNA was present with at least 10 normalized reads in the 

quantifications for each of the triplicates of the 1000ng batch 1 brain data.  The number of 

detected unique miRNAs was highest in the Deduped data, and lowest in the Fivepercent and 

Illumina data (Fig. 4.C), which was consistent when including the second batch (Supplementary 

Table 8). Despite the low mapping rate of the Clontech samples, the miRNA diversity detected 

by this kit was relatively comparable to that of the other methods tested. Since both the 

Deduped and the Fivepercent data also include only 5% of the total raw NEXTflex reads, both of 

these methods also resulted in a much lower number of reads that could map to miRNA. The 

similarity of the detection rates of all the methods despite the large difference in miRNA 

mapping rates is due to the DESeq2
24

 normalization strategy utilized, which accounts for 

differences in library composition, and the high sequencing depth. An analysis of subsamples 

containing only 10 million, 5 million or 1 million reads of the Clontech data resulted in lower 

detection diversity (Supplementary Table 9).     

 

Using the data from all starting amounts, there was a significant difference in the number of 

detected miRNAs across methods (F = 7.69, p-value = 0.00017), however pairwise comparisons 

were largely nonsignificant (Supplementary Table 10). There was a weak but significant positive 

relationship (r = 0.4, p-value = 0.027) between detection diversity and input amount 

(Supplementary Fig. 7). Thus, as anticipated, larger inputs resulted in a more diverse pool of 

detected unique miRNAs; however, the pool size did not differ greatly (Supplementary Table 

11). When evaluating each kit individually, only the Deduped method had a significant (p-value 

= 0.009) and strongly positive relationship between starting amount and the number of unique 

detected miRNAs (r = 0.92).   

 

Detection consistency - The Clontech method was significantly worse than the others  

 

To determine how well each method consistently detected the same miRNAs (Fig. 1.F. 
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Detection Diversity), we calculated the proportion of miRNAs detected for each sample that 

were not detected by the other two samples within the triplicates as a measure of detection 

inconsistency using the 1000ng input data (Fig. 4.D). There was a significant difference in the 

inconsistency of detection overall between the methods (F = 12.27, p-value = 0.0002), and 

although no individual contrasts between pairs of methods were significant in post-hoc 

analysis, the Clontech data resulted in the highest level of inconsistency, and NEB performed 

the best, with the lowest level of inconsistency. 

 

Analysis of the full set of data including all starting amounts (Supplementary Fig. 8, 

Supplementary Table 12) demonstrated a significant difference in the inconsistency across 

methods (F = 14.83, p-value = 1.65e-10) and starting amounts (t = -3, p-value = 0.00257, 

Pearson � = -0.31). There was significantly more inconsistency for the Clontech method 

compared to all other methods (up to 240%) except the Fivepercent control method.  This 

suggests that although the Clontech level of detection may have been rescued by the high 

depth of sequencing, the low mapping rate may still result in much poorer consistency of 

detection. 

 

Detection overlap - Despite different miRNA mapping rates, all the methods capture 

overlapping miRNAs 

We next characterized the overlap of unique miRNA sequences captured by each method (Fig. 

1.F. Detection Diversity). Evaluating the miRNAs consistently detected by all 1000ng triplicates 

of the first batch, we determined that in general a large proportion of the miRNAs were 

commonly detected by all of the methods (on average 74%), and only a small fraction of 

miRNAs was uniquely detected by a single method (4.7% on average) (Fig. 4.E). In contrast, on 

average only 5% of the detected isomiRs by each method overlapped those detected by all the 

other methods (Supplementary Fig. 9). 

 

 

Detection of isomiRs - The methods detected significantly different numbers of isomiRs - 

Clontech method the most 

 

We next evaluated the isomiR detection rate of each method (Fig. 1.F. Detection Diversity). We 

define an isomiR as detected if it had greater than 100 normalized reads in all triplicates for 

each method of the 1000ng input data. We observed the largest number of unique isomiR 

sequences in the Clontech data and the lowest in the NEXTflex data (Fig. 4.F). When evaluating 

detection across both batches, the Clontech data remained the most diverse, while the 

Fivepercent control detected the lowest number of unique isomiRs. Using all the data derived 

from all the starting amounts, we determined that there was a significant difference in the 

number of isomiRs detected across the methods (F = 83.5, p-value = 8.89e-15), but not across 

starting amounts (Supplementary Fig. 10). Clontech detected the largest number (up to 250% 

more), followed by NEB (up to 169% more) and Illumina (up to 147% more), while the NEXTflex 

based methods similarly detected the least (Supplementary Table 13).  

 

When evaluating the consistency of isomiR detection (Fig. 4.G), there was a significant 
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difference in the consistency of detection (F = 5.9, p-value = 0.006), but again no individual 

contrasts between pairs of methods were significant. The Illumina data had the highest 

inconsistency, while the NEB data had the least. 

 

Detection of false positive isomiRs - All methods detected false isomiRs,  

especially Clontech and NEB 

 

To assess the possibility that the methods may result in false isomiR detections, we evaluated 

the presence of isomiRs in the synthetic miRNA data (which has no designed isomiRs) (Fig. 1.F. 

Detection Diversity). False isomiRs were detected by all of the tested methods. We compared 

the methods based on: 1) the number of overall unique detected isomiR sequences, 2) the 

number of unique isomiR sequences detected for each individual synthetic sequence, and 3) 

the quantifications of the individual false isomiRs. There was a significant difference in the 

number of isomiRs detected for each synthetic sequence by the methods (F = 176.37, p-value = 

<2.2e-16).   The Clontech method detected more unique isomiRs overall than all the other 

tested methods (on average 401% more false isomiRs) (Fig. 4.H). The number of unique isomiRs 

observed for each synthetic sequence was also significantly higher. On average the Clontech 

method resulted in 14 isomiRs per synthetic sequence, while the NEXTflex-based methods (the 

raw NEXTflex data, the Deduped, and the Fivepercent) resulted in roughly 2 isomiRs per 

synthetic sequence (Fig. 4.I, Supplementary Table 14). The counts observed for the individual 

isomiRs detected were significantly higher for NEB than all the other methods (with 60% higher 

expression than the isomiRs detected by the NEXTflex based methods) (Fig. 4.J). The NEXTflex 

methods (raw, Deduped, and Fivepercent) resulted in the fewest isomiRs detected, with the 

fewest isomiR counts per synthetic sequences, and with the lowest expression. There was no 

difference between the Deduped and the raw NEXTflex data for the expression of the isomiRs 

or in the number detected per synthetic sequence (Supplementary Table 15).  

