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Abstract The activity of an animal’s brain contains information about that animal’s actions and10

movements. We investigated the neural representation of locomotion in the nematode C. elegans11

by recording population calcium activity during unrestrained movement. We report that a neural12

population more accurately decodes locomotion than any single neuron. Relevant signals are13

distributed across neurons with diverse tunings to locomotion. Two distinct subpopulations are14

informative for decoding velocity and body curvature, and different neurons’ activities contribute15

features relevant for different instances of behavioral motifs. We labeled neurons AVAL and16

AVAR and found their activity was highly correlated with one another. They exhibited expected17

transients during backward locomotion, although they were not always the most informative18

neurons for decoding velocity. Finally, we compared population neural activity during movement19

and immobilization. Immobilization alters the correlation structure of neural activity and its20

dynamics. Some neurons previously correlated with AVA become anti-correlated and vice versa.21

22

The activity of an animal’s brain contains information about that animal’s actions and move-23

ments. We investigated the neural representation of locomotion in the nematode C. elegans by24

recording brain-wide neural dynamics in freely moving animals. We report that a population of25

neurons more accurately decodes the animal’s locomotion than any single neuron. Neural signals26

are distributed across neurons in the population with a diversity of tuning to locomotion. Two dis-27

tinct subpopulations are most informative for decoding velocity and body curvature, and different28

neurons’ activities contribute features relevant for different instances of behavioral motifs within29

these subpopulations. We additionally labeled the AVA neurons within our population recordings.30

AVAL and AVAR exhibit activity that is highly correlated with one another, and they exhibit the ex-31

pected responses to locomotion, althoughwe find that AVA is not always themost informative neu-32

ron for decoding velocity. Finally, we compared brain-wide neural activity during movement and33

immobilization and observe that immobilization alters the correlation structure of neural activity34

and its dynamics. Some neurons that were previously correlated with AVA become anti-correlated35

and vice versa during immobilization. We conclude that neural population codes are important for36

understanding neural dynamics of behavior in moving animals.37
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Introduction38

Patterns of activity in an animal’s brain should contain information about that animal’s actions and39

movements. Systems neuroscience has long sought to understand how the brain represents be-40

havior. Many of these investigations have necessarily focused on single-unit recordings of individ-41

ual neurons. Such efforts have successfully revealed place cells (O’Keefe andDostrovsky, 1971) and42

head direction cells (Taube et al., 1990; Hafting et al., 2005), for example. But there has also been43

a long history of seeking to understand how neural populations represent motion (Georgopoulos44

et al., 1986; Churchland et al., 2012; Chen et al., 2018). For example, population recordings from45

the central complex in Drosophila reveal that the animal’s heading is represented in the popula-46

tion by a bump of neural activity in a ring attractor network (Kim et al., 2017; Green et al., 2017).47

As population and whole-brain recording methods become accessible, it has become clear that48

locomotory signals are more prevalent and pervasive throughout the brain than previously appre-49

ciated. For example, neural signals that correlate with rodent facial expression and body motion50

were recently reported in sensory areas such as visual cortex (Stringer et al., 2019) and in executive51

decision making areas of dorsal cortex (Musall et al., 2019).52

In C. elegans, the field is at a similar inflection point. Locomotion has historically been studied in53

the worm one neuron at a time using combinations of mutations, ablations (Gray et al., 2005), and54

single neuron recordings of calcium activity (Arous et al., 2010; Kawano et al., 2011; Piggott et al.,55

2011; Gordus et al., 2015; Wang et al., 2020a). Recent work, however, suggests a more important56

role for neural coding at the level of the population. Population recordings from immobilized ani-57

mals reveal stereotyped cyclic activity patterns thought to represent global motor commands that58

account for the majority of the variance in neural dynamics (Kato et al., 2015).59

In this work we investigate neural representations of locomotion at the population level by60

recording whole-brain neural activity as the animal crawls freely. We further construct a decoder61

to predict the animal’s current locomotion from a linear combination of neural activity alone. The62

performance of the decoder gives us confidence in our ability to find locomotory signals, and allows63

us to study how those signals are distributed and represented in the brain.64

We show that distinct subpopulations of neurons encode velocity and body curvature, and that65

these populations include neurons with varied tuning. We also find that the decoder relies on66

different neurons to contribute crucial information at different times. Finally we compared brain-67

wide neural activity during movement and immobilization and observe that immobilization alters68

the correlation structure of neural dynamics.69

Results70

To investigate locomotory signals in the brain, we simultaneously recorded calcium activity from71

the majority of neurons in the head of C. elegans as the animal crawled freely, Figure 1a-c, (Nguyen72

et al., 2016). The animal expressed the calcium indicator GCaMP6s and a fluorescent protein RFP73

in the nuclei of all neurons (strain AML310). We report calcium activity as a motion-corrected fluo-74

rescence intensity Fmc, described in methods. We measured two features of locomotion: velocity75

and body curvature related to turning. Velocity is the rate of change of the phase of the body bends76

propagated along the worm’s body from anterior to posterior derived from an eigenvalue decom-77

position of the animal’s pose (Stephens et al., 2008) and reported in radians per second. We report78

body bending velocity instead of center of mass velocity, Figure 1 - Figure Supplement 1, because79

we reasoned that the rate of body bends might more directly reflect the output of the nervous80

system, as opposed to the center of mass velocity which further depends on mechanical interac-81

tions with the substrate. Here we report body curvature as a dimensionless quantity that captures82

bending in the dorsoventral plane, calculated by projecting the animal’s body posture onto the83

third principal component of the eigenvalue decomposition. Body curvature captures turning of84

the animal, but not the small bends required for forward locomotion.85
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Figure 1. Population calcium activity and tuning of select neurons during spontaneous unrestrained animalmovement. Recording AML310_A . a.) Calcium activity of 134 neurons are simultaneously recorded duringlocomotion. Activity is displayed as motion-corrected fluorescent intensity Fmc . Neurons are numberedaccording to agglomerative hierarchical clustering. White space indicates time-points where neural trackingfailed. b) Body bend velocity and body curvature derived from an eigenvalue decomposition, and c) positionon the plate during recording are shown. d.) Example neurons significantly tuned to velocity. Examples arethose with the highest Pearson’s correlation coefficient in each category: activity (or its derivative) withpositive (or negative) correlation to velocity. P-values are derived from a shuffling procedure that preservescorrelation structure. All tuning curves shown are significant at 0.05% after Bonferroni correction for multiplehypothesis testing (p < 1.9 × 10−4). Boxplot shows median and interquartile range. e) Example neurons highlytuned to curvature were selected similarly. No neurons with negative dF∕dt tuning passed our significancethreshold.
Figure 1–Figure supplement 1. Comparison of center-of-mass velocity and eigenvalue decomposition-derived
velocity.
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A diversity of neural tuning to behavior exists in the population86

We found multiple neurons with calcium activity significantly tuned to either velocity or curvature87

(Figure 1). Some neurons were more active during forward locomotion while others were more88

active during backward locomotion (Figure 1d). Similarly some neurons were active during dorsal89

bends and others during ventral bends (Figure 1e). In some cases, the derivative of the activity90

was also significantly correlated with features of locomotion. Significance was calculated using a91

shuffle and a Bonferroni correction was applied. The existence of such neural signals correlated92

with these behaviors is broadly consistent with single-unit or sparse recordings during forward and93

backward locomotion (Arous et al., 2010; Kawano et al., 2011; Gordus et al., 2015; Shipley et al.,94

2014; Kato et al., 2015;Wang et al., 2020b) and turning (Kocabas et al., 2012; Donnelly et al., 2013;95

Wang et al., 2020b).96

AVA’s activity during population recordings is consistent with prior reports97

We labeled the neurons AVAL and AVAR using blue fluorescent protein (BFP) which is spectrally98

separated from the other two colors we use for neuron localization and activity (strain AML310)99

to unambiguously identify this well-characterized neuron pair during population calcium imaging100

recordings, see Figure 2a. These two neurons, called AVA, are a bilaterally symmetric pair with gap101

junctions between them that have been shown to exhibit large calcium transients that begin with102

the onset of backward locomotion, peak around the end of backward locomotion during the onset103

of forward locomotion, and then slowly decay (Arous et al., 2010; Kawano et al., 2011; Shipley et al.,104

2014;Gordus et al., 2015; Kato et al., 2015). Ourmeasure of AVA’s activity, recorded simultaneously105

with 131 other neurons during unrestrained movement, is consistent with prior recordings where106

AVAwas recorded alone. Wenote that single-unit recordings of AVAused in previous studies lacked107

the optical sectioning needed to resolve these neurons separately. Here we resolve both AVAL and108

AVAR and find that their activities are similar to one another, and they both exhibit the expected109

transients timed to backward locomotion, Figure 2b. Signal-to-noise in AVAR is higher than AVAL110

because in this recording AVAR lies closer to the imaging objective, while AVAL is on the opposite111

side of the head and therefore must be imaged through the rest of the brain. The similarity we112

observe between activities of AVAL and AVAR demonstrates our ability to simultaneously record113

neural activity accurately from across the entire brain.114

We recorded from three additional animals and identified AVA neurons in each. The temporal115

derivative of AVA’s activity has previously been shown to correlate with velocity over the range of116

negative (but not positive) velocities (Kato et al., 2015). Consistent with these reports, the deriva-117

tive of AVA’s activity, dFmc∕dt, aggregated across the four population recordings has a negative118

correlation to velocity over the range of negative velocities, Figure 2c.119

In our exemplar recording, AVA’s activity (not its temporal derivative) also correlates with body120

curvature (Figure 1e, neuron #132). Correlation to curvature likely arises because our exemplar121

recording includes many long reversals culminating in deep ventral bends called “omega turns,”122

that coincide in timewith AVA’s peak activity. Taken together, AVA’s activity simultaneously recorded123

from the population is in agreement with prior reports where AVA activity was recorded alone.124

Population decoder outperforms best single neuron125

AVA’s activity is related to the the animal’s velocity, but its activity alone is insufficient to robustly126

decode velocity. For example, AVA is informative during backward locomotion, but contains lit-127

tle information about velocity during forward locomotion, Figure 2c. To gain reliable information128

about velocity, the nervous system will need more than just the activity of AVA. In primate motor129

cortex, for example, linear combinations of activity from the neural population provides more in-130

formation about the direction of a monkey’s arm motion during a reach task than a single neuron131

(Georgopoulos et al., 1986). Wewonderedwhether activity of the neural populationmight bemore132

informative of the worm’s locomotion than an individual neuron.133

We constructed a population decoder using linear regression with regularization to find neural134

4 of 26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2021. ; https://doi.org/10.1101/445643doi: bioRxiv preprint 

https://doi.org/10.1101/445643
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. Neuron pair AVA is active during backward locomotion and exhibits expected tuning during freelymoving population recordings. a.) AVAR and AVAL are labeled by BFP under a rig-3 promoter in strainAML310. Two optical planes are shown from a single volume recorded during free movement. Planes arenear the top and bottom of the optical stack, corresponding to the animals’ extreme right and left. Therecording is the same as in Figure 1. Top row shows BFP. Bottom row shows RFP in the nuclei of all neurons.Segmented neurons centered in the optical plane are labeled with ⊕, while neurons from nearby opticalplanes are labeled with ◦. Arrow indicates AVAR or AVAL. Numbering corresponds to Figure 1a. b.) Calciumactivity of AVAR and AVAL during locomotion in recording AML310_A , same as in Figure 1. c.) Aggregate tuningof AVA across four individuals (7 neurons). Boxplot shows median and interquartile range.

