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Identification of neuron cell type helps us connect neural circuitry
and behavior; greater specificity in cell type and subtype classifica-
tion provides a clearer picture of specific relationships between the
brain and behavior. With the advent of high-density probes, large-
scale neuron classification is needed, as typical extracellular record-
ings are identity-blind to the neurons they record. Current meth-
ods for identification of neurons include optogenetic tagging and
intracellular recordings, but are limited in that they are expensive,
time-consuming, and have a limited scope. Therefore, a more auto-
mated, real-time method is needed for large-scale neuron identifica-
tion. Data from two recordings was incorporated into this research;
the single-channel recording included data from three neuron types
in the motor cortex: FS, IT, and PT neurons. The multi-channel
recording contained data from two neuron subtypes also in the mo-
tor cortex: PT_L and PT_U neurons. This allowed for an examina-
tion of both general neuron classification and more specific subtype
classification, which was done via artificial neural networks (ANNs)
and machine learning (ML) algorithms. For the single-channel neu-
ron classification, the ANNs achieved 91% accuracy, while the ML
algorithms achieved 98% accuracy, using the raw electrical wave-
form. The multi-channel classification, which was significantly more
difficult due to the similarity between the neuron types, yielded an
ineffective ANN, reaching 68% accuracy, while the ML algorithms
reached 81% using 8 calculated features from the waveform. Thus, to
distinguish between different neuron cell types and subtypes in the
motor cortex, both ANNs and specific ML algorithms can facilitate
rapid and accurate near real-time large-scale classification.
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Brain and neuron activity may be visualized in two ways;1

observing neuron activity optically is useful, but its scope2

is limited solely to the surface of the brain. However, silicon3

probes have emerged as a more effective way of observing brain4

activity, especially the recently pioneered Neuropixel probe5

(1).6

This activity correlates to particular neurons, specifically7

in the anterior lateral motor cortex for this research, which8

are classified as regular spiking (RS) and fast spiking (FS). RS9

neurons can be further broken down into excitatory putative10

pyramidal tract (PT) neurons and inhibitory layer 5 intrate-11

lencephalic (IT) neurons; meanwhile, FS GABAergic neurons12

are inhibitory (2). These L5 PT neurons in the motor cortex13

may be subdivided into PT_L & PT_U neurons, further sub-14

types in which preparatory activity to motor commands has15

been observed to indicate these neurons as having specialized16

distinct roles in motor control.17

Currently, the electrophysiological data generated using18

Neuropixel probes from neuron cells is simply the general 19

background electrical activity of the brain with occasional 20

spikes from neurons firing. These spike waveforms have unique 21

characteristics derived from the specific neurons they originate 22

from, which are used to sort these spikes into various clusters. 23

This clustering has been attempted using a swath of different 24

techniques, including thresholding, feature extraction, and 25

template-matching, and frequently require human correction 26

due a semi-automated methodology. These issues are prevalent 27

in nearly all spike sorting techniques that have been used on 28

tetrodes and smaller-scale electrode arrays, along with those 29

that have been built specifically for large-scale dense electrode 30

arrays. These include Kilosort (3), Klusta (4), JRClust (5), 31

M-Sorter (6), YASS (7), MountainSort (8), SpyKING CIR- 32

CUS (9), FAST (10), and various other unnamed algorithmic 33

methods (11). Many of these algorithms claim full automation, 34

but in reality require human correction to some degree (12). 35

Thus, in order to accurately classify neurons, biological 36

imaging, sequencing techniques, or intracellular recording is 37

generally required. Optogenetic tagging is a bio-imaging tech- 38

nique in which a firing neuron is tagged in order to identify it. 39

While this process is useful in identifying the specific neuron 40

type responsible for firing to perform a behavior, it is time- 41

consuming and is limited to single neurons, making it infeasible 42

for large-scale classification (13). Single-cell RNA-sequencing 43

using comprehensive transcriptome analysis is another bio- 44

logical technique to classify neuron types, but again, it is 45

time-consuming and requires individualized analysis of single 46
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neurons (14). Neuron classification of hypothalamic supraop-47