 

Sequence feature analysis revealed that the identity of the first two bases of the 5’ end 

accounted for most of the variance in the number of isomiRs detected for each synthetic 

sequence for the Clontech kit (accounting for nearly 9% of the variance) (Fig. 4.K, 

Supplementary Table 16). Therefore, false positive isomiRs may be generated during the 

reverse transcription step of the library preparation for this method. This is consistent with 

other studies that suggest that the template-switching reverse transcription method utilized by 

Clontech of the 5’ end can lead to shortened miRNA transcripts in a process called strand 

invasion 
25

 and potentially longer miRNA transcripts due to concatamers of the template-

switching oligo 
26

. In contrast, the last 2 bases on the 3’ end accounted for the largest amount 

of variance of the other methods (on average 5.3%). 

 

Consistency across Batch - Illumina had the lowest consistency, while the other methods 

performed similarly 

 

To determine the consistency of results obtained across batches for each method, we 

compared the mean of the triplicates in one batch to a second batch of a single sample of the 

same human brain (Fig. 1.F.Consistency). Using the normalized and log transformed reads for 
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miRNAs that were found to be detected by each kit when filtering for greater than 10 reads 

across all 4 samples for each kit, we calculated the distance from the mean of the two batches 

for each detected miRNA individually. Overall, method choice had a weak significant association 

with error across batch (F = 2.39, p-value =0.036). This association was driven by the batch error 

of the Illumina method which was significantly higher than the other methods, with up to 74% 

more error than other methods (Fig. 5.A, Supplementary Table 17). NEB, NEXTflex, and the 

Deduped data were the most consistent across batch, with no significant difference in the 

performance of these methods (p>0.05). The top miRNAs showed some level of concordance 

across the methods (Supplementary Fig. 11). 

 

Consistency across triplicates - Clontech and Illumina had the lowest consistency  

 

We then evaluated the consistency of the triplicates (Fig. 1.F.Consistency) within the 1000ng 

data, by calculating the distance of each triplicate from the mean of all three triplicates. We 

determined that there was a significant difference across the methods (F = 36.7, p-value = 

<2.2e-16). Consistency was significantly higher for the NEB and Deduped methods, while 

Clontech, Illumina, and the random Fivepercent had the lowest consistency (with ≈ 20-40% 

more error, Fig. 5.B, Supplementary Table 18). Deduping of the NEXTflex data improved 

consistency. The raw data had 14% more error between triplicates.  

 

We then calculated the triplicate consistency for each starting amount. We determined that 

using all starting amount data, there was still a significant difference in triplicate consistency 

between the methods (F = 79.7, p-value =<2.2e-16), but there was no relationship with starting 

amount (Pearson � = -0.11) (Fig. 5.C). All pairs of methods were significantly different, except 

for the contrasts between NEB and Deduped and between Clontech and Illumina (Fig. 5.C, 

Supplementary Table 19). NEB and Deduped again had the greatest consistency (up to 23% less 

inconsistency) and Clontech and Illumina had the least (≈17% more inconsistency). 

 

Factors affecting consistency - The most abundant miRNAs were the most inconsistently 

detected for each method 

 

To determine if any aspect of the miRNA sequences was associated with more or less 

consistency across batch (Fig. 1.F.Consistency), we evaluated the association of various 

sequence factors with the batch error estimate. For each method, the expression of each 

individual miRNA was the largest contributor to variance of batch error (Fig. 5.D-E). All methods 

showed a significant and positive relationship between expression and inconsistency across 

batch (Pearson � >= 0.83 for all methods), Fig. 5.F.  

 

Evaluating sequence characteristic associations with triplicate consistency, again, expression 

was the largest contributor to variance of error estimates (Fig. 5.G-H, Supplementary Table  

21) and again all methods showed a significant positive association with expression and 

inconsistency across triplicates (Pearson � >0.82 for all methods), Fig. 5.I. 

 

To determine if the same miRNAs showed high error across the starting amounts or methods, 
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we ranked the triplicate consistency error estimates and compared the ranks between the 

starting amounts of a given method and between methods (Supplementary Fig. 12, 

Supplementary Fig. 13). The concordance of the ranks between starting amounts and methods 

was highest among the sequences with the highest error with roughly 40% concordance. 

 

Consistency and its relationship to starting amount - There was no improvement in consistency 

beyond 500ng of total RNA for most methods 

 

Using data normalized and filtered for greater than 10 normalized reads for each method 

individually, we further evaluated the influence of starting amount on consistency across 

triplicates (Fig. 1.F.Consistency). Overall, starting amount was significantly associated (p<0.05) 

with triplicate consistency error for each method except for Illumina, which is likely due to the 

fact that fewer starting amounts were assessed for this method, Fig. 5.C, Supplementary Table 

22. The results suggest that a larger starting amount will generally improve consistency, see 

Supplementary Table 23 for specific guidance for each kit. For most methods the highest 

consistency with the lowest starting amount was achieved with 500ng, however, 1000ng 

improved the consistency of the Deduped data. The consistency was relatively similar for all the 

Clontech kit samples regardless of starting amount. 

 

Discussion 

 

We report an extensive comparison of commonly used sRNA-seq kits for their performance in 

identifying and quantifying miRNAs, as well as the results obtained with the use of a UMI and a 

UMI control. Our detailed analyses identify critical factors that influence their performance. 

