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Abstract: Cancers are routinely classified into subtypes according to various fea-1

tures, including histopathological characteristics and molecular markers. Previous2

genome-wide association studies have reported heterogeneous associations between3

loci and cancer subtypes. However, it is not evident what is the optimal modeling4

strategy for handling correlated tumor features, missing data, and increased degrees-5

of-freedom in the underlying tests of associations. We propose to test for genetic6

associations using a mixed-effect two-stage polytomous model score test (MTOP).7

In the first stage, a standard polytomous model is used to specify all possible sub-8

types defined by the cross-classification of the tumor characteristics. In the second9

stage, the subtype-specific case-control odds ratios are specified using a more parsi-10

monious model based on the case-control odds ratio for a baseline subtype, and the11

case-case parameters associated with tumor markers. Further, to reduce the degrees-12

of-freedom, we specify case-case parameters for additional exploratory markers using13

a random-effect model. We use the Expectation-Maximization (EM) algorithm to14

account for missing data on tumor markers. Through simulations across a range15

of realistic scenarios and data from the Polish Breast Cancer Study (PBCS), we16

show MTOP outperforms alternative methods for identifying heterogeneous asso-17

ciations between risk loci and tumor subtypes. The proposed methods have been18

implemented in a user-friendly and high-speed R statistical package called TOP19

(https://github.com/andrewhaoyu/TOP).20
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variants; Score tests; Two-stage polytomous model.22
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I. INTRODUCTION23

Genome-wide association studies (GWAS) have identified hundreds of single nucleotide24

polymorphisms (SNPs) associated with various cancers (MacArthur and others , 2016). How-25

ever, many cancer GWAS have often defined cancer endpoints according to specific anatomic26

sites, and not according to subtypes of the disease. Many cancers consist of etiologically27

and clinically heterogeneous subtypes that are defined by multiple correlated tumor charac-28

teristics. For instance, breast cancer is routinely classified into subtypes defined by tumor29

expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal30

growth factor receptor 2 (HER2) (Perou and others , 2000; Prat and others , 2015).31

Increasing numbers of epidemiologic studies with tumor specimens are allowing the char-32

acterization of cancers at the histological and molecular levels (Cancer Genome Atlas Re-33

search, 2014; Network, 2012), providing tremendous opportunities to investigate for potential34

distinct etiological pathways between cancer subtypes. For example, a breast cancer ER-35

negative specific GWAS reported 20 SNPs that were more strongly associated with the risk36

of developing ER-negative than ER-positive disease (Milne and others , 2017). Previous37

studies also suggested traditional breast cancer risk factors, such as age, obesity, and hor-38

mone therapy use, were heterogeneously associated with the risk of breast cancer subtypes39

(Barnard and others , 2015).40

The most common procedure for testing for associations between risk factors and cancer41

subtypes is by fitting a standard logistic regression for each subtype versus a control group,42

then accounting for multiple testing. However, this procedure has several limitations. First,43
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it’s common for cancer cases to have missing tumor marker data, leading to many cancer44

cases with no subtype definition, and often these cases are dropped from the model. Second,45

the tumor markers that defined the subtypes are commonly highly correlated with each46

other. Testing each subtype separately without modeling the correlation limits the power47

of the model. Finally, as the number of tumor markers increases, the number of cancer48

subtypes dramatically increases, thus the increased degrees of freedom penalizes the power49

of the model.50

A two-stage polytomous logistic regression was previously proposed to characterize sub-51

type heterogeneity of a disease according to the underlying disease characteristics (Chatter-52

jee, 2004). The first stage of this method uses a polytomous logistic regression (Dubin and53

Pasternack, 1986) to model subtype-specific case-control odds ratios. In the second stage,54

the subtype-specific case-control odds ratios are decomposed into a case-control odds ratio55

for a reference subtype, a case-case odds ratio for each tumor characteristic, and higher-order56

interactions between the tumor characteristics. The two-stage model can reduce the degrees57

of freedom by constraining some or all of the higher-order interactions to be 0. Moreover,58

the second stage case-case odds ratios can be interpreted as the measures of etiological59

heterogeneity for tumor characteristics.60

Although the two-stage model can improve the power compared to fitting standard logistic61

regressions for each subtype (Chatterjee, 2004; Zabor and Begg, 2017), the two-stage model62

does have notable limitations and has not been widely applied to analyze data on multiple63

tumor characteristics. First, similar to standard logistic regression, the two-stage model can64

not handle missing tumor characteristics, which is common in epidemiologic studies. Second,65
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the two-stage model estimation algorithm places high demands on computing power and is66

therefore not readily applicable to large datasets. Finally, although the two-stage model67

can reduce the multiple testing burdens compared to traditional methods, as the number68

of tumor characteristics increases, the two-stage model can still have substantial power loss69

due to the degrees of freedom penalty.70

In this paper, we propose a series of computational and statistical innovations to perform71

computationally scalable and statistically efficient association tests in large cancer GWASs72

that incorporate tumor characteristic data. Within this two-stage modeling framework, we73

propose three alternative types of hypotheses for testing genetic associations in the presence74

of tumor heterogeneity. As the degrees of freedom for the tests can be large in the presence75

of many tumor characteristics, we propose modeling parameters associated with exploratory76

tumor characteristics using a random-effect model. We then derive the score tests under the77

resulting mixed-effect model while taking into account missing data on tumor characteristics78

using an efficient EM algorithm (Dempster and others , 1977). All combined, our work79

represents a conceptually distinct and practically important extension of earlier methods80

based on mixed-/fixed-effect models (Lin, 1997; Sun and others , 2013; Wu and others , 2011;81