tic neurons in rats has used an electrophysiological approach48

through firing patterns, but also generally requires immuno-49

chemical labeling unless the patterns are in phasic bursting50

(15).51

Intracellular recording utilizes a patch clamp to measure52

the electrical activity within one neuron, providing the ground-53

truth data between spike waveform and cell type; however, this54

is limited to singular neurons and is not representative of the55

surrounding electrical activity. In comparison, extracellular56

recordings allow for the recording of many neuron cells firing;57

however, this introduces the trade-off in which spikes can be58

clustered but not identified (16). Accurate neuron classification59

into three classes of mouse cortical neurons and rat dorsal root60

ganglia has been achieved using intracellular recordings, and61

classification into four classes of cat primary visual cortical62

neurons has also been achieved with intracellular recordings,63

but these methods do not account for interference of electrical64

activity in the brain, seen in extracellular recordings, and65

is not automated due to non-software-based clustering such66

as parameter extraction (17) (18) (19). Current methods67

have also utilized both RNA-seq and single-cell patch-clamp68

(intracellular) protocols to identify neuronal subtypes, but also69

have a limited scope (20).70

Other waveform classification algorithms may also be al-71

gorithmic and software-based, but have their own limitations.72

One method utilized manual K-means clustering to perform73

real-time classification, but was limited in that it solely used 874

time points in the waveform and was limited to 30 electrodes.75

Manual algorithms that are now automated with machine76

learning are not as effective, especially considering the large77

scale of current probes, with waveforms containing over 30 time78

points and 384 electrodes simultaneously recording (21) (22).79

Another method utilized a probabilistic approach through a80

Gaussian Process Classifier with a variational Bayesian ap-81

proach and radial basis function, and achieved 72.5% to 92.7%82

accuracy in the univariate classification and up to 99.2% accu-83

racy in twin-variate classification for several rat and cat cells.84

However, the accuracy ranged widely in different methods and85

was only performed for 40-120 neurons, which is not necessarily86

sufficient as justification for large-scale classification (23).87

Research using neural networks in the classification of four88

types of adult human dentate nucleus neurons saw a mis-89

classification rate of 32.8% to 37.2% using topological data,90

and a misclassification rate of just 3.3% using morphological91

data; while useful, this data is significantly harder to obtain92

than electrophysiological data, which merely requires a probe93

with electrodes inserted into the brain (24). In addition, gen-94

eral classification of several myenteric neuron types has been95

shown to require morphological supplementary data to assist96

electrophysiological data in classification (25).97

Thus, it seen that there are several pressing issues with98

regard to neuron cell classification. Spike sorting is plausible99

in conjunction with other identification methods such as op-100

totagging or RNA-seq, but this requires repeated iterations101

of these techniques to confirm cluster identification. In addi-102

tion, clustering methods that use spike sorting algorithms are103

time-consuming, which hinders real-time classification. The104

accuracy of these spike sorting algorithms is often variable and105

resulting clusters can be difficult to distinguish, because the106

algorithm will not definitively assign a cluster or classification107

Fig. 1. 150 waveforms of 29 points superimposed to distinguish the waveform shape
between the FS, PT, and IT neuron cell type.