5 of 26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2021. ; https://doi.org/10.1101/445643doi: bioRxiv preprint 

https://doi.org/10.1101/445643
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3. Population neural activity decodes locomotion. a-d.) Performance of the best single neuron (BSN) is compared to a linear populationmodel in decoding velocity and body curvature for the exemplar recording AML310_A shown in Figure 1. a.) Predictions on held-out test set arecompared to measured velocity. Light green shaded region indicates held-out test set. Red arrows indicate examples of features that thepopulation captures better than the BSN. b.) Performance is reported as a coefficient of determination R2MS evaluated on the mean-subtractedheld-out test data (green points). c,d) Model predictions are compared to measured curvature. e) Performance of velocity decoding is shown forrecordings of n = 11 individuals (strain AML310 and AML32) and for recordings of n = 7 GFP control animals lacking a calcium indicator (strainAML18). Two-sided Wilcoxon rank test is used to test significance of population performance compared to BSN, p = 0.014. Welch’s unequalvariance t-test is used to test significance of population performance compared to GFP control, p = 8.0 × 10−4 f) Performance of curvaturedecoding is shown for all recordings. Each recording is colored the same as in e. p = 4.8 × 10−3 and p = 3.8 × 10−3 for comparisons of populationperformance to that of BSN, and GFP control, respectively.
Figure 3–Figure supplement 1. Performance correlates with maximal GCaMP Fano Factor, a metric of signal.
Figure 3–Figure supplement 2. Neural activity and behavior for all recordings.
Figure 3–Figure supplement 3. Alternative population models.
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weights that relate recorded population activity to each behavior: velocity and curvature. Ridge135

regression (Hoerl and Kennard, 1970) was performed on 60% of the recording (training set) and136

the decoder was evaluated on the remaining 40% (held-out test set, shaded green in Figure 3a,c).137

Cross-validation was used to set hyper-parameters (described in methods). Our decoder assigned138

two regression coefficients to each neuron, one weight for activity and one for its temporal deriva-139

tive. We compared performance of the population decoder to that of the most correlated single140

neuron or its derivative. Performance is reported as a coefficient of determination on the mean-141

subtracted held out test set R2ms,test . For the exemplar recording shown in Figure 1 and Figure 2a-b142

the population performed better on the held-out-test set than the most correlated single neuron143

(or its temporal derivative) for both velocity and body curvature, see Figure 3. For velocity, popu-144

lation performance was R2ms,test = 0.76 compared to R2ms,test = 0.55 for the best single neuron; and145

for curvature population performance was R2ms,test = 0.65 compared to R2ms,test = 0.35 for the best sin-146

gle neuron. Red arrows in Figure 3 highlight striking behavior features that the best single neuron147

misses but that the population decoder captures. We also explored alternative populationmodels,148

including both linear and non-linear models with different features and cost penalties, Figure 3 -149

Figure Supplement 3. Of the populations models we tried, the model used here was one of the150

simplest and also had the best mean performance at decoding velocity across all recordings.151

Activity was recorded from a total of 11 animals during unrestrainedmotion and the linear pop-152

ulationmodel was used to decode each recording (n=7 recordings of strain AML32; n=4 recordings153

of strain AML310, also shown in Figure 2c). The population significantly outperformed the best sin-154

gle neuron at decoding the held-out portions of the recordings for both velocity and curvature155

(p < 0.05 two-sided Wilcoxon rank test).156

There was large worm-to-worm variability in the performance of the decoders. Performance157

across recordings correlated with one metric of the signal in our recordings, the maximal Fano158

factor across neurons of the raw time-varying GCaMP fluorescence intensity,159

FanoGCaMP = maxi

(

�2[Fi,GCaMP]
�[Fi,GCaMP]

)

, (1)
wheremaxi indicates themaximum over all neurons in the recording, and �2 and � are the variance160

and mean respectively of the raw GCaMP activity of the neuron, see Figure 3-Figure Supplement 1.161

The recording with the highest FanoGCaMP performed best at decoding velocity and curvature. This162

suggests that variability in performance may be due in part to variability in the amount of neural163

signal in our recordings.164

In some recordings where the population outperforms the best single neuron, it does so in165

part because the population decodes a fuller range of the animal’s behavior compared to the best166

single neuron. Recording AML32_A shows a striking example: the best single neuron only captures167

velocity dynamics for negative velocities. The population decoder, by contrast, captures velocity168

dynamics during both forward and backward locomotion during the held-out test set, and covers169

a larger fraction of the held-out velocity range, see Figure 4.170

Motion artifact is of potential concern because it may resemble neural signals correlated to171

behavior (Nguyen et al., 2016; Chen et al., 2013). For example, if a neuron is compressed during172

a head bend, it may increase local fluorophore density causing a calcium-independent increase in173

fluorescence that would erroneously appear correlated with head bends. We address this concern174

in all our recordings by extracting a motion corrected calcium signal derived from a comparison of175

GCaMP and RFP dynamics in the same neuron. All strains in this work express a calcium insensitive176

RFP in every neuron in addition to GCaMP. Motion artifacts should affect both fluorophores sim-177

ilarly. Therefore, the motion correction algorithm extracts only those GCaMP dynamics that are178

independent of the RFP timeseries, and it rejects dynamics common to both (details in methods).179

To validate our motion correction, and to rule out the possibility that our decoder primarily180

relies on non-neural signals such as those from motion artifact, we recorded from control ani-181

mals lacking calcium indicators. These animals expressed GFP in place of GCaMP (7 individuals,182
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Figure 4. Example where population decoded a fuller range of animal behavior. a.) The decoding from thebest single neuron and the population model are compared to the measured velocity for example recording
AML32_A . b.) Predictions from the best single neuron saturate at a velocity of 2 rad s−1.

strain AML18, RFP was also expressed in all neurons). GFP emits a similar range of wavelengths to183

GCaMP but is insensitive to calcium. Recordings from these control animals were subject to similar184

motion artifact but contained no neural activity because they lack calcium sensors (Figure 3-Figure185

Supplement 2). Recordings from GFP control animals were subject to the same motion correction186

as GCaMP animals. For both velocity and curvature, the average population model performance187

was significantly worse at decoding calcium-insensitive GFP control recordings than the calcium-188

sensitive GCaMP recordings (Figure 3e-f, median performanceR2ms, test = 0.47 for GCaMP compared189

to 0.11 for GFP control at decoding velocity, and median performance R2ms, test = 0.38 for GCaMP190

compared to 0.06 for GFP control for curvature, p < 0.01Welch’s unequal variance test), suggesting191

that the decoder’s performance relies on neural signals.192

Population code for locomotion193

The distribution of weights assigned by the decoder provides information about how behavior is194

represented in the brain. Each neuron was assigned one weight for its activity WF and another195

for the temporal derivative of its activity W dF
dt
. In the exemplar recording from Figure 1, weights196

were distributed roughly evenly between positive and negative and were well approximated by a197

single Gaussian distribution centered at zero, see Figure 5ab. The decoder relied on both neural198

activity and its temporal derivative and assigned neural weights roughly evenly between the two.199

The weight assigned to a neuron’s activity WF was not correlated with the weight assigned to its200

temporal derivativeW dF
dt
(Figure 5-Figure Supplement 1).201

In general, a neuron’s weight is correlated with its Pearson’s correlation coefficient to behavior202

(trend visible in Figure 5ab), but individually, many neurons are weighted in non-intuitive ways sug-203

gesting that the linear decoder in our model involves more than merely assigning high weights to204

those neurons with the highest correlation to behavior. For example, themost negatively weighted205

neuron for velocity had a slightly positive tuning (Pearson’s correlation � > 0, Figure 5a). Similarly206

the temporal derivative of neuron #29, discussed in detail below (Figure 5b), had the third high-207

est magnitude weight for velocity but shows no obvious tuning (correlation coefficient to velocity is208

� = 0.25, which is below our threshold for statistical significance ). That some prominently weighted209

neurons exhibit little tuning to locomotion, or have opposite signed tuning than that of their as-210

signed weight suggests that the decoder relies in part on aspects of neural activity that are not211

easily captured by a tuning curve. This prompted us to investigate neural weighting further.212

We inspected the activity traces of the top five weighted neurons in our exemplar recording213
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Figure 5. Weights assigned to neurons by the population model in the exemplar recording, and their respective tuning. a.) The weightWassigned to each neuron’s activity (Fmc) or its temporal derivative (dFmc∕dt) by the velocity population decoder is plotted against its Pearson’sCorrelation coefficient � which characterizes its tuning to velocity. Recording AML310_A is shown, same as in Figure 1. Dashed red line shows lineof best fit. Right panel shows the observed distribution of weights. A zero-mean Gaussian with standard deviation set to the empiricallyobserved standard deviation is also shown. b.) Same as in a, but for curvature. c.) Tuning and activity of the top five highest amplitude weightedneurons is shown. Activity of each neuron is time aligned to the observed behavior (top row). Neurons are labeled corresponding to theirnumber in the heatmap in Figure 1. Their weightW in the decoder and the Pearson’s correlation coefficient to velocity are also listed. Red andcyan arrows highlight peaks in the temporal derivative of neuron #29’s activity and in neuron #76’s activity that contribute to predicting theslight increase in velocity observed during complementary instances when the animal initiates a deep ventral bend. Y- and X-axes labels andscales are preserved within individual rows and columns, respectively. d) Same as c but for curvature. Red and cyan arrows show two sets ofdeep ventral bends that are captured by two neurons.
Figure 5–Figure supplement 1. Comparison of weights assigned to a neuron’s activity versus its temporal derivative.
Figure 5–Figure supplement 2. Comparison of weights assigned for decoding velocity vs decoding curvature.
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Figure 6. Number of neurons needed by the model to decode velocity and curvature. a.) The minimumnumber of neurons needed for a restricted model to first achieve a given performance is plotted fromrecording AML310_A in Figure 1. Performance is reported separately for velocity (blue) and curvature (green)calculated on the held-out test set. Intersect refers to the intersection of the set of neurons included in bothpartial models (velocity and curvature) for a given performance. Red dashed line, N90, indicates number ofneurons needed to achieve 90% of full model performance. b.) N90 is computed for velocity and curvature forall recordings. The number of neurons present in both populations at 90% performance level (intersection) isshown. Box shows median and interquartile range. c) N90 for all recordings is shown plotted verses theperformance of the full population velocity or curvature decoder, respectively. Number of intersectionneurons (red ’x’) is plotted at the higher of either the velocity or curvature’s performance.
Figure 6–video 1. Animation showing partial model performance as neurons are added, corresponding to
Figure 6a. Top panel shows performance. Bottom left shows measured velocity (black) and decoded velocity
(blue). Gray shading indicates test set. Bottom right shows measured velocity compared to decoded velocity
for training (blue) and test set (green).

