
Multi-Method Molecular Characterisation of Human Dust-Mite-associated Allergic 1 

Asthma 2 

 3 

E. Whittle1, M.O. Leonard2, T.W. Gant2 and D.P Tonge1 4 

 5 
1School of Life Sciences, Faculty of Natural Sciences, Keele University, ST5 5BG  6 
2Centre for Radiation, Chemical and Environmental Hazards, Public Health 7 

England, OX11 0RQ 8 

 9 

Abstract 10 

Asthma is a chronic inflammatory disorder of the airways. Disease presentation 11 

varies greatly in terms of cause, development, severity, and response to medication, 12 

and thus the condition has been subdivided into a number of asthma phenotypes. 13 

There is still an unmet need for the identification of phenotype-specific markers and 14 

accompanying molecular tools that facilitate the classification of asthma phenotype. 15 

To this end, we utilised a range of molecular tools to characterise a well-defined 16 

group of adults with poorly controlled asthma associated with house dust mite (HDM) 17 

allergy, relative to non-asthmatic control subjects. Circulating messenger RNA 18 

(mRNA) and microRNA (miRNA) were sequenced and quantified, and a differential 19 

expression analysis of the two RNA populations performed to determine how gene 20 

expression and regulation varied in the disease state. Further, a number of 21 

circulating proteins (IL-4, 5, 10, 17A, Eotaxin, GM-CSF, IFNy, MCP-1, TARC, TNFa, 22 

Total IgE, and Endotoxin) were quantified to determine whether the protein profiles 23 

differed significantly dependent on disease state. Finally, assessment of the 24 

circulating “blood microbiome” was performed using 16S rRNA amplification and 25 

sequencing. Asthmatic subjects displayed a range of significant alterations to 26 

circulating gene expression and regulation, relative to healthy control subjects, that 27 

may influence systemic immune activity. Notably, several circulating mRNAs were 28 

detected in the plasma in a condition-specific manner, and many more were found to 29 

be expressed at altered levels. Proteomic analysis revealed increased levels of 30 

inflammatory proteins within the serum, and decreased levels of the bacterial 31 

endotoxin protein in the asthma state. Comparison of blood microbiome composition 32 

revealed a significant increase in the Firmicutes phylum with asthma that was 33 

associated with a concomitant reduction in the Proteobacteria phylum. This study 34 

provides a valuable insight into the systemic changes evident in the HDM-associated 35 

asthma, identifies a range of molecules that are present in the circulation in a 36 

condition-specific manner (with clear biomarker potential), and highlights a range of 37 

hypotheses for further study. 38 

  39 
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Introduction 40 

 41 

Asthma is a chronic inflammatory disorder of the airways and is a global public 42 

health concern due to increasing prevalence and mortality rates (1–4). The World 43 

Health Organisation has estimated that 300 million people are living with asthma, 44 

and that 250,000 individuals die prematurely each year as a result of the disease (5). 45 

Asthma can develop during childhood (early-onset) or in adulthood (late-onset) and 46 

is characterised by chronic inflammation of the airways and intermittent episodes of 47 

reversible airway obstruction (6,7). Over time, chronic inflammation of the airways 48 

results in airway hyper-responsiveness and structural changes, including airway 49 

fibrosis, goblet cell hyperplasia, increased smooth muscle mass, and increased 50 

angiogenesis (7,8). 51 

The causes of asthma are multifactorial, and include a complex variety of 52 

environmental, immunological, and host genetic factors (7,9–13). Disease typically 53 

occurs in genetically predisposed individuals (13,14), and clinical presentation is 54 

highly heterogenous (15). Disease can vary greatly in terms of disease onset and 55 

response to treatment (16). It can present as a chronic, stable disease, but also as 56 

intermittent asthma exacerbations that can be fatal (17). Symptoms can be mild or 57 

severe and arise as a result of a multitude of factors, including immunoglobulin-E 58 

(IgE) mediated allergic responses, exposure to pollutants, exercise, stress, or airway 59 

infections (17).  60 

The complex nature of asthma pathogenesis has resulted in speculation as to 61 

whether asthma is a single disease, or a spectrum of related diseases with subtle but 62 

distinct differences in aetiology and pathophysiology (18,19). This has led to asthma 63 

being separated into a number of phenotypes, which are then further subdivided into 64 

several endotypes (6,15,18–20). These asthma phenotypes are triggered by 65 

complex gene-environment interactions and respond differently to the various 66 

asthma medications available. Individuals with eosinophilic asthma, for instance, 67 

have been reported to have a good therapeutic response to inhaled or oral 68 

corticosteroid therapy, whereas individuals with neutrophilic asthma have been found 69 

to respond poorly to this therapeutic approach (21). 70 

Diagnostic tools for identifying the various asthma phenotypes are limited, and thus 71 

optimal treatment protocols are not being utilised in a number of patients. Moreover, 72 

despite decades of research, there has been little progress in the development of 73 

treatments since the introduction of inhaled ß2 adrenoceptor 2 selective agonists 74 

(1969) and inhaled glucocorticosteroids (1974) (15). Long-term use of these 75 

medications has been associated with a number of health concerns (22), including 76 

the stunting of growth in children (23), cataract development (24,25), osteoporosis 77 

(26,27), and cardiovascular events (28). Overall, an estimated 5-10% of asthmatics 78 

fail to respond to conventional medications (29). In order to improve patient response 79 

to treatment, and / or assist in the development of new therapeutics, an improved 80 

knowledge of the molecular mechanisms that underlie the various asthma 81 

phenotypes is required. Long-term, this may also facilitate the targeted use of 82 

conventional asthma therapies, and facilitate the development of new medications 83 
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aligned to the individual asthmatic phenotypes, subsequently reducing asthma 84 

mortality and improving quality of life. 85 

 86 

The focus of this study was to characterise, at the molecular level, a small but well-87 

defined cohort of patients with atopic asthma associated with house dust mite (HDM) 88 

allergy.  Global estimates suggest that 1-2% of the world’s population are sensitive 89 

to HDM (30), as are approximately 50% of asthmatic patients (30,31). HDM 90 

sensitivity has been linked to increased asthma severity (32) and almost one-third of 91 

patients with HDM sensitivity are unresponsive to current asthma therapies (33). 92 

Increasing our understanding of this specific asthma phenotype is therefore crucial. 93 

To this end we performed a comprehensive molecular characterisation of (1) 94 

circulating mRNAs, (2) circulating microRNAs, (3) circulating protein-based markers 95 

of the immune response and (4) integrated these data with our previous work 96 

characterising evidence of a circulating microbiome. 97 

 98 

 99 
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Methods 101 

Donor Population 102 

Atopic asthmatic individuals (n=5) with physician-diagnosed HDM allergy, and 103 

gender and age-matched healthy control subjects (n=5) were recruited to the study 104 

via SeraLabs Limited. Asthma patients were selected on the basis that they had 105 

developed atopic asthma during early childhood and that their condition had 106 

continued into adulthood and remained “poorly controlled”. A full list of recruitment 107 

criteria is presented in (Table 1). 108 

Whole blood was drawn, following alcohol cleansing of the skin surface, into EDTA 109 

containing tubes and stored on ice prior to centrifugation at 1000×g to obtain the 110 

plasma component. All samples were analysed anonymously, and the authors 111 

obtained ethical approval and written informed consent to utilise the samples for the 112 

research reported herein. 113 

The Independent Investigational Review Board Inc. ethically approved sample 114 

collection by Sera Laboratories Limited from human donors giving informed written 115 

consent. Furthermore, the authors obtained ethical approval from Keele University 116 