Prior performance evaluations of current sRNA-seq methods have been very limited and 

adapter ligation bias has largely been the focus of earlier reports 
17,27–29

. Several studies have 

compared the NEXTflex kit with the Illumina and NEB kits 
15,17–19,30,31

, and most suggest that the 

NEXTflex kit offers advantages due to reduced adapter ligation bias by including randomized 

adapters. We compared the NEXTflex kit with the Clontech kit which was also designed to 

mitigate adapter ligation bias, but by using an adapter ligation-free method. Only one prior 

study has compared the performance of these two kits using a previous and now discontinued 

version of the NEXTflex kit 
15

, which demonstrated that the Clontech kit resulted in less bias, 

however, only 6 synthetic miRNAs were utilized in their accuracy assessment. A recent study 

performed at the same time as ours agreed with our findings that these two kits perform 

similarly for accuracy 
32

. A similar UMI method is utilized by a recent library preparation kit by 

Qiagen. However, this kit was released after the data collection of our analysis. In addition, this 

kit, similarly to the NEB and Illumina kits, does not include methods to reduce adapter ligation 

bias, and the UMI is added after reverse transcription, which therefore does not allow for any 

reduction in bias associated with this step. The results of a recent study, which performed a 

similar analysis as ours, further suggest that the Qiagen kit has more bias and is less accurate 

than the Clontech and NEXTflex Kits 
32

. 

 

We have compared the quantifications from each method using a variety of metrics including: 

1) Similarity – how similar are the quantifications across methods (Fig. 1.F.Similarity) ; 2) 
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Accuracy – how well does each method equally quantify different equimolar miRNAs (Fig. 

1.F.Accuracy); 3) Detection diversity – what capacity does each method have to capture a 

diverse range of unique small RNAs (Fig. 1.F.Detection Diversity); and 4) Consistency –  how 

similar are results across batches, triplicates, and different starting inputs (Fig. 1.F.Consistency). 

Our analysis of individual sequences using the metric tests provide information about potential 

bias due to adapter ligation, reverse transcription, and amplification. Table 1 summarizes our 

results. Overall, there are clear and important differences between the methods tested and all 

show performance limitations in real world small RNA sequencing. Based on our results, we 

propose a number of suggestions for future studies.  

 

First, cross-study comparisons using different methods should be viewed with skepticism, 

because although the kits resulted in fairly similar results overall, quantifications of individual 

miRNAs, including the most abundant miRNAs, varied widely across methods (Supplementary 

Table 1, Fig. 2.B, Supplementary Fig. 1). In particular, the Clontech methods resulted in the 

most dissimilar results (Supplementary Fig. 1). More research is required to determine how to 

best utilize data derived from different sRNA-seq methods for mega- and meta-analyses. We 

also advise against further study of only the top expressed miRNAs from a single sRNA-seq 

study, particularly when a more biased method is utilized, as the top observed miRNAs may not 

be truly among the most abundant or influential, but instead those that are preferentially 

observed by the method. This issue has previously been discussed at length
16

. It is important to 

note that it remains unclear how relatively abundant a miRNA needs to be to exert biological 

importance in different contexts.  

 

We suggest the use of a degenerate base method, such as NEXTflex or a ligation-free method, 

to improve accuracy. These methods appeared to equally improve accuracy, likely due to a 

reduction of adapter ligation bias (Fig. 3.A-B). We suggest that future small RNA studies utilize a 

UMI strategy, as our NEXTflex data preprocessed to account for UMI duplicates was even more 

accurate, reducing the overall variance of the log2 transformed and normalized quantifications 

by 68%, or on average the difference from the mean for each miRNA by nearly 3% (Fig. 3.A-B, 

Supplementary Table 2). We speculate that our deduplication method led to such 

improvements due to reduced reverse transcription and/or amplification bias. Our sequence-

specific analysis further indicated that secondary structure of miRNAs was one of the largest 

contributors to error of the Clontech and NEXTflex kits for the accuracy assessment, which 

appeared to be mitigated in the UMI deduped data for the NEXTflex kit (Fig. 3.C-D). This 

suggests that the secondary structure of miRNA sequences may be particularly influential for 

reverse transcription and/or amplification bias, in agreement with previous work that indicates 

that secondary structure can indeed influence reverse transcription 
33

. More work is required to 

determine the extent that amplification or reverse transcription are particularly contributing to 

bias, and to what extent each are mitigated by the use of UMIs. Furthermore, it is unclear if the 

use of deduplication would improve other methods beyond the performance level of the 

current NEXTflex kit. However, the UMIs are inherently already included in the NEXTflex 

adapters, making this one of the best current options to mitigate bias in sRNA-seq. 

 

All of the methods tested were capable of detecting a diverse range of miRNA sequences and 
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there was a high degree of overlap in the identity of the miRNAs detected by each method (Fig. 

4.C-E). Therefore, any of the tested methods may be appropriate for assessments about general 

miRNA diversity. However, the identity of miRNAs detected by Illumina varied greatly across 

batch, Supplementary Table 8). We observed greater resolution for detection of a larger variety 

of miRNAs with greater sequencing depth. We did not evaluate depths above 20 million reads, 

so it remains unknown if even greater resolution can be achieved beyond this depth, however 

subsets of our 20 million depth data resulted in a reduction of diversity.  We also observed that 

a more diverse pool was detected with larger input amounts; therefore, for the best diversity of 

detection, we recommend using the largest input possible. 

 

The Clontech kit resulted in the largest percentage of reads mapping to snoRNAs and snRNAs, 

while the NEXTflex kit resulted in the largest percentage of piRNA mapping reads (nearly 4.2 

times higher than Clontech) (Fig. 4.A-B, Supplementary Table 6). Therefore, if these particular 

small RNAs are of interest, we would suggest the use of these two kits respectively.  We did not 

evaluate the diversity of these other classes of small RNAs; however, given the results of our 

miRNA analysis, we predict that deeper sequencing will result in greater resolution of diversity. 

 

We especially suggest using randomized adapter methods, such as NEXTflex, for studies 

involving isomiR analysis. We suggest that all isomiR studies utilize an additional method for 

validation, as all methods resulted in the observation of false isomiRs. In particular, the 

Clontech method resulted in the highest level, thus we do not suggest that others utilize this 

method for studies that aim to evaluate isomiR expression (Fig. 4.H-J). Furthermore, because 

this method utilizes polyadenylation of the 3’ end, it is impossible to truly distinguish isomiRs 

that terminate with 3’ adenine bases. In all, the Deduped method resulted in the highest 

number of detected miRNAs with the lowest false isomiR detection (Fig. 4.H-J). Therefore, of 

the tested methods, we suggest that the Deduped method may be the best for detecting the 

most diverse and reliable set of miRNAs.  

