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RNA-sequencing data is widely used to identify disease biomarkers and 

therapeutic targets. Here, using data from five RNA-seq processing pipelines 

applied to 6,690 human tumor and normal tissues, we show that for >12% of 

protein-coding genes, in at least 1% of samples, current best-in-class RNA-seq 

processing pipelines differ in their abundance estimates by more than four-fold 

using the same samples and the same set of RNA-seq reads, raising clinical 

concern. 

To explore the effects of RNA-seq data processing differences on gene expression 

estimates, we downloaded pan-tissue uniformly-processed RNA-seq abundance values 

from five different best-in-class processing pipelines (details in Supplementary Table 1) 

for 4,800 tumor samples from The Cancer Genome Atlas (TCGA), and calls from four 

pipelines for 1,890 normal-tissue samples from the Genotype-Tissue Expression (GTEx) 

project. We also included an additional dataset for the same samples with batch effect 

correction between TCGA and GTEx. To ensure fair comparisons, we limited all our 

analyses to protein coding genes that appear across all data sets (16,109 for TCGA; 

16,518 for GTEx). 

Differences among the RNA-seq pipelines discussed here include methods/software, 

software versions, run-time parameter values, and counting/normalization methods 

(Supplementary Table 1)1.  
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Several of the above data sources are only available in units of fragments per kilobase of 

transcript per million mapped reads (FPKM)1. However, FPKM counts do not take 

transcript lengths into account and are thus sensitive to differences in reference 

transcriptome annotations (Supplementary Table 1), as illustrated in Fig. 1a,b. To 

overcome this issue, we converted all data sets to units of transcripts per million (TPM) 

for a common set of genes1 (see Online Methods).  

After the above unit conversion, the different versions of TCGA and GTEx data appear 

highly similar at the whole-genome level (Fig. 1c,d and Supplementary Fig. 1,2), and 

inter-tissue differences become more pronounced than data-source effects (Fig. 1e,f). 

Moreover, inter-batch differences do not appear to confound comparisons within either 

TCGA or GTEx data sets, irrespective of data source (Supplementary Fig. 3,4), although 

comparisons between TCGA and GTEx samples may still be subject to batch effects2 

(Supplementary Fig. 5).  

To quantify inter-pipeline differences not related to batch-effects, we analyzed data from 

the TCGA and GTEx projects separately and compared only pipelines that do not include 

batch-effect correction (five sources for TCGA; four sources for GTEx). We searched for 

genes whose expression in a given sample is >32 TPM according to one pipeline 

(suggesting high expression), but <8 TPM (i.e. >4-fold lower) in the same sample 

according to at least one other pipeline. To ensure that such large differences between 

abundance estimates are not due to a small number of outlier samples, we further 

required that the expression of a gene should be discordant (i.e. meet the above criteria) 

in at least 1% of all samples (48 samples for TCGA, 19 samples for GTEx). We refer to 

genes that meet all the preceding criteria as “discordantly quantified” genes.  

We found 1,637 discordantly quantified genes (~10%) in TCGA data and 1,214 

discordantly quantified genes (~7%) in GTEx data (Fig. 2a, Supplementary Fig. 6). 

Across all TCGA and GTEx data sets, of 16,738 genes analyzed, 2,068 genes (12.36%) 

are discordantly quantified (Supplementary Table 2a).  It should be noted that we 

imposed very stringent criteria in our identification of discordantly quantified genes. In 
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particular, three and two-fold expression differences between pipelines affect many more 

genes (Supplementary Tables 2b,c).  

The relative expression of a given gene between two samples may be expected to be 

more comparable across pipelines3. However, of the above 2,068 discordantly quantified 

genes, 1,958 genes (~ 95%) have >2-fold inter-pipeline differences in fold-change 

estimates for the same sample pairs (Fig. 2b and Supplementary Table 3) 

Our findings are consistent with those of the Sequencing Quality Control Consortium, 

which found that absolute RNA-seq abundance estimates were generally not trustworthy, 

and that reliable differential expression analysis was only feasible in less than two-thirds 

of the genome3. However, whereas SEQC compared expression data generated using 

multiple experimental and computational protocols, the discordant expression levels and 

fold differences reported here are for exactly the same RNA-seq reads, and arise entirely 

from differences in data processing pipelines. 

Of note, many discordantly quantified genes have divergent expression values in large 

numbers of samples (>500, Fig. 2c,d  and Supplementary Table 4).  Importantly, the 

observed discrepancies are not attributable to a particular subset of processing pipelines 

or a particular subset of samples. Even the two pipelines with the greatest level of 

agreement (MSKCC and Xena/TOIL in the figure), still include multiple genes that are 

discordantly quantified in large numbers of samples.   