(Figure 5c,d). Some highly weighted neurons had activity traces that appeared visually similar to214

the animal’s locomotory trace for the duration of the recording (e.g. #77 and #78 for velocity).215

But other highly weighted neurons had activity traces that seemed to only match specific features216

of the locomotory behavior and only then for specific brief times or for specific instances of a217

behavior motif. For example, the temporal derivative of the activity of neuron #29 contributes218

a subtle but distinct peak to velocity at times 105 s and 200 s when the animal slows down its219

reversal before executing a bend and initiating forward locomotion, but not during the similar220

behavior at time 160 s (Figure 5c). The features contributed by neuron #29 are missing from the221

other neurons in the top five. Conversely, neuron #76 in the top five contributes a prominant peak222

of activity that matches the locomotry feature at 160 s that was absent from neuron #29. Similarly223

for curvature, neuron #45 has large sharp peaks of activity during four of six deep ventral bends,224

but only modest transients during the remaining two ventral bends at approximately 110s and225

210 s (Figure 5d). Conversely neuron #108 had pronounced peaks of the temporal derivative of its226

activity at the deep ventral bends at 110 s and 210 s but not at the other four ventral bends. We227

note this phenomonenon was present in the test set as well as the training set.228

We conclude that there are at least two types of neural signals that the linear model weighs229

highly for decoding locomotion. One type are neural signals that are consistently highly tuned to230

locomotion (e.g neuron #78). The other type are neural signals with pronounced activity relevant231

only for particular instances of behavioral motifs (e.g #45, and #108). For the latter, the decoder232

appears to weight multiple neurons highly to capture all instances of the behavior.233

Majority of decoder’s performance is provided by a subset of neurons234

We sought to better understand how information used by this particular model is distributed235

among the population. We wondered how many neurons the model relies upon to achieve most236

of its performance. The magnitude of a neuron’s weight in the population model is indicative of its237

relative usefulness in decoding locomotion. Therefore we investigated performance of a restricted238
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Table 1. Number of neurons needed to achieve 90% of full model performance, N90, reported as (median ±standard deviation), across all 11 recordings.
Velocity N90 Curvature N90 Intersection N90 Total Recorded
33 ± 37 13 ± 18 2 ± 4 121 ± 12

population model that had access to only thoseN neurons that were most highly weighted by the239

full model. We sequentially increased the number of neurons N and evaluated the partial model240

performance (Figure 6 - Video Supplement 1). In this way we estimated the number of neurons241

needed to first achieve a given performance (Figure 6a). Becausewewere interested in probing the242

particular successful set of weights that the model had found, we constrained the relative weights243

of neurons in the partial model to match those of the full model. We note that adding a neuron244

gave the model access to both that neuron’s activity and its temporal derivative. We define the245

number of neurons needed to first achieve 90% full model performance as the N90 and use this246

value as an estimate of the number of important neurons for decoding. For the exemplar record-247

ing AML310_A , 90% of the model’s performance was achieved when including only 28 neurons for248

velocity, and only 3 neurons for curvature.249

Across all recordings we saw large variability in the number of important neuronsN90 (Figure 6b250

and Table 1) with a median of 33 neurons for velocity and 13 for curvature. Decoder-recording in-251

stances that exhibited high full model performance (R2ms,test>0.3) always had less than 55 neurons in252

each velocity and curvature sub-populations (Figure 6c). By comparison, our recordings contained253

a median total of 121 neurons. On average, the decoder relies on less than a third of the neurons254

in a recording to achieve the majority of its decoding performance.255

Largely distinct sub-populations contain information for velocity and curvature256

We wondered how a neuron’s role in decoding velocity related to its role in decoding curvature. In257

exemplar recording AML310_A , there was no obvious population-wide trend between the magni-258

tude of a neuron’s weight at decoding velocity and the magnitude of its weight at decoding curva-259

ture for either F , dF∕dt or both, see Figure 5 - Figure Supplement 2. Furthermore, there was no260

overlap between theN90 = 23 neurons needed to achieve 90% of full model performance at decod-261

ing velocity and the N90 = 3 neurons needed for curvature in this recording, see Figure 6a. Across262

all recordings only 2 ± 4 (median ± std) neurons were included in bothN90 for the velocity and cur-263

vature sub-populations, labeled “intersect” neurons in Figure 6bz,c and Table 1. Taken together,264

this suggests that largely distinct sub-populations of neurons in the brain contain the majority of265

information important for decoding velocity and curvature.266

Immobilization alters the correlation structure of neural dynamics267

Brain-wide activity during immobilization has previously been studied to gain insights into neural268

dynamics of C. elegans locomotion (Kato et al., 2015). We therefore investigated the effect of im-269

mobilization on neural dynamics. We recorded population activity from a freely moving animal270

crawling in a microfluidic chip and then immobilized that animal partway through the recording271

by delivering the paralytic levamisole, as has been used previously (Gordus et al., 2015; Kato et al.,272

2015). Neural dynamics from the same neurons in the same animal were therefore directly com-273

pared during movement and immobilization, Figure 7.274

Immobilization changed the correlation structure of neural activity. Clusters of neurons that275

had been correlated with one another during movement were no longer correlated during immo-276

bilization (see Figure 7e, top row, blocks of contiguous yellow on the diagonal during movement277

that are absent or disrupted during immobilization ). Notably, many neurons that had been only278

weakly correlated or even anti-correlated during movement became correlated with one another279

during immobilization forming a large block (Figure 7e, bottom, large contiguous yellow square280
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Figure 7. Immobilization alters the correlation structure of neural activity. a). Calcium activity is recorded from an animal as it moves and then isimmobilized with a paralytic drug, recording AML310_E . b.) Activity of AVAL and AVAR from (a). c.) Population activity (or its temporal derivative)from (a) is shown projected onto its first three PCs, as determined by only the immobilized portion of the recording d.) Neural state spacetrajectories from (c) are shown split into moving and immobile portions, color coded by time. Scale and axes are same. e.) Pairwise correlationsof neural activity �i,j are shown as heatmaps for all neurons during movement and immobilization, sorted via clustering algorithm. Top row issorted to movement, bottom row is sorted to immobilization. f) Dissimilarity between correlation matrices for moving and immobile portions ofa recording are shown compared to the dissimilarity observed between correlation matrices taken at similar time windows within moving-only
recordings. Dissimilarity is

√

⟨

(�′i,j − �i,j )2
⟩. Dissimilarity was measured in 3 moving-immobile recordings with paralytic and 11 moving-only

recordings. p = 9.9 × 10−3, Welch’s unequal variance t-test. Boxes show median and interquartile range.
Figure 7–Figure supplement 1. Example from additional moving-to-immobile recording.
Figure 7–Figure supplement 2. Immobile-only recording.
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that appears on the lower right along the diagonal during immobilization).281

To further quantify the change in correlation structure, we defined a dissimilarity metric, the282

rootmean squared change in pairwise correlations
√

⟨

(�′i,j − �i,j)2
⟩, and applied it to the correlation283

matrices during movement and immobilization within this recording, and also to two additional284

recordingswith paralytic. As a control, we alsomeasured the change in correlation structure across285

two similar time windows in the 11 freely moving recordings. The change in correlations from286

movement to immobilization was significantly larger than changes observed in correlations in the287

moving-only recordings (p = 9.9 × 10−3, Welch’s unequal variance t-test) see Figure 7f and methods.288

This suggests that immobilization alters the correlation structuremore thanwould occur by chance289

in a freely moving worm.290

Wenext inspected the neural dynamics themselves (Figure 7a, c). Low-dimensional stereotyped291

trajectories, called manifolds, have previously been reported for C. elegans in a neural state-space292

defined by the first three principal components of the temporal derivative of neural activity (Kato293

et al., 2015). We therefore performed Principal Components Analysis (PCA) on the neural activity294

(or its temporal derivative) of our recording during the immobilization period, so as to generate295

a series of principal components or PC’s that capture the major orthogonal components of the296

variance during immobilization. Population activity during the entire recording was then projected297

into these first three PCs defined during immobilization, Figure 7c. Neural state space trajectories298

during immobilization were more structured and stereotyped than during movement and exhib-299

ited similarities to previous reports, see Figure 7c,d. Recordings from a second animal was similar300

and showed pronounced cyclic activity in the first PC of the temporal derivative of neural activ-301

ity, see Figure 7-Figure Supplement 1b,c. Neural state space trajectories were even more striking302

and periodic in recordings where the animal had been immobilized for many minutes prior to303

recording (see Figure 7-Figure Supplement 2, especially PC1). The emergence of structured neural304

state-space dynamics during immobilization is consistent with the significant change to the cor-305

relation structure observed in neural activity. Taken together, these measurements suggest that306

immobilization alters the correlation structure and dynamics of neural activity.307

Some neurons change the sign of their correlation with AVA308

We further investigated the activity of neuron pair AVA and its correlation to other neurons during309

movement and immobilization in the recording shown in Figure 7. AVA’s activity was consistent310

with prior reports. During movement AVA exhibited a sharp rise in response to the animal’s back-311

ward locomotion, as expected, see Figure 7b. During immobilization, AVA exhibited slow cycles of312

activity captured in one of the first three PCs. (AVAL and AVAR received the two largest amplitude313

weights of all neurons in PC3 dF/dt.) And during both movement and immobilization AVAL and314