Ethical Review Panel 3 for the study reported herein. All experiments were 117 

performed in accordance with relevant guidelines and regulations.  118 

 119 

Table 1: Donor population characteristics required for the study 120 

  121 

Patient Criteria 

• Have a BMI < 30 
• Be a non-smoker 
• Have been diagnosed with 

atopic asthma during childhood 
• Have severe/ poorly controlled 

asthma 
• Must not be on any oral steroid 

treatment 
• Must be allergic to the house 

dust mite 
• Must not have diabetes, COPD, 

or hypertension 
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Analysis of Inflammatory proteins 122 

Plasma levels of interleukin (IL)-4, IL-5, IL-10, IL-13, IL-17A, IFNy, TARC, Eotaxin, 123 

GM-CSF, MCP-1, RANTES, and TNFα, was determined using a qualitative enzyme-124 

linked immunosorbent assay (ELISA) custom designed for this study. Two multi-125 

analyte sandwich ELISAs (Qiagen) were used, and analysis of the inflammatory 126 

proteins was achieved using the recommended Multi-Analyte ELISArray kit protocol 127 

(QIAGEN). Statistical analysis was performed by carrying out a Shapiro-Wilk 128 

normality test and a Wilcox rank sum test using R software Version 3.5.0.  129 

 130 

Quantitative analysis of total IgE 131 

The concentration of total immunoglobulin E (IgE) was determined using sandwich 132 

ELISA (Genesis Diagnostics Ltd). The ELISA was performed in duplicate using the 133 

recommended protocol, and absorbance was measured at 450nm using an ELX800 134 

absorbance reader (BioTek). Statistical analysis was performed by carrying out a 135 

Shapiro-Wilk normality test and an unpaired T test using R software Version 3.5.0. 136 

 137 

Quantitative analysis of endotoxin concentration 138 

Circulating bacterial endotoxin concentration was measured using a PierceTM 139 

Limulus Amebocyte Lysate (LAL) Chromogenic Endotoxin quantitative kit (Thermo 140 

Scientific). The assay was performed in triplicate using the recommended protocol, 141 

and absorbance was measured at 450nm using an ELX800 Absorbance reader 142 

(BioTek). Statistical analysis was performed by carrying out a Shapiro-Wilk normality 143 

test and an unpaired T test using R software Version 3.5.0. 144 

 145 

Total RNA extraction 146 

Total RNA was extracted from 500µl of human plasma using the Qiagen serum and 147 

plasma miRNeasy kit. The quantity and quality of the RNA extracts was determined 148 

using the QuBit fluorimeter (Invitrogen) and BioAnalyzer (Agilent).  149 

 150 

Library Preparation and Next Generation Sequencing 151 

Messenger RNA (mRNA) sequencing libraries were prepared using the SMARTer 152 

Universal Low Input RNA kit, and sequenced (Illumina HiSeq 2000) with a paired-153 

end 90 nucleotide read metric. Small RNA sequencing libraries were prepared using 154 

the TruSeq small RNA library kit (Illumina), and sequencing was conducted on the 155 

Illumina HiSeq 2000 platform. 156 

Raw sequencing data were trimmed of sequencing adaptors and low-quality reads 157 

removed using the Trim Galore package – a wrapper that incorporates CutAdapt and 158 

FastQC. For whole transcriptome analysis, quality-controlled reads were aligned to 159 

the Human Genome build hg19 using TopHat, a splice-junction aware mapping utility 160 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/446427doi: bioRxiv preprint 

https://doi.org/10.1101/446427


necessary for the successful mapping of intron-spanning (multi-exon) transcripts. 161 

Transcriptome assembly was performed using CuffLinks and a merged transcript 162 

representation of all samples produced using CuffMerge. Transcripts expressed at 163 

significantly different levels between the asthma and control samples were identified 164 

using CuffDiff, with a Q value < 0.05 considered significant (34). MicroRNA (miRNA) 165 

analysis was performed by mapping miRNA reads to miRbase Version 21 using 166 

sRNAtoolbox (35). Differential expression of the miRNA reads was determined 167 

following statistical analysis with edgeR for R (36). 168 

 169 

Biological Pathway Analysis 170 

Biological functions of the mRNA and miRNA that were differentially expressed 171 

between asthma and control subjects (defined as Q ≤ 0.05 in the mRNA dataset; and 172 

FDR ≤ 0.05 in the miRNA dataset) were determined using Ingenuity Pathway 173 

analysis (IPA) software. 174 

Networks of genes comprising known biological processes were identified using IPA. 175 

Causal inference analysis was then applied to determine upstream regulators that 176 

may explain the pattern of differential expression seen. Casual inference analysis 177 

involved the generation of an enrichment score (Fisher’s exact test P value) and a Z 178 

score to determine the possible upstream biological causes of the differential gene 179 

expression observed in the asthmatic subjects (37). The enrichment score measured 180 

the overlap of observed and predicted regulated gene sets, whilst the Z score 181 

assessed the match of observed and predicted up/ down regulation patterns (37). 182 

Putative regulators that scored an overlap P value ≤ 0.05 were deemed statistically 183 

significant, and the Z scores were used to determine the activity of the putative 184 

regulators (an upstream regulator with a Z score greater than 2.0 was considered 185 

activated, whilst an upstream regulator with a Z score less than -2.0 was considered 186 

deactivated). Causal inference analysis was also used to predict the downstream 187 

effects the differentially expressed genes and miRNA could have on biological 188 

processes and functions in the asthmatic subjects.  189 

 190 

Circulating microbiome analysis 191 

We have previously reported evidence of a circulating microbiome in the blood of 192 

both asthmatic and healthy patients (38) using oligonucleotide primers reported in 193 

(Supplementary Materials, S1). Here, we re-analysed this data with the aim of 194 

identifying organisms that were differentially present or abundant dependent on 195 

disease status. The QIIME pipeline was used for quality filtering of DNA sequences, 196 

demultiplexing, and taxonomic assignment. Alpha diversity was determined by 197 

calculating Shannon and Chao1 diversity indices. Differences in relative abundance 198 

was calculated by performing Shapiro-Wilk normality tests and the appropriate 199 

statistical test (unpaired T tests when the samples displayed gaussian distribution 200 

and Wilcox rank sum test when the samples did not display Gaussian distribution) on 201 

bacterial abundance data (read counts normalised to the total number of bacterial 202 

reads per patient) using R software Version 3.5.0. 203 
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In addition to standard statistical tests, the linear discriminant analysis effect size 204 

(LefSe) method was used to identify the bacterial taxa most likely to explain the 205 

differences in microbial populations present in the asthmatic cohort compared to the 206 

control cohort. In brief, the non-parametric factorial Kruskal-Wallis sum-rank test was 207 

applied to the 16S relative abundance data in order to detect features with significant 208 

differential abundance in the asthmatic cohort compared to the control group. A set 209 

of pairwise tests among subclasses using the unpaired Wilcoxon rank-sum test were 210 

then carried out to assess whether the detected differences in relative abundance 211 

were consistent with respect to biological behaviour. Linear discriminant analysis 212 

(LDA) was then performed to predict the effect of each identified differentially 213 

abundant bacterial taxa.  214 

 215 

  216 
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Results 217 

Patient Recruitment and Characterisation 218 

Five female asthmatic subjects were recruited in accordance with the inclusion 219 

criteria detailed in (Table 1). The mean age of the asthmatic subjects was 39.6 + 220 

11.7 years, and all had been clinically diagnosed with atopic asthma during early 221 

childhood (mean age of onset = 6.2 ± 3.2 years) (Table 2). At the time of sample 222 

collection, the asthmatic subjects were on prophylactic therapy to minimise the 223 

occurrence of disease symptoms (see Supplemental Material, S2). Asthma severity 224 

was determined using the internationally recognised Asthma Control Questionnaire 225 

(ACQ) (39,40), and all the asthmatic subjects scored a total > 10.0 (mean total score 226 

