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Microorganisms are critical in terrestrial carbon 
cycling because their growth, activity and 
interactions with the environment largely control 
the fate of recent plant carbon inputs, as well as 
the stability of assimilated carbon (Gleixner, 
2013; Schimel and Schaeffer, 2012). Soil carbon 
stocks reflect a balance between microbial 
decomposition and stabilization of organic 
carbon. The balance can shift under altered 
environmental conditions (Davidson and 
Janssens, 2006), and new research suggests that 
knowledge of microbial physiology may be 
critical for projecting changes in soil carbon and 
improving the prognosis of climate change 
feedbacks (Allison et al., 2010; Bradford et al., 
2016; Liang et al., 2017; Wieder et al., 2015). 
Still, predicting the ecosystem implications of 
microbial processes remains a challenge. Here we 
argue that this challenge can be met by 
identifying microbial life history strategies based 
on an organism’s phenotypic characteristics, or 
traits, and representing these strategies in 
models simulating different environmental 
conditions. 

What are the key microbial traits for 
microbial carbon cycling under environmental 
change? Microbial growth and survival in soil are 
impacted by multiple traits that determine 
responses to varying resource availability and 
fluctuating abiotic conditions (Wallenstein and 
Hall, 2012). Cellular maintenance activities 
include production of extracellular enzymes to 
degrade and acquire resources, biomolecular 

repair mechanisms, maintenance of cellular 
integrity, osmotic balance, and cell motility 
(Bradley et al., 2018; Geyer et al., 2016; Roller 
and Schmidt, 2015). It is conceivable that 
microbial investment into maintenance activities 
would be high in soils, with their highly 
heterogeneous and temporally variable resource 
distribution and stressful abiotic conditions like 
extremes of moisture, temperature, pH and 
salinity (Schimel et al., 2007).  

Life history strategies represent sets of 
traits that tend to correlate due to physiological 
or evolutionary tradeoffs, with different 
strategies favoured under different 
environmental conditions. For example, 
metabolic investments in degradative enzyme 
production for resource acquisition can reduce 
the efficiency of cellular growth (Figure 1, Frank, 
2010; Lipson, 2015). Furthermore, stress 
tolerance traits can trade off against investment 
in resource acquisition and growth yield (Figure 
1, Schimel et al., 2007; Manzoni et al., 2014; 
Sinsabaugh et al., 2013; Berlemont et al., 2014). 
Although some stress tolerance mechanisms may 
have collateral benefits, the costs must generally 
be paid at the expense of other physiological 
processes if resources are limited. Ultimately, 
microbial metabolic investments and the 
resulting tradeoffs among growth yield, resource 
acquisition and stress tolerance determine the 
contribution of microbial processes to ecosystem 
level carbon fluxes. Thus, information about 
microbial strategies can be useful in linking 
microbial physiology to ecosystem function. 
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Life history concepts in macroecology  

In macroecology, trade-offs in key fitness traits 
have been represented through conceptual 
theories of r- and K-selection, the “leaf economics 
spectrum” and Grime’s competitor-stress 
tolerator-ruderal (C-S-R) framework. The r- and 
K-selection concept recognises two functional 
groups of organisms: r-selected strategies have 
short life expectancy and large reproductive 
effort whereas K-selected strategies have long life 
expectancy and invest a smaller proportion of 
energy and resources into reproduction (Pianka, 
1970). Furthermore, leaf economics refers to the 
resource-driven tradeoffs among leaf traits that 
regulate photosynthesis (Reich et al., 1997; 
Wright et al., 2004). Grime’s C-S-R triangle is 
an alternative framework that enumerates three 
major plant life history strategies: competitors 

(C) excel at maximizing resource capture in 
productive and undisturbed systems, stress 
tolerators (S) prevail in continuously low-
resource and stressful conditions, and ruderals 
(R) occupy recently disturbed but less stressful 
habitats (Grime, 1977). Such tradeoffs have been 
shown to apply globally across biomes thus 
providing the quantitative basis to functionally 
represent the enormous taxonomic diversity of 
plant communities in vegetation models (Reich 
et al., 1997; Wright et al., 2004). 