Zhang and Lin, 2003) to the novel setting of modeling genetic associations with multiple82

tumor characteristics.83

The paper is organized as follows. In Section ??, we describe the proposed three different84

hypothesis tests, the missing data algorithm, and the score tests. In Section III, we present85

the simulation results for type I error, power and computation time. In Section IV, the86

proposed methods are illustrated with applications using data from the Polish Breast Cancer87
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Study (PBCS). In Section V, we discuss the strengths and limitations of the methods and88

future research directions.89

II. TWO-STAGE POLYTOMOUS LOGISTIC MODEL90

The details of the two-stage polytomous logistic model have been described earlier (Chat-91

terjee, 2004). We briefly summarize them for completeness. Suppose a disease can be clas-92

sified using K disease characteristics, and each characteristic k can be classified into Mk93

categories; thus, the disease can be classified into M ≡ M1 ×M2 · · · ×MK subtypes. For94

example, breast cancer can be classified into eight subtypes by three tumor characteristics95

(ER, PR, and HER2), each of which is defined as either positive or negative.96

Let Di denote the disease status of subject i in the study such that Di ∈ {0, 1, 2, · · · ,M}97

and i ∈ {1, · · · , N}. Di = 0 represents a control, and Di = m represents a case with98

disease subtype m. Let Gi be the genotype for subject i, and Xi be a P × 1 vector of99

other covariates, where P is the total number of other covariates. In the first stage model,100

a “saturated” polytomous logistic regression model is constructed as follows:101

Pr(Di = m|Gi,Xi) =
exp(βmGi + XT

i ηm)

1 +
∑M

m=1 exp(βmGi + XT
i ηm)

, m ∈ {1, 2, · · · ,M}, (1)

where βm and ηm are the regression coefficients for the SNP and other covariates with the102

mth subtype, respectively.103

Because each cancer subtype is defined through a unique combination of the K tumor104

characteristics, we can always alternatively index the parameters βm as {βs1s2···sK}, where105

sk ∈ {0, 1} for binary tumor characteristics, and sk ∈ {t1 ≤ t2 ≤ · · · ≤ tMk
} for ordinal106
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tumor characteristics with t1, . . . , tMk
as a set of ordinal scores for Mk different levels. With107

this new index, the log odds ratios in the first stage can be represented as follows:108

βs1s2...sK = θ(0) +
K∑

k1=1

θ
(1)
k1
sk1 +

K∑
k1=1

K∑
k2>k1

θ
(2)
k1k2

(sk1sk2) + ...+ θ
(K)
12...K(s1s2 . . . sK), (2)

where θ(0) represents the case-control log odds ratio for a reference disease subtype, θ
(1)
k1

109

represents the main effect of k1th tumor characteristic, θ
(2)
k1k2

represents the second order110

interaction between k1th and k2th tumor characteristics , and so on. A reference level can111

be defined for each tumor characteristic, and the reference disease subtype is jointly defined112

by the combination of the K tumor characteristics.113

The reparameterization in 2 provides a way to decompose the first stage parameters to114

a lower dimension. We can constrain different main effects or interaction effects to be 0 to115

specify different second stage models. The first stage and second stage parameters can be116

linked with a matrix form, β = ZGθ = ZG

[
θ(0) θTH

]T
, where β = (β1, β2, . . . , βM)T is a117

vector of first stage case-control log odds ratios for all the M subtypes, θ(0) is the case-control118

log odds ratio for a reference subtype, and θH is a vector containing the main effects and119

interactions effects in the second stage. We will refer to θH as case-case parameters, and120

θ = (θ(0),θTH)T as the vector of second stage parameters. ZG is the second stage design121

matrix connecting the first stage and second stage parameters. By constraining different122

second stage main effects or interaction effects to be 0, we can construct different ZG to123

build different two-stage models.124

Up to now, we have only described second stage decomposition for the regression coef-125

ficients of G. The second stage decomposition can also be applied to the other covariates,126

the details of which are in Supplementary Section 1. We suggest not to perform second127
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stage decomposition on the intercepts parameters of the first stage polytomous model, i.e.,128

the coefficients of intercepts are saturated, because decomposing the intercepts equates to129

making assumptions on the prevalence of different cancer subtypes, which can potentially130

lead to bias. Moving forward, we use ZX to denote the second stage design matrix for the131

other covariates X, λ to denote the second stage parameters for X, and Z to denote the132

second stage design matrix for all the covariates.133

A. Hypothesis test under two-stage model134

The first stage case-control log odds ratios of subtypes can be decomposed into the second135

stage case-control log odds ratio of the reference subtype, main effects and interaction effects136

of tumor characteristics. This decomposition presents multiple options for comprehensively137

testing for the association between a SNP and cancer subtypes. The first hypothesis test138

is the global association test, HA
0 : θ =

[
θ(0) θTH

]T
=
[
0 0T

]T
versus HA

1 : θ 6= 0, which139

tests for an overall association between the SNP and the disease. Because θ = 0 implies140

β = 0, rejecting this null hypothesis means the SNP is associated with at least one of the141

subtypes. The null hypothesis can be rejected if the SNP is significantly associated with a142

similar effect size across all subtypes (i.e. θ(0) 6= 0, θH = 0), or if the SNP has heterogeneous143

effects on different subtypes (θH 6= 0).144

The second hypothesis test is the global heterogeneity test, HEH
0 : θH = 0 versus HEH

1 :145

θH 6= 0. This test simultaneously evaluates the etiologic heterogeneity with respect to a146

SNP and all the tumor characteristics. Rejecting this null hypothesis indicates that the first147
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stage case-control log odds ratios are significantly different between at least two different148

subtypes.149

Notably, the global heterogeneity test does not identify which tumor characteristic(s)150

is/are driving the heterogeneity. To identify the tumor characteristic(s) responsible for151

observed heterogeneity, we propose the individual tumor marker heterogeneity test, HIH
0 :152