= 10.8 ± 0.75) (see Supplemental Material, S2). Additionally, three of the asthmatic 227 

subjects were clinically diagnosed with other atopic diseases, including allergic 228 

rhinitis, allergic dermatitis, and nasal polyps (see Supplemental Material, S2). 229 

Five non-asthmatic females with a mean BMI of 24.3 + 2.1 were recruited to the 230 

study as healthy controls. The control subjects had never smoked and had a mean 231 

age of 39.4 ±10.3 years (Table 2). Two of the controls, Control_2 and Control_3, 232 

reported self-diagnosed dermatitis, although neither had received diagnosis by a 233 

physician for this condition. 234 

 235 

Table 2: Characterisation of the asthmatic (n = 5) and control subjects (n = 5) at the 236 

time of sample collection. S.D. = standard deviation 237 

 238 

Characteristic Allergic Asthmatics Non-Asthmatics 
Demographic characteristics   
Age - yr   
Mean (S.D) 39.6 (11.7) 39.4 (10.3) 
Range 19 - 52 23 - 49 
Race or ethnic group – no. 
(%)   

Caucasian 2 (40) 2 (40) 
Hispanic 3 (60) 3 (60) 
Sex – no. (%)   
Female 5 (100) 5 (100) 
Male 0 (0) 0 (0) 
Smoking History   
Smoking Status – no (%)   
Never Smoked 5 (100) 5 (100) 
Former Smoker 0 (0) 0 (0) 
Smoker 0 (0) 0 (0) 
BMI   
Mean (S.D) 24.4 (2.6) 24.3 (2.1) 
Range 21.5 – 27.8 21 – 26.4 
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Inflammatory proteins 239 

To determine the immune status of the asthmatic patients at the time of sample 240 

collection, characterisation of various chemokines and cytokines associated with 241 

asthma pathology was performed.  242 

Qualitative ELISA was performed on the blood samples in order to profile the 243 

inflammatory state of the asthmatic and control, and inflammatory proteins under 244 

investigation included interleukin (IL)-4, IL-5, IL-10, IL-13, IL-17A, eotaxin, 245 

granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma 246 

(IFN�), monocyte chemoattractant protein 1 (MCP-1), thymus and activation 247 

regulated chemokine (TARC), and tumour necrosis factor alpha (TNFA). Additionally, 248 

the concentration of the pro-inflammatory bacterial endotoxin protein was measured, 249 

and total IgE present in the blood was quantified to determine the atopic state of the 250 

asthmatic subjects. 251 

With regards to the host-derived inflammatory proteins, 10 out of the 12 inflammatory 252 

proteins under investigation were detected in the blood samples (see Supplementary 253 

Materials, S3).  254 

Overall the asthmatic subjects were found to have elevated levels of inflammatory 255 

proteins compared to the controls, as determined by increased levels of all 256 

inflammatory proteins examined. This was particularly apparent for chemokines 257 

TARC (Fold change = 4.173; P value = 0.095), GM-CSF (Fold change = 3.607; P 258 

value = 0.111), and IFN� (Fold change = 20.871; P value = 0.195) (Figure 1A, B, 259 

and C). However, it should be noted that there were no statistically significant 260 

increases detected for any of the individual proteins. This was likely due to the 261 

asthmatic subjects having a greater level of diversity with regards to inflammatory 262 

protein levels compared to the control subjects (Figure 1). 263 

Of interest was the levels of IL-17A observed. This protein whilst not significantly 264 

increased in the asthmatic subjects (P value = 0.413), was found to be present at 265 

higher levels in asthmatic subjects who suffered additional atopic complications 266 

(Asthma_1, Asthma_2, and Asthma_4) and the two control subjects who had self-267 

reported atopic dermatitis (Control_2 and Control_3) (see Supplementary Material 268 

S2 and S3). This suggests that whilst systemic levels of this cytokine are not 269 

elevated in asthma, IL-17A levels may be elevated in the blood of individuals with 270 

other atopic conditions, such as allergic rhinitis and atopic dermatitis. 271 

Moreover, the asthmatic cohort appeared divided with regards to the inflammatory 272 

protein profiles, whereby asthmatic subjects Asthma_2 and Asthma_4 typically had 273 

high levels of circulatory inflammatory proteins, whilst asthmatic subjects Asthma_1, 274 

Asthma_3 and Asthma_5 displayed protein levels similar to those observed for the 275 

control subjects. This is reflective of the heterogenous nature of asthma pathology 276 

and suggests that possibility of asthma sub-phenotypes that display varying levels of 277 

circulatory inflammatory proteins. We comment upon this heterogeneity, and the 278 

impact of this upon sample size selection in the concluding section. 279 

Total IgE was detected in 50% of the blood samples under investigation (three 280 

control subjects and two asthmatic subjects (Figure 1D). 281 
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For the purpose of statistical analysis, samples with undetectable levels of IgE were 282 

given an IgE concentration value of 0. Comparison between the concentrations of 283 

IgE detected in the asthmatic samples compared to the control samples revealed no 284 

significant differences. This is likely due to the small number of samples with 285 

detectable IgE. However, samples Asthma_2 and Asthma_4 again had notably 286 

higher levels that the rest of the sample set. Within the asthmatic cohort it was these 287 

two subjects that had the highest levels of inflammatory proteins under investigation 288 

(see Supplementary Materials, S3), and thus the results of IgE quantification further 289 

support the concept of asthma sub-phenotypes with different circulatory immune 290 

status. As noted previously, such hypotheses require investigation with a much 291 

larger study cohort. 292 

Overall, endotoxin levels were found to be reduced in the asthmatic subjects (Figure 293 

1E; P value = 0.0650). Within the asthma cohort, subjects with additional atopic 294 

complications (i.e. allergic rhinitis, allergic dermatitis) displayed lower endotoxin 295 

concentrations compared to the asthmatic subjects that did not have additional 296 

atopic complications. This finding was further supported by the observation that 297 

within the control cohort, subjects with previously reported atopic dermatitis 298 

displayed circulatory endotoxin concentrations similar (i.e. lower than those subjects 299 

reporting no atopic conditions) to those observed in the asthma cohort.  300 

 301 

  302 
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 303 

 304 

Figure 1: Analysis of circulatory inflammatory proteins present in blood 305 

samples from control subjects (n = 5) and asthma subjects (n = 5). A = levels of 306 

GM-CSF present in the blood of asthmatic subjects (n = 5) and control subjects (n = 307 

5) using qualitative ELISA analysis, P value = 0.111 (Wilcoxon rank sum test with 308 

continuity correction); B =  levels of IFN� present in the blood of asthmatic subjects 309 

(n = 5) and control subjects (n = 5) using qualitative ELISA analysis, P value = 0.195 310 

(Wilcoxon rank sum test with continuity correction); C = levels of TARC in the blood 311 

using of asthmatic subjects (n = 5) and control subjects (n = 5) qualitative ELISA 312 

analysis, P value = 0.095 (Wilcoxon rank sum test with continuity correction); D = 313 

Concentrations of total IgE protein present in the blood of asthmatic subjects (n = 4) 314 

and control subjects (n = 5) using quantitative ELISA analysis, P value = 1.0 315 

(Wilcoxon rank sum test with continuity correction); E = Concentrations of bacterial 316 

endotoxin present in the blood of asthmatic subjects (n = 5) and control subjects (n = 317 

5) using Limulus Amebocyte Lysate (LAL) Chromogenic quantification. P value = 318 

0.0650 (unpaired T test). EU/ml = endotoxin units per millilitre. Data points at 3.1 319 

EU/ml for control = 3; Data points at 3.0 EU/ml for asthma = 2; Data points at 3.05 320 

EU/ml for asthma = 2. 321 

A B C 

D E 
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mRNA Sequencing and Differential Expression Analysis 322 