For most discordantly quantified genes, differences between pipelines arise in a variety 

of ways. As an example, Fig. 2e shows the expression pattern of an example discordantly 

quantified gene (the splicing regulator U2 small nuclear RNA auxiliary factor 1 (U2AF1), 

which is frequently mutated in Myelodyplastic Syndrome4) in five versions of TCGA data 

(see Supplementary Fig. 7a,b for additional examples). We note that in some cases, 

estimates differ by a scaling factor. In other cases, U2AF1 is essentially not expressed 

according to one pipeline, but highly expressed according to another pipeline. In yet other 

cases, abundance estimates from two pipelines are simply poorly correlated. These large 

uncertainties in abundance estimates pose a significant challenge to biomedical research.   
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For example, more complex genome annotations can increase the numbers of unmapped 

and multi-mapped reads5. Indeed, 240  of our  2,068 discordantly quantified genes 

(11.61%) are known to be frequently affected by multi-mapping reads (Supplementary 

Table 2)6.  Our list of 2,068 discordantly quantified genes includes 784 disease-

associated genes (Supplementary Table 5), such as CEBPA, HIF1A, and KRAS, with 

important clinical implications.  

In addition to poor inter-pipeline correlations in mRNA abundance (Supplementary Fig. 

8a,b), for approximately half of the TCGA genes with available protein abundance data, 

mRNA and protein levels show remarkably low levels of correlation (Supplementary Fig. 

8c, Supplementary Tables 6a,b,c) raising further concerns regarding the use of RNA-

seq data for biomarker and target discovery. 

The bioinformatics pipelines compared here represent best-in-class efforts by leading 

research teams, and utilize well-established, widely used methods. The differences 

among these pipelines arise from diverse implementation choices including statistical and 

algorithmic methods, software versions, and run-time parameters.  

The discordant abundance and fold-change estimates revealed here do not imply any 

technical errors. Rather they highlight inherent uncertainty in processing noisy and 

complex data. Nonetheless, the end result is that for the discordantly quantified genes 

reported here (Supplementary Table 2a), we can have little confidence in the abundance 

estimates produced by any RNA-seq processing pipeline. For critical applications such 

as biomedical research and clinical practice, a concerted, community-wide effort will be 

needed to develop gold-standards for estimating the mRNA abundance of these genes.  
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Online Methods 

All analyses were performed in R (https://www.r-project.org/) using Bioconductor 

(https://www.bioconductor.org/) packages. To maximize transparency and reproducibility, 

we have deposited all scripts, associated data, and a large number of additional plots in 

a Github repository: https://github.com/sonali-bioc/UncertaintyRNA. 

Data sources RNA Seq gene expression data was downloaded from five and four 

different sources for TCGA and GTEx respectively (Supplemental Table 1). Each source 

contained different numbers of genes and samples, thus we included only shared protein 

coding genes and samples found in every source in our analysis. The batch information 

for Sequencing Center, Tissue Source Site (TSS) and Plate ID were downloaded from 

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables. The nucleic acid isolation 

batch, genotype and expression batch data for GTEx samples were downloaded from the 

GTEx website (https://gtexportal.org/home/datasets). 

Conversion of abundance estimates to Transcripts Per Million (TPM): All data 

sources except Xena/Toil provided FPKM RNA Seq gene expression data. For 

consistency, we converted all FPKM gene expression data to TPM data using the formula 

in 1. 

Principle Component Analysis (PCA): Principle Component values were generated 

using the R function prcomp() using all genes and visualized with R package ggplot2. 
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Discordantly quantified samples: For a gene to be discordant, its expression in at least 

one data set should be more than 32 TPM (i.e. log2 TPM more than 5) and the log2 fold 

change should be more than 2 (i.e. >4-fold difference in expression). 

Discordant fold changes: For all sample pairs within each data source, expression fold 

changes were calculated for discordant genes (as defined above) and compared with fold 

change differences across other data sources.  

TCGA-GTEx batch effects comparison (Suppl. Fig. 5): Four pipelines provide both 

TCGA and GTEx data. To visualize potential batch effects between GTEx and TCGA 

data, we applied Principal Component Analysis to expression data for Stomach/STAD, 

Liver/LIHC and Thyroid/THCA samples from each pipeline in a manner similar to 2. In 

addition to these within pipeline comparisons, we also compared the original versions of 

the TCGA GDC data and the GTEx (v6) data using the same approach.  

Correlations: Pearson correlation was calculated using rcorr() function from Hmisc R 

package to compare TPM data from five different sources of TCGA data with the original 

GDC data for each gene. For protein-mRNA correlations, PANCAN12 protein abundance 

data was downloaded from 

https://xenabrowser.net/datapages/?dataset=TCGA.PANCAN12.sampleMap/RPPA_RB

N&host=https://tcga.xenahubs.net. We calculated the Spearman correlation between 

protein levels and gene expression using rcorr() for only those genes for which we had 

both protein and gene expression data.  