AVAR were consistently highly correlated with one another (� > 0.89) and participated in a small315

cluster of positively correlated neurons (most clearly visible in Figure 7e bottom row, small block316

around AVA).317

Interestingly, immobilization induced many neurons to change the sign of their correlations318

with AVA. For example, some neuron, such as #38 and #0, that had previously been anti-correlated319

became positively correlated to AVA (Fig Figure 8a,b,d). On average, neurons in this recording be-320

come significantly more positively correlated to AVA upon immobilization than during movement321

(p = 0.028 and p = 0.038Welch’s t-test for AVAL and AVAR respectively), Figure 8c.322

This suggests that many neurons that appear co-active with AVA during immobilization may323

not be co-active during movement. Conversely, some neurons that were highly correlated with324

AVA during movement became anti-correlated during immobilization, such as neurons #71 and325

#27.326

Taken together, ourmeasurements show that immobilization significantly alters the correlation327

structure of neural activity. Immobilization also causes neurons to change their correlation with328

known well-characterized neurons, like AVA, from anti-correlated to correlated, or vice versa.329
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Figure 8. Correlations with respect to AVAL and AVAR during movement and immobilization. a.) The pearson’s correlation of each neuron’sactivity to AVAR and AVAL is shown during movement and immobilization. Selected neurons are numbered as in Figure 7 (same recording,
AML310_E ). Neurons are sorted according to their correlation during movement. b.) Scatter plot shows relation between a neuron’s correlationto AVA during movement and its correlation during immobilization. Gray squares and blue circles indicate correlation to AVAL and AVAR,respectively. c.) On average, neurons become more positively correlated to AVAL and AVAR, p = 0.028 and p = 0.038, respectively, Welch’sunequal variance t-test. Box shows median and interquartile range. d.) Activity traces of selected neurons are shown time aligned to AVA. Greenand purple shading indicate positive or negative correlation to AVA, respectively.
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Discussion330

Population activity is important for decoding locomotion in C. elegans. Neurons within the pop-331

ulation exhibit a diversity of tuning to velocity and curvature and a model that incorporates this332

diversity outperforms themost predictive single neuron at decoding locomotion. By inspecting the333

neural weights assigned by our model, we found that only a fraction of neurons are necessary for334

themodel to achieve 90% of its performance. Largely non-overlapping sub-populations of neurons335

contribute the majority of information for decoding velocity and curvature, respectively.336

We found at least two types of neural signals that our model weighted highly for decoding loco-337

motion. One type were neural signals that were strongly correlated with locomotion throughout338

the duration of the recording. But another type were neural signals with pronounced activity rel-339

evant only for particular instances of behavior motifs, for example one deep ventral bend, but340

not another. By summing up contributions from multiple neurons of this type, the population341

model was able to capture relevant activity from different neurons at different times to decode all342

instances of the behavioral motif.343

One possible explanation is that superficially similar behavioral features like turns may actually344

consist of different underlying behaviors. Or the neural representation associated with a turn345

may also depend on an unobserved behavioral context. The granularity with which to classify346

behaviors and how to take into account context and behavioral hierarchies remains an active area347

of research in C. elegans (Broekmans et al., 2016; Liu et al., 2018; Kaplan et al., 2020) and more348

broadly (Berman et al., 2016; Datta et al., 2019). Ultimately, finding distinct neural signals may349

help inform our understanding of distinct behavior states and vice versa.350

Another possibility is that the same behavior motifs are initiated in the head through different351

neural pathways. Previous work has suggested that activity in either of two different sets of head352

interneurons, AVA/AVE/AVD or AIB/RIM, are capable of inducing reversal behavior independently353

(Piggott et al., 2011). If these neurons were active only for the reversals they induced, it could354

explain why some neurons seem to have activity relevant for some behavioral instances but not355

others. AVA does not fit this pattern because in our measurements it shows expected activity356

transients for all reversals. But it is possible that other neurons in the two subsets, or indeed other357

subsets of neurons, are providing relevant activity for only some instances of a behavior.358

Similarly, different sensory modalities such as mechanosensation (Chalfie et al., 1985), ther-359

mosensation (Croll, 1975) and chemosensation (Ward, 1973) are known to evoke common behav-360

ioral outputs through different sensory neural pathways. Its possible that the neural activities we361

observe for different behavioral motifs reflects sensory signals that arrive through different sen-362

sory pathways to evoke a common downstream motor response.363

We specifically investigated the activity and tuning of neuron pair AVAL and AVAR within our364

population recordings. During simultaneous whole-brain imaging, AVAL and AVAR had activity that365

was highly correlated with one another, and exhibited the expected peaks in their activity timed366

to backward locomotion. The temporal derivative of AVA’s activity was correlated to velocity, as367

expected, but AVA was not in general the most highly correlated neuron to velocity nor was it the368

neuron most highly weighted by the velocity decoder. This finding highlights the importance of369

taking a population-based approach at studying neural coding of locomotion.370

We found that a linear combination of neural activity and its temporal derivative was sufficient371

to decode the animal’s locomotion with good performance. Prior studies had investigated neural372

dynamics of immobilized animals and suggested that particular stereotyped trajectories in neu-373

ral state space may directly correspond to global motor commands (Kato et al., 2015), similar in374

principle to dynamics in motor cortex during primate reach tasks (Churchland et al., 2012). Our375

measurements suggest that immobilization induces significant changes to the correlation struc-376

ture of neural dynamics. For example, some neurons altered their correlation with AVA so that377

a neuron positively correlated with AVA during immobilization was not necessarily positively cor-378

related during movement. Our measurements suggest that neural dynamics from immobilized379
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Table 2. Strains used.

Strain Genotype Expression Role Reference
AML310 wtfIs5[Prab-3::NLS::GCaMP6s; Prab-3::NLS::tagRFP];

wtfEx258 [Prig-3::tagBFP::unc-54]
tag-RFP and GCaMP6s in neuronal
nuclei; BFP in cytoplasm of AVA and
some pharyngeal neurons (likely I1,
I4, M4 and NSM)

Calcium
imaging
with AVA
label

This
Study

AML32 wtfIs5[Prab-3::NLS::GCaMP6s; Prab-3::NLS::tagRFP] tag-RFP and GCaMP6s in neuronal
nuclei

Calcium
imaging

(Nguyen
et al.,
2017)

AML18 wtfIs3[Prab-3::NLS::GFP, Prab-3::NLS::tagRFP] tag-RFP and GFP in neuronal neculei Control (Nguyen
et al.,
2016)

animals may not entirely reflect the neural dynamics of locomotion.380

Methods381

Strains382

Three strains were used in this study, see Table 2. AML32 (Nguyen et al., 2017) and AML310 were383

used for calcium imaging. AML18 (Nguyen et al., 2016) served as a calcium insensitive control.384

Strain AML310 is similar to AML32 but includes additional labels to identify AVA neurons. AML310385

was generatedby injecting 30ng/µl of Prig-3::tagBFPplasmid into AML32 strains (wtfIs5[Prab-3::NLS::GCaMP6s;386

Prab-3::NLS::tagRFP]). AML310wormswere selected andmaintained by picking individuals express-387

ing BFP fluorescence in the the head. Animals were cultivated in the dark on NGM plates with a388

bacterial lawn of OP50.389

Whole brain imaging390

Whole brain imaging in moving animals391

Whole brain imaging of freely moving animals was performed as described previously (Nguyen392

et al., 2016, 2017). Table 3 lists all recording used in the study and Table 4 cross-lists the record-393

ings according to figure. Briefly, adult animals were placed on an imaging plate (a modified NGM394

media lacking cholesterol and with agarose in place of agar) and covered with mineral oil. A cover-395

slip was placed on top of the plate with 100 µm plastic spacers between the coverglass and plate396

surface. The coverslip was fixed to the agarose plate with valap. Animals were recorded on a cus-397

tom whole brain imaging system, which simultaneously records four video streams to image the398

calcium activity of the brain while simultaneously capturing the animal’s behavior. We record 10x399

magnification darkfield images of the body posture, 10x fluorescence images of the head for real-400

time tracking, and two 40x image streams of the neurons in the head, one showing tagRFP and one401

showing either GCaMP6s, GFP, or BFP. The 10x images are recorded at 50 frames/s, and the 40x402

fluorescence images are recorded at a rate of 200 optical slices/s, with a resulting acquisition rate403

of 6 head volumes/s. Recordings were stopped when the animal ran to the edge of the plate,when404

they left the field of view, or when photobleaching decreased the contrast between tag-RFP and405

background below a minimum level. Intensity of excitation light for fluorescent imaging was ad-406

justed from recording to recording to achieve different tradeoffs between fluorescence intensity407

and recording duration.408

Freely moving recordings had to meet the following criteria. The animal had to be active and409

the recording had to be at least 200 seconds. The tag-RFP neurons also had to be successfully410

segmented and tracked via our analysis pipeline.411
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Table 3. Recordings used in this study.
Unique ID Strain Duration

(mins)
Notes

AML310_A AML310 4 Ca2+ imaging w/ AVA label, moving
AML310_B 4
AML310_C 4
AML310_D 4
AML310_E AML310 8 Ca2+ imaging w/ AVA label, moving-to-immobile
AML310_F 8
AML310_G AML310 15 Ca2+ imaging w/ AVA label, immobile
AML32_A AML32 11 Ca2+ imaging, moving
AML32_B 11
AML32_C 10
AML32_D 11
AML32_E 4
AML32_F 5
AML32_G 4
AML32_H AML32 13 Ca2+ imaging, moving-to-immobile
AML18_A AML18 10 GFP control, moving
AML18_B 10
AML18_C 7
AML18_D 5
AML18_E 5
AML18_F 6
AML18_G 9
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Table 4. List of recordings included in each figure.
Figure Recordings
Figure 1; Figure 1 - Figure Supplement 1; Fig-
ure 2a,b

AML310_A

Figure 2c AML310_A-D

Figure 3a-d AML310_A

Figure 3e,f; Figure 3-Figure Supplement 2 AML310_A-D, AML32_A-G, AML18_A-G

Figure 3 - Figure Supplement 1; Figure 3 - Figure
Supplement 3

AML310_A-D, AML32_A-G

Figure 4 AML32_A

Figure 5; Figure 5 - Figure Supplement 1; Figure 5
- Figure Supplement 2; Figure 6a,b

AML310_A

Figure 6c AML310_A-D, AML32_A-G

Figure 7a-f AML310_E

Figure 7g AML310_A-F, AML32_A-H

Figure 7 - Figure Supplement 1 AML32_H

Figure 7 - Figure Supplement 2 AML310_G

Figure 8 AML310_E

Moving to immobile transition experiments412

Adult animals were placed in a PDMSmicrofludic artificial dirt style chip (Lockery et al., 2008) filled413

with M9 medium where the animal could crawl. The chip was imaged on the whole brain imaging414

system. A computer controlled microfluidic pump system delivered either M9 buffer or M9 buffer415

with the paralytic levamisole or tetramisole to the microfluidic chip. Calcium activity was recorded416

from the worm as M9 buffer flowed through the chip with a flow rate of order a milliliter a minute.417