 

The Deduped method was also the most consistent for individual miRNA quantifications across 

triplicates within the same batch (Fig. 5.B) Therefore, we suggest the use of this method for 

optimal consistency. In general, we particularly caution against the use of Illumina when 

multiple batches of sequencing will be involved in a study, as this method resulted in 

significantly more inconsistent results across batches relative to all the other tested methods 

(Fig. 5.A, Supplementary Table 8)   

 

An earlier analysis determined that detection consistency was poorer with much smaller 

starting amounts (10ng)
18

. Agreeing with this, our results indicate that larger starting amounts 

for some methods may mitigate inconsistent quantifications of miRNAs and isomiRs.  

Overall, we observed the most consistent results across triplicates when utilizing 500ng or 

greater of starting input. In most cases, 500ng was sufficient, and no improvement was 

achieved with higher input amounts. However, the Deduped method performed best with at 

least 1000ng and the Clontech method resulted in similar levels of consistency despite the use 

of smaller inputs (Supplementary Table 23). Thus, if differing starting amounts or smaller 

starting amounts are required, and interest in isomiRs is limited, the Clontech method may be 
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the best choice. 

 

Additional studies of UMI use for other library preparation methods and across biological 

samples are necessary to further understand the ability of UMIs to improve the consistency and 

reproducibility of sRNA-seq studies. Further work is also necessary to optimize the length of the 

UMI. In some cases, all UMIs will become saturated if a given small RNA is very highly 

expressed. Our calculations suggest that this UMI length is sufficient for the brain (using our 

current methods), in which miRNA make up a very small fraction of the total RNA and in which 

our data suggested that the most abundant miRNA represented only 11% of the miRNA reads. 

However longer UMIs may be required for tissues with greater enrichment of miRNAs or 

greater enrichment of other small RNAs of interest, where single RNAs may have more than 

65,536 individual copies before amplification (see Supplementary Note 1, which refers to 

Supplementary Table 24).   

   

In conclusion, we observed significant differences in the accuracy, detection, and consistency of 

the various sRNA-seq methods tested. Our results underscore the importance of the choice of 

sRNA-seq method and suggest that with moderately large starting amounts, the NEXTflex kit 

with deduplication may produce the least biased and most consistent results within and across 

studies. Our results suggest that bias is introduced in sRNA-seq due to reverse transcription 

and/or amplification and that the use of UMIs should be considered for further optimization to 

mitigate these biases in future sRNA-seq studies. Additional work is needed to decipher the role 

of these biases in sRNA-seq in order to guide more accurate sequencing methods. Ultimately, 

additional standardization of sRNA-seq data generation and analysis will improve our ability to 

understand the expression and regulatory role of these small but important RNAs in conditions 

and disease. 

 

Methods 

 

Library preparation and sequencing: 

 

Two sample types were used to evaluate the performance of the sRNA-seq methods, (Fig. 1.D 

and Supplementary Table 25). To evaluate detection and consistency we used various starting 

amounts in triplicate of total RNA from a homogenate human brain sample, purchased from 

Ambion and derived from a 74-year-old Caucasian female. The cause of death of this individual 

was respiratory failure. To evaluate accuracy, we used 300ng of the Miltenyi Biotec miRXplore 

Universal Reference equimolar pool of 962 synthetic sequences corresponding to human, rat, 

mouse, and virus miRNA. 

 

Each library preparation was performed by the same two lab scientists using the same 

equipment. Each protocol was followed exactly as provided by the vendor for each kit. The 

number of PCR cycles for each sample was determined based on the recommendations of each 

kit for the various starting input amounts (Supplementary Table 26). Size selection using PAGE 

gels was recommended by three of the manufacturers (Illumina, NEXTflex, and NEB kits) and 

was performed for these kits for better comparisons. We used AMPure XP beads for size 
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selection for the Clontech samples, as the vendor does not recommend PAGE gel size selection.  

 

A Qubit Fluorometer was used to determine the concentration of the final libraries. The library 

preparations were sequenced using single-end sequencing on the Illumina HiSeq 3000 with the 

Illumina Real Time Analysis (RTA) module and the bcl2fastq2 v2.17 to generate 51 base pair 

reads.  

 

Unique Molecular Identifier deduplication: 

 

In order to test the use of UMIs to mitigate reverse transcription and amplification bias, reads 

derived from the NEXTflex kit were collapsed based on random sequences of 4 bases in length 

contained within both the 3’ and 5’ adapter sequences as a UMI using UMI-tools 
34

 (Fig. 1.C). In 

this method, the adapters are ligated before reverse transcription and PCR amplification, 

therefore allowing for the estimation of the abundance of the sequences present in the sample 

before these steps. In the collapsed NEXTflex data referred to as “Deduped”, only reads that 

contained the same pair of a unique transcript with a unique UMI were maintained, while 

duplicate pairs were discarded. Therefore, each unique sequence had the opportunity to bind 

up to 65,536 different UMIs. As a control, we compared the performance of the Deduped data 

to a random 5% subset of the reads, referred to as “Fivepercent”. This was necessary as only 5% 

of the total reads remained following the collapsing method which required a preliminary 

alignment step. Thus this data was also produced with the preliminary alignment step, all 

preprocessing was the same except for the use of UMI-tools
34

.  

 

We utilized an in-house script to extract the degenerate bases from the adapters to determine 

the UMI sequence for each read and to add it to the identifier line of the FASTQ files for each 

sample. In this script we also removed reads which contained any unknown bases within the 

UMI. We then used bowtie 
23

 (v1.2.2) with a seed length of 15 allowing for 2 mismatches to 

produce a liberally aligned bam file to be used with UMI-tools 
34

 for deduping. We utilized the 

directional method in UMI-tools to remove duplicate reads from the bam file. We then 

converted the bam file to a FASTQ file for alignment with miRge 
35

 with the other method 

samples. Our script to prepare NEXTflex samples for UMI-tools 
34

 is available on GitHub at 

https://github.com/LieberInstitute/miRNA_Kit_Comparison.  