 

Figure Captions 

Fig. 1. TCGA and GTEx data processed using diverse pipelines exhibit more 

variation by tissue source than by pipeline. (a,b) Principle Component Analysis (PCA) 

plots of TCGA and GTEx data using RPKM/FPKM values show very large inter-pipeline 

differences. (c,d) After transformation to TPM values, differences among pipelines are 

dramatically reduced. (e, f) Using TPM, variability between tissue types far exceeds inter-

pipeline variability. 
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Fig. 2. Large-scale inter-pipeline variability in specific genes. (a)  Number of 

discordant genes per data source for TCGA, panel shows both UpSet7 and Venn 

diagrams. (b) Large inter-pipeline differences in fold change estimates for the same 

sample pairs among discordant genes. Shown are the maximum and minimum fold-

difference estimates among pipelines for each discordant gene across all sample pairs. 

(c, d) Heatmaps showing the number of discordant samples per gene in TCGA and GTEx 

data. Each row represents one discordant gene, each column represents a comparison 

between two pipelines (as labeled). (e) Example pairwise comparisons of expression 

abundance estimates for U2AF1 showing diverse modes of disagreement among 

different pipelines. Panel titles specify the pipelines as Y-axis vs. X-axis. 
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Figure 1
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Figure 2
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Supplementary Figure - 1

Supplementary Figure 1. Principle Component Analysis (PCA) plots of TCGA data from (a) GDC and Xena/Toil, (b) GDC and 

Piccolo Lab, (c) GDC and Recount2, (d) GDC and normalized data from MSKCC (MSKCC) and (e) GDC and batch corrected data, 

after normalization from MSKCC (MSKCC Batch) 
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Supplementary Figure - 2

Supplementary Figure 2. Principle Component Analysis (PCA) plots of GTEx data from (a) GTEx and Xena/Toil, (b) GTEx

and Recount2, (c) GTEx and normalized data from MSKCC (MSKCC) and (d) GTEx and batch corrected data, after 

normalization from MSKCC (MSKCC Batch) 
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Supplementary Figure - 3

Supplementary Figure 3. Principle Component Analysis (PCA) plots of TCGA data from (a) GDC, (b) Xena/Toil, (c) Piccolo Lab (d)

Recount2, (e) normalized data from MSKCC (MSKCC) and (f) batch corrected data, after normalization from MSKCC (MSKCC 

Batch) showing batch effects are not present. Colors  in each PCA plot depict batches by “Plate Id”.
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Supplementary Figure - 4

Supplementary Figure 4. Uniformly processed GTEx RNA-seq data do not show batch effects. Two batch variables (nucleic 

acid isolation batch and genotype batch) are available for GTEx data. Principle Component Analysis (PCA) plots of GTEx

data from all 5 sources of GTEx data is colored by three nucleic acid batches in red (a) BP-22611, (b) BP-23051, (c) BP-

22873 and three genotype batches in purple (d) LCSET-3098 (e) LCSET-3152 and (f) LCSET-3205. 
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Supplementary Figure - 5

Supplementary Figure 5. Illustration of potential batch effects between TCGA and GTEx. Gene expression data for thyroid, liver and 

stomach were compared with gene expression data for their respective cancer types (THCA, LIHC and STAD) from TCGA. (a) GDC, 

(b) Xena/Toil, (c) Recount2, (d) normalized data from MSKCC (MSKCC) and (e) batch corrected data, after normalization from 

MSKCC (MSKCC Batch) showing reduced differences between TCGA and GTEx. 
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680

Supplementary Figure - 6

Supplementary Figure 6. UpSet Plot and Venn diagram show number of discordant genes for GTEx data.
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Supplementary Figure - 7

a

b

Supplementary Figure 7. Pairwise scatter plots for gene expression [log2(TPM+0.001))] values for two genes CEBPA (a) and NPM1 (b).  

Each panel is a comparison between two data sources, as indicated (figure titles show y-axis vs x-axis).
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Supplementary Figure - 8

Supplementary Figure 8. (a) Pairwise Pearson Correlation for gene expression data in TCGA samples comparing five uniformly processed 

data sources (as labeled) to data from the GDC (GDC-Xena/Toil, GDC-Piccolo, GDC-Recount2, GDC-MSKCC and GDC-MSKCC Batch). (b)

Pairwise Pearson correlation for gene expression data in GTEx samples from four uniformly processed data sources compared to data from 

GTEx (GTEx-Xena/Toil, GTEx-Recount2, GTEx-MSKCC, GTEx Batch). (c) Spearman correlation for gene expression data from TCGA and 

available protein abundance data. 
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