to each spike waveform. Finally, artificial neural networks as 108

a classification tool are promising, but require or recommend 109

morphological data in conjunction to electrophysiological data. 110

Currently, neuron classification has been attempted and 111

has seen success with extracellular recordings, both single- 112

channel and multi-channel, in various brain regions including 113

the primary visual cortex, cortical visual area AM, cortical vi- 114

sual area RL, hippocampus, lateral geniculate nucleus, lateral 115

posterior nucleus, superior colliculus, and cerebellum. The 116

classification techniques used in classification of neurons from 117

these brain regions includes random forests, K-means cluster- 118

ing, and t-distributed stochastic neighbor embedding (t-SNE) 119

(13). However, neuron cell classification has not yet been 120

attempted in the anterior lateral motor cortex; in addition, 121

artificial neural networks and various other promising machine 122

learning algorithms have not been examined. 123

The purpose of this research is to develop an accurate 124

neuron classification method for the anterior lateral motor cor- 125

tex with single-channel and multi-channel electrophysiological 126

extracellular recordings via multilayer perceptron neural net- 127

works (MPNs), convolutional neural networks (CNN), random 128

forests (RF), K-means clustering, t-SNE, k-nearest neighbors 129

(KNN), gradient tree boosting (GTB), extra trees (ET), and 130

logistic regression (LR) classification. In the single-channel 131

recordings, the purpose is to distinguish between distinct cell 132

types, while in the multi-channel recording, the purpose is 133

to distinguish subtypes of a specific cell. In doing this, the 134

effects of classification metrics and hyperparameter tuning on 135

accuracy is investigated as well. 136

Materials and Methods 137

Single-channel recording. Single-channel electrophysiological 138

data was the alm-1 dataset obtained from CRCNS (26). Data 139

preprocessing was performed in MatLab R2018 on the spike 140

waveforms, which were a set of 29 single points that made 141

a waveform when plotted. The L5 IT and PT cells in this 142

dataset were optogenetically tagged with CRE-dependent AAV 143

virus expressing ChR2, ensuring its ground-truth validity and 144

verifying the set of mathematical analyses. The FS neurons 145

were determined by a spike-sorting methodology due to the 146

distinctly small time interval between spikes. Despite the 147

lack of optogenetic tagging for these neurons, their identity 148

is still known due to the unambiguous nature - in terms of 149

fast-spiking compared to regular-firing - of GABAergic neuron 150

spiking. Feature extraction was done as the waveforms were 151

separated by cell type (cell types were FS, PT, & IT); eight 152

features were calculated (See Appendix A.1 for full code). 153

Feature extraction & pre-processing. Figure 1 shows the distinct 154

differences between three cell types found in the motor cortex; 155
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however, while they are visually very different, a feature ex-156