θH(k) = 0 versus HIH
1 : θH(k) 6= 0, where θH(k) is one of the case-case parameters of θH. The153

case-case parameter (θH(k)) provides a measurement of etiological heterogeneity according154

to a specific tumor characteristic (Begg and Zhang, 1994). In the breast cancer example, we155

can directly test HIH
0 : θ

(1)
ER = 0 versus HIH

1 : θ
(1)
ER 6= 0. Rejecting the null hypothesis provides156

evidence that the case-control log odds ratios of ER+ and ER- subtypes are significantly157

different.158

B. EM algorithm accounting for cases with incomplete tumor characteristics159

In the previous sections, all the tumor characteristics were assumed to have no miss-160

ing data. However, in epidemiological research, it is very common to have missing tumor161

characteristics. This problem becomes exacerbated as the number of tumor characteristics162

grows. Restricting to cases with complete tumor characteristics can reduce statistical power163

and potentially introduce selection bias. To solve this problem, we propose to use the EM164

algorithm (Dempster and others , 1977) to find the maximum likelihood estimate (MLE) of165

the two-stage model, while incorporating all available information from the study. Let Tio166

be the observed tumor characteristics of subject i, and Yim = I(Di = m) denote whether167

the ith subject is disease subtype m. Given Tio, the possible subtypes for subject i, denoted168
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as Yio = {Yim : Yim that is consistent with Tio}, are within a limited subset of all possible169

tumor subtypes. We assume that (Yi1, Yi2, . . . , YiM , Gi,Xi) are independently and identically170

distributed (i.i.d.), and that the tumor characteristics are missing at random (MAR). Let171

δ = (θT ,λT )T represent the second stage parameters of both G and X. Given the notation,172

the E step of them EM algorithm at the vth iteration is173

174

Y E
im = E(Yim|Gi,Xi,Tio; δ

(v)) =
Pr(Yim = 1|Gi,Xi; δ

(v))I(Yim ∈ Yio)∑
Yim∈Yio Pr(Yim = 1|Gi,Xi; δ(v))

, (3)

where Y E
im is the probability of the ith person to be the mth subtype given his observed175

tumor characteristics (Tio), genotype (Gi), and other covariates (Xi). I(Yim ∈ Yio) denotes176

whether the mth subtype for the ith subject belong to the subsets of possible subtypes given177

the observed tumor characteristics. The M step at the vth iteration is178

δ(v+1) = arg max
δ

N∑
i=1

[
(1−

M∑
m=1

Y E
im) logPr(Di = 0|Gi,Xi)+

M∑
m=1

Y E
im log

{
Pr(Di = m|Gi,Xi)

}]
.

(4)

The M step can be solved through a weighted least square iteration. Let Ym = (Y1m, . . . , YNm)T ,179

and Y = (YT
1 , . . . ,Y

T
M)T . Let C = (G,X), and CM = IM ⊗ C. Let W = D − AAT ,180

D = diag(P), P = E(Y|C; δ), and A = D(1M ⊗ IN). During the tth iteration of the181

weighted least square, Y∗(t) = W(t)(YE − P(t)) + CMZδ(t), where P(t) and W(t) are re-182

spectively defined as P and W evaluated at the δ(t). The weighted least square update is183

δ(t+1) = (ZTCT
MW(t)CMZ)−1ZTCT

MY∗(t) . As t→∞, the weighted least square interaction184

converges to δ̂(v+1), which will be used in next iteration. The EM algorithm will converge185

to the MLE of the second stage parameters (denoted as δ̂), and the observed information186

matrix I is I = ZTCT
M(W−Wmis)C

T
MZ, where Wmis = Dmis−AmisA

T
mis, Dmis = diag(Pmis),187
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Pmis = E(Y|C,To; δ), and Amis = Dmis(1M ⊗ IN) (Louis, 1982). More details of the EM188

algorithm are in Supplementary Section 2.189

With the MLE of the second stage parameters of G as θ̂, we can construct the the Wald190

statistics as θ̂∗T Σ̂−1θ̂∗ ∼ χ2
l for the global association test, global etiological heterogeneity191

test, and individual tumor characteristic heterogeneity test using the corresponding second192

stage parameters and covariance matrix, where the degrees of freedom l equal the length of193

θ̂∗.194

C. Fixed-effect two-stage polytomous model score test (FTOP)195

Although the hypothesis tests can be implemented through the Wald test, estimating196

the model parameters for all SNPs in the genome is time-consuming and computationally197

intensive. In this section, we develop a score test for the global association test assuming198

the second stage parameters to be fixed. The score test only needs to estimate the second199

stage parameters of X under the null hypothesis once, making it much more computationally200

efficient than the Wald test. Moreover, the EM algorithm only needs to be implemented201

once under the null hypothesis. Since we don’t perform any second stage decomposition on202

the intercept parameters in the first stage polytomous model, the correlations between the203

tumor characteristics are kept close to the empirical correlations for tumor markers. Most204

of the imputation power is due to the high correlation between the tumor markers. In the205

breast cancer example, the correlation between ER and PR is 0.63, between ER and HER2206

is -0.16, and between PR and HER2 is -0.17 (Supplementary Table 1). Also, The association207

of X with the tumor markers can improve the power of the EM algorithm. Since a single208
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SNP G usually has a small effect, the fact that the effect of individual G is not incorporated209

in the EM algorithm itself doesn’t result in much loss of efficiency.210

Let GM = IM⊗G, and XM = IM⊗X. Under the null hypothesis, H0 : θ = 0, let λ̂ denote211

the MLE of λ under the null hypothesis. The efficient score of θ is Uθ(λ̂) = ZT
GGT

M(Y−Pf),212

where Pf = Eθ=0(Y|X; λ̂). Let Wf = Df −AfA
T
f , with Pf = Eθ=0(Y|X,To; λ̂), Pf,mis =213