Partway through the recording, the drug buffer mixture was delivered at the same flow rate. At418

the conclusion of the experiment for AML310 worms, BFP was imaged.419

Different drug concentrations were tried for different recordings to find a good balance be-420

tween rapidly immobilizing the animal without also inducing the animal to contract and deform.421

Paralytic concentrations used were: 400 �M for AML310_E , 100 �M for AML310_F , and 5 �M for422

AML32_H .423

Recordings were performed until a recording achieved the following criteria for inclusion: 1) the424

animal showed robust locomotion during the moving portion of the recording, including multiple425

reversals. 2) The animal quickly immobilized upon application of the drug. 3) The animal remained426

immobilized for the remainder of the recording except for occasional twitches, 4) the immobiliza-427

tion portion of the recording was of sufficient duration to allow us to see multiple cycles of the428

stereotyped neural state space trajectories if present and 5) for strain AML310, neurons AVAL and429

AVAR were required to be visible and tracked throughout the entirety of the recording. For the430

statistics of correlation structure in Figure 7f, recording AML310_F was also included even though431

it did not meet all criteria (it lacked obvious reversals).432

Whole brain imaging in immobile animals433

We performed whole brain imaging in adult animals immobilized with 100 nm polystyrene beads434

(Kim et al., 2013). The worms were then covered with a glass slide, sealed with valap, and imaged435

using the Whole Brain Imager.436
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Neuron segmentation, tracking and fluorescence extraction437

Neurons were segmented and tracked using the the Neuron Registration Vector Encoding (NeRVE)438

and clustering approach described previously (Nguyen et al., 2017) withminormodifications which439

are highlighted below. As before, video streams were spatially aligned with beads and then syn-440

chronized using light flashes. The animals’ posture was extracted using an active contour fit to the441

10x darkfield images. But in a departure from the method in (Nguyen et al., 2017), the high mag-442

nification fluorescent images are now straightened using a different centerline extracted directly443

from the fluorescent images. As in (Nguyen et al., 2017), the neural dynamics were then extracted444

by segmenting the neuronal nuclei in the red channel and straightening the image according to the445

body posture. Using repeated clustering, neurons are assigned identities over time. The GCaMP446

signal was extracted using the neural positions found from tracking. The pipeline returns datasets447

containing RFP and GCaMP6s fluorescence values for each successfully tracked neuron over time,448

and the centerline coordinates describing the posture of the animal over time. These are subse-449

quently processed to extract neural activity or behavior features.450

The paralytic used inmoving-to-immobile recordings (Figure 7) caused the animal’s head to con-451

tract, which would occasionally confuse our tracking algorithm. In those instances the automated452

NeRVE tracking and clustering was run separately on the moving and immoibile portions of the453

recording (before and after contraction), and then a human manually tracked neurons during the454

transition period (one to two minutes) so as to stitch the moving and immobile tracks together.455

Photobleaching correction, outlier detection and pre-processing456

The raw extracted RFP or GCaMP fluorescent intensity timeseries were preprocessed to correct457

for photobleaching. Each time-series was fit to a decaying exponential. Those that were well fit by458

the exponential were normalized by the exponential and then rescaled to preserve the timeseries’459

original mean and variance as in (Chen et al., 2019). Timeseries that were poorly fit by an exponen-460

tial were left as is. If the majority of neurons in a recording were poorly fit by an exponential, this461

indicated that the animal may have photobleached prior to the recording and the recording was462

discarded.463

Outlier detection was performed to remove transient artifacts from the fluorescent time se-464

ries. Fluorescent time points were flagged as outliers and omitted if they met any of the following465

conditions: the fluorescence deviated from the mean by a certain number of standard deviations466

(F < −2� or F > 5� for RFP; |F | > 5� for GCaMP); the RFP fluorescence dropped below a threshold;467

the ratio of GCaMP to RFP fluorescence dropped below a threshold; a fluorescence timepoint was468

both preceded by and succeeded by missing timepoints or values deemed to be outliers; or if the469

majority of other neurons measured during the same volume were also deemed to be outliers.470

Fluorescent time series were smoothed by convolution with a Gaussian (� = 0.83s) after inter-471

polation. Omitted time points, or gaps where the neuron was not tracked, were excluded from472

single-neuron analyses, such as the calculation of each neuron’s tuning curve. It was not practical473

to exclude missing time points from population-level analyses such as linear decoding or Principal474

Components Analysis. In these population-level analyses, interpolated values were used. Time475

points in which the majority of neurons has missing fluoresecent values were excluded, even in476

population level analyses. Those instances are shown as white vertical stripes in the fluorescent477

activity heat maps shown in Figure 1 and Figure 3-Figure Supplement 2.478

Motion-correction479

We used the GCaMP fluorescence together with the RFP fluorescence to calculate a motion cor-480

rected fluorescence, Fmc used through the paper. Note sometimes the subscript mc is omitted for481

brevity. Motion and deformation in the animal’s head can introduce artifacts into the fluorescent482

time-series. Many of these artifacts should be common to both GCaMP and RFP fluorescence. For483

example, if a neuron is compressed during a head bend, the density of bothGCaMP and RFP should484

increase, causing an increase in the fluorescence in both time-series. Moreover, the RFP time series485
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should be dominated by artifacts because, in the absence of motion, the RFP fluorescent intensity486

would be constant. We therefore sought to reject fluctuations common to both GCaMP and RFP487

time series by using independent components analysis (ICA). ICA has previously been used in neu-488

roscience to identify spikes in intracranial recordings (Kobayashi et al., 2001) or to automatically489

define regions of interest from large-scale calcium recordings (Mukamel et al., 2009). Here we490

use ICA to find a motion corrected fluorescent signal, Fmc, that captures the activity in the GCaMP491

timeseries FGCaMP but rejects fluctuations common to both the GCaMP and RFP signals, FRFP and492

FRFP. We performed ICA on the normalized mean-subtracted time series and extracted two com-493

ponents (Pedregosa et al., 2011). The component most correlated with FRFP was deemed noise494

and rejected. The remaining component was deemed the motion corrected fluorescence signal495

Fmc and was re-scaled and offset to retain the mean, variance and sign of the original FGCaMP time496

series.497

Temporal derivative498

The temporal derivatives ofmotion correctedneuron signals are estimatedusing aGaussian deriva-499

tive kernel of width 2.3 s. For brevity we denote this kernel-based estimate as dF
dt
.500

Identifying AVA501

AVAL and AVAR were identified in recordings of AML310 by their known location and the presence502

of a BFP fluorescent label expressed under the control of rig-3 promoter. BFP was imaged imme-503

diately after calcium imaging was completed, usually while the worm was still moving freely. To504

image BFP, a 488 nm laser was blocked and the wormwas then illuminated with 405 nm laser light.505

In one of the recordings, only one of the two AVA neurons was clearly identifiable throughout the506

duration of the recording. For that recording, only one of the AVA neurons was included in analysis.507

Measuring and representing locomotion508

To measure the animal’s velocity and body curvature we used an analysis based on an eigenvalue509

decomposition of posture (Stephens et al., 2008), as follows. Centerlines of the worms were ex-510

tracted from the whole-brain imaging recordings using an active contour fit to a darkfield image of511

thewormas in (Nguyen et al., 2017). The resulting centerlineswere projected onto a 4-dimensional512

basis set of pose eigenvectors that had previously been computed from an eigenvalue analysis of513

centerlines of 135,958 frames of freely moving worms taken from an in-house collection of record-514

ings on thewhole brain imager. The first four eigenvectors explained 96% of the observed variance515

of the in-house collection of recordings.516

The projection of the centerlines onto the eigenvectors results in a timeseries of coefficients,517

one per eigenvector. Two of the coefficients describe the body bends that the worm creates during518

its sinusoidal locomotion. The phase of the body bends is Θ(t) = tan a1(t)
a2(t)

), where a1 and a2 are the519

coefficients for the first two eigenvectors. The derivative of the phase dΘ∕dt is the phase velocity520

that describes the speed of bend propagation in the worm. We chose to use this velocity because521

it more directly reflects the animal’s muscle output than the animal’s center of mass velocity, which522

also involves mechanical interactions with the substrate and is affected, for example, by slip. Per523

our convention dΘ∕dt is reported in radians per second and is positive for forward motion and524

negative during a reversal. Velocity is obtained by filtering Θ with a gaussian derivative filter with525

width of � = 2s. The third coefficient a3(t) is a dimensionless quantity that corresponds to the body526

curvature of the animal, which is related to turning. For example, when the animal initiates a turn527

its velocity is positive, and its body curvature is large. The sign of a3(t) describes the dorsal-ventral528

bend direction. a3(t) is referred to as curvature throughout this work.529
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Relating neural activity to behavior530

Tuning Curves531

The Pearson’s correlation coefficient � is reported for each neurons’ tuning, as in Figure 1d,e. To532

reject the null hypothesis that a neuron is correlated with behavior by chance we took a shuffling533

approach and applied aBonforroni correction formultiple hypothesis testing. We shuffledour data534

in such a way as to preserve the correlation structure in our recording. To calculate the shuffle,535

each neuron’s activity was time-reversed and circularly shifted relative to behavior by a random536

time lag and then the Pearson’s correlation coefficient was computed. Shuffling was repeated537

for each neuron in a recording 5,000 times to build up a distribution of 5000N values of �, where538

N is the number of neurons in the recording. To reject the null hypothesis at 0.05% confidence,539

we apply a Bonforonni correction such that a correlation coefficient greater than � (or less than,540

depending on the sign)must have been observed in the shuffled distribution with a probability less541

than 0.05∕(2N). The factor of 2N arises from accounting for multiple hypothesis testing for tuning542

of both F and dF∕dt for each neuron.543

Population Model544

We use a ridge regression (Hoerl and Kennard, 1970) model to decode behavior signals y(t) (the545

velocity and the body curvature). The model prediction is given by a linear combination of neural546

activities and their time derivatives,547

ŷ(t) =
∑

i

(

WF ,iFi(t) +W dF
dt ,i

dFi
dt
(t)
)