 

Applying trait-based theories of life history in 
microbial ecology   

Following on macroecological theory, microbial 
ecologists have proposed trait-based 
classifications of microorganisms. The 
copiotroph-oligotroph continuum was proposed 
as analogous to the r- and K-selection theory for 
plants and animals (Fierer et al., 2007; Koch, 
2001). This classification was mostly based on 
microbial substrate preferences and growth rates 
and has since been widely applied in various 
contexts (Fierer et al., 2012; Thomson et al., 
2013). Several recent efforts have also applied C-
S-R life history strategies to microbial systems, 
particularly in the context of anthropogenic 
environmental change (Fierer, 2017; Ho et al., 
2013; Krause et al., 2014; Wood et al., 2018). Ho 
et al. (2013) classified methane-oxidising 
bacteria into C-S-R life strategies based on 
activity, recovery from disturbances, substrate 
utilization patterns and stress tolerance. Krause 
et al. (2014) later generalized the same 
framework for all bacteria while emphasizing 
that additional experiments would be needed to 
verify the microbial strategies and their 
underlying traits. Wood et al. (2018) justified a 
microbial C-S-R classification based on different 
traits derived from predicted functional datasets 
aimed at assessing the impact of cadmium and 
influence of the rhizosphere on microbial 
community assembly. These previous studies 
justify additional theory development and 
experimental evidence to validate the C-S-R 
framework in microbial ecology. 

Figure 1: Schematic showing cellular C flux that 
includes depolymerisation, substrate uptake, 
assimilation, dissimilation, biomass synthesis and 
non-growth production. Extracellular enzyme 
production represents investment in resource 
acquisition, stress protein production is linked to 
stress tolerance mechanisms, and biomass 
production reflects higher growth yield. Forked 
arrows signify metabolic points where hypothesized 
tradeoffs in traits might occur. The expected 
empirical relationships among the key traits are 
also shown.   
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Although a general theory of life history 
is attractive, the C-S-R strategies do not 
necessarily map clearly on to microbial systems. 
In the plant C-S-R framework, Grime (1977) 
defined habitats based on gradients in 
disturbance intensity and stress, including 
multiple abiotic and resource-based factors. 
These gradients were thought to select for C, S, 
or R strategies defined by plant traits including 
morphology, growth form, relative growth rate, 
leaf longevity, phenology, and seed production. 
Although some microbial traits like growth rate, 
biomass turnover, and dormancy may be 
analogous to plant traits, it can be challenging 
to apply a theory about autotrophic macro-
organisms to heterotrophic microbes. Thus, it 
remains unclear how C-S-R strategies emerge 
from underlying microbial traits. It is notable, 
however, that Grime (1977) himself suggested 
some traits useful in mapping fungi to the C-S-
R strategies: rapid growth and soluble 
carbohydrate use for ruderals, dense mycelium 
and rhizomorph production for competitors, and 
slow growth, persistent mycelium, and low spore 
production for stress tolerators.  

Moreover, given the vast metabolic 
diversity of microorganisms and the complexity 
of functional omics datasets, it is also unclear 
what dimensionality is needed to adequately 
describe microbial life history strategies 
(Laughlin, 2013). A three-dimensional trait space 
much like the C-S-R framework is a good start 
in advancing trait-based microbial ecology, while 
keeping in mind that increasing trait 
dimensionality may help better predict species 
distribution in a trait space. 

Here we propose a revised life history 
theory for microbes that builds on the work by 
Wood et al. (2018). Their framework justifies 
microbial C-S-R classifications based on 
predicted genomic traits. Traits of the 
competitor strategy focus on antibiotic 
production and resource acquisition through 
siderophores and membrane transporters. Stress-
tolerator traits relate to damage repair and 
maintenance of cell integrity. Ruderal microbial 
traits include investment in processes that 
promote rapid growth. Wood et al. also define a 
fourth group of traits related to foraging, such as 

chemotaxis and flagellum production. Our 
revised framework emphasizes three strategies 
somewhat analogous to Wood et al.’s version of 
C-S-R but reclassified to emphasize the link 
between carbon cycling and microbial 
physiology. We propose three main microbial life 
history strategies: high yield (Y), resource 
acquisition (A) and stress tolerance (S), or Y-A-
S (Figure 2A). 