E(Y|X,To; λ̂), Df = diag(Pf −Pf,mis) and Af = Df(1M ⊗ IN). The corresponding efficient214

information matrix of Uθ(λ̂) is215

Ĩ = Iθθ − IθλI−1λλIλθ, (5)

where Iθθ = ZT
GGT

MWfGMZG, Iλλ = ZT
XXT

MWfXMZX, and Iλθ = ITθλ = ZT
XXT

MWfGMZG.216

The score test statistic Qθ for fixed-effect two stage model is217

Qθ = Uθ(λ̂)T Ĩ−1Uθ(λ̂) ∼ χ2
l . (6)

FTOP has the same degrees of freedoms and similar asymptotic power (Yi and Wang, 2011)218

as the Wald test. In GWAS which needs to perform millions of tests, FTOP can be first219

used to scan the whole genome with global association test, and then select the potential220

risk regions. In the selected risk regions, each SNP can be tested for global heterogeneity221

and individual tumor characteristic heterogeneity using Wald test.222

D. Mixed-effect two-stage polytomous model score test (MTOP)223

The two-stage model decreases the degrees of freedom compared to the polytomous logis-224

tic regression. However, the power gains in the two-stage model can be reduced as additional225

tumor characteristics are added into the model. We further propose a mixed-effect two-stage226
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model by modeling some of the second stage case-case parameters as random effects. Let227

u = (u1, . . . , us)
T , where each uj follows an arbitrary distribution F with mean zero and228

variance σ2. The mixed-effect second stage model links the first and second stage parameters229

as follows:230

β = Zfθf + Zru, (7)

where Zf is the second stage design matrix of fixed effect, Zr is the second stage design matrix231

of random effect, and θf are the fixed-effect second stage parameters. Let θf = (θ(0),θTfH)T ,232

where θ(0) is the case-control log odds ratio of the reference subtype, and θfH are the fixed233

case-case parameters. The baseline effect θ(0) is always kept fixed, since it captures the234

SNP’s overall effect on all the cancer subtypes.235

The fixed-effect parameters θfH can be used for tumor characters with prior information236

suggesting that they are a source of heterogeneity, and the random-effect parameters u237

can model tumor characteristics with little or no prior information. In the breast cancer238

example, the baseline parameter (θ(0)) and the main effect of ER (θfH) can be modeled as239

fixed effects, since previous evidence indicates ER as a source of breast cancer heterogeneity240

(Garćıa-Closas and others , 2013; Milne and others , 2017). The main effects of PR and HER2241

and other potential interactions effects can be modeled as random effects (u). In the mixed242

effect two-stage model, the global association test is HA
0 : θf = 0, σ2 = 0 versus HA

1 : θf 6=243

0 or σ2 6= 0, and the global etiology heterogeneity test is HEH
0 : θfH = 0, σ2 = 0 versus HEH

1 :244

θfH 6= 0 or σ2 6= 0.245

To derive the score statistic for the global null HA
0 : θf = 0, σ2 = 0 , the common approach246

is to take the partial derivatives of loglikelihood with respective to θf and σ2 respectively.247
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However, under the null hypothesis, the score for θf follows a normal distribution, and248

for σ2 follows a mixture of chi-square distribution (Supplementary Section 3). With the249

correlation between the two scores, getting the joint distribution between the two becomes250

very complicated. Inspired by methods for the rare variants testing (Sun and others , 2013),251

we propose to modify the derivations of score statistic so that two independent scores can252

be independent. First for θf, the score test statistic Qθf is derived under the global null253

hypothesis HA
0 : θf = 0, σ2 = 0 as usual. But for σ2, the the score statistic Qσ2 is derived254

under the null hypothesis H0 : σ2 = 0 without constraining θf. Through this procedure,255

the two score test statistics (Qθf and Qσ2) can be proved to be independent (Supplementary256

Section 4), and the Fisher’s procedure (Koziol and Perlman, 1978) can be used to combine257

the p-value generated from the two independent tests. Similarly to FTOP, the EM algorithm258

under the null hypothesis of MTOP can efficiently handle the missing tumor marker problems259

given the high correlations between the tumor characteristics. However, since MTOP needs260

to estimate θf under the null hypothesis H0 : σ2 = 0 for every single SNP, the computation261

speed for MTOP is slower than FTOP.262

The score statistic of the fixed effect θf under the global null HA
0 : θf = 0, σ2 = 0 is263

Qθf = (Y −Pf)
TGMZfĨ

−1
f ZT

f GT
M(Y −Pf) ∼ χ2

lf
, (8)

where Pf = Eθf=0,σ2=0(Y|X; λ̂) . Here Ĩf has the same definition as Equation 5, but substi-264

tute ZG with Zf. Under the null hypothesis, Qθf follows a χ2 distribution with the degrees265

of freedom lf the same as the length of θf.266

To explicitly express Qσ2 , let τ = (θTf ,λ
T )T be the second stage fixed effect, and Zτ is267

the corresponding second stage design matrix. The variance component score statistic of σ2
268
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under the null hypothesis H0 : σ2 = 0 without constraining θf is as follows:269

Qσ2 = (Y −Pr)
TGMZrZ

T
r GT

M(Y −Pr) ∼
s∑
i=1

ρiχ
2
i,1, (9)

where Pr = Eσ2=0(Y|G,X; τ̂ ) , and τ̂ is the MLE under the null hypothesis, H0 : σ2 = 0.270

Under the null hypothesis, Qσ2 follows a mixture of chi square distribution (Supplementary271

Section 3), where χ2
i,1 i.i.d. follows χ2

1. (ρ1, . . . , ρs) are the eigenvalues of Ĩr = Iuu−ITuτ I−1ττ Iτu,272

with Iuu = ZT
r GT

MWrGMZr, Iττ = ZT
τ CT

MWrCMZτ and Iτu = ITuτ = ZT
τ CT

MWrGMZr,273

where Wr = Dr − ArA
T
r , with Pr = Eσ2=0(Y|G,X,To; τ̂ ), Pr,mis = E(Y|G,X,To; τ̂ ),274