Approximately 20,000,000 messenger RNA (mRNA) read pairs were generated from 323 

each plasma sample (average 44,000,000 ± 3,100,000 reads), with no significant 324 

differences in read count identified between the two cohorts. 325 

Expression of a total of 14, 226 genes was detected through assessment of the 326 

circulating transcriptome (i.e. those RNAs present in the plasma). Given the nature 327 

of our sample type, the extent of read mapping to key mRNAs was confirmed 328 

visually by appraising the resulting BAM file against hg19 using IGV (data not 329 

shown). Sample Asthma_2 failed to map satisfactorily to hg19 and was thus 330 

excluded due to concerns this would induce bias into our downstream analyses. 331 

Statistical analysis, as detailed previously, revealed 287 genes were differentially 332 

expressed in the asthmatic subjects (as defined by a Q ≤ 0.05 and a Log2 Fold 333 

Change > 0.6). Within the asthmatic cohort, 90 of the differentially expressed genes 334 

showed significantly increased expression, and 197 genes displayed significantly 335 

decreased expression. Genes that displayed the highest degree of differential 336 

expression within the asthmatic subjects are listed in Table 3. A full list of 337 

differentially expressed genes can be viewed in the supplementary materials 338 

(Supplementary Materials, S4) 339 

 340 

  341 
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Table 3: Genes that were most differentially expressed in the asthmatic 342 

subjects (n = 4) compared to the control subjects (n = 5). Where genes are 343 

expressed in a condition-specific manner, Log2 fold change is replaced with “Control 344 

Only” or “Asthma Only” as appropriate. Quantity of the gene is shown as Fragments 345 

Per Kilobase of transcript per Million mapped (FPKM) reads 346 

Gene Control Mean Asthma Mean Fold Change (log2) Q Value 
Downregulated Genes 
DOHH 972.908 0 Control Only 0.002975 
PTRH2 87.7907 0 Control Only 0.002975 
C15orf41 79.1979 0 Control Only 0.002975 
HIST1H3I 30.2331 0 Control Only 0.002975 
HOXC10 26.4924 0 Control Only 0.002975 
TSPYL5 18.9517 0 Control Only 0.002975 
NFXL1 17.8423 0 Control Only 0.002975 
RAB3IL1 15.1233 0 Control Only 0.002975 
LINC00085 15.0233 0 Control Only 0.002975 
ARV1 14.0641 0 Control Only 0.002975 
Upregulated Genes 
HIST1H3C 0 90.5782 Asthma Only 0.002975 
HDAC9 0.731644 52.1632 6.15575 0.005217 
PRAM1 0 3.05743 Asthma Only 0.005217 
PML 0.948462 178.238 7.554 0.007164 
RAB6B 0 8.90346 Asthma Only 0.007164 
NRP1 0.92425 18.8945 4.35354 0.010799 
CD93 0 14.3366 Asthma Only 0.010799 
GPR56 1.86976 98.5377 5.71975 0.012559 
MR1 1.07632 17.8916 4.0551 0.017952 
TOP1MT 0.344555 59.0342 7.42067 0.017952 
 
 
 347 

Interestingly, there were numerous genes that were expressed in a condition specific 348 

manner (96 genes were uniquely expressed in the control subjects, and 64 genes 349 

were uniquely expressed in the asthmatic subjects). To determine whether the 350 

asthmatic subjects had a distinct gene expression profile compared to the control 351 

subjects, genes that displayed robust levels of expression (as determined by a mean 352 

LOG2 FPKM score > 6.0) were plotted as a heatmap and unsupervised cluster 353 

analysis was performed using Euclidean distance (Figure 2). 354 

 355 

  356 
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 357 

 358 

Figure 2: Heatmap showing highly expressed genes in control subjects (n = 5) 359 

and asthma subjects (n = 4). Gene expression is determined by quantification of 360 

circulatory mRNA present in the plasma samples and is expressed as log2 361 

normalised Fragments Per Kilobase of transcript per Million mapped (FPKM) reads. 362 

Highly expressed genes, as determined by a mean log2 FPKM score > 6.0 are 363 
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plotted, and Cluster analysis (Euclidean distance) informs the X and Y-axis 364 

dendrograms. 365 

Cluster analysis revealed that subject Control_4 had a relatively unique mRNA 366 

profile. For the remaining subjects, two clusters formed on the basis of circulatory 367 

mRNA populations. Cluster 1 was formed of Control_5 and Control_2; and Cluster 2 368 

was comprised of Asthma_1, Asthma_3, Asthma_5, Control_1, Asthma_4, and 369 

Control_3. The dominance of asthmatic subjects in Cluster 2 suggests the possibility 370 

of a distinct asthma mRNA profile that would likely be more apparent in a larger 371 

sample group. Of interest, Asthma_4 clustered more closely with control Subjects 372 

Control_1 and Control_3. This asthmatic subject was the youngest member of the 373 

asthma cohort, with an age of 19 years, and the subject had been suffering from 374 

asthma for just 14 years compared to the mean length of 38 years that our other 375 

subjects had been living with the disease. It is tempting to speculate that asthmatic 376 

mRNA profiles become more divergent from control profiles as the disease 377 

progresses over time, however our sample size restricts further analysis of this. 378 

The diversity of genes being expressed within the circulatory system was assessed 379 

using principal coordinate analysis (PCA) (Figure 3). 380 
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 382 

 383 

Figure 3: Principal component analysis ordination of Bray Curtis dissimilarity 384 

between circulatory mRNA populations present in control subjects (n = 5) and 385 

asthma subjects (n = 4). Principal component analysis was performed on a gene 386 

population dataset using quantitative mRNA Fragments Per Kilobase of transcript 387 

per Million mapped (FPKM) reads that had been normalised using log2. Only genes 388 

with mean FPKM scores > 6.0 were included in the dataset, and the principal 389 

coordinate analysis was performed using Bray Curtis dissimilarity and R software.  390 

Blue data points = Control; Orange datasets = Asthma 391 

 392 

 393 

 394 

 395 
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Examination of Bray Curtis dissimilarity between the subjects found that, 397 

unsurprisingly, samples clustered similarly to that observed using unsupervised 398 

clustering (Euclidean distance). PCA analysis, did however reveal that the control 399 

and asthmatic subjects were differentiated on the basis of principal component (PC) 400 

2, whereby asthmatic subjects had a positive PC2 score and control subjects had a 401 

negative PC2 score. Moreover, Asthma_4 clustered with the control subjects, thus 402 

providing additional evidence that this subject has a mRNA profile similar to the 403 

control subjects. 404 

 405 

To determine whether differential gene expression could be linked to asthma 406 

pathology, we compared the differentially expressed genes identified herein, to a 407 

recently released database of genes associated with asthma pathology - AllerGAtlas, 408 

2018 (41). Of the 287 genes identified as being significantly differentially expressed 409 

in the asthmatic subjects, 8 genes were identified in the asthma gene database. 410 

These genes included complement regulatory protein 46 (CD46), interleukin 7 411 

receptor (IL7R), galactin 3(LGALS3), myeloperoxidase (MPO), neurotensin (NTS), 412 

phosphodiesterase 4A (PDE4A), toll-like receptor (TLR) 1, and vitamin D receptor 413 

(VDR). Four of the genes were upregulated in the asthmatic subjects (VDR, NTS, 414 

TLR1, and MPO) and four were downregulated in the asthmatic subjects (LGAL3, 415 

CD46, IL7R, and PDE4A) (Table 4). Moreover, gene expression was predominately 416 

condition specific. Of the upregulated genes, NTS, TLR1, and MPO mRNA was only 417 

detectable in the asthma samples, whilst in the downregulated genes, IL7R and 418 

PDE4R mRNA was only observed in the control samples (see Supplementary 419 

Materials, S4). 420 
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Table 4: Genes with significant differential expression in the asthmatic 422 

subjects compared to control subjects that are associated with asthma 423 

pathology. Differential gene expression was determined using the Tuxedo protocol 424 