traction methodology is needed to quantify these waveforms157

to find mathematical patterns.158

The first three features were related to the waveform’s159

amplitude. The first was the full amplitude (fA); it was160

calculated by the absolute difference between the peak and161

trough of the waveform (Appendix A.1 Line # 183-187). The162

second feature was the negative amplitude (nA), calculated as163

the difference between the trough and 0 (Appendix A.1 Line164

# 190-193). The third feature was, on the other hand, the165

positive amplitude (pA), calculated as the difference between166

the peak and 0 (Appendix A.1 Line # 195-199).167

The fourth and fifth features were related to the width of168

the waveform. The fourth was the distance from the trough169

to the first peak following the trough, and was labeled the170

“recovery time” (rT; Appendix A.1 Line # 202-209). The171

fifth, alternatively, was the distance from the first peak in the172

waveform to the trough, and was labeled the “spike time” (sT;173

Appendix A.1 Line # 212-219).174

The final three features were related to the group of wave-175

forms within one trial. The sixth feature was the interspike176

interval (isi), calculated as the time difference between con-177

secutive spikes (Appendix A.1 Line # 222-234). The seventh178

feature was the regularity of the spikes (reg), calculated as179

the variance of the ratio between consecutive interspike in-180

tervals (Appendix A.1 Line # 237-244). The eighth feature181

was burstiness (b), which was calculated as the number of182

interspike intervals that were less than a tenth of the mean183

interspike interval for a cell type, meaning the cell fired as a184

burst (Appendix A.1 Line # 248-257).185

In addition to these eight calculated features, the entire186

waveform of 29 units was appended to form the final 29 features.187

Before these 29 units were added, the electrical background188

activity of the brain, or the noise, was base-lined to prevent it189

interfering with the classifiers (Appendix A.1 Line # 123-126).190

After this preprocessing, the result was three separate ma-191

trices (FS, PT, IT) with n rows, with n equal to the number of192

waveforms for a given cell type, and 37 columns, one for each193

feature. These matrices were transferred to a Python IDE194

(Jupyter Notebook) for further processing and classification195

via a .csv file intermediary.196

Training - testing set creation. Further processing was performed197

in Python 3 to create training and testing arrays for the198

future ANNs and ML algorithms (See Appendix B for full199

Python code of data processing and train/test set creation).200

The training data matrix was first filled with the existing201

data available for each neuron cell type (67% of the available202

data for each cell type was used in accordance with a 67:33203

train-to-test split ratio; Appendix B Line # 98-105). Since204

there was a large discrepancy in the available data for the205

individual cell types (1,438,775 FS waveforms compared to206

319,484 and 126,460 PT & IT waveforms), the ANNs and other207

ML algorithms may have only predicted the FS class for all208

waveforms. Thus, oversampling was performed to synthesize209

new data and equalize the training data for each neuron cell210

type. (Appendix B Line # 129-141).211

After this, all neuron cell types were randomly sorted212

into master training and testing sets after NaNs were re-213

moved(Appendix B Line # 144-186). The 29 individual points214

of the waveform were extremely small values, on the order of215

1e-4 and 1e-5; the discrepancy between these values and the216

calculated features would interfere with the classifier, so they 217

were normalized to values between zero and one (this normal- 218

ization was performed on the three amplitude calculations as 219

well; Appendix B Line # 196-197). 220

Multilayer perceptron neural network. The MPN was then 221

trained and tested using PyTorch (See Appendix C for full 222

Python code of MPN training and testing). Its architecture 223

consisted of 3 hidden layers, with between 3-37 input nodes, 224

depending on the feature selection of the trial, and 3 output 225

nodes for the three classes. Each fully connected layer but 226

the final one was followed by a rectified linear unit activation 227

function (ReLU) as well; a log softmax activation function 228

was performed on the final layer (Appendix C Line # 50-70). 229

The feature selection variable was informed by the recursive 230

feature elimination (RFE) algorithm. The set of the best 231

three features (fA, nA, pA), best four features (fA, nA, pA, 232

reg), and best five features (fA, nA, pA, reg, isi), along with 233

all eight features, the 29 points of the waveform, and all 37 234

features together (Appendix C Line # 29-41) were selected. 235

The learning rate was set at 0.001, the optimizer function was 236

stochastic gradient descent with momentum (p = 0.9), and 237

the loss function was CrossEntropyLoss (Appendix C Line 238

# 76-79). Batch size was set at 100 (Appendix C Line # 239

101). Epoch number was variable to determine the minimum 240

training needed to plateau accuracy and evaluate the speed at 241

which the network learned; it was tested at 1, 2, 3, 5, 10, 25, 242

50, and 100 epochs. 243

Convolutional neural network. The CNN was created and 244

tested in PyTorch as well (See Appendix D for full Python 245

code of CNN training and testing). Its network architecture 246

consisted of 2 1-D convolutions, each of which was followed 247

by a ReLU activation function and a 1-D pooling layer, and 248

2 fully-connected hidden layers. Each fully-connected hidden 249

layer was followed by a ReLU activation function, and the 250

final layer was followed by a log softmax activation function 251

(Appendix D Line # 50-81). The feature selection, learning 252

rate, optimizer function, loss function, and batch size were 253

identical to the MPN. In addition, epoch number was varied 254

identically. 255

Machine learning algorithms. Seven additional ML algorithms 256

were tested; three that were performed in existing literature 257

in eight other regions of the brain (RF, k-means, and t-SNE). 258

Four additional ones (KNN, GTB, ET, & LR) were promising 259

and were tested as well (See Appendix E for full Python code 260

of additional ML algorithms; all additional ML algorithms 261

used Scikit-learn in Python). 262

The random forests algorithm, essentially swarm intelli- 263

gence with decision trees, was performed. The number of 264

decision trees was varied; 100, 500, and 1000 were tested. In 265

addition, the number of maximum features were varied as well; 266

3, 4, 5, and 8 randomized features from the 8 calculated fea- 267

tures, all 29 points of the waveform, and all 37 total attributes 268

were considered (Appendix E Line # 36-64). 269

K-means clustering was performed, varying the number of 270

times the algorithm is run with different centroid seeds (10 & 271

25) and the maximum number of iterations of the algorithm for 272

a single run, from 300 to 700 with a step size of 200. (Appendix 273

E Line # 65-93). 274

Parikh October 31, 2018 | 3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/445700doi: bioRxiv preprint 

https://doi.org/10.1101/445700
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. 150 waveforms of 29 points superimposed to distinguish the waveform shape
between the PT_L & PT_U neuron cell type.