Dr = diag(Pr −Pr,mis) and Ar = Dr(1M ⊗ IN). The Davies exact method (Davies, 1980) is275

used here to calculate the p-value of the mixture of chi square distribution.276

Let Pθf = Pr(Qθf ≥ χ2
lf
) and Pσ2 = Pr(Qσ2 ≥

∑s
i=1 ρiχ

2
i,1) be the p-values of the two277

independent score statistics. Under the null hypothesis HA
0 : θf = 0, σ2 = 0, following the278

Fisher’s procedure, −2 log(Pθf) − 2 log(Pσ2) follows χ2
4; thus, the p-value of mixed effect279

two-stage model under the null hypothesis is280

Pmix = Pr
{
−2 log(Pθf)− 2 log(Pσ2) ≥ χ2

4

}
. (10)

The extension of the score statistics of the global etiology heterogeneity test, HEH
0 : θfH =281

0, σ2 = 0, can be computed following a similar procedure as the global association test.282

III. SIMULATION EXPERIMENTS283

Large scale simulations across a wide range of practical scenarios were conducted to284

evaluate the type I error (Section III A), statistical power (Section III B), and computation285

time (Supplementary Section 5) of the fixed-effect and mixed-effect two-stage models. Data286
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were simulated to mimic the PBCS. We simulated four tumor characteristics: ER (positive287

vs. negative), PR (positive vs. negative), HER2 (positive vs. negative), and grade (ordinal288

1, 2, 3), which collectively defined 23 × 3 = 24 breast cancer subtypes.289

In each simulation, genotype data G was simulated under the Hardy-Weinberg equilib-290

rium with minor allele frequency (MAF) as 0.25. An additional covariate (X) was simulated291

following a standard normal distribution independent of G. We simulated a multinomial292

outcome with 25 groups, one for the control group, and the other 24 for different cancer293

subtypes, using the polytomous logistic regression model as follows:294

Pr(Di = m|Xi) =
exp(αm + βmGi + 0.05Xi)

1 +
∑M

m=1 exp(αm + βmGi + 0.05Xi)
. (11)

The effect of X was set as 0.05 for all subtypes. Using the frequency of the breast cancer295

subtypes from Breast Cancer Association Consortium (Supplementary Table 2) (Michailidou296

and others , 2017), we computed the corresponding polytomous logistic regression intercept297

parameters αm. The case-control ratio was set around 1:1, and the proportions of ER+,298

PR+ and HER2+ were 0.81, 0.68, and 0.17, respectively. The proportions of grade 1, 2,299

and 3 were 0.20, 0.48, and 0.32. The missing tumor markers were selected randomly with300

missing rates of 0.17, 0.25, 0.42, and 0.27 for ER, PR, HER2 and grade, respectively. Under301

this simulation, approximately 70% cases had at least one missing tumor characteristic.302

A. Type I error303

We evaluated the type I error of the global association test, global heterogeneity test, and304

individual tumor marker heterogeneity test under the global null hypothesis. The data were305
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generated by setting βm = 0 in Equation 11, where none of the subtypes was associated306

with genotypes. The total sample size n was set to be 5,000, 50,000 and 100,000. We307

conducted 2.4× 107 simulations to evaluate the type I error at α = 1.0× 10−4, 1.0××10−5,308

and 1.0× 10−6 level.309

Both MTOP and FTOP were applied with an additive two-stage model by constraining310

all the interaction terms as 0 in Equation 2. The subtype-specific case-control log ORs were311

specified into the case-control log OR of a baseline disease subtype (ER- , PR- , HER2-,312

grade 1) and the main effects associated with the four tumor markers. Furthermore, the313

MTOP assumed the baseline and ER case-case parameter as fixed effects and the other case-314

case parameters as random effects. The global association test and global heterogeneity test315

were implemented using both MTOP and FTOP, but the individual tumor characteristic316

heterogeneity test could only be implemented with FTOP. For MTOP and FTOP, we re-317

moved all the subtypes with fewer than 10 cases to avoid potential nonconvergence of the318

model.319

Table I presents the estimated type I errors under the global null hypothesis. Both MTOP320

and FTOP correctly control the type I error, especially for the larger sample sizes. FTOP321

is conservative with 5,000 subjects, especially for α = 1.0 × 10−6, however, the method is322

still valid. The well-controlled type I error also shows that removing rare subtypes doesn’t323

bias the estimate, as further demonstrated by additional simulations that are presented in324

Supplementary Section 6. In the later sections, we generally used the additive second stage325

structure for both MTOP and FTOP unless otherwise specified.326
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B. Statistical power327

We assessed the statistical power of the proposed methods using various simulation set-328

tings with sample sizes as 25,000, 50,000, and 100,000. For each setting, we performed329

2× 105 simulations to evaluate the power at α = 5.0× 10−8 level.330

1. Global association test331

The data were simulated with three different scenarios: I. no heterogeneity between tumor332

markers, II. heterogeneity according to one tumor marker, and III. heterogeneity according333

to multiple tumor markers. The disease subtypes were generated through Equation 11.334

Under scenario I, we set βm as 0.08 for all the subtypes. For scenarios II and III, βm was335

simulated following the additive two-stage model. Under scenarios II, datasets were simu-336

lated with only ER heterogeneity by setting the case-case parameter for ER as 0.08, and337

all the other as 0. For scenario III, we simulated a scenario with heterogeneity according to338

all 4 tumor markers by setting the baseline effect to be 0, the ER case-case parameter to339

be 0.08, and all the other case-case parameters following a normal distribution with mean340