(Galaxy software) on log2 normalised mRNA Fragments Per Kilobase of transcript 425 

per Million mapped (FPKM) reads sequenced from plasma samples from asthma 426 

subjects (n = 4) and control subjects (n = 5). Gene function with regards to asthma 427 

pathology was determined using the asthma database AllerGAtlas, 2018 (41) and a 428 

general literature search using the relevant search engines. 429 

 430 

Gene Expression in Asthma Function Reference 

CD46 Downregulated 

Differentiation of IL-10 producing regulatory T 

cell type 1 cells 

Differentiation of Th1 cells 

Inhibition of HDM allergenic activity 

(42)(43) 

 

(44)(45) 

(46) 

IL7R Downregulated 

Marker for Treg activation 

T cell development 

Eosinophil survival 

(47) 

 

(48) 

LGALS3 Downregulated 

Inhibition of IL-5 expression 

Inhibition of eosinophil and T cell infiltration 

Negative regulation of Th17 polarization 

(49) 

(49) 

(50) 

MPO Upregulated Initiation of lipid peroxidation (51) 

NTS Upregulated Mast cell degranulation (52)(53) 

PDE4A Downregulated 

Production of CD4+ T cell cytokines (IL-2, IL-4, IL-

5, IFN:) 

Production of TNFα 

Production of leukotriene B4 

Production of eotaxin 

Airway goblet cell hyperplasia 

(54)(55)(56) 

 

(54) 

(54) 

(56) 

(56) 

TLR1 Upregulated Antimicrobial activity (57)(58)(59) 

VDR Upregulated 

Development of airway inflammation and 

hyperresponsiveness 

Eosinophilia 

Inhibits IgE production  

 

(60) 

 

(60) 

(60)(61) 

 431 
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The genes identified in the asthma gene database (41) were found to influence a 433 

number of key components of asthma pathology, including eosinophil and T cell 434 

migration, production of Th2 cytokines (IL-4, IL-5, and IL-13), mast cell 435 

degranulation, IgE production, and airway hyperresponsiveness. Moreover, several 436 

of the downregulated genes (CD46, IL7R), have been found to have roles in Treg 437 

differentiation and activation. These cells are important regulators of T cell activity 438 

(62–65) , and thus downregulation of CD46 and IL7R suggests loss of control of T 439 

cell activity in the asthmatic subjects.  440 

 441 

 442 

miRNA Quantification 443 

Approximately 10,000,000 micro RNA (miRNA) reads were generated from each 444 

plasma sample (range = 10,276,765 - 16,812,591, mean = 12,030,581 + 1,911,104), 445 

and there were no significant differences in read count identified between the control 446 

and asthma samples.   447 

Using miRanalyzer (35)  and edgeR (36), we identified 166 known miRNAs present 448 

in the plasma samples (Figure 4), which is consistent with previously reported 449 

studies (66–70). To determine whether the asthmatic subjects had distinct miRNA 450 

profiles compared to the control subjects, miRNA expression was plotted as a 451 

heatmap, and unsupervised clustering was performed using Euclidean distance 452 

(Figure 4). 453 

 454 
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 456 

Figure 4. A Heatmap showing expression levels of circulatory miRNA in 457 

control subjects (n = 5) and asthmatic subjects (n = 5). miRNA expression is 458 

determined by quantification of circulatory miRNA detected in the plasma samples 459 

and is expressed as log2 normalised Counts per Million mapped (CPM) reads. 460 

Cluster analysis (Euclidean distance) informs the X and Y-axis dendrograms 461 

 462 

 463 
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Analysis of miRNA expression revealed the presence of two clusters with regards to 464 

the miRNA populations present within the plasma. Cluster 1 was composed 465 

Control_4, Control_2, Asthma_5, and Asthma_3; and Cluster 2 was made up of 466 

Asthma_1, Asthma_2, Control_5, Control_3, Control_1, and Asthma_4. Within each 467 

cluster two sub-clusters formed, and each sub-cluster was formed of either control 468 

subjects or asthma subjects. The one exception was Asthma_4, which clustered with 469 

other control subjects.  470 

Of interest, the two asthma sub-clusters that formed appeared to be governed by the 471 

presence or absence of additional atopic complications. Asthma_5 and Asthma_3 472 

clustered together and both subjects were free of additional atopic complication, 473 

whereas Asthma_1 and Asthma_2 clustered together, and both subjects had 474 

additional atopic complications such as allergic rhinitis. As we have noted previously, 475 

further study using a larger asthma cohort would be required to determine this 476 

association given the clear heterogeneity noted. 477 

Statistical analysis revealed that 13 miRNAs were differentially expressed (defined 478 

as FDR P value < 0.05 and a fold change > 2.0) in the asthmatic subjects compared 479 

to the control subjects (Figure 5, see also Supplementary Materials S5). As 480 

predicted, Asthma_4 displayed miRNA levels similar to those observed in the control 481 

subjects. As stated previously, Asthma_4 was the youngest of the asthmatic subjects 482 

and had been living with the disease for the shortest period of time. It is tempting to 483 

speculate that asthmatic miRNA profiles become more divergent from control 484 

subjects as the disease progresses over time, and that this in turn alters gene 485 

expression. 486 

 487 
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 489 

 490 

 491 

Figure 5: A heatmap showing expression levels of circulatory miRNA that 492 

displayed significant differential expression in asthmatic subjects (n = 5) 493 

compared to control subjects (n = 5). miRNA expression was determined by 494 

quantification of circulatory miRNA detected in the plasma samples and is expressed 495 

as log2 normalised Fragments Per Kilobase of transcript per Million mapped (FPKM) 496 

reads. Differential expression was determined using the edgeR program 497 

(Bioconductor software), and significant expression was defined as having a log fold 498 

change greater than 2.0 and a false rate of discovery (FDR) adjusted P value < 0.05. 499 

Cluster analysis (Euclidean distance) informs the X and Y-axis dendrograms 500 

 501 

 502 
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Functional Analysis 504 

Causal inference analysis using Ingenuity Pathway analysis (IPA) software was 505 

performed to identify the likely upstream regulators responsible for the changes in 506 

mRNA and miRNA expression noted in the asthmatic subjects. 507 

In total, 246 upstream gene regulators had a P value of overlap < 0.05; indicating 508 

that they have altered functional activity in the asthmatic subjects on the basis of 509 

differential mRNA and miRNA expression. Of these regulators, seven had Z scores 510 

greater than 2.0, thus enabling their activity to be predicted. Two upstream 511 

regulators were predicted to have significantly increased activity in the asthmatic 512 

subjects (P value of overlap < 0.05; Z score > 2.0), and five were predicted to have 513 

significantly decreased activity asthmatic subjects (P value of overlap < 0.05; Z score 514 