Hyperparameter tuning for t-SNE included varying perplex-275

ity, learning rate, and the maximum optimization iterations.276

The algorithm was run for perplexity values of 25, 50, 100, and277

200; learning rate values of 200, 500, and 750; and maximum278

optimization iterations of 300, 500, and 1000 (Appendix E279

Line # 94-127).280

K-nearest neighbors consisted of varying the number of281

neighbors from 3, to 5, to 10 (Appendix E Line # 128-154).282

In gradient tree boosting, 100, 500, and 1000 decision trees283

were varied, while the learning rate was kept constant at 0.1284

(Appendix E Line # 155-181).285

For the extra trees algorithm, the number of trees was286

varied from 100, to 500, to 1000 trees (Appendix E Line #287

182-208).288

Finally, in the logistic regression classification, regulariza-289

tion strength (C) was varied from 1, to 1.5, to 2 (Appendix E290

Line # 209-235). In all previous algorithms but the random291

forests, 8 calculated features, the 29 waveform points, and all292

37 features were varied as well.293

Multi-channel recording. Multi-channel electrophysiological294

data was a dataset obtained from Dr. Michael Economo295

of the Janelia Research Campus (27). The PT_U and PT_L296

neurons in this dataset were optogenetically tagged to ensure297

the validity of their classification in a similar manner to the298

single-channel recording; thus, the specific types of neurons299

classified were known, again ensuring the mathematical classifi-300

cation’s validity. Data preprocessing was performed in MatLab301

R2018 on the spike waveforms, which were a set of 124 to302

256 single points that made a waveform when plotted (See303

Appendix A.2 and A.3 for full code). Each subset of 32 points304

was a separate waveform from a specific channel; thus, each305

plotted waveform of 124-256 points was actually 4-8 spikes on306

neighboring channels at a time point. Thus, prior to feature307

extraction, the 32-point waveform with maximum amplitude308

was extracted from the set of 4-8 waveforms, as it provided309

the most information about the given neuron (Appendix A.2310

Line # 106-120; Appendix A.3 Line # 125-139). Feature ex-311

traction was done after the largest waveforms were extracted;312

11 features were calculated.313

Feature extraction & pre-processing. Figure 2 shows the two sub-314

types of PT neurons, PT_L and PT_U; it is seen that the315

waveforms look extremely similar; thus, feature extraction is316

needed to find differences between the cell types mathemati-317

cally.318

The first eight features were calculated identically to the319

single-channel dataset, with appropriate adjustments made320

due to the nature of the provided dataset (Appendix A.2 Line 321

# 122-213; Appendix A.3 Line # 141-232). 322

The final 3 features were the calculated channel of the 323

neuron, the shank in which it was measured, and the time 324

index at which it was detected (Appendix A.2 Line # 90-96; 325

Appendix A.3 Line # 107-115). 326

In addition to these 11 calculated features, the entire wave- 327

form of 32 units was appended to form the final 32 features. 328

(Appendix A.2 Line # 97-99; Appendix A.3 Line # 116-118). 329

After this preprocessing, the result was two separate ma- 330

trices (L & U) with n rows, with n equal to the number of 331

waveforms for a given cell type, and 44 columns, one for each 332

feature (excluding the first, which was the label). These matri- 333

ces were transferred to a Python IDE (Jupyter Notebook) for 334

further processing and classification via a .csv file intermediary. 335

Training - testing set creation. Further processing was performed 336

in Python 3 to create training and testing arrays in an identical 337

manner to the single-channel recording (See Appendix B for 338

full Python code). 339

MPN & CNN. MPN & CNN were then trained and tested using 340

PyTorch in an identical manner (See Appendix C & D for full 341

Python code of MPN & CNN training and testing). 342

ML algorithms. Seven additional machine learning algorithms 343

were tested identically as well (See Appendix E for full Python 344

code of additional ML algorithms). 345

Results 346

See Appendix F Tables S1 - S3 & Figs. S1 - S18 and Appendix 347

G Tables S4 - S6 & Figs. S19 - S36 for complete data and 348

graphical figures from the MPN, CNN, and other ML algo- 349

rithms for both single-channel and multi-channel recordings 350

(excluding t-SNE and K-means). 351

Single-channel recordings - ANNs. See Figs. S1 - S12 for 352

accuracy and variance plotted as a function of epoch set (1, 353

2, 3, 5, 10, 25, 50, & 100 epochs). Each figure was initialized 354

to 33% accuracy, to represent a random untrained classifier, 355

since there were three possible classes, along with a maximum 356

variance of 250,000. 357

In Figures 3 & 4, for the 3 feature subset in both the MPN 358

and CNN, accuracy rose to 70-72% and plateaued after 5 359

epochs for the MPN and 3 epochs for the CNN. This epochs 360

of convergence is a measure of the speed in which the classifier 361

learned to achieve a consistent accuracy and is indicated by 362

the color of the bars. Variance dropped to nearly 0 as accuracy 363

plateaued for both networks, indicating they were consistently 364

accurate. 365

For the 4 feature subset, accuracy and variance behaved 366

nearly identically, plateauing after the same number of epochs 367

for both the MPN and CNN. For 5 features,accuracy initially 368

rose but then dropped off as epochs reached 100, and variance 369

shot up to 200,000 for both networks. Even when accuracy 370

was at its highest and variance was it its lowest, indicating 371

some reliability at 3 epochs, the accuracy did not exceed 372

67-73%. 373

In the 8 feature subset, the networks behaved very differ- 374

ently. Figure 3 shows the MPN, with an accuracy of 55% but 375

extremely high variance indicated by the error bars. Thus, it 376

was unreliable despite decent accuracy. In contrast, Figure 4 377
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Fig. 3. Mean accuracy of MPN as a function of feature subsets, with the black error
bars representing variance of the network and the color of the bars represent the
epochs of convergence as per the legend