0 and variance 4.0× 10−4. Under this scenario, all tumor characteristics contributed to the341

subtype-specific heterogeneity. Moreover, to evaluate different methods under a larger num-342

ber of tumor characteristics, additional simulations were conducted by adding two additional343

binary tumor characteristics to the previous four tumor characteristic setting. This defined344

25 × 3 = 96 cancer subtypes. The two additional tumor characteristics were randomly se-345

lected to be missing with 5% missing rate. Under this setting, around 77% of the cases have346
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at least one tumor characteristic missing. We compared the statistical power to detect the347

overall association using FTOP, MTOP, standard logistic regression, FTOP with only com-348

plete data, and polytomous logistic regression. For MTOP, FTOP and polytomous model,349

we removed all the subtypes with fewer than 10 cases to avoid potential nonconvergence of350

the model.351

Overall, MTOP had robust power under all scenarios (Figure 1). Standard logistic re-352

gression had the highest power when there was no subtype-specific heterogeneity (Scenario353

I), but suffered from substantial power loss when heterogeneity existed between subtypes.354

MTOP, followed by FTOP, consistently demonstrated the highest power among the five355

methods when subtype-specific heterogeneity existed (scenarios II and III). The power gain356

of MTOP over FTOP ranged from 2% to 49%. The power gain was small when there were357

four tumor characteristics because the difference in the degrees of freedom between MTOP358

and FTOP was small. However, with six tumor markers, the power gain of MTOP was359

more apparent owing to the larger difference in the degrees of freedom between the models.360

FTOP was the least efficient in scenarios with no or little heterogeneity, such as scenarios361

I and II, but with increasing heterogeneity, such-as scenario III, the power of MTOP and362

FTOP were more similar.363

The simulation study also showed that the incorporation of cases with missing tumor364

characteristics significantly increased the power of the methods (Figure 1). Under the four365

tumor markers setting with around 70% incomplete cases, the power gain of FTOP incorpo-366

rating the missing data algorithm was at least 200% compared to FTOP with only complete367

data. As expected, under the six tumor markers setting, which resulted in more missing368
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tumor marker data, the power of FTOP with the missing data algorithm was once again369

significantly higher than FTOP with only complete data. MTOP was the most powerful370

method when heterogeneity across cancer subtypes was present. Additional power simula-371

tions with 5,000 subjects are described in Supplementary Section 7.372

The previous simulations mainly focused on the two-stage model with additive effects.373

Additional simulations were also implemented with pairwise interactions in the model. We374

simulated data with βm following a second stage model that included main effects and375

pairwise interactions as shown in Equation 2 with the case-case parameter for ER (θ
(1)
1 ) as376

0.08, the pairwise interaction effect between ER and HER2 (θ
(2)
13 ) as 0.04, and all the other377

parameters as 0. Four methods were evaluated including FTOP with/without pairwise378

interactions and MTOP with/without pairwise interactions (baseline and ER fixed). FTOP379

without interaction terms still had high power ( Figure 2). However, FTOP with pairwise380

interaction structure had limited power because of the incorporation of the interaction terms381

as fixed effects. On the other hand, MTOP with/without pairwise interactions maintained382

a high power even when there were underlying interaction effects.383

2. Global heterogeneity test384

Supplementary Figure 3 shows the simulation results for global heterogeneity tests under385

similar simulation settings as global association tests. MTOP had the highest power when386

there were heterogeneous associations across the subtypes.387
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3. Individual tumor marker heterogeneity test388

We further evaluated the power of the individual tumor marker heterogeneity test. The389

data were generated with four tumor characteristics with the ER case-case parameter (θ
(1)
1 )390

as 0.08, and all other parameters as 0. ER was randomly selected to be missing with a391

rate of 0.17, 0.30 and 0.50. We compared two different methods, FTOP with all four tumor392

characteristics and the polytomous model. The polytomous model was set up to test each393

marker at a time. In the polytomous model, we removed cases with missing data only on394

the relevant tumor marker to avoid penalizing the power of the model by removing cases395

that were missing tumor marker data on the other tumor markers. FTOP with all four396

tumor characteristics had smaller power compared to the polytomous model in testing the397

effect of ER (Supplementary Figure 4). Since FTOP included all four tumor characteristics,398

and the tumor markers were highly correlated, the variability of underlying parameters was399

larger. However, the type I errors of the polytomous model in testing PR, HER2 and grade400

were inflated under this case (Supplementary Figure 5). Under this simulation, these three401

markers had no effect. On the other hand, FTOP controlled the type I error of all the tests.402

Overall, for the global test for association and the global test for heterogeneity, when there403

was no heterogeneity, the standard logistic regression was the most powerful method. How-404

ever, in the presence of subtype heterogeneity, MTOP was the most powerful method, and405

MTOP had stable power even with a large number of pairwise interactions terms included.406
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IV. APPLICATION TO THE POLISH BREAST CANCER STUDY (PBCS)407

We applied our proposed methods to the PBCS, a population-based breast cancer case-408

control study conducted in Poland between 2000 and 2003 (Garćıa-Closas and others , 2006).409

The study consisted of 2,078 cases of histologically or cytologically confirmed invasive breast410

cancer and 2,219 women without a history of breast cancer at enrollment. Information on411

ER, PR, and grade were available from pathology records (Garćıa-Closas and others , 2006),412

and information on HER2 was available from immunohistochemical staining of tissue mi-413

croarray blocks (Yang and others , 2007). We used genome-wide genotyping data to compare414

MTOP, FTOP, standard logistic regression, and polytomous logistic regression to detect415

SNPs associated with breast cancer risk.416

Supplementary Table 4 presents the sample size of the tumor characteristics. The four417

tumor characteristics defined 24 mutually exclusive breast cancer subtypes. Subtypes with418

less than 10 cases were excluded, leaving 17 subtypes in the analysis. Both MTOP and FTOP419

used the additive second stage design. Besides, we modeled the baseline and ER case-case420

parameters as fixed effects in MTOP, and all other effects as random effects. We put ER as421

a fixed effect because of the previously reported heterogeneity in genetic association by ER422