< -2.0) in the (Table 5). 515 

 516 
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Table 5: Upstream gene regulators with predicted significantly altered activity 518 

in the asthmatic subjects (n = 4) compared to the control subjects (n = 5). 519 

Upstream regulators predicted to have significantly altered activity were defined as 520 

having a P value of overlap < 0.05 and a Z score greater than 2.0. Activated 521 

upstream regulators are defined as having a Z score > 2.0, and inhibited upstream 522 

regulators are defined as having a Z score < -2.0. Target molecules activated = 523 

genes present in the RNA dataset that are activated by the upstream regulator; 524 

target molecules inhibited = genes present in the RNA dataset that are inhibited by 525 

the upstream regulator; target molecules affected = genes present in the RNA 526 

dataset whose activity is known to be altered by the upstream regulator but there is 527 

insufficient evidence to prove this is activation or inhibition. 528 

 529 

Upstream 

Regulator 
Molecule type 

Activity 

state 
Z score 

P value 

of 

overlap 

# Target 

molecules 

activated 

# Target 

molecules 

inhibited 

# Target 

molecules 

affected 

Sirolimus Chemical drug Activated 2.75 0.0107 12 1 0 

GFI1 
Transcription 

regulator 
Activated 2.00 0.0077 4 0 1 

EIF4E 
Transcription 

regulator 
Inhibited -2.00 0.0074 0 4 2 

Mycophenol

ic acid 
Chemical drug Inhibited -2.00 0.0211 0 4 0 

Streptozocin Chemical drug Inhibited -2.16 0.0492 0 5 1 

SOX4 
Transcription 

regulator 
Inhibited -2.24 0.0770 0 5 0 

SYVN1 Transporter Inhibited -2.45 0.0069 0 6 0 

 530 
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Of interest, with regards to atopic asthma pathology, was the predicted activated 532 

state of GFI1, a transcription regulator induced by T cell activation and IL-4/STAT6 533 

signalling. GFI1 is known to enhance Th2 expansion (71), and thus predicted 534 

activation of this transcription regulator would suggest increased T cell activation and 535 

subsequent expansion of the Th2 cell populations within the asthmatic cohort. This 536 

notion is further supported by the prediction of significant inhibition of the upstream 537 

regulator SOX4 in the asthmatic cohort. This transcription factor has been observed 538 

to suppress Th2 differentiation (72), and thus its inhibition would allow expansion of 539 

the Th2 populations within the  asthmatic subjects. The predicted activated state of 540 

GFI1 would also influence innate immune responses within the asthmatic cohort. 541 

The transcription factor has been found to have a role in the development and 542 

maintenance of type 2 innate lymphoid cells (73); a cell population that has been 543 

found to be involved in allergic lung inflammation (74–76).  544 

However, it should be noted causal inference analysis was performed on mRNA 545 

detected in the blood, and thus the cellular origins of the gene expression observed 546 

is unknown. Further study would be required to determine if GFI1 was indeed 547 

activated and SOX4 was inhibited in the relevant body sites and or relevant in vitro 548 

models of asthma pathology. 549 

 550 

Downstream Activity 551 

Causal inference analysis using IPA was also used to predict the downstream 552 

consequences of the observed differential mRNA and miRNA expression within the 553 

asthmatic subjects. The downstream effects of the differential expression were 554 

primarily assessed by examination of the predicted canonical pathways and bio-555 

functions impacted. 556 

 557 

Canonical pathway analysis 558 

Fourteen canonical pathways were found to have significantly altered biological 559 

activity (P < 0.05) within the asthmatic subjects (Table 6). In line with the findings of 560 

the upstream analysis, a number of canonical pathways involved in T cell and B cell 561 

activity, including signalling in rheumatoid arthritis, B cell development, and Nur77 562 

signalling. It is interesting to note the canonical pathways involved in rheumatoid 563 

arthritis and Type 1 diabetes were identified, as both diseases have been found to 564 

display co-occurrence with asthma (77,78). It is tempting to speculate about the 565 

existence of similar / shared underlying immune pathologies in the three diseases. 566 

 567 
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Table 6: Canonical signalling pathways predicted to have significantly altered 569 

activity in the asthmatic subjects (n = 4) compared to the control subjects (n = 570 

5). Casual interference using Ingenuity Pathway Analysis (IPA) software was used to 571 

predict downstream canonical signalling pathways likely to be affected by changes in 572 

gene expression and regulation in the asthmatic subjects. Molecules with increased 573 

gene expression are genes that had significantly increased numbers of mRNA reads 574 

in the asthma plasma samples, and molecules with decreased gene expression are 575 

genes that had significantly decreased numbers of mRNA reads in the asthma 576 

plasma samples. Canonical pathways that are defined as being significantly altered 577 

in the asthma subjects have a P value < 0.05. 578 

 579 

Canonical Pathway P Value 
Molecules with 
increased gene 

expression 

Molecules with 
decreased gene 

expression 
Altered T Cell and B Cell 
Signalling in Rheumatoid 
Arthritis 

0.0053 SLAMF1,TLR1,HLA-
DQA1,TNFRSF13C 

HLA-DRB5 

B Cell Development 0.0092 HLA-DQA1 IL7R, HLA-DRB5 

Antigen Presentation Pathway 0.0116 HLA-DQA1, MR1 HLA-DRB5 

Melatonin Degradation III 0.0124 MPO - 

TNFR1 Signalling 0.0241 - TRADD, IKBKB, PAK4 
Acute Myeloid Leukemia 
Signalling 0.0287 PML CSF2RB, CEBPA, 

IDH3B 
Tetrahydrobiopterin Biosynthesis 
I 0.0368 - PTS 

Hypusine Biosynthesis 0.0368 - DOHH 
Tetrahydrobiopterin Biosynthesis 
II 0.0368 - PTS 

Nur77 Signalling in T 
Lymphocytes 0.0369 HDAC9, HLA-DQA1 HLA-DRB5 

Phagosome Maturation 0.0375 MPO, GOSR2 CTSL, CTSG, HLA-
DRB5 

Catecholamine Biosynthesis 0.0487 - PNMT 

Mitotic Roles of Polo-Like Kinase 0.0488 STAG2 ANAPC4, PPP2R5C 
Type I Diabetes Mellitus 
Signalling 0.0496 HLA-DQA1 TRADD, IKBKB, HLA-

DRB5 
 580 

 581 

Bio-function analysis 582 

With regards to biological functions likely to be impacted by changes in the observed 583 

mRNA and miRNA expression patterns, a number of key immunological pathways 584 

were predicted to have altered activity within the asthmatic cohort (Table 7). 585 

Altered activity was defined as having a P value < 0.05 and a Z score > 2.0 or < -2.0; 586 

and in total 10 biological functions had significantly altered activity within the 587 

asthmatic subjects (Table 7). 588 

 589 
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Table 7: Biological functions predicted to have significantly altered activity in 590 

the asthmatic subjects (n = 4) compared to the control subjects (n = 5). Casual 591 

inference using Ingenuity Pathway Analysis (IPA) software was used to predict 592 

biological functions likely to have altered activity in the asthmatic subjects. This was 593 

determined through analysis of genes and miRNA that had altered expression in the 594 

asthmatic subjects, to predict which biological functions would likely be altered. 595 

Biological functions predicted to be significantly altered in the asthmatic subjects 596 

were defined as having a P value < 0.05 and a Z score greater than 2.0. Biological 597 

functions with predicted increased activity were defined as having a Z score > 2.0, 598 

and biological functions with predicted decreased activity were defined as having a Z 599 

score < -2.0 600 

 601 

Biological Functions P Value Activation State Z score 

Binding of endothelial cells 9.75E-03 Decreased -2.123 

Binding of leukocytes 1.73E-03 Decreased -2.062 

Cell transformation 1.32E-03 Decreased -3.228 

Differentiation of fibroblast cell lines 4.44E-03 Decreased -2.184 

Immune response of leukocytes 6.79E-04 Decreased -2.031 

Interaction of endothelial cells 3.55E-03 Decreased -2.346 

Killing of natural killer cells 5.44E-03 Decreased -2.63 

Proliferation of hepatocytes 6.53E-03 Increased 2.177 

Tumorigenesis of tissue 4.94E-04 Increased 2.215 

Viral infection  1.34E-02 Decreased -2.099 

 602 

Unsurprisingly, leukocyte activity was identified as being decreased in the asthmatic 603 

cohort. However, at this level of analysis, the downstream effects on biological 604 

function of the different classes of leukocytes was not determined, and thus further 605 

study would be required to ascertain which leukocytes would likely have altered 606 

activity in the asthmatic subjects as a consequence of the differential mRNA and 607 

miRNA expression. Study of the specific leukocyte classes affected by asthma would 608 

be crucial, as inhibition of the Th1 or Treg lymphocytes would likely enhance asthma 609 

pathophysiology, whereas inhibition of the Th2 lymphocytes would likely alleviate 610 

asthma pathophysiology. 611 

It was also of interest to observe the predicted decrease in killing of natural killer 612 

cells. This cell population has been previously identified as having a critical role in 613 

immune defence against viruses and bacteria (79–82). In particular, viral infections 614 

have been long characterised to exacerbate asthma (83–86), and asthmatics have 615 

been observed to be deficient in type I IFN production (87–89), which likely 616 

influences natural killer cell activity. Moreover, in a murine model, natural killer cell 617 

activity was found to be decreased during a Th2 response (90). This suggests that in 618 

asthmatic subjects, as a consequence of a Th2 biased immune system, there is 619 

reduced natural killer cell activity, resulting in the known associations with asthma 620 
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and respiratory infections. Moreover, this may also partially explain the changes in 621 

the airway microbiome we see in asthmatic populations. 622 

623 
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Characterisation of the Blood Microbiota 624 