 

The High Yield (Y) strategy 

We define yield as the amount of microbial 
biomass produced per unit of resource consumed 
(Hagerty et al., 2014; Manzoni et al., 2012). High 
yield strategists maximize the fraction of 
resource uptake that is allocated to growth 
processes by investing in central metabolism and 
associated assimilatory pathways such as amino 

Figure 2: A) Conceptual figure of microbial Y-A-S 
life history strategies. High yield (Y): maximises 
growth efficiency as a result of reduced investments 
in stress tolerance and resource acquisition; 
resource acquisition (A): preferential investment in 
cellular resource acquisition machinery; stress 
tolerance (S): preferential investment in stress 
tolerance mechanisms. B) Hypothesized strategies 
favoured under particular treatment combinations. 
The microbial three-dimensional Y-A-S triangle is 
arrayed on the combinations.  
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acid, nucleotide, and fatty acid synthesis. 
Conditions of high resource availability and 
minimum stress are expected to favour the high 
yield strategy (Figure 2B). Although parallel to 
the plant ruderal strategy, the Y strategy is not 
defined by growth rate, i.e. the change in 
microbial biomass per unit time (Bradley et al., 
2018; Geyer et al., 2016; Roller and Schmidt, 
2015). In-situ growth rate is not a coherent 
strategy but rather a complex emergent property 
that depends on both growth yield and the rate 
of resource acquisition. In fact, evidence suggests 
that growth rate and yield may have a negative 
relationship (Muscarella and Lennon, 2018; 
Roller et al., 2016) or a positive one (Ng, 1969) 
depending on the system. 

Growth rate and yield may also diverge 
within the Y strategy such that high yields are 
achieved with different growth rates. Although 
in-situ growth rate is an emergent property, the 
maximum potential growth rate (µmax) is a 
physiological trait that varies across microbial 
taxa (Dolan et al., 2017). There is some evidence 

for a rapid growth, low yield strategy 
characterised by enhanced metabolism, large cell 
sizes, high ribosomal production, and high 
maximum growth rates (Roller et al., 2016). 
However, the strength of the growth rate-yield 
tradeoff is somewhat inconsistent across 
individual, population, and community levels 
(Malik et al., 2018; Muscarella and Lennon, 2018; 
Roller et al., 2016; Van Bodegom, 2007). Overall, 
we argue that high yield is a coherent, trait-
based strategy whereas high growth results from 
combining any strategy with the right 
environmental conditions.  

 

The Resource Acquisition (A) strategy 

Our resource acquisition strategy replaces the 
plant competitor strategy because microbial 
competition is mainly over resources. In fact, one 
could also argue this is true for plants. In soils, 
microorganisms produce extracellular enzymes to 
break down complex resources (Table 1, Allison 
et al., 2010; Frank, 2010; Lipson, 2015). Thus, 

Table 1: Y-A-S strategies, underlying traits and tools to extract trait information. 

Strategies Traits Estimation technique and marker 
Growth  
yield  
(Y) 

Growth per unit resource - Omics (genomics, transcriptomics, proteomics): 
markers not known but likely central carbon 
metabolism, amino acid, fatty acid, and nucleotide 
synthesis.   
- Stable isotope tracing into biomass and respired CO2 

- Biomass and respiration measurements  
Resource 
acquisition 
(A) 

Degradation of complex 
substrates  

- Extracellular enzyme assays 
- Omics: Glycoside hydrolase genes, other CAZy 
database genes, genes for extracellular enzymes 

Motility: resource discovery - Omics: genes for flagellar motility, chemotaxis 

Uptake of simple substrates  - Omics: transporters, siderophores  

Stress 
tolerance  
(S) 

Biomolecular damage 
repair  

- Omics: σ factors, molecular chaperons eg. 
Chaperonin GroEL, DnaK 

Osmolyte production  - Omics + metabolomics: markers for synthesis of 
trehalose, glycine betaine, amino acids related to 
osmotic stress 

Protection from desiccation  - Omics: markers for synthesis of extracellular 
polysaccharide  

Maintenance of cellular 
integrity 

- Omics: markers for synthesis of cell membrane and 
wall components 
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resource acquisition by heterotrophic microbes 
depends on uptake of depolymerised substrates 
using various membrane transporters (Table 1). 
The level of investment in extracellular enzyme 
production often reflects substrate status 
(quality and quantity) of the local environment 
(Allison and Vitousek, 2005). Wood et al.’s 
foraging traits can readily be assimilated into our 
resource acquisition strategy. However, contrary 
to Wood et al.’s hypothesis that investment in 
resource acquisition traits is higher in resource 
abundant environments like the rhizosphere, we 
propose that this strategy will prevail in low 
resource conditions where microbes would be 
under selection to increase resource capture at 
the expense of growth yield. It is also likely that 
organisms have acquisition strategies that are 
either uptake optimised (when precursors 
compounds are readily available in the 
environment) or depolymerization optimised 
(when resources are scarce and complex) or a 
combination of both (Malik et al., 2018; Zhalnina 
et al., 2018). 