Fig. 4. Mean accuracy of the CNN as a function of feature subsets, with the black
error bars representing variance of the network and the color of the bars represent
the epochs of convergence as per the legend

shows the CNN with an incredibly low accuracy of 16%, worse378

than random guessing, even as variance was low; therefore, the379

CNN was consistently poor. While the networks did behave380

differently, they provided similar results: the trend towards381

poorer performance as more calculated features are added382

suggests the features become increasingly ambiguous between383

cell types.384

Figures 3 & 4 show promising results from both the MPN385

and CNN with 29 features. With convergence at just 3 epochs,386

both networks shot up to 88-89% as variance dropped to nearly387

0.388

The networks behaved similarly for all 37 attributes as they389

did for the 8 calculated features; for the MPN, accuracy was390

46%, while variance remained extremely high. For the CNN,391

accuracy again dropped below random guessing to 18% with392

low variance. This poor performance as the eight calculated393

features were added again indicates the feature calculation394

was not rigorous, or were potentially not selected ideally. This395

is especially possible in waveforms with different, unique spike396

shapes that may have thrown off the feature extraction.397

Single-channel recordings - ML algorithms. See Figs. S13 -398

S18 for detailed graphics of performance as a function of the399

variable hyperparameters.400

Fig. 5. Maximum mean accuracy of various ML algorithms

Random forests. Random forests performed extremely well in 401

classifying the FS, PT, and IT waveforms (see Figure 5). For 3 402

maximum features, a mean accuracy of 90.5% was seen, which 403

decreased as more calculated features were added; 4 features 404

yielded 89.1%, 5 features yielded 88.1%, and 8 features yielded 405

87.5%. When all 29 points of the waveform were used by the 406

random forest, a mean accuracy of 98.1% was achieved, which 407

decreased to 95.0% when all 37 attributes were used. Finally, 408

the RF algorithm achieved maximum accuracy at 100 decision 409

trees, with no significant difference between 100, 500, and 1000 410

trees, allowing for more rapid training. 411

K-means clustering. The k-means clustering was completely inac- 412

curate, yielding accuracies of no greater than random guessing 413

(33%); this occurred for all hyperparameters and feature sub- 414

sets. It is likely that this poor clustering is because the spikes, 415

though different visually, are difficult to distinguish by the 416

clustering algorithm due to perceived similarities. In addition, 417

there are likely enough anomalies with skewed spike waveforms 418

such that the remaining waveforms cannot be reasonably clas- 419

sified. 420

t-SNE clustering. The t-SNE clustering yielded an image file 421

in which each neuron cell type was assigned a color; green 422

corresponded to FS, blue to PT, and red to IT. Fig. S14 is 423

an example t-SNE clustering output file; all other iterations 424

of t-SNE clustering yielded a nearly identical cluster. The 425

clustering shows that t-SNE is essentially random (33%), likely 426

for a similar reason as K-means clustering. 427

K-nearest neighbors. K-nearest neighbors performed extremely 428

well in classifying the FS, PT, and IT waveforms (see Figure 5). 429

For 8 features, a mean accuracy of 83.8% was seen. When 430

all 29 points of the raw waveform were used by the KNN 431

algorithm, a mean accuracy of 96.2% was achieved, which 432

then decreased back to 83.9% when all 37 attributes were used. 433

The number of neighbors in the KNN algorithm was varied, 434

showing some difference between the 3, 5, and 10 neighbors 435

and indicating that 3 neighbors worked best, since there were 436

3 classes for the neurons in the ground-truth data. 437

Gradient tree boosting. Gradient tree boosting performed fairly 438

well in classifying the waveforms (see Figure 5). For 8 features, 439

a mean accuracy of 87.8% was seen. When all 29 points of the 440

waveform were used by the GTB algorithm, the mean accuracy 441

decreased to 85.9%, which followed an opposite pattern from 442
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Fig. 6. Mean accuracy of MPN as a function of feature subsets, with the black error
bars representing variance of the network and the color of the bars represent the
epochs of convergence as per the legend