 

Adapter and degenerate base trimming and alignment: 

 

For the NEXTflex (and therefore the Deduped and Fivepercent), NEB, and Illumina FASTQ files 

the 3’ adapter sequences and all bases 3’ of the adapter were trimmed from the ends of the 

reads using cutadapt 
36

 version 1.8.3. For the NEXTflex samples the first and last four bases, 

which correspond to the random bases included in the adapter sequences, were also trimmed. 

In the case of the Deduped samples these sequences were added to the identifier line prior to 

trimming. These bases correspond to the random adapter sequences because sequencing 

begins at the location of the 4 random bases in the 5’ adapter for this kit.   

 

Unlike the other kits, the Clontech kit is stranded. Read 1 corresponds to the sense strand of 
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the input RNA and the first three bases correspond to the nucleotides added during the SMART 

template-switching method. Then 10 Adenine bases were removed from the 3’ end, as well as 

all potential bases 3’ of this stretch of bases. 

 

When trimming the synthetic sample FASTQ files, a lower length limit of 16 bases was used (as 

this was the shortest synthetic RNA), while a lower length limit of 18 bases was used for the 

brain samples (as human miRNAs are generally longer than 16 bases), to reduce the inclusion of 

reads that were too short in the data.  

 

After trimming (and deduping in the case of the Deduped method) samples were aligned to the 

miRBase human miRNA sequences 
37

 and the Miltenyi synthetic sequences using miRge 
35

.  

 

Similarity Analysis  

 

To perform the hierarchical cluster analysis, we used the miRNA quantifications from all brain 

libraries with all starting amounts using both batches (total of 99 libraries, 19 for the Clontech, 

NEXTflex, Deduped and Fivepercent methods and 10 for Illumina and 13 for NEB). We 

normalized the data using the DESeq2
24

 method with the method as the design, using the 

DESeqDataSetFromMatrix(), estimateSizeFactors(), and counts() functions of the Bioconductor 

package DESeq2 
24

(v 1.18.1). The DESeq2
24

 method was chosen for normalization as we assume 

little difference between the individual synthetic miRNAs, the replicates across batches, and the 

triplicates within a given batch given that the samples are biologically the same. Normalization 

for small RNA sequencing is a debated topic and further studies are needed to confirm the best 

method for different small RNA sources. We then determined which normalized expression 

estimates were greater than one for all 99 samples. This resulted in 151 common miRNAs 

above the threshold. We then log2 transformed these estimates. We determined the distance 

between the samples using the hclust() function of the stats package (v 3.4.0). We also used 

these quantification estimates in a sum of squares analysis to determine the percent of 

variance explained by method, starting amount, batch, and the number of reads that mapped 

to miRNA. To do this we used the Anova() type II function of the CRAN car package(v 3.0-0). To 

create the MA plots we used only the 1000ng brain samples from both batches (a total of 24 

samples, 4 for each method). We normalized this subset of samples using again using DESeq2
24

 

and method as the design. We again restricted our analysis to miRNAs with greater than one 

normalized count in all 24 samples. This resulted in 174 common miRNAs above the threshold. 

We then manually created the MA plots. We then ranked the log2 normalized quantifications 

and determined the overlap of the most abundant miRNAs. 

 

Accuracy Assessment  

 

To perform the accuracy analyses, we used equimolar pools of 962 synthetic miRNAs purchased 

from Miltenyi Biotec. The Gibbs minimum free energy of the secondary structures for each 

synthetic miRNA was determined using RNAfold as part of the ViennaRNA package 2 (version 

2.3.5) 
38,39

. GC content was determined using the letterFrequency() function of the 

Bioconductor package Biostrings 
40

 (v 2.46.0). Alignments were performed using the miRge 
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program. The miRge raw count estimates were normalized using DESeq2 
24

 (v 1.18.1) with 

method as the design. The difference of each miRNA count estimate was then calculated from 

the mean of all synthetic sequences. The absolute of this difference was then log2 transformed 

for statistical comparisons and is referred to as “accuracy error”.  

 

A linear model was used to evaluate the influence of method on accuracy error, using the lm() 

function of the stats package, and paired t-tests using the t.test() function of the stats package 

(v 3.4.0) were used for pairwise comparisons of each method. The Bonferroni method was used 

to for multiple testing correction. The omega squared value was calculated using the 

anova_stats() function of the CRAN package sjstats 
41

 (v 0.16.0). Hedge’s g was calculated using 

the tes() function of the CRAN package compute.es (v 0.2-4). Catplots to evaluate concordance 

of error rank were created using the CATplot() function of the Bioconductor package ffpe (v 

1.22.0).  

 

Detection Diversity Assessment  

 

To assess mapping rates to various classes of RNAs, we collected fasta files for a variety of 

RNAs: miRNA, piRNA, rRNA, scaRNA, snoRNA, snRNA, and transfer RNA (tRNA) and then 

created a merged fasta file from each of the smaller fasta files. We used the miRNA fasta file 

included in miRge. The piRNA data was acquired from piRNAQuest 
42

 

(http://bicresources.jcbose.ac.in/zhumur/pirnaquest/). The rRNA, tRNA, and snRNA data came 

from the hg19 assembly from the UCSC genome table browser 
43

 (http://genome.ucsc.edu). 

The snoRNA and scaRNA data came from snoRNABase 
44

 (https://www-

snorna.biotoul.fr/browse.php). Only the C/D box snoRNAs were included as all the H/ACA box 

snoRNAs overlapped with the snRNA data from UCSC. Six of the C/D snoRNA sequences and the 

snRNA overlapped in our merged fasta file. Additionally, all of the scaRNAs overlapped the 

snoRNA C/D box sequences, but we maintained them in order to analyze scaRNA. Exact 

matches of miRNA sequences and piRNA were removed from the piRNA portion of the fasta 

file. bowtie 
23

 was used for alignment to all the sequences simultaneously allowing for zero 

mismatches within the default seed length of 28 bases to better distinguish similar sequences 

of different RNA classes. We then determined the count of reads that mapped to each RNA 

class. 

 

miRNAs were considered detected if they were observed with > 10 normalized reads in all 

triplicates of a given starting amount. Raw counts from miRge for the brain batch 1 samples (93 

in total) were normalized with DESeq2
24

 but were not log transformed. Another analysis was 

performed using both batches and normalizing with DESeq2
24

 using all brain samples and a 

threshold of >10 normalized reads for all samples of a given starting amount. The percent of 

detected miRNAs that were inconsistently detected was calculated as follows: 

 

������,�,�
��

� � 100 

 

Where �� = number of unique miRNAs detected with >10 normalized reads in a given triplicate 
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and where ��,�,� = number of unique miRNAs detected with >10 normalized reads in all 

triplicates. 