 

The Stress Tolerator (S) strategy 

We adopt Grime’s stress tolerance strategy with 
little modification because it aligns well across 
plants and microbes. Soil microbes experience a 
variety of stressors that change their physico-
chemical environment and to which they respond 
through physiological acclimation mechanisms in 
order to survive and grow (Schimel et al., 2007). 
Specific traits for stress tolerance depend on the 
kind of abiotic stress experienced by microbial 
communities. Regardless of the form of stress 
imposed, certain global patterns in phenotypic 
expression are common, including σ factors or 
molecular chaperons aimed to minimise or 
mitigate biomolecular damage (Table 1, Finn et 
al., 2016; Hecker and Völker, 2001; Malik et al., 
2017; Wood et al., 2018). In cases such as high 
acidity or salinity, microbes employ various 
strategies to maintain cellular integrity and 
osmotic balance through changes in the structure 
and composition of cell envelopes (Wood, 2015). 
Under drought scenarios, stress tolerance 
strategies involve production of osmolytes like 
trehalose and glycine betaine or synthesis of 

extracellular polymeric substances (EPS)—
usually polysaccharides—to protect cells from 
desiccation (Table 1, Bouskill et al., 2016; 
Schimel et al., 2007). Thus, microbes exposed to 
suboptimal abiotic conditions would possess 
traits linked to stress tolerance at the expense of 
other traits.  

 

Strategies under varying conditions  

Tradeoffs in resource allocation among the  
Y-A-S strategies should prevent microbes from 
excelling at multiple strategies. Different 
strategies should be favoured under different 
environmental conditions arising from spatial or 
temporal variability in resource status and 
abiotic conditions (Figure 2B). For example, 
resource limitation or abiotic stress should select 
against Y-strategies because of a need for 
investment in costly resource acquisition or 
stress-tolerance mechanisms. In environments 
with high availability of polymeric resources (e.g. 
cellulose) but few simple resources (e.g. glucose), 
A-strategists should outcompete Y-strategists by 
investing in extracellular enzyme machinery. 
Thus, A-strategists catalyse polymer 
decomposition and soil carbon loss, whereas Y-
strategists may convert monomeric substrates 
into more stable microbial biomass residues 
(Kallenbach et al., 2016). These examples 
illustrate how life history tradeoffs can have 
consequences for soil carbon dynamics.  

 

Approaches for measuring and testing Y-A-S 
strategies 

Technological innovations like next generation 
sequencing have massively improved our 
understanding of the taxonomic and functional 
diversity of soil microbial communities and their 
shifts in response to anthropogenic influences 
(Fierer, 2017). Current approaches have mostly 
focused on identifying taxonomic and functional 
responses to environmental changes. However, 
integration of these large microbial molecular 
datasets with process rate measurements remains 
a challenge, thereby making it difficult to link 
microbial diversity and function with ecosystem 
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processes (Krause et al., 2014; Rocca et al., 
2015). More efforts are needed to determine how 
microbial genomic information translates into 
traits that influence abundance, metabolite 
production, and ultimately carbon cycling rates 
in ecosystems. 

A variety of omic tools are now available 
to assess the functional response of microbes to 
environmental change. However, information 
overload presents challenges for incorporation of 
trait data into ecosystem models. This challenge 
can be met by simplifying the data through the 
Y-A-S framework and fitting genes, transcripts, 
proteins and metabolites into our hypothesised 
three-dimensional trait space (Fierer, 2017; 
Krause et al., 2014). Population-level trait 
information can be gathered from sequenced 
genomes where cultured microbial strains are 
available (Zhalnina et al., 2018). In other cases, 
individual or population genomes can be 
assembled from culture-independent shotgun 
metagenomic datasets; this novel approach is 
gaining popularity as it facilitates physiological 
investigations of hitherto uncultured taxa (Hu et 
al., 2016). In addition, traits can be measured at 
the community level to integrate tradeoffs across 
populations and characterise trait impacts on 
ecosystem function (Geyer et al., 2016; Hall et 
al., 2018). Many phenotypic traits can also be 
measured directly, even if the underlying genetic 
mechanisms are complex and cannot be 
determined. 

 

Omics and physiological techniques to quantify 
traits  

Growth yield (synonymous with growth 
efficiency) is a challenging property to extract 
from omics datasets because we still do not 
understand its genetic determinants. However, 
there are quantitative methods for estimating 
growth yield and its components (Table 1, Geyer 
et al., 2016). Approaches include measuring the 
change in biomass proxies and respiratory loss or 
following a tracer—commonly a stable isotope—
in cellular fractions. Yield is often measured as 
the proportion of C substrate invested into 
biomass relative to that lost through respiration. 