the previous algorithms. Interestingly, with all 37 attributes,443

the mean accuracy shot up to 95.5%, revealing a different set444

of results than previously seen. The variation in the number445

of trees in the GTB algorithm showed some difference between446

the 100, 500, and 1000 trees and indicated that 100 trees447

worked best.448

Extra trees. The extra trees classifier performed the best in449

classifying the waveforms (see Figure 5). For 8 features, a450

mean accuracy of 92.1% was seen. When all 29 points of the451

waveform were used by the algorithm, a mean accuracy of452

98.3% was achieved, which then decreased slightly to 97.0%453

when all 37 attributes were used. Although the number of trees454

in the classifier was varied, there was no significant difference;455

100 trees is ideal.456

Logistic regression. Finally, logistic regression performed the457

worst of the non-clustering algorithms in classifying the458

waveforms, exhibiting a maximum accuracy of 83.0% with459

29 features. Although the inverse regularization strength in460

the classifier was varied, there was no significant difference461

between 1, 1.5, and 2.462

463

Of the ML algorithms tested, RF, KNN, GTB, and464

ET classification yielded an accuracy of >95% compared to465

the neural networks, which plateaued at 88-91%. In addition,466

excluding the GTB algorithm, the 29 points of the raw467

waveform worked best for all other ML algorithms, while the468

calculated features threw off the classifiers.469

Multi-channel recordings - ANNs. The classification in the470

multi-channel recordings was significantly more difficult than471

in single-channel recordings, due to the similarity between472

the two waveforms in question (Figure 2). However, effective473

classification with reasonable accuracy of these neuron cell474

types is invaluable in large-scale classification, as it would475

allow for the classification of neuron subtypes within a specific476

neuron type, to provide a better picture of neural circuitry477

and more specific relationships between neurons and behavior.478

See Figs. S19 - S30 for accuracy and variance plotted as a479

function of epoch set (1, 2, 3, 5, 10, 25, 50, & 100 epochs). Each480

figure is initialized to 50% accuracy to represent a random481

untrained classifier, since there were two possible classes, with482

a maximum variance of 70,000.483

Fig. 7. Mean accuracy of CNN as a function of feature subsets, with the black error
bars representing variance of the network and the color of the bars represent the
epochs of convergence as per the legend

Fig. 8. Maximum mean accuracy of various ML algorithms

Interestingly, seen in Figures 6 and 7, the ANNs did not 484

perform nearly as well for these recordings; this was likely 485

due to the aforementioned large similarity between the two 486

neuron cell types being classified. The accuracy, despite feature 487

selection or epochs for training, hovered around 50%, never 488

exceeding 68%, which was largely an anomaly. The relatively 489

high and inconsistent variance across feature sets and epochs 490

made any accuracy above 50% unreliable, and the networks 491

took 50-100 epochs to converge, indicating it trained slowly, if 492

at all. 493

Multi-channel recordings - ML algorithms. See Figs. S31 - S36 494

for detailed graphics of performance as a function of the vari- 495

able hyperparameters. 496

Random forests. Random forests performed fairly well in clas- 497

sifying the PT_L & PT_U waveforms (see Figure 8). For 3 498

maximum features, a mean accuracy of 75.5% was seen; 4 fea- 499

tures yielded 76.1%, 5 features yielded 76.9%, and 8 features 500

yielded 77.2%. When all 32 points of the waveform were used 501

by the random forest, the mean accuracy actually decreased 502

to 73.1%, which then increased to 75.2% with all 43 attributes. 503

Although the number of trees in the random forest algorithm 504

was varied, there was no significant difference between 100, 505

500, and 1000 trees; again, 100 trees is ideal. 506
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K-means clustering. The k-means clustering was completely inac-507