 

The same methods were used for the isomiR analysis, however a threshold of 100 normalized 

reads was used instead of 10. 

 

Statistical analyses of the detection and detection inconsistency were performed as in the 

Accuracy assessment with lm() and t.test() of stats package (v 3.4.0)  and the tes() function of 

the compute.es package (v 0.2-4) and the anova_stats() function of the sjstats package (v 

0.16.0)  to calculate effect sizes. Percent variance explained analyses of sequence 

characteristics were performed using the Anova() function of the CRAN package car (v 3.0-0). 

Concordance was evaluated using the CATplot() function of the Bioconductor package ffpe (v 

1.22.0). The evaluation of false isomiRs used the synthetic miRNA data. An isomiR was 

considered as detected if over 100 normalized reads were observed.  

 

Consistency Assessment  

 

Consistency across batch was determined using all 1000 ng brain samples (24 samples). 

DESeq2
24

 (v 1.18.1) was used to normalize these samples with method as the design. 

Quantifications were filtered for those with >10 normalized reads in all samples of a given 

method.  The mean of the quantifications from the first batch triplicates was compared with 

that of the second batch quantifications. The log2 transformed value of the absolute difference 

between these two quantifications was used to compare the batch consistency of the methods. 

Again the lm() of the stats package (v 3.4.0) was used for global analyses, while the t.test() 

function with Bonferroni correction was used to compare pairs of methods. Evaluating the 

intersection of all miRNAs detected across both batches for each method (total of 162 miRNAs), 

we determined the percent of variance in triplicate error for sequence characteristics. 

 

To evaluate the consistency of triplicates, we used all 93 brain samples of the first batch.  This 

data was normalized using DESeq2
24

 using method as the design. The quantification estimates 

were filtered for those with >10 normalized counts in all samples for a given starting amount. 

“Triplicate error” was determined as the difference of the value of each triplicate relative to the 

mean of all triplicates. The absolute value of these differences was then log2 transformed and 

the mean error value of triplicates was determined for each miRNA detected by each method 

for statistical comparisons. Evaluating just the intersection of all miRNAs detected for each 

starting amount and method (total of 228 miRNAs), we determined the percent of variance in 

triplicate error for sequence characteristics. The consistency of triplicates was then used to 

compare the various starting amounts. The Bonferroni method was used for multiple testing 

correction. 

 

Code and data availability: 

 

The code for all of the analyses performed in this manuscript is will be publically available at 

https://github.com/LieberInstitute/miRNA_Kit_Comparison. The data will be made available at 
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the National Institutes of Health (NIH) Sequence Read Archive (SRA), and the accession number 

will be listed on the GitHub readme for the repository. 

 

Acknowledgements:  

 

We are grateful for the generosity of the Lieber and Maltz families in establishing an institute 

dedicated to understanding the basis of developmental brain disorders. This research was 

funded by the Lieber Institute for Brain Development and the AstraZeneca postdoctoral 

fellowship program. 

 

Author Contributions: 

 

C.W. (Carrie Wright) designed the study, performed the data analysis, and wrote the 

manuscript. C.W. (Carrie Wright) and A.R. performed the library preparations and data 

preprocessing. A.R. also edited the manuscript and assisted with the study design and the 

design for Fig. 1.  A.R. wrote the script to prepare the FASTQ files for UMI-tools with the 

assistance of C.W. (Carrie Wright). E.E.B. assisted with creating the figures and edited the 

manuscript. C.W. (Courtney Williams) and M.K. performed the sequencing. L.C.-T. and A.E.J 

assisted with the statistical analysis design. L.C.-T, A.E.J, D.R.W., and J.H.S. also edited the 

manuscript. J.H.S. supervised this project and assisted with the study design and the design of 

Fig. 1. A.J.C., N.J.B., and D.R.W. secured funding for this project and contributed to the overall 

direction. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/445437doi: bioRxiv preprint 

https://doi.org/10.1101/445437
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

References: 

 

1. Bandiera, S., Hatem, E., Lyonnet, S. & Henrion-Caude, A. microRNAs in diseases: from 

candidate to modifier genes. Clinical Genetics 77, 306–313 (2010). 

2. Miller, B. H. & Wahlestedt, C. MicroRNA dysregulation in psychiatric disease. Brain Research 

1338, 89–99 (2010). 

3. Basak, I., Patil, K. S., Alves, G., Larsen, J. P. & Møller, S. G. microRNAs as neuroregulators, 

biomarkers and therapeutic agents in neurodegenerative diseases. Cellular and Molecular 

Life Sciences 73, 811–827 (2016). 

4. Reid, G., Kirschner, M. B. & van Zandwijk, N. Circulating microRNAs: Association with disease 

and potential use as biomarkers. Critical Reviews in Oncology/Hematology 80, 193–208 

(2011). 

5. Eminaga, S., Christodoulou, D. C., Vigneault, F., Church, G. M. & Seidman, J. G. Quantification 

of microRNA Expression with Next-Generation Sequencing. in Current Protocols in Molecular 

Biology (eds. Ausubel, F. M. et al.) (John Wiley & Sons, Inc., 2013). 

doi:10.1002/0471142727.mb0417s103 

6. Neilsen, C. T., Goodall, G. J. & Bracken, C. P. IsomiRs – the overlooked repertoire in the 

dynamic microRNAome. Trends in Genetics 28, 544–549 (2012). 

7. Morin, R. D. et al. Application of massively parallel sequencing to microRNA profiling and 

discovery in human embryonic stem cells. Genome Research 18, 610–621 (2008). 

8. Witwer, K. W. & Halushka, M. K. Toward the promise of microRNAs – Enhancing 

reproducibility and rigor in microRNA research. RNA Biology 13, 1103–1116 (2016). 

9. Linsen, S. E. V. et al. Limitations and possibilities of small RNA digital gene expression 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/445437doi: bioRxiv preprint 

https://doi.org/10.1101/445437
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

profiling. Nature Methods 6, 4734–476 (2009). 