Bacterial Relative Abundance  625 

Our previous characterisation (38) of the bacterial RNA present in the plasma 626 

samples found that the majority of bacterial RNA belonged to the Proteobacteria 627 

phylum (Total relative abundance = 83.9%; Control mean = 90.0%; Asthma mean = 628 

80.3%), the Actinobacteria phylum (Total relative abundance = 7.5%, Control mean 629 

= 6.0%, Asthma mean = 7.5%), and the Firmicutes phylum (Total relative abundance 630 

= 6.6%, Control mean = 3.0%, Asthma mean = 9.0%) (Figure 6). Please refer to (38) 631 

for a detailed appraisal of our experimental controls. 632 

 633 

 634 

Figure 6: Microbial profile of the blood microbiome at the phylum level in 635 

asthmatic subjects (n = 5) and control subjects (n = 5). Composition of the blood 636 

microbiome was determined through sequencing of the bacterial V4 region of the 637 

16S rRNA gene from bacterial DNA isolated from plasma samples from control 638 

subjects (n = 5) and asthmatic subjects (n = 5). The generated bacterial sequences 639 

were clustered (99% identity) in Operational Taxonomic Units (OTUs) to the Silva 640 

database and then assigned to bacterial taxonomic classes. A = microbial profile of 641 

the asthmatic subjects (n = 5) compared to the control subjects (n = 5). B = Microbial 642 

profiles of the individual plasma samples (n = 10) 643 

 644 

In the asthmatic samples, 16S amplification and sequencing revealed a significant 645 

increase in Firmicutes (P value = 0.0148), associated with a concomitant decrease in 646 

Proteobacteria (P value = 0.0702) (Figure 6). To a lesser extent, members of the 647 

Bacteroidetes phylum were also detected in the blood samples, with increased levels 648 

of Bacteroidetes observed in the asthmatic subjects (Control mean relative 649 

abundance = 0.26%, range = 0.0 – 2.7%; Asthma mean relative abundance = 650 

2.40%, range = 0 – 6.0%), although this was found to be non-significant increase (P 651 

value = 0.5258). 652 

 653 

 654 
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Lefse Analysis 656 

 657 

Analysis of the phyla relative abundances detected in the blood was achieved using 658 

conventional statistical tests (unpaired t tests and Wilcox tests where appropriate) 659 

and suggested significant differences in the blood microbiome between control and 660 

asthma subjects. To test this, the linear discriminant analysis effect size (LefSe) 661 

method was applied to the 16S rRNA relative abundance data to determine the 662 

bacterial taxa most likely to explain the differences between the control and asthma 663 

blood microbiomes. LefSe was also used to determine the biological consistency and 664 

effect relevance of the observed differences in relative abundance. 665 

In total, LefSe identified 8 bacterial taxa that showed statistically significant and 666 

biologically consistent differences in the asthmatic subjects compared to the control 667 

subjects (Figure 7). These findings were consistent with our previous analysis of the 668 

bacterial populations using standard statistical tests (data not shown). Six of the 669 

eight bacterial taxa displaying significant differences in relative abundance were 670 

increased in the asthmatic subjects, whilst 2 bacterial taxa were decreased. At the 671 

taxonomic class level, Bacilli were increased and Bacteroidia were decreased in the 672 

asthmatic subjects, whilst at the genus level both Kocuria and Stenotrophomonas 673 

were both increased in the asthmatic subjects. 674 

The observed increases in Firmicutes were of particular interest as expansion of this 675 

phylum has been associated with severe asthma (21). Furthermore, increased levels 676 

of Firmicutes in the asthmatic subjects was predominately due to expansions of 677 

Staphylococcus and Streptococcus genera, both of which have been associated with 678 

the development of asthma during early childhood (91–94). 679 

Additionally, our results were reflective of a previous study investigating the oral 680 

microbiome, whereby Firmicutes, Stenotrophomonas, and Lactobacillus were found 681 

to be increased in asthmatic subjects compared to the control subjects (95). This 682 

suggests that bacterial nucleic acid detected in the blood may have originated from 683 

the oral cavities, a theory that we consider in (38). 684 

 685 
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Figure 7: Comparison of the healthy blood microbiome (n = 5) and the 687 

asthmatic blood microbiome (n = 5) using LefSe. Linear discriminant analysis 688 

effect size (Lefse) analysis was performed on the bacterial taxa relative abundance 689 

values to determine the presence of bacterial taxa with statistically significant 690 

changes in abundance in the asthma blood microbiome compared to the control 691 

blood microbiome. A. Taxonomic cladogram showing control enriched taxa (Green) 692 

and asthma enriched taxa (Red). B. Effect size of the differential taxa. The control 693 

enriched taxa are indicated with a positive LDA score, and the asthma enriched taxa 694 

are indicated with a negative LDA score. The level of significance is indicated by the 695 

P value shown for each taxa. 696 

  697 
A 

B 

P value = 0.0342 
P value = 0.0186 
P value = 0.0278 
P value = 0.0160 
P value = 0.0163 

P value = 0.0283 
P value = 0.0472 

P value = 0.0342 
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Bacterial Diversity 698 

At the genus level, 81 bacterial genera were detected in the asthma plasma samples 699 

compared to 49 bacterial genera detected in the control plasma samples. Alpha and 700 

beta diversity of the bacterial populations present in the asthma and control groups 701 

was therefore assessed to determine whether there was significantly elevated 702 

bacterial diversity within the blood microbiome of the asthmatic subjects.  703 

 704 

Alpha Diversity 705 

Alpha diversity was determined by calculating the Chao1 index and Shannon index 706 

for each plasma sample. The control index scores were then compared to the 707 

asthma index scores to determine whether there were any significant differences 708 

between the two groups (Fig. 8).  709 

 710 

 711 

Alpha Diversity Control Mean (sd) Asthma Mean (sd) Fold Change P value 

Shannon 3.58 (0.44) 4.34 (0.68) 1.2130 0.0710 

Chao1 378.90(58.12) 390.62 (62.44) 1.0309 0.7820 

 712 

Figure 8: Comparison of alpha diversity present in the asthma blood 713 

microbiome compared to the control blood microbiome. Alpha diversity was 714 

measured using rarefied OTU tables generated from 16S rRNA sequencing data 715 

from plasma samples collected from asthma subjects (n = 5) and control subjects (n 716 

= 5). Shannon diversity index scores were generated from OTU tables in order to 717 

measure the richness of the plasma sample and evenness of bacterial taxa present 718 

in the sample. Chao1 index scores were measured to determine the predicted 719 

number of bacterial taxa present in the plasma samples by extrapolating out the 720 

number of rare organisms that may not have been detected due to under-sampling. 721 