(Garćıa-Closas and others , 2013; Milne and others , 2017). Genotype imputation was done423

using IMPUTE2 based on 1000 Genomes Project as reference (Michailidou and others , 2017;424

Milne and others , 2017). In total, 7,017,694 common variants on 22 auto chromosomes with425

MAF ≥ 5% were included in the analysis. In all the models, we adjusted for age and the426

first four genetic principal components to account for population stratification.427
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As Figure 3 shows, MTOP, FTOP and standard logistic regression all identified a known428

susceptibility variant in the FGFR2 locus on chromosome 10 (Michailidou and others , 2017),429

with the most significant SNP being rs11200014 (P < 5.0×10−8). Further, both MTOP and430

FTOP identified a second known susceptibility locus on chromosome 11 (CCND1) (Michaili-431

dou and others , 2017), with the most significant SNP in both models being rs78540526 (P432

< 5.0×10−8). The individual heterogeneity test of this SNP showed evidence for heterogene-433

ity by ER (P=0.011) and grade (P=0.024). Notably, the CCND1 locus was not genome-wide434

significant in standard logistic regression or polytomous models. The type I error of the four435

methods was well-controlled (Supplementary Figure 6).436

Additional sensitivity analysis of MTOP was implemented by specifying baseline, ER437

and grade as fixed effects, and PR and HER2 as random effects (Supplementary Figure438

7). The results for MTOP with grade as fixed vs. random effect were similar. We also439

implemented MTOP and FTOP incorporating pairwise interactions in the second stage440

model (Supplementary Figure 8-9). With pairwise interactions, both MTOP and FTOP441

detected FGFR2 and CCND1 with the genome-wide significant threshold. However, the442

P-value of FTOP with pairwise interactions was less significant compared to FTOP without443

these interaction terms (for rs11200014, P = 4.3× 10−8 vs. P = 1.0× 10−9 ; for rs78540526,444

P= 2.7 × 10−10 vs. P = 8.1 × 10−12). The P-value of MTOP with pairwise interactions445

was also less significant compared to MTOP without interaction terms (for rs11200014,446

P= 1.0× 10−9 vs. P = 2.2× 10−10; for rs78540526, P = 1.7× 10−11 vs. P = 1.8× 10−12). In447

both scenarios with pairwise interactions parameter included, however, the power loss was448

smaller.449
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Next, we compared the ability of MTOP and standard logistic regressions to detect 178450

previously identified breast cancer susceptibility loci (Michailidou and others , 2017). For451

eight of the 178 loci, the MTOP global association test p-value was more than ten fold lower452

compared to the standard logistic regression p-value (Table II). In the MTOP model, these453

eight loci all had significant global heterogeneity tests (P < 0.05). Confirming these results,454

in a previous analysis applying MTOP to 106,571 breast cancer cases and 95,762 controls,455

these eight loci were reported to have significant global heterogeneity (Ahearn and others ,456

2019).457

V. DISCUSSION458

We present a series of novel methods for performing genetic association testing for cancer459

outcomes accounting for potential heterogeneity across subtypes. These methods efficiently460

account for multiple testing, correlations between markers, and missing tumor data. Un-461

der the model framework, we develop two computationally efficient score tests, FTOP and462

MTOP, which model the underlying heterogeneity parameters in terms of fixed effects or463

mixed effects, respectively. We demonstrate these methods have greater statistical power in464

the presence of subtype heterogeneity than either standard or polytomous logistic regression465

analysis.466

Several methods have been proposed to study the etiological heterogeneity of cancer467

subtypes (Chatterjee, 2004; Rosner and others , 2013; Wang and others , 2015). A recent468

review showed the well-controlled type I error and good statistical power of the two-stage469

model (Zabor and Begg, 2017). However, previous two-stage models haven’t accounted for470
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missing tumor markers, which is a common problem in epidemiological studies. We show that471

by incorporating the EM algorithm into the two-stage model we can take advantage of all472

available information and substantially increase the statistical power (Figure 1). Moreover,473

the newly proposed mixed effect model can mitigate the degrees of freedom penalty caused474

by analyzing many tumor characteristics. In a recent large breast cancer GWAS analysis475

with 106,571 cases and 95,762 controls, the newly developed methods MTOP and FTOP476

have identified 16 novel loci (Zhang and others , 2019).477

Incorporating missing tumor characteristics based on the proposed EM algorithm requires478

the assumption of MAR, i.e. the mechanism of missing of the individual tumor characteris-479

tics can depend only on other observed tumor characteristics and covariates, but not on the480

unobserved missing value themselves. For the analysis of tumor heterogeneity, information481

on aggressive types of tumors may be systematically missing. If the missing tumor char-482

acteristics are important determinants of aggressiveness, then the underlying assumption483

is violated. In general, dealing with non-ignorable missing data is a complex problem and484

certain sensitivity analyses can be performed to explore the degree of bias (Little and Rubin,485

2019). In the context of genetic association testing, non-ignorable missingness can lead to486

inflated type I error only if the missingness mechanism itself is related to the genetic variant.487

Further research is merited to explore the complex effects of non-ignorable missingness in488

type I error and power of the proposed tests.489

The computation time of MTOP is greater than FTOP (Supplementary Section 5). To490

construct the score tests in FTOP, the coefficients of covariates need to be estimated once491

under the null hypothesis, while in MTOP they need to be estimated for every SNP. The492
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computational complexity of FTOP is O(NM2P 2), with P as the number of other covariates493

X. For MTOP, the computational complexity is O(NM2P 2lk), where l and k are respectively494

the numbers of iteration required for weighted least square and EM algorithm to converge.495