+ �. (2)
Note here we are omitting the mc subscript for convenience, but these still refer to the motion548

corrected fluorescence signal.549

We scale all these features to have zero mean and unit variance, so that the magnitudes of550

weights can be compared to each other. To determine the parameters {WF ,i,W dF
dt ,i
, �} we hold551

out a test set comprising the middle 40% of the recording, and use the remainder of the data for552

training. We minimize the cost function553

C =
∑

t∈Train
(y(t) − ŷ(t))2 + �

∑

i

(

W 2
F ,i +W

2
dF
dt ,i

)

. (3)
The hyperparameter � sets the strength of the ridge penalty in the second term. We choose � by554

splitting the training set further into a second training set and a cross-validation set, and training555

on the second training set with various values of �. We choose the value which gives the best556

performance on the cross-validation set.557

To evaluate the performance of our model, we use a mean-subtracted coefficient of determi-558

nation metric, R2MS, on the test set. This is defined by559

R2MS (y, ŷ) = R2 (y − ⟨y⟩ , ŷ − ⟨ŷ⟩) , (4)
where we use the conventional definition of R2, defined here for an arbitrary true signal z and560

corresponding model prediction ẑ:561

R2 (z, ẑ) = 1 −
∑

t∈Test (z(t) − ẑ(t))2
∑

t∈Test (z(t) − ⟨z(t)⟩)2
. (5)

Note that R2MS can take any value on (−∞, 1].562

Restricted models563

To assess the distribution of locomotive information throughout the animal’s brain, we compare564

with two types of restricted models. First, we use a Best Single Neuron model in which all but565

one of the coefficients {WF ,i,W dF
dt ,i
} in (2) are constrained to vanish. We thus attempt to represent566

behavior as a linear function of a single neural activity, or its time derivative These models are567
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Model Penalty Features Number of Parameters
Linear Ridge F and dF∕dt 2Nn + 1Linear Ridge F Nn + 1Linear Ridge + Acceleration Penalty F and dF∕dt 2Nn + 1Linear Ridge + Acceleration Penalty F Nn + 1Linear ElasticNet F and dF∕dt 2Nn + 1Linear ElasticNet F Nn + 1MARS (nonlinear) MARS F and dF∕dt variable

Linear with Decision Tree (nonlinear) Ridge F and dF∕dt 4Nn + 9
Table 5. Alternative models explored. Most are linear models, using either the Ridge or ElasticNet regularization. In some cases we add anadditional term to the cost function which penalizes errors in the temporal derivative of model output (which, for velocity models, correspondsto the error in the predicted acceleration). For features, we use either the neural activities alone, or the neural activities together with theirtemporal derivatives. We also explore two nonlinear models: MARS Friedman (1991), and a shallow decision tree which chooses between twolinear models.

shown in Figure 3. Second, after training the populationmodel, we sort the neurons in descending568

order of max(|WF ,i|, |W dF
dt ,i

|). We then construct models using a subset of the most highly weighted569

neurons, with the relative weights on their activities and time derivatives fixed by those used in the570

population model. The performance of these truncated models can be tabulated as a function of571

the number of neurons included to first achieve a given performance, as shown in Figure 6.572

Alternative models573

The population model used throughout this work refers to a linear model with derivatives using574

ridge regression. In Figure 3 - Figure Supplement 3, we show the performance of seven alternative575

population models at decoding velocity for our exemplar recording. The models are summarized576

in Table 5. Many of these models perform roughly as well as the linear population model used577

throughout the paper. Our chosen model was selected both for its relative simplicity and because578

it showed the highest mean performance at decoding velocity across recordings.579

Figure 3 - Figure Supplement 3a-b show themodel we use throughout the paper, and the same580

model but with only fluorescence signals (and not their time derivatives) as features. The latter581

model attains a slightly lower score of R2MS = 0.71. Note that while adding features is guaranteed582

to improve performance on the training set, performance on the test set did not necessarily have583

to improve. Nonetheless, we generally found that including the time derivatives led to better pre-584

dictions on the test set.585

Figure 3 - Figure Supplement 3c-d show a variant of the linear model where we add an acceler-586

ation penalty to the model error. Our cost function becomes (cf. (3))587

C =
∑

t∈Train

(

(y(t) − ŷ(t))2 + �
(

dy
dt
(t) −

dŷ
dt
(t)
)2

)

+ �
∑

i

(

W 2
F ,i +W

2
dF
dt ,i

)

, (6)
where the derivatives dy

dt
and dŷ

dt
are estimated using a Gaussian derivative filter. The parameter �588

is set to 10. For our exemplar recording, adding the acceleration penalty hurts the model when589

derivatives are not included as features, but has little effect when they are.590

Figure 3 - Figure Supplement 3e-f show a variant where we use an ElasticNet penalty instead of591

a ridge penalty (Zou and Hastie, 2005). If we write the ridge penalty as the L2 norm of the weight592

vector, so that593

�
∑

i

(

W 2
F ,i +W

2
dF
dt ,i

)

≡ �‖W ‖

2
2, (7)

the ElasticNet penalty is defined by594

�
(

r‖W ‖1 + (1 − r)‖W ‖

2
2

)

, (8)

22 of 26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2021. ; https://doi.org/10.1101/445643doi: bioRxiv preprint 

https://doi.org/10.1101/445643
http://creativecommons.org/licenses/by-nc/4.0/


where595

‖W ‖1 =
∑

i

(

|

|

WF ,i
|

|

+ |

|

|

W dF
dt ,i

|

|

|

) (9)
is the L1 norm of the weight vector. The quantity r is known as the L1 ratio, and in Figure 3 - Figure596

Supplement 3 it is set to 10−2. We have also tried setting r via cross-validation, and found similar597

results.598

Figure 3 - Figure Supplement 3g uses themultivariate adaptive regression splines (MARS)model599

(Friedman, 1991). The MARS model incorporates nonlinearity by using rectified linear functions of600

the features, or products of such functions. Generally they have the advantage of being more601

flexible than linear models while remaining more interpretable than a neural network or other602

more complicated nonlinear model. However, we find that MARS somewhat underperforms a603

linear model on our data.604

Figure 3 - Figure Supplement 3h uses a decision tree classifier trained to separate the data into605

forward-moving and backward-moving components, and then trains separate linear models on606

each component. For our exemplar recording, this model performs slightly better than the model607

we use throughout the paper. This is likely a result of the clear AVAR signal in Figure 2, which can be608

used by the classifier to find the backward-moving portions of the data. Across all our recordings,609

this model underperforms the simple linear model.610

Correlation structure analysis611

The correlation structure of neural activity was visualised as the correlationmatrix, �i, j. To observe612

changes in correlation structure, a correlation matrix for the moving portion of the recording was613

calculated separately from the immobile portion. The time immediately following delivery of the614

paralytic when the animal was not yet paralzed was excluded (usually one to two minutes). To615

quantify the magnitude of the change in correlation structure, a dissimilarity metric was defined616

as the root mean-squared change in each neuron’s pairwise correlations,
√

⟨

(�′i,j − �i,j)2
⟩. As a617

control, changes to correlation structure were measured in freely moving animals. In this case the618

correlation structure of the first 30% of the recording was compared to the correlation structure of619

latter 60%of the recording, so as tomimic the relative timing in themoving-to-immobile recordings.620

Software621

Analysis scripts are available at https://github.com/leiferlab/PredictionCode622

Data623

Data from all experiments including calcium activity traces and animal pose and position are pub-624

licly available at https://doi.org/10.17605/OSF.IO/R5TB3625

Acknowledgments626

Thisworkwas supportedby grants from the Simons Foundation (SCGB#324285, and SCGB#543003,627

AML). This work was supported in part by the National Science Foundation, through the Center for628

the Physics of Biological Function (PHY-1734030) and an NSF CAREER Award to AML (IOS-1845137).629

ANL is supported by a National Institutes of Health institutional training grant NIH T32 MH065214630

through the Princeton Neuroscience Institute. Strains are distributed by the CGC, which is funded631

by the NIH Office of Research Infrastructure Programs (P40 OD010440).632

Author contributions633

• Kelsey Hallinen: Formal Analysis, Investigation, Visualization, Writing - original draft, Writing -634

review and editing.635

• Ross Dempsey: Formal Analysis, Investigation, Methodology, Software, Visualization, Writing636

- original draft, Writing - review and editing.637

23 of 26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2021. ; https://doi.org/10.1101/445643doi: bioRxiv preprint 

https://github.com/leiferlab/PredictionCode
 https://doi.org/10.17605/OSF.IO/R5TB3
https://doi.org/10.1101/445643
http://creativecommons.org/licenses/by-nc/4.0/


• Monika Scholz: Formal Analysis, Investigation, Methodology, Software, Visualization, Writing638

- original draft, Writing - review and editing.639

• Xinwei Yu: Formal Analysis, Investigation, Methodology, Resources, Software, Writing - review640

and editing641

• Ashley Linder: Formal Analysis, Investigation, Methodology, Resources, Software, Writing -642

review and editing643

• Francesco Randi: Resources, Writing - review and editing, Developed optical instrument.644

• Anuj Sharma: Resouresc, Writing - review and editing, Generated all transgenics.645

• Joshua Shaevitz: Conceptualization, Supervision, Funding Acquisition, Writing - review and646

editing.647

• Andrew Leifer: Conceptualization, Formal Analysis, Funding Acquisition, Project administra-648

tion, Software, Supervision, Visualization, Writing - original draft, Writing - review and editing.649

References650

Arous JB, Tanizawa Y, Rabinowitch I, Chatenay D, Schafer WR. Automated imaging of neuronal activity in freely651 behaving Caenorhabditis elegans. Journal of Neuroscience Methods. 2010 Jan; http://www.ncbi.nlm.nih.gov/652

pubmed/20096306, doi: 10.1016/j.jneumeth.2010.01.011.653

Berman GJ, Bialek W, Shaevitz JW. Predictability and hierarchy in Drosophila behavior. Proceedings of the654 National Academy of Sciences. 2016 Oct; 113(42):11943–11948. http://www.pnas.org/content/113/42/11943,655 doi: 10.1073/pnas.1607601113.656

Broekmans OD, Rodgers JB, Ryu WS, Stephens GJ. Resolving coiled shapes reveals new reorientation behav-657 iors in C. elegans. eLife. 2016 Sep; 5:e17227. https://doi.org/10.7554/eLife.17227, doi: 10.7554/eLife.17227,658 publisher: eLife Sciences Publications, Ltd.659

Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S. The neural circuit for touch sensitivity in660 Caenorhabditis elegans. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience.661 1985 Apr; 5(4):956–64. http://www.ncbi.nlm.nih.gov/pubmed/3981252, doi: 3981252.662