Recent studies emphasize, though, that growth 
yield is actually an emergent and dynamic 
property of multiple underlying traits related to 
cellular maintenance, protein synthesis and 
export, cellular stoichiometry, and respiratory 
pathways  (Hagerty et al., 2018; Manzoni et al., 
2012). This complexity creates challenges for 
measuring growth yield but emphasizes the trait 
tradeoffs inherent in the high-yield (Y) strategy. 
Increased respiration associated with enzyme 
production (A strategy) or maintenance of 
cellular integrity (S strategy) should directly and 
negatively affect measured growth yield. 

Resource acquisition traits have been 
estimated with omics and biochemical techniques 
at both the population and community levels 
(Table 1). Extracellular enzyme assays provide 
estimates of microbial enzyme activity and the 
potential to degrade various complex substrates. 
Genes and transcripts encoding these enzymes 
can also be predicted from omics datasets. In 
addition, there is growing interest in linking 
Carbohydrate-Active Enzyme (CAZy) database 
genes to microbial substrate degradation and 
resource acquisition potential. The CAZy 
database includes genes that code for enzymes 
that synthesise and break down complex 
carbohydrates and glycoconjugates (Cantarel et 
al., 2009). For example, glycoside hydrolases 
(GH) are involved in plant cell wall degradation 
and act on glycosidic bonds between 
carbohydrates or between carbohydrates and 
non-carbohydrate moieties (Berlemont, 2017; 
Naumoff, 2011). Once the complex polymers are 
degraded into simpler molecules, they are taken 
up by transporters (Figure 1). A variety of 
transporters, particularly the ATP-binding 
cassette transporters (ABC-transporters), with 
differential substrate specificity can also be 
predicted from omics datasets. Greater 
investment in uptake transporters has been 
observed in root-associated microorganisms with 
plentiful substrates allowing the cells to reduce 
investment into extracellular enzyme production 
and increase their growth yield (Malik et al., 
2017; Zhalnina et al., 2018). 

Stress tolerance traits in the form of σ 
factors, molecular chaperons or specific 
physiological adaptations can be extracted from 
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widely used omics tools (Finn et al., 2016; Malik 
et al., 2018). Some low molecular weight 
metabolites synthesised in response to 
environmental stimuli can be quantified using  
mass spectrometry tools like LC-MS and FT-
ICRMS (Table 1, Tfaily et al., 2015; Swenson et 
al., 2018; Bouskill et al., 2016).  

 

Carbon cycling implications of tradeoffs in  
Y-A-S traits 

We posit that microbial physiological 
investments and the resulting tradeoffs among 
key traits determine the contribution of 
microbial processes to ecosystem level carbon 
fluxes. Microbial physiological responses and the 
resulting effects on growth yield can affect 
carbon balance through two main mechanisms. 
On the one hand, microbial biomass is thought 
to contribute significantly to organic matter 
accumulation and hence to the genesis of soil 
organic matter (Gleixner, 2013; Kallenbach et 
al., 2016). On the other hand, microbial biomass 
and extracellular enzymes contribute to plant 
litter and soil organic matter degradation.  

Under our Y-A-S framework, Y-
strategists with increased investment into 
growth and biomass production would 
contribute to microbial residue formation that 
can be stabilized in the soil organo-mineral 
matrix. In contrast, A-strategies should 
contribute more to decomposition and carbon 
loss through investment in extracellular enzyme 
production (Kallenbach et al., 2016; Schimel and 
Schaeffer, 2012). Carbon impacts of S-strategists 
might depend on the type of stress compounds 
produced, with more complex compounds like 
extracellular polymeric substances (EPS) 
contributing more to carbon storage than simple 
compounds like osmolytes (Bouskill et al., 2016; 
Schimel et al., 2007). By diverting investments 
away from growth, S-strategists could also 
reduce soil carbon accumulation. The effect of 
microbial physiological adaptation to climate 
change and its consequences for soil C cycling 
could thus be determined by assessing shifts in 
microbial Y-A-S life history strategies.  

Approaches to modelling Y-A-S strategies to 
predict carbon fluxes 

Representing microbial diversity has been a big 
challenge for models projecting ecosystem 
responses to environmental change (Hall et al., 
2018). This challenge introduces uncertainty 
that affects model predictions of future climatic 
change (Bradford et al., 2016; Sulman et al., 
2018). Such uncertainties imply a need for better 
mechanistic models, and improved 
representation of microbial diversity and 
physiology could increase the accuracy of 
projected soil carbon fluxes.  