curate, yielding accuracies of no greater than random guessing508

(50%) for all hyperparameters and feature subsets. This is509

again because the spikes, though different visually, are diffi-510

cult to distinguish by the clustering algorithm due to some511

perceived similarities. In addition, there are likely enough512

anomalies in the dataset with skewed spike waveforms such513

that the remaining waveforms cannot be reasonably classified.514

t-SNE clustering. The t-SNE clustering yielded an image file515

in which each neuron cell type was assigned a color; green516

corresponded to PT_L, while red corresponded to PT_U.517

Fig. 32 is an example t-SNE clustering output file; all other518

iterations of t-SNE clustering with different feature selection519

and other hyperparameter tuning yielded a nearly identical520

cluster as shown. The clustering shows that t-SNE is random521

(33%), and cannot be effectively used to classify these neuron522

cell types, likely for a similar reason as K-means clustering.523

K-nearest neighbors. K-nearest neighbors performed the best in524

classifying the waveforms (see Figure 8). For 8 features, a525

mean accuracy of 81.6% was seen. When all 32 points of the526

raw waveform were used by the algorithm, a mean accuracy of527

68.5% was achieved, which then increased to 75.4% when all528

43 attributes were used. Although the number of neighbors529

in the KNN algorithm was varied, there was no significant530

difference between the 3, 5, and 10 neighbors; 3 is ideal since531

it is closest to the number of classes in the ground-truth data.532

Gradient tree boosting. Gradient tree boosting performed fairly533

well in classifying the waveforms. For 8 features, a mean534

accuracy of 78.4% was seen. When all 32 points of the raw535

waveform were used by the GTB algorithm, the mean accuracy536

decreased to 66.7%, and with all 43 attributes, the mean537

accuracy increased to 73.1%. The number of trees in the538

GTB algorithm was varied, showing some difference primarily539

between the 100 trees and 500-1000 trees. In this case, accuracy540

increased significantly by 2-6% when 500 and 1000 trees; thus,541

500 trees are ideal. This increase in optimal decision trees is542

likely due to the difficulty in classifying the waveforms.543

Extra trees. The extra trees classifier performed fairly well in544

classifying the waveforms as well (see Figure 8). For 8 features,545

a mean accuracy of 77.4% was seen. When all 32 points of546

the waveform were used by the algorithm, a mean accuracy of547

73.5% was achieved, which then increased slightly to 75.4%548

when all 43 attributes were used. Although the number of trees549

in the classifier was varied, there was no significant difference550

between the 100, 500, 1000, & 1500 trees; 100 trees is ideal551

for maximizing speed.552

Logistic regression. Finally, logistic regression again performed553

the worst of the non-clustering algorithms in classifying the554

waveforms. For 8 features, a mean accuracy of 61.7% was555

seen. When all 32 raw points of the waveform were used556

by the algorithm, a mean accuracy of 56.2% was achieved,557

which then increased slightly to 59.0% when all 43 attributes558

were used. The inverse regularization strength (IRS) in the559

classifier was varied, with some difference between the 1, 1.5,560

and 2; an IRS of 1 performed best.561

562

Of the ML algorithms tested, RF and ET classifica-563

tion yielded an accuracy of >75%, while KNN and GTB564

performed at >80% accuracy. The ANNs, in comparison, 565

were about 52% accurate on average. In contrast to the 566

single-channel recordings, the 8 calculated features worked 567

best for all ML algorithms, while the raw waveform threw off 568

the classifiers. 569

Discussion 570

In the single-channel recording in which ANNs were used, the 571

initial selection of features (top 3 and 4 features) and all 29 572

raw waveform points performed most reliably and accurately. 573

This implies that the remaining 4-5 calculated features were 574

not necessarily dependent on cell type, and may change in 575

certain cells. Thus, these features introduced ambiguity to the 576

classifiers, resulting in high variances and mediocre accuracy, 577

or low variances but low accuracy, making the feature subsets 578

unusable for classification. In addition, the highest and most 579

consistent accuracy was seen with the pure waveform alone 580

(88-91% accuracy), indicating that the networks were most 581

adept at selecting and extracting the appropriate features for 582

classification autonomously. This largely eliminates the need 583

for time-consuming data processing and feature extraction. 584

Training for acceptable accuracy and variance requires no 585

more than 10 epochs for both networks, or 50 epochs for 586

maximum accuracy and minimum variance, both of which 587

can be done within 24-72 hours. After this, running even 588

hundreds of thousands of waveforms through the network, 589

in the case of high density extracellular probes, produces a 590

reliable classification within seconds and can allow for near 591

real-time large-scale classification. 592

For the single-channel recordings in which the ML algo- 593

rithms was used, a maximum accuracy of 98% is seen with 594

other ML algorithms. The ideal machine learning algorithm is 595

extra trees due to its consistency and high performance across 596

feature sets; however, random forests, k-nearest neighbors, 597

and gradient tree boosting perform comparably. 598

For the multi-channel recordings in which the ANNs were 599

used for classification, the high similarity between the neuron 600

subtype waveforms had a large effect on the accuracy. It is 601

seen that ANNs are neither an accurate nor precise method for 602

classifying specific neuron cell subtypes on a large scale, with 603

a maximum accuracy of 68% regardless network architecture. 604

However, when the assorted ML algorithms are applied, a 605

maximum accuracy of 81.6% is seen. The ideal ML algorithm 606

is KNN due to its high performance with the 8 calculated 607

feature set. In addition, gradient tree boosting, random forests, 608

and the extra trees algorithm perform comparably. 609

The results given above are validated by the use of op- 610

togenetic tagging in the datasets that these analyses were 611

performed on, as the true identity of the neurons that were 612

classified was known. Thus, to distinguish between different 613

neuron cell types in the motor cortex, both neural networks 614

and specific machine learning algorithms allow for accurate and 615

consistent classification. In addition, to distinguish between 616

specific neuron cell subtypes in the motor cortex, neural net- 617

works are not a viable solution, but specific machine learning 618

algorithms accurately facilitate this large-scale classification. 619

In comparison to the current broad range of spike sorting 620

methods, many of which are specifically built for high-density 621

electrical probes, ANNs and ML algorithms classify neurons 622

at a much greater rate and with consistently high accuracy. 623

They only require 1 iteration of a bio-imaging technique, while 624
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other classification methods require some bio-imaging for every625

iteration of clustering, to provide ground-truth data for specific626

neurons in a brain region. Finally, they can accurately classify627

these neurons without the ambiguity that often results from628

spike sorting clustering methods. This research reveals a novel,629

reproducible method for enabling extremely rapid, near real-630

time large-scale classification at a relatively high accuracy,631

with widespread applications in all regions of the brain to632

better understand the connections between neural circuitry633

and behavior.634
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