Chen JL, Pfäffli OA, Voigt FF, Margolis DJ, Helmchen F. Online correction of licking-663 induced brain motion during two-photon imaging with a tunable lens. The Journal664 of Physiology. 2013; 591(19):4689–4698. https://physoc.onlinelibrary.wiley.com/doi/abs/665

10.1113/jphysiol.2013.259804, doi: https://doi.org/10.1113/jphysiol.2013.259804, _eprint:666 https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.2013.259804.667

Chen X, Randi F, Leifer AM, Bialek W. Searching for collective behavior in a small brain. Physical Review E. 2019668 May; 99(5):052418. https://link.aps.org/doi/10.1103/PhysRevE.99.052418, doi: 10.1103/PhysRevE.99.052418.669

Chen X, Mu Y, Hu Y, Kuan AT, NikitchenkoM, Randlett O, Chen AB, Gavornik JP, Sompolinsky H, Engert F, Ahrens670 MB. Brain-wide Organization of Neuronal Activity and Convergent Sensorimotor Transformations in Larval671 Zebrafish. Neuron. 2018 Nov; 100(4):876–890.e5. doi: 10.1016/j.neuron.2018.09.042.672

Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, Shenoy KV. Neural population673 dynamics during reaching. Nature. 2012 Jul; 487(7405):51–56. https://www.nature.com/nature/journal/v487/674

n7405/abs/nature11129.html, doi: 10.1038/nature11129.675

Croll N. Behavoural analysis of nematode movement. Advances in Parasitology. 1975; 13:71–122.676

Datta SR, Anderson DJ, Branson K, Perona P, Leifer A. Computational Neuroethology: A Call to Action. Neuron.677 2019 Oct; 104(1):11–24. doi: 10.1016/j.neuron.2019.09.038.678

Donnelly JL, Clark CM, Leifer AM, Pirri JK, Haburcak M, Francis MM, Samuel ADT, Alkema MJ. Monoaminergic679 Orchestration of Motor Programs in a Complex C. elegans Behavior. PLoS Biology. 2013 Apr; 11(4):e1001529.680

https://dx.plos.org/10.1371/journal.pbio.1001529, doi: 10.1371/journal.pbio.1001529.681

Friedman JH. Multivariate Adaptive Regression Splines. Annals of Statistics. 1991 Mar; 19(1):1–67. https:682

//projecteuclid.org/euclid.aos/1176347963, doi: 10.1214/aos/1176347963, publisher: Institute ofMathematical683 Statistics.684

Georgopoulos AP, Schwartz AB, Kettner RE. Neuronal population coding of movement direction. Science (New685 York, NY). 1986 Sep; 233(4771):1416–1419. doi: 10.1126/science.3749885.686

24 of 26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2021. ; https://doi.org/10.1101/445643doi: bioRxiv preprint 

http://www.ncbi.nlm.nih.gov/pubmed/20096306
http://www.ncbi.nlm.nih.gov/pubmed/20096306
http://www.ncbi.nlm.nih.gov/pubmed/20096306
10.1016/j.jneumeth.2010.01.011
http://www.pnas.org/content/113/42/11943
10.1073/pnas.1607601113
https://doi.org/10.7554/eLife.17227
10.7554/eLife.17227
http://www.ncbi.nlm.nih.gov/pubmed/3981252
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2013.259804
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2013.259804
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2013.259804
https://doi.org/10.1113/jphysiol.2013.259804
https://link.aps.org/doi/10.1103/PhysRevE.99.052418
10.1103/PhysRevE.99.052418
10.1016/j.neuron.2018.09.042
https://www.nature.com/nature/journal/v487/n7405/abs/nature11129.html
https://www.nature.com/nature/journal/v487/n7405/abs/nature11129.html
https://www.nature.com/nature/journal/v487/n7405/abs/nature11129.html
10.1016/j.neuron.2019.09.038
https://dx.plos.org/10.1371/journal.pbio.1001529
10.1371/journal.pbio.1001529
https://projecteuclid.org/euclid.aos/1176347963
https://projecteuclid.org/euclid.aos/1176347963
https://projecteuclid.org/euclid.aos/1176347963
10.1126/science.3749885
https://doi.org/10.1101/445643
http://creativecommons.org/licenses/by-nc/4.0/


Gordus A, Pokala N, Levy S, Flavell SW, Bargmann CI. Feedback from network states generates variability in a687 probabilistic olfactory circuit. Cell. 2015 Apr; 161(2):215–227. doi: 10.1016/j.cell.2015.02.018.688

Gray JM, Hill JJ, Bargmann CI. A circuit for navigation in Caenorhabditis elegans. Proceedings of the689 National Academy of Sciences of the United States of America. 2005 Mar; 102(9):3184–3191. doi:690 10.1073/pnas.0409009101, pMC546636 PMID: 15689400.691

Green J, Adachi A, Shah KK, Hirokawa JD, Magani PS, Maimon G. A neural circuit architecture for angular inte-692 gration in Drosophila. Nature. 2017 Jun; 546(7656):101–106. http://www.nature.com/nature/journal/v546/693

n7656/full/nature22343.html, doi: 10.1038/nature22343.694

Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex.695 Nature. 2005 Aug; 436(7052):801–806. https://www.nature.com/nature/journal/v436/n7052/full/nature03721.696

html, doi: 10.1038/nature03721.697

Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics.698 1970; 12(1):55–67. https://www.jstor.org/stable/1267351, doi: 10.2307/1267351, publisher: [Taylor & Francis,699 Ltd., American Statistical Association, American Society for Quality].700

Kaplan HS, Salazar Thula O, Khoss N, Zimmer M. Nested Neuronal Dynamics Orchestrate a Behavioral Hierar-701 chy across Timescales. Neuron. 2020 Feb; 105(3):562–576.e9. doi: 10.1016/j.neuron.2019.10.037.702

Kato S, Kaplan HS, Schrödel T, Skora S, Lindsay TH, Yemini E, Lockery S, Zimmer M. Global brain dynamics703 embed the motor command sequence of Caenorhabditis elegans. Cell. 2015 Oct; 163(3):656–669. doi:704 10.1016/j.cell.2015.09.034.705

Kawano T, Po MD, Gao S, Leung G, Ryu WS, Zhen M. An Imbalancing Act: Gap Junctions Reduce the Backward706 Motor Circuit Activity to Bias C. elegans for Forward Locomotion. Neuron. 2011 Nov; 72(4):572–586. http:707

//www.ncbi.nlm.nih.gov/pubmed/22099460, doi: 10.1016/j.neuron.2011.09.005.708

Kim E, Sun L, Gabel CV, Fang-Yen C. Long-Term Imaging of Caenorhabditis elegans Using Nanoparticle-709 Mediated Immobilization. PLoS ONE. 2013 Jan; 8(1):e53419. http://dx.doi.org/10.1371/journal.pone.0053419,710 doi: 10.1371/journal.pone.0053419.711

Kim SS, Rouault H, Druckmann S, Jayaraman V. Ring attractor dynamics in the Drosophila central brain. Sci-712 ence. 2017 May; p. eaal4835. http://science.sciencemag.org/content/early/2017/05/03/science.aal4835, doi:713 10.1126/science.aal4835.714

Kobayashi K, Merlet I, Gotman J. Separation of spikes from background by independent component anal-715 ysis with dipole modeling and comparison to intracranial recording. Clinical Neurophysiology. 2001 Mar;716 112(3):405–413. http://www.sciencedirect.com/science/article/pii/S1388245701004576, doi: 10.1016/S1388-717 2457(01)00457-6.718

Kocabas A, Shen CH, Guo ZV, Ramanathan S. Controlling interneuron activity in Caenorhabditis elegans to719 evoke chemotactic behaviour. Nature. 2012 Oct; 490(7419):273–277. doi: 10.1038/nature11431.720

Liu M, Sharma AK, Shaevitz JW, Leifer AM. Temporal processing and context dependency in Caenorhabditis721 elegans response to mechanosensation. eLife. 2018 Jun; 7:e36419. https://elifesciences.org/articles/36419,722 doi: 10.7554/eLife.36419.723

Lockery SR, Lawton KJ, Doll JC, Faumont S, Coulthard SM, Thiele TR, Chronis N, McCormick KE, Good-724 man MB, Pruitt BL. Artificial Dirt: Microfluidic Substrates for Nematode Neurobiology and Behavior. J725 Neurophysiol. 2008 Jun; 99(6):3136–3143. http://jn.physiology.org/cgi/content/abstract/99/6/3136, doi:726 10.1152/jn.91327.2007.727

Mukamel EA, Nimmerjahn A, Schnitzer MJ. Automated Analysis of Cellular Signals from Large-Scale Calcium728 Imaging Data. Neuron. 2009 Sep; 63(6):747–760. https://www.cell.com/neuron/abstract/S0896-6273(09)729

00619-9, doi: 10.1016/j.neuron.2009.08.009, publisher: Elsevier.730

Musall S, KaufmanMT, Juavinett AL, Gluf S, Churchland AK. Single-trial neural dynamics are dominated by richly731 varied movements. Nature Neuroscience. 2019 Oct; 22(10):1677–1686. https://www.nature.com/articles/732

s41593-019-0502-4, doi: 10.1038/s41593-019-0502-4, number: 10 Publisher: Nature Publishing Group.733

Nguyen JP, Linder AN, Plummer GS, Shaevitz JW, Leifer AM. Automatically tracking neurons in a moving and734 deforming brain. PLOS Computational Biology. 2017 May; 13(5):e1005517. https://dx.plos.org/10.1371/735

journal.pcbi.1005517, doi: 10.1371/journal.pcbi.1005517.736

25 of 26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2021. ; https://doi.org/10.1101/445643doi: bioRxiv preprint 