A = Comparison of Shannon index scores generated from asthma plasma samples 722 

(n = 5) and control plasma samples (n = 5), B = Chao1 index scores generated from 723 

asthma plasma samples (n = 5) and control plasma samples (n = 5). 724 

A B 
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Comparison between the asthma and control cohorts revealed that the asthmatic 725 

subjects scored higher Chao1 and Shannon index scores than the control subjects, 726 

thus suggesting that asthma is associated with increased bacterial diversity (Figure 727 

8). This was particularly apparent for the Shannon diversity scores (P value = 728 

0.0710) (Figure 8). Intriguingly, one of the asthma subjects, Asthma_3, displayed a 729 

Shannon diversity score more similar to the controls than the other asthmatic 730 

subjects. This subject developed asthma relatively late in childhood (age 12 years), 731 

and so it is possible that the age of asthma onset may influence the level of microbial 732 

diversity present in the blood. This is further supported by the high levels of alpha 733 

diversity present in the blood of Asthma_5, an asthmatic subject who was diagnosed 734 

with asthma early on in childhood (3 years). 735 

 736 

Beta Diversity 737 

 738 

Beta diversity was calculated to determine how similar the blood samples were to 739 

one another with regards to bacterial diversity. This enabled not only comparison 740 

between the asthma and control subjects, but also between the different members 741 

within each group.  742 

Beta diversity was determined by performing principal coordinate component (PCoA) 743 

analysis using weighted UniFrac distances (Figure 9). PCoA analysis found that 744 

beta diversity was principally a consequence of PCo1 variation (37.1%), and overall 745 

the asthmatic subjects had higher PCo1 values with regards to beta diversity within 746 

the blood microbiome compared to the control subjects.  747 

 748 

  749 
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 750 

 751 

 752 

Figure 9: Beta diversity of the blood microbiome from asthmatic subjects (n = 753 

5) and control subjects (n = 5) using weighted UniFrac distance. Principal 754 

coordinate analysis (PCoA) was performed on OTU tables generated from 16S rRNA 755 

sequencing data from plasma samples collected from asthma subjects (n = 5) and 756 

control subjects (n = 5). Quantitative phylogenetic distances between each of the 757 

samples was measured using a weighed UniFrac distance matrix, and the weighted 758 

UniFrac distances were plotted as a PCoA graph to show beta diversity within 759 

plasma samples from control subjects (n = 5; data plots = blue) and asthma subjects 760 

(n = 5; data plots = red) 761 

 762 

 763 

  764 
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Concluding Remarks 765 

 766 

This study aimed to characterise a small yet specific population of HDM-sensitive 767 

adult asthma patients who had developed asthma during childhood. A range of 768 

molecular techniques was applied to characterise gene expression and regulation, 769 

inflammatory protein levels, and nucleic acid evidence of bacteria present in the 770 

blood. This was carried out in an effort to increase our understanding of this 771 

particular asthma phenotype, to begin to explore the molecular mechanisms 772 

responsible, and to identify any candidate biomarkers for further study. 773 

 774 

At the protein level, the asthmatic subjects displayed increased inflammatory protein 775 

levels in the blood compared to the control subjects. This was particularly apparent 776 

for GM-CSF, IFN�, and TARC. The range of inflammatory protein levels within the 777 

asthmatic subjects was noticeably higher than the range observed for the control 778 

subjects. This was explained by the presence of two distinct clusters in the asthmatic 779 

cohort; cluster one was composed of subjects Asthma_2 and Asthma_4, and was 780 

characterised by high inflammatory protein levels; and cluster two, composed of 781 

Asthma_1, Asthma_3, and Asthma_5, and characterised by lower levels of 782 

inflammatory proteins. An association between the existence of other atopic 783 

complications, in particular evidence of atopic dermatitis, and IL-17A levels was 784 

unexpectedly observed.  785 

Measurement of total IgE concentration within the blood revealed that IgE was 786 

detectable in half of the subjects under investigation (3 control subjects and 2 787 

asthmatic subjects) and was significantly increased in the asthmatic subjects, when 788 

detected. The low detection rate of IgE was not unexpected given its short half-life 789 

(approximately two days) and low concentration levels within the blood (96). IgE was 790 

detected in asthma subjects belonging to the proposed cluster one, and this further 791 

supports the theory of asthmatic subjects forming sub-phenotypes on the basis of 792 

circulatory inflammation. In contrast to IgE, endotoxin levels were decreased in the 793 

asthmatic subjects (P value = 0.0650), and there appeared to be an inverse 794 

correlation between circulatory endotoxin levels and the reporting of additional atopic 795 

complications. This was a particularly interesting finding as exposure to endotoxin 796 

during early childhood has been previously found to be protective of the 797 

development of childhood asthma (97–100), and we were able to detect changes in 798 

endotoxin levels in our adult cohort. 799 

 800 

Analysis of the diversity of RNA expression within the blood revealed that our 801 

asthmatic donors had more similar RNA profiles to one another than they did to the 802 

control subjects; this was particularly apparent in the miRNA analysis. When 803 

combined with our differential expression analyses, we identified specific mRNA and 804 

miRNA populations within the blood that were distinct between the healthy and 805 

disease states.  Interestingly, asthma severity and the use of anti-inflammatory 806 

medication appeared to further influence RNA profiles although we note the 807 
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limitations of our sample size, and acknowledge the need for a larger sample size to 808 

explore this phenomenon fully. With regards to the unmet need for asthma 809 

biomarkers, we identified various mRNAs in the circulation that were expressed in a 810 

condition-specific manner, including HIST1H3C, PRAM1, RAB6B and CD93. Of 811 

these, elevated levels of soluble CD93 have been previously reported in the serum 812 

of asthmatics during acute asthma exacerbations (101) and in the serum of steroid-813 

naïve asthmatic patients (102).  814 

 815 

Our microbial characterisation informed by 16S rRNA amplification and sequencing, 816 

revealed increased levels of Firmicutes and decreased levels of Proteobacteria 817 

within the blood of our asthmatic donors. This finding was accompanied by increased 818 

bacterial diversity within the blood of asthmatic subjects, and the identification of 819 

several additional bacterial taxa displaying significantly altered levels dependent on 820 

disease state. The observed decrease in circulating Proteobacteria rRNA in the 821 

asthmatic state is thought to be indicative of reduced Proteobacteria carriage within 822 

the asthmatic subjects at a distant microbiome niche (e.g. the gut, airways and oral 823 

cavity). This may explain the decreased levels of endotoxin (protein) detected in our 824 

asthmatic subjects, given that endotoxin-producing gram-negative bacteria dominate 825 

this phylum. Previous studies have associated childhood asthma and reduced 826 

endotoxin exposure, and it is interesting to note that we detected this same 827 

phenomenon in our adult asthma cohort, many years following childhood. 828 

Furthermore, our asthma patients were found to have increased levels of 829 

Bacteroidetes rRNA, and this appeared to be dependent on medication status with 830 

those patients taking anti-inflammatory medications having lower levels of circulating 831 

Bacteroidetes 16S rRNA than those who were not. As blood circulates the body and 832 

functions as a medium that samples from virtually all body sites (103), it was not 833 

possible to determine herein the microbial niche from which these signals originated. 834 

That said, we hypothesise that changes in the blood are reflective of dysbiosis at 835 

distant site(s) with well-characterised microbial communities (e.g. the gut, oral cavity 836 

and skin), and have significant biomarker potential.  837 

 838 

This study provides a valuable insight into the systemic changes evident in the HDM-839 

associated asthma, identifies a range of molecules that are present in the circulation 840 

in a condition-specific manner (with clear biomarker potential), and highlights a range 841 

of hypotheses for further study. Moreover, our data also provide an insight into the 842 

level of heterogeneity observed both within the control and asthma samples 843 

investigated, and will be of use for informing sample size calculations for future 844 

studies.  845 

 846 

 847 

 848 

 849 
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