Previously, functional traits have been 
incorporated into ecosystem models like the 
MIcrobial-MIneral Carbon Stabilization 
(MIMICS) model to predict the biogeochemical 
response of soil organic matter decomposition 
and stabilization (Wieder et al., 2015). In this 
model, copiotrophic and oligotrophic functional 
groups represent fast-growing low yield and slow-
growing high yield strategists, respectively. 
However, this classification may be insufficient 
to accommodate the vast metabolic flexibility of 
soil microbial populations (Fierer, 2017; Krause 
et al., 2014). In addition, traits for acquisition of 
complex resources and tolerance to abiotic 
stressors are difficult to incorporate into the 
copiotrophic-oligotrophic dichotomy (Schimel et 
al., 2007; Schimel and Schaeffer, 2012).  

Benefiting from the accumulation of trait 
data (Reich et al., 1997; Sakschewski et al., 2015; 
Wright et al., 2004), trait-based approaches are 
emerging in vegetation modelling as a paradigm 
shift from approaches based on aggregated plant 
functional types (Scheiter et al., 2013). For 
example, a trait-based vegetation model was 
successfully applied to uncover the roles of trait 
diversity in conferring resilience to the Amazon 
forests under climate change (Sakschewski et al., 
2016, 2015). The model implemented tradeoffs 
among five major plant traits that determine 
growth and mortality of individual trees.  

Likewise, a trait-based modelling 
framework based on microbial Y-A-S strategies 
holds promise for representing the immense 
diversity of microbial communities in simulations 
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of system-level processes at various spatial scales  
(Hall et al., 2018). The cellular mechanisms 
underlying tradeoffs in key physiological traits 
can be incorporated into microbial functional 
models like MIMICS to reveal how these 
tradeoffs structure microbial communities and 
their resulting carbon cycle functions. Thus, 
embracing microbial complexity through the 
trait-based modelling approach, facilitated by 
the omics-derived data, would enable better 
predictions of ecosystem processes at larger 
temporal and spatial scales. 

Models representing continuous variation 
in traits across taxa are particularly promising 
tools for predicting biogeochemical processes 
based on the Y-A-S framework. For example, 
DEMENT is a local scale, trait-based model that 
simulates litter decomposition and soil carbon 
transformations by diverse microbial 
communities (Allison, 2014, 2012). The model 
uses relationships between Y and A traits as a 
mechanistic basis for predicting how microbial 
communities and carbon cycling processes will 
respond to future environmental change (Figure 
3, Webb et al., 2010). Yield in the model is a 
function of multiple factors, including substrate 
type and stoichiometry, enzyme production 
rates, uptake investment, and temperature. The 
most recent version of DEMENT also includes a 
simple representation of drought stress tolerance 
(Allison and Goulden, 2017). After incorporating 
trait tradeoffs derived from omics or other data 

sources for individual taxa, DEMENT projects 
community responses and carbon cycling 
consequences under simulated environmental 
conditions. Model outputs can be validated with 
in-situ trait distributions at a community level 
or with ecosystem processes like organic matter 
decomposition rates (Figure 3). This validation 
approach can also be applied to other individual-
based models that simulate spatial structuring of 
microbial populations based on functional groups 
characterised by traits (Ginovart et al., 2005; 
Kaiser et al., 2014). Based on the successful trait-
based modelling of global vegetation, we expect 
rapid progress in developing local- to global-scale 
models that incorporate microbial traits.  

 

Conclusions 

There is growing interest in applying trait-based 
concepts to predict the microbial mechanisms 
driving global biogeochemical cycles. By 
adapting several theories from macroecology, we 
define microbial high yield, resource acquisition, 
and stress tolerator strategies based on key traits 
that are linked to organismal fitness. Our Y-A-S 
framework can guide new empirical and 
modelling studies on the mechanisms driving soil 
carbon fluxes. We anticipate that these 
approaches will improve our understanding of 
the physiological constraints facing microbes 
under anthropogenic influence. By linking 
population-level response traits to community 

Figure 3: Summary of the proposed trait-based framework incorporating microbial life history strategies 
into the DEMENT model to predict community response and its ecosystem consequences under 
environmental change (adapted from Allison and Goulden, 2017). 
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and ecosystem processes, our life history theory 
can improve predictive understanding of soil C 
responses to future climatic change.  
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