10. Buschmann, D. et al. Toward reliable biomarker signatures in the age of liquid biopsies - 

how to standardize the small RNA-Seq workflow. Nucleic Acids Research 44, 5995–6018 

(2016). 

11. Lopez, J. P. et al. Biomarker discovery: quantification of microRNAs and other small non-

coding RNAs using next generation sequencing. BMC Medical Genomics 8, (2015). 

12. Head, S. R. et al. Library construction for next-generation sequencing: Overviews and 

challenges. BioTechniques 56, (2014). 

13. Pritchard, C. C., Cheng, H. H. & Tewari, M. MicroRNA profiling: approaches and 

considerations. Nature Reviews Genetics 13, 358–369 (2012). 

14. Kim, Y.-K., Yeo, J., Kim, B., Ha, M. & Kim, V. N. Short structured RNAs with low GC 

content are selectively lost during extraction from a small number of cells. Molecular cell 46, 

893–895 (2012). 

15. Dard-Dascot, C. et al. Systematic comparison of small RNA library preparation protocols 

for next-generation sequencing. BMC Genomics 19, (2018). 

16. Sorefan, K. et al. Reducing ligation bias of small RNAs in libraries for next generation 

sequencing. Silence 3, 4 (2012). 

17. Giraldez, M. D. et al. Comprehensive multi-center assessment of small RNA-seq 

methods for quantitative miRNA profiling. Nature Biotechnology (2018). 

doi:10.1038/nbt.4183 

18. Yeri, A. et al. Evaluation of commercially available small RNASeq library preparation kits 

using low input RNA. BMC Genomics 19, (2018). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/445437doi: bioRxiv preprint 

https://doi.org/10.1101/445437
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

19. Baran-Gale, J. et al. Addressing Bias in Small RNA Library Preparation for Sequencing: A 

New Protocol Recovers MicroRNAs that Evade Capture by Current Methods. Frontiers in 

Genetics 6, (2015). 

20. Fu, Y., Wu, P.-H., Beane, T., Zamore, P. D. & Weng, Z. Elimination of PCR duplicates in 

RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics 19, (2018). 

21. Faridani, O. R. et al. Single-cell sequencing of the small-RNA transcriptome. Nature 

Biotechnology 34, 1264–1266 (2016). 

22. Jayaprakash, A. D., Jabado, O., Brown, B. D. & Sachidanandam, R. Identification and 

remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic 

Acids Research 39, e141–e141 (2011). 

23. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient 

alignment of short DNA sequences to the human genome. Genome Biology 10, R25 (2009). 

24. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biology 15, (2014). 

25. Tang, D. T. P. et al. Suppression of artifacts and barcode bias in high-throughput 

transcriptome analyses utilizing template switching. Nucleic Acids Research 41, e44–e44 

(2013). 

26. Kapteyn, J., He, R., McDowell, E. T. & Gang, D. R. Incorporation of non-natural 

nucleotides into template-switching oligonucleotides reduces background and improves 

cDNA synthesis from very small RNA samples. BMC Genomics 11, 413 (2010). 

27. Fuchs, R. T., Sun, Z., Zhuang, F. & Robb, G. B. Bias in Ligation-Based Small RNA 

Sequencing Library Construction Is Determined by Adaptor and RNA Structure. PLOS ONE 10, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/445437doi: bioRxiv preprint 

https://doi.org/10.1101/445437
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

e0126049 (2015). 

28. Hafner, M. et al. RNA-ligase-dependent biases in miRNA representation in deep-

sequenced small RNA cDNA libraries. RNA 17, 1697–1712 (2011). 

29. Zhuang, F., Fuchs, R. T., Sun, Z., Zheng, Y. & Robb, G. B. Structural bias in T4 RNA ligase-

mediated 3V-adapter ligation. Nucleic Acids Research 40, e54–e54 (2012). 

30. Huang, C.-J. et al. Frequent Co-Expression of miRNA-5p and -3p Species and Cross-

Targeting in Induced Pluripotent Stem Cells. International Journal of Medical Sciences 11, 

824–833 (2014). 

31. Huang, X. et al. Characterization of human plasma-derived exosomal RNAs by deep 

sequencing. BMC genomics 14, 319 (2013). 

32. Barberán-Soler, S. et al. Decreasing miRNA sequencing bias using a single adapter and 

circularization approach. Genome Biology 19, (2018). 

33. Stahlberg, A. Properties of the Reverse Transcription Reaction in mRNA Quantification. 

Clinical Chemistry 50, 509–515 (2004). 

34. Smith, T. S., Heger, A. & Sudbery, I. UMI-tools: Modelling sequencing errors in Unique 

Molecular Identifiers to improve quantification accuracy. (2016). doi:10.1101/051755 

35. Baras, A. S. et al. miRge - A Multiplexed Method of Processing Small RNA-Seq Data to 

Determine MicroRNA Entropy. PLOS ONE 10, e0143066 (2015). 

36. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing 

reads. EMBnet.journal 17, 10–12 (2011). 

37. Griffiths-Jones, S. miRBase: microRNA sequences, targets and gene nomenclature. 

Nucleic Acids Research 34, D140–D144 (2006). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/445437doi: bioRxiv preprint 

https://doi.org/10.1101/445437
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

38. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms for Molecular Biology 6, 26 (2011). 

39. Hofacker, I. L. et al. Fast folding and comparison of RNA secondary structures. 

Monatshefte fur Chemie Chemical Monthly 125, 167–188 (1994). 

40. Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of 

biological strings. (2018). 

41. Lüdecke, D. sjstats: Statistical Functions for Regression Models. (2018). 

42. Sarkar, A., Maj, R., Saha, S. & Ghosh, Z. piRNAQuest: searching the piRNAome for 

silencers. BMC Genomics 15, 555 (2014). 

43. Karolchik, D. The UCSC Table Browser data retrieval tool. Nucleic Acids Research 32, 

493D – 496 (2004). 