Currently, we only implement the linear kernel in MTOP, but other common kernels that496

capture the similarity between tumor characteristics can be used in the future. If there is497

prior knowledge about the overlapping genetic architecture across different tumor subtypes,498

this will help to choose the kernel function, and improve the power of the methods.499

The proposed methods have been implemented in a user-friendly and high-speed R statis-500

tical package called TOP (https://github.com/andrewhaoyu/TOP), which includes all the501

core functions implemented in C code.502

VI. SUPPLEMENTARY MATERIALS503

In Supplementary Section 1, the two-stage model is generalized to multivariates. In Sup-504

plementary Section 2-3, the details of the EM algorithm and the variance component score505

statistic are respectively presented. In Supplementary Section 4, Qθf and Qσ2 are proved to506

be independent. In Supplementary Section 5, computation time simulations are presented.507

In Supplementary Section 6, the simulations to evaluate the bias of the estimates are shown.508

In Supplementary Section 7, simulations with 5,000 subjects are presented. Supplementary509

Table 1 shows the correlations of ER, PR, HER2, and grade. Supplementary Table 2 presents510

the frequencies of the joint distribution of ER, PR, HER2, and grade. Supplementary Table511

3 shows the simulation results to evaluate bias. Supplementary Table 4 presents the sam-512

ple size of tumor characteristics in PBCS. Supplementary Figure 1 shows the computation513
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time simulations results. Supplementary Figure 2 presents the power analysis of the global514

association test with 5,000 subjects. Supplementary Figure 3 presents global heterogeneity515

test simulation results. Supplementary 4-5 respectively present the power and type I error516

simulations results of individual tumor marker heterogeneity test. Supplementary Figure 6517

is the QQ plot of GWAS with PBCS. Supplementary Figure 7 shows the GWAS with PBCS518

using MTOP with ER and grade as fixed effects. Supplementary Figure 8-9 respectively519

present the GWAS with PBCS using MTOP/FTOP with pairwise interactions.520
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TABLE I. Type one error estimates of MTOP, FTOP with 2.4 × 107 randomly simulated samples.

Global test for association and global test for heterogeneity were applied with FTOP and MTOP.

Heterogeneity test for a tumor marker was applied with only FTOP. All of the type error rates are

divided by the α level.

MTOP FTOP

Interested tests Total sample size α = 10−4 α = 10−5 α = 10−6 α = 10−4 α = 10−5 α = 10−6

Global association test 5,000 .99 .97 .88 .91 .91 .67

50,000 .98 1.0 1.0 .99 1.0 .93

100,000 1.0 .94 1.0 1.0 1.0 1.0

Global heterogeneity test 5,000 1.0 .97 .89 .92 .85 .55

50,000 1.0 1.0 1.0 1.0 1.0 1.0

100,000 1.0 .94 1.0 1.0 .98 .97

Heterogeneity test for 5,000 .92 .93 .76

a tumor marker 50,000 .98 .97 1.0

100,000 1.0 .97 1.0
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TABLE II. Analysis results of previously identified susceptibility loci. For the listed eight loci, MTOP

global association test p value decreased more than ten fold compared to the standard logistic regres-

sion p value. All of the loci are significant in global heterogeneity test (P < 0.05).

SNP Chr.a Position MAFb Global association P Standard analysis P Global heterogeneity P

rs4973768 3 27,416,013 .47 3.1× 10−2 9.5 × 10−1 9.5 × 10−3

rs10816625 9 110,837,073 .06 5.0 × 10−2 9.8 × 10−1 2.2 × 10−2

rs7904519 10 114,773,927 .46 6.5 × 10−2 8.5 × 10−1 3.1 × 10−2

rs554219 11 69,331,642 .13 7.3 × 10−11 1.4× 10−7 5.1 × 10−6

rs11820646 11 129,461,171 .40 1.5 × 10−2 8.6 × 10−1 4.5 × 10−3

rs2236007 14 37,132,769 .21 2.1 × 10−3 1.9 × 10−1 3.5 × 10−3

rs1436904 18 24,570,667 .40 7.2 × 10−4 6.6 × 10−2 9.7 × 10−4

rs1436904 22 29,121,087 .01 9.8 × 10−3 1.6 × 10−1 2.3 × 10−2

aChr. chromosome. b MAF, minor allele frequency.
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FIG. 1. Power comparison among MTOP, FTOP, standard logistic regression, two-stage model

with only complete data and polytomous model with 2×105 random samples. For the three figures

in the first row, four tumor markers were included in the analysis. Three binary tumor marker and

one ordinal tumor marker defined 24 cancer subtypes. Around 70% cases would be incomplete. For

the three figures in the second row, two extra binary tumor markers were included in the analysis.

The six tumor markers defined 96 subtypes. Around 77% cases would be incomplete. The power

was estimated by controlling the type one error α < 5.0× 10−8.
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FIG. 2. Power comparison of global association test with pairwise interactions. Four methods

were evaluated, including FTOP with additive structure, MTOP with additive structure (ER

fixed), FTOP with pairwise interactions and MTOP with pairwise interactions (ER fixed). For

the three figures in the first row, four tumor markers were included in the analysis. Three binary

tumor marker and one ordinal tumor marker defined 24 cancer subtypes. Around 70% cases were

incomplete. For the three figures in the second row, two extra binary tumor markers were included

in the analysis. The six tumor markers defined 96 subtypes. Around 77% cases were incomplete.

The total sample size was 25,000, 50,000 and 100,000. We generated 2 × 105 random replicates.

The power was estimated by controlling the type one error α < 5.0× 10−8.
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FIG. 3. Manhattan plot of genome-wide association analysis with PBCS using four different

methods. PBCS have 2,078 invasive breast cancer and 2,219 controls. In total, 7,017,694 SNPs on

22 auto chromosomes with MAF more than 5% were included in the analysis. ER, PR, HER2 and

grade were used to define breast cancer subtypes.
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