10.1016/j.cell.2015.02.018
10.1073/pnas.0409009101
10.1073/pnas.0409009101
10.1073/pnas.0409009101
http://www.nature.com/nature/journal/v546/n7656/full/nature22343.html
http://www.nature.com/nature/journal/v546/n7656/full/nature22343.html
http://www.nature.com/nature/journal/v546/n7656/full/nature22343.html
https://www.nature.com/nature/journal/v436/n7052/full/nature03721.html
https://www.nature.com/nature/journal/v436/n7052/full/nature03721.html
https://www.nature.com/nature/journal/v436/n7052/full/nature03721.html
https://www.jstor.org/stable/1267351
10.1016/j.neuron.2019.10.037
10.1016/j.cell.2015.09.034
10.1016/j.cell.2015.09.034
10.1016/j.cell.2015.09.034
http://www.ncbi.nlm.nih.gov/pubmed/22099460
http://www.ncbi.nlm.nih.gov/pubmed/22099460
http://www.ncbi.nlm.nih.gov/pubmed/22099460
10.1016/j.neuron.2011.09.005
http://dx.doi.org/10.1371/journal.pone.0053419
10.1371/journal.pone.0053419
http://science.sciencemag.org/content/early/2017/05/03/science.aal4835
10.1126/science.aal4835
10.1126/science.aal4835
10.1126/science.aal4835
http://www.sciencedirect.com/science/article/pii/S1388245701004576
https://elifesciences.org/articles/36419
10.7554/eLife.36419
http://jn.physiology.org/cgi/content/abstract/99/6/3136
10.1152/jn.91327.2007
10.1152/jn.91327.2007
10.1152/jn.91327.2007
https://www.cell.com/neuron/abstract/S0896-6273(09)00619-9
https://www.cell.com/neuron/abstract/S0896-6273(09)00619-9
https://www.cell.com/neuron/abstract/S0896-6273(09)00619-9
10.1016/j.neuron.2009.08.009
https://www.nature.com/articles/s41593-019-0502-4
https://www.nature.com/articles/s41593-019-0502-4
https://www.nature.com/articles/s41593-019-0502-4
https://dx.plos.org/10.1371/journal.pcbi.1005517
https://dx.plos.org/10.1371/journal.pcbi.1005517
https://dx.plos.org/10.1371/journal.pcbi.1005517
10.1371/journal.pcbi.1005517
https://doi.org/10.1101/445643
http://creativecommons.org/licenses/by-nc/4.0/


Nguyen JP, Shipley FB, Linder AN, Plummer GS, Liu M, Setru SU, Shaevitz JW, Leifer AM. Whole-brain cal-737 cium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proceedings of the Na-738 tional Academy of Sciences. 2016 Feb; 113(8):E1074–E1081. http://www.pnas.org/lookup/doi/10.1073/pnas.739

1507110112, doi: 10.1073/pnas.1507110112.740

O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the741 freely-moving rat. Brain Research. 1971 Nov; 34(1):171–175. http://www.sciencedirect.com/science/article/742

pii/0006899371903581, doi: 10.1016/0006-8993(71)90358-1.743

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,744 Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay Scikit-learn: Machine745 learning in python. Journal of Machine Learning Research. 2011; 12(85):2825–2830. http://jmlr.org/papers/746

v12/pedregosa11a.html.747

Piggott BJ, Liu J, Feng Z, Wescott SA, Xu XZS. The Neural Circuits and Synaptic Mechanisms Underlying Motor748 Initiation in C. elegans. Cell. 2011 Nov; 147(4):922–933. http://www.ncbi.nlm.nih.gov/pubmed/22078887, doi:749 10.1016/j.cell.2011.08.053.750

Shipley FB, Clark CM, Alkema MJ, Leifer AM. Simultaneous optogenetic manipulation and calcium imaging in751 freely moving C. elegans. Frontiers in Neural Circuits. 2014 Mar; 8. http://journal.frontiersin.org/article/10.752

3389/fncir.2014.00028/abstract, doi: 10.3389/fncir.2014.00028.753

Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS. Dimensionality and Dynamics in the Behavior of C. elegans.754 PLoS Computational Biology. 2008 Apr; 4(4):e1000028. http://dx.doi.org/10.1371%2Fjournal.pcbi.1000028,755 doi: 10.1371/journal.pcbi.1000028.756

Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. Spontaneous behaviors drive mul-757 tidimensional, brainwide activity. Science. 2019 Apr; 364(6437):eaav7893. https://science.sciencemag.org/758

content/364/6437/eaav7893, doi: 10.1126/science.aav7893.759

Taube JS, Muller RU, Ranck JB. Head-direction cells recorded from the postsubiculum in freely moving rats. I.760 Description and quantitative analysis. The Journal of Neuroscience: The Official Journal of the Society for761 Neuroscience. 1990 Feb; 10(2):420–435.762

Wang Y, Zhang X, Xin Q, Hung W, Florman J, Huo J, Xu T, Xie Y, Alkema MJ, Zhen M, Wen Q. Flexible motor763 sequence generation during stereotyped escape responses. eLife. 2020 Jun; 9:e56942. https://doi.org/10.764

7554/eLife.56942, doi: 10.7554/eLife.56942, publisher: eLife Sciences Publications, Ltd.765

Wang Y, Zhang X, Xin Q, Hung W, Florman J, Huo J, Xu T, Xie Y, Alkema MJ, Zhen M, Wen Q. Flexible motor766 sequence generation during stereotyped escape responses. eLife. 2020 Jun; 9:e56942. https://doi.org/10.767

7554/eLife.56942, doi: 10.7554/eLife.56942, publisher: eLife Sciences Publications, Ltd.768

Ward S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of769 the response by use of mutants. Proceedings of the National Academy of Sciences of the United States of770 America. 1973 Mar; 70(3):817–21. http://www.ncbi.nlm.nih.gov.ezp-prod1.hul.harvard.edu/pubmed/4351805,771 doi: PMC433366.772

Zou H, Hastie T. Regularization and variable selection via the Elastic Net. Journal of the Royal Statistical Society,773 Series B. 2005; 67:301–320.774

26 of 26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2021. ; https://doi.org/10.1101/445643doi: bioRxiv preprint 

http://www.pnas.org/lookup/doi/10.1073/pnas.1507110112
http://www.pnas.org/lookup/doi/10.1073/pnas.1507110112
http://www.pnas.org/lookup/doi/10.1073/pnas.1507110112
10.1073/pnas.1507110112
http://www.sciencedirect.com/science/article/pii/0006899371903581
http://www.sciencedirect.com/science/article/pii/0006899371903581
http://www.sciencedirect.com/science/article/pii/0006899371903581
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://www.ncbi.nlm.nih.gov/pubmed/22078887
10.1016/j.cell.2011.08.053
10.1016/j.cell.2011.08.053
10.1016/j.cell.2011.08.053
http://journal.frontiersin.org/article/10.3389/fncir.2014.00028/abstract
http://journal.frontiersin.org/article/10.3389/fncir.2014.00028/abstract
http://journal.frontiersin.org/article/10.3389/fncir.2014.00028/abstract
10.3389/fncir.2014.00028
http://dx.doi.org/10.1371%2Fjournal.pcbi.1000028
10.1371/journal.pcbi.1000028
https://science.sciencemag.org/content/364/6437/eaav7893
https://science.sciencemag.org/content/364/6437/eaav7893
https://science.sciencemag.org/content/364/6437/eaav7893
10.1126/science.aav7893
https://doi.org/10.7554/eLife.56942
https://doi.org/10.7554/eLife.56942
https://doi.org/10.7554/eLife.56942
10.7554/eLife.56942
https://doi.org/10.7554/eLife.56942
https://doi.org/10.7554/eLife.56942
https://doi.org/10.7554/eLife.56942
10.7554/eLife.56942
http://www.ncbi.nlm.nih.gov.ezp-prod1.hul.harvard.edu/pubmed/4351805
https://doi.org/10.1101/445643
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1–Figure supplement 1. Comparison of center-of-mass velocity and eigenvalue
decomposition-derived velocity for recording AML310_A . Dashed line is line of best fit.
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Figure 3–Figure supplement 1. Performance correlates with maximal GCaMP Fano Factor, a met-
ric of signal-to-noise ratio. Decoding performance is plotted against maximal GCaMP Fano Factor
for each recording for velocity and curvature. Maximal GCaMP Fano Factor is the Fano Factor of the
raw GCaMP activity for the neuron in each recording with the highest Fano Factor,maxi

(

�2[Fi,GCaMP]
�[Fi,GCaMP]

).
Labels for each recording are shown. Dashed red line is the line of best fit (correlation coefficient
between fit and data is � = 0.42 for velocity and � = 0.53 for curvature.)
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Figure 3–Figure supplement 2. Neural activity and behavior for all freely moving recordings, in-
cluding GCaMP imaging strains (AML310 and AML32) and GFP control strains (AML18).
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Figure 3–Figure supplement 3. Performance of alternative populationmodels for decoding veloc-
ity. Traces are shown for exemplar recording AML310_A . Mean across all recordings is also listed. a.)
The population model used throughout the paper. This model uses ridge regression with fluores-
cence signals and their temporal derivatives as features. b.) A linear model using ridge regression,
with only fluorescence signals as features. c.) A linear model using fluorescence signals and their
temporal derivatives as features, regularizedwith a combination of a ridge penalty and the squared
error of the temporal derivative of behavior. d.) The model in c., but using only fluorescence sig-
nals as features. e.) A linear model using fluorescence signals and their temporal derivatives as
features, regularized with an ElasticNet penalty with an L1 ratio of 10−2. f.) The model in e., but us-
ing only fluorescence signals as features. g.) The multivariate adaptive regression splines (MARS)
model, using fluorescence signals and their temporal derivatives as features. h.) A linear model
together with a shallow decision tree, using fluorescence signals and their temporal derivative as
features.
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Figure 5–Figure supplement 1. Comparison of weights assigned to a neuron’s activity versus its
temporal derivative for velocity (left) or curvature (right) decoders. Comparison ofweights assigned
to a neuron’s activity |WF | by the population decoder, versus the weights assigned to its temporal
derivative |WdF∕dt| for each neuron in recording AML310_A .

779

Figure 5–Figure supplement 2. Comparison of weights assigned for decoding velocity vs decoding
curvature. a.) The magnitude of the weight assigned to each neuron in recording AML310_A for
velocity |W vel

| is compared to the magnitude of its assigned weight for curvature |W curv
|. Each

neuron is plotted twice, once for theweight assigned to its activity and once for theweight assigned
to the temporal derivative of its activity. b) Same as in (a), except here the higher weight of either
activity or its temporal derivative is plotted.
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Figure 7–Figure supplement 1. Calciumactivity is recorded froman animal as itmoves and then is
immobilized with a paralytic drug, recording AML32_H . Activity and behavior. b) Population activity
(or its derivative) from (a) is shown projected onto its first three PCs, as determined by only the
immobilized portion of the recording. c) Neural state space trajectories from (b) are plotted in 3D
and shown split into moving and immobile portions. d) Pairwise correlations of neural activity �i,jare shown as heatmaps for all neurons duringmovement and immobilization, sorted via clustering
algorithm. Top and bottom rows are sorted to movement or immobilization, respectively.
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Figure 7–Figure supplement 2. Calcium activity is recorded from an animal immobilized with
nano-beads, recording AML310_G . a.) Calcium activity. b.) Activity of neurons AVAL and AVAR. c.)
Population activity (or its temporal derivative) from (a) is shown projected onto its first three PCs,
as determined by only the immobilized portion of the recording. d.) Neural state space trajectories
from (b) are plotted in 3D.
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