44. Lestrade, L. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box 

snoRNAs. Nucleic Acids Research 34, D158–D162 (2006). 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/445437doi: bioRxiv preprint 

https://doi.org/10.1101/445437
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Table Legends 

 

Table 1. Summary of results 

The table depicts the results of the various assessments performed on the 6 small RNA sequencing 

methods. *The mapping rate of the raw NEXTflex data should reflect the quality for the data used for 

the Deduped and Fivepercent methods as these are derived from the raw NEXTflex data. 
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Figure Legends 

 

Fig. 1. Study Design 

(A) We focused on several sources of inconsistency and bias in small RNA sequencing. We evaluated the 

influence of various starting amounts on the consistency of the results, as well as the accuracy of the 

results obtained when using a variety of methods including those intended to reduce adapter ligation 

bias, reverse transcription bias, and amplification bias. (B) We compared four commercially available kits 

and two preprocessing methods to address reverse transcription (RT) and PCR amplification bias. (C) In 

the Deduped method we collapsed duplicate reads based on a unique molecular identifier (UMI) that 

came from the degenerate bases in the adapter sequences (bases within the black boxes). We also 

compared the collapsed data with a random 5% subset (called Fivepercent) of the data to determine if 

performance differences were due to collapsing the reads based on the UMI or simply due to having 

fewer reads. (D) We evaluated two types of data: miRNA quantifications from homogenate whole brain 

total RNA from a single female and miRNA quantifications from a pool of 962 equimolar synthetic RNAs 

with sequences that correspond to human, rat, mouse, and virus miRNA. We had two batches of the 

human brain data. The first batch included triplicates of many different starting amounts based on the 

range of inputs suggested by the manufacturers of the library preparation kits. The second batch 

included a single sample of the same human brain with 1000ng of input. We used 300ng of the synthetic 

miRNAs for each tested method. (E) This flowchart depicts our processing pipelines for the two types of 

RNA studied. (F) We evaluated the 6 small RNA sequencing methods using 4 major assessments. The 

brain icon indicates when we utilized brain samples to assess a question, while the red tube indicates 

when we utilized the synthetic miRNA samples. 

 

Fig. 2. Similarity Assessment 

(A) Dendrogram depicting cluster analysis shows that samples largely cluster by method and starting 

amount. (B) Individual points represent the miRNAs quantified by all of the methods; the y-axis of each 

plot shows the log ratio of the normalized quantification estimates between the two methods, while the 

x-axis shows the average expression. These plots are referred to as MA plots. (C) The percent of variance 

explained by method, starting amount, batch, the number of reads mapped to miRNA, and the variance 

unaccounted for by these factors. Each point represents the variance explained by each factor for an 

individual miRNA sequence that was quantified by all of the tested methods.  

 

Fig. 3. Accuracy Assessment 

(A) Individual points represent the absolute difference of each synthetic miRNA quantification from the 

mean of all quantifications of the equimolar synthetic sequences for each small RNA sequencing 

method. (B) The variance of all the quantification estimates for the synthetic sequences. (C) The percent 

variance of synthetic sequence quantifications explained by each of these sequence characteristics:  GC 

content, length, Gibbs free energy of the predicted secondary structure (FoldG), identity of the first and 

last two bases, the count of individual bases, and the presence of repeat sequences, such as duplets of 

the same base or quadruplets of the same base. The heatmap legend shows the percentage of variance 

from 0 to 10 percent. (D) The percent variance explained by each of the sequence characteristics but 

weighted by the overall variance of each method, as shown in B. The heatmap legend shows the 

percentage of variance from 0 to 10 percent. 

 

Fig. 4. Detection Diversity Assessment 

(A) Mapping rate of various small RNAs utilizing the 1000ng input human brain data for each method. 

Undetermined indicates that the read did not map to the annotations of the evaluated small RNA 

classes. (B) The mapping rate of small RNAs for all starting input amounts for each method. The Y-axis 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/445437doi: bioRxiv preprint 

https://doi.org/10.1101/445437
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

shows the percentage of reads of each category and the X-axis shows each tested brain sample. (C) The 

number of unique miRNAs with greater than 10 normalized reads in all triplicates for the 1000ng data of 

the first batch.  (D) The percentage of miRNAs that had quantifications above 10 in only 1 or 2 of the 

triplicates. (E) The overlap of the unique miRNAs with greater than 10 normalized reads in all triplicates 

for the 1000ng data of the first batch. (F) The number of unique isomiRs with greater than 100 

normalized reads in all triplicates for the 1000ng data of the first batch. (G) The percentage of isomiRs 

that had quantifications above 100 in only 1 or 2 of the triplicates. (H) The number of false isomiRs 

observed in the synthetic data with over 100 normalized reads. (I) The number of false isomiRs detected 

for each of the 962 synthetic sequences. (J) The number of normalized reads (expression) of the false 

isomiRs. (K) The percent variance of the number of isomiRs observed for each synthetic sequence 

explained by various sequence characteristics. The heatmap legend shows the percentage of variance 

from 0 to 9 percent. 

 

Fig. 5. Consistency Assessment 

(A) Absolute difference of the normalized and log2 transformed quantifications of the second batch from 

the mean of the triplicates of first batch for each quantified miRNA of the 1000ng input data. (B) 

Absolute difference of each normalized and log2 transformed quantification for each quantified miRNA 

from a given triplicate to that of the mean of all three triplicates of the 1000ng input data. (C) Absolute 

difference of each normalized and log2 transformed quantification for each quantified miRNA from a 

given triplicate to that of the mean of all three triplicates of the data for all the starting inputs. (D) 

Percent variance of batch inconsistency (A) explained by various sequence factors. The heatmap legend 

shows the percentage of variance from 0 to 75 percent. (E) Percent variance of batch inconsistency (A) 

explained by various sequence factors weighted by the overall batch variance of each method. The 

heatmap legend shows the percentage of variance from 0 to 75 percent.  (F) Plots of the association of 

expression and batch error. (G) Percent variance explained by various sequence factors of the triplicate 

inconsistency plotted in (C). The heatmap legend shows the percentage of variance from 0 to 100 

percent. (H) Percent variance explained by various sequence factors of the triplicate inconsistency 

plotted in C and weighted by the overall variance of triplicate error for each method. (I) Plots of the 

association of expression and triplicate inconsistency using all starting input data in (C). The heatmap 

legend shows the percentage of variance from 0 to 100 percent. 
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