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ABSTRACT 
Though congenital hydrocephalus is heritable, it has been linked only to eight genes, one of which is MPDZ. 
Humans and mice that carry a truncated version of MPDZ incur severe hydrocephalus resulting in acute 
morbidity and lethality. We show by magnetic resonance imaging that contrast-medium penetrates into the 
brain ventricles of mice carrying a Mpdz loss-of-function mutation, whereas none is detected in the ventricles 
of normal mice, implying that the permeability of the choroid plexus epithelial cell monolayer is abnormally 
high. Comparative proteomic analysis of the cerebrospinal fluid of normal and hydrocephalic mice revealed 
up to a 53-fold increase in protein concentration, suggesting that transcytosis through the choroid plexus 
epithelial cells of Mpdz KO mice is substantially higher than in normal mice. These conclusions are supported 
by ultrastructural evidence, and by immunohistochemistry and cytology data. Our results provide a straight-
forward and concise explanation for the pathophysiology of Mpdz-linked hydrocephalus.  
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INTRODUCTION 
Despite strong evidence for the heritability of congenital hydrocephalus (Kahle et al., 2016; Munch et al., 
2012), to date, only eight genes have been linked to this condition. The earliest monogenic link of hydroceph-
alus had been made to L1CAM (Coucke et al., 1994; Jouet et al., 1993; Rosenthal et al., 1992; Van Camp et 
al., 1993), which encodes the L1 neuronal cell adhesion molecule. Subsequent studies identified AP1S2, a 
gene of subunit 2 of clathrin-associated adaptor protein complex 1 (Cacciagli et al., 2014; Saillour et al., 
2007), and CCDC88C, which encodes DAPLE, a protein involved in Wnt signaling (Drielsma et al., 2012; 
Ekici et al., 2010; Ruggeri et al., 2018). A more recent gene linked to congenital hydrocephalus is MPDZ, 
encoding a large modular scaffold protein that consists of 13 PDZ and one L27 domains (Adachi et al., 2009; 
Ullmer et al., 1998). Several cases of severe congenital hydrocephalus identified in 5 consanguineous fami-
lies (Al-Dosari et al., 2013; Saugier-Veber et al., 2017) were linked mostly to biallelic nonsense mutations that 
resulted in nonsense-mediated decay and total loss of MPDZ. A milder phenotype in a non-consanguineous 
family was linked to missense mutations and a heterozygous splice site variant (Al-Jezawi et al., 2018). The 
four genes that have been linked to congenital hydrocephalus most recently, TRIM71, SMARCC1, PTCH1, 
and SHH (Furey et al., 2018), regulate ventricular zone neural stem cell differentiation. Their loss-of-function 
is thought to result in defective neurogenesis, including ventriculomegaly. 
 
Two of the genetically-linked congenital hydrocephalus conditions in humans were phenocopied in mice. Mice 
carrying loss of function mutations (LOF) in either L1CAM (Dahme et al., 1997; Rolf et al., 2001) or MPDZ 
(Feldner et al., 2017) developed severe hydrocephalus similar to human carriers of biallelic L1CAM 
(Kanemura et al., 2006) and MPDZ mutants (Al-Dosari et al., 2013; Saugier-Veber et al., 2017). Hydroceph-
alus results from impediment of the circulation of the cerebrospinal fluid (CSF), causing its accumulation in 
the brain ventricles as a result of either excessive CSF inflow, attenuated flow through the ventricles, or 
blocked outflow (Estey, 2016; Kahle et al., 2016). The L1CAM and Mpdz mouse models afforded anatomic 
and histological analysis for determining the nature of the defects that interfered with CSF circulation. L1CAM 
mice harbor stenosis of the aqueduct of Sylvius between the 3rd and 4th ventricles, but it was judged to be a 
result of the increased intraventricular pressure and the ensuing compression of the aqueduct’s walls, rather 
than the cause of hydrocephalus (Rolf et al., 2001). The formation of hydrocephalus in Mpdz-/- mouse was 
attributed to stenosis of the aqueduct (Feldner et al., 2017). Postmortem pathology of brains from several 
individuals harboring LOF MPDZ variants detected ependymal lesions but did not reveal causative mecha-
nisms. 
 
MPDZ is a cytoplasmic protein localized close to the junctions of epithelial (Hamazaki et al., 2002) and endo-
thelial cells (Ernkvist et al., 2009), as well as to neuronal synapses (Krapivinsky et al., 2004). In the former 
cell types, MPDZ binds at least 8 junction transmembrane proteins (Adachi et al., 2009; Coyne et al., 2004; 
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Hamazaki et al., 2002; Jeansonne et al., 2003; Lanaspa et al., 2008; Poliak et al., 2002). The abundance of 
MPDZ in the central nervous system is highest in the choroid plexus (CP) (Sitek et al., 2003), a network of 
capillaries walled by fenestrated endothelial cells, surrounded by a monolayer of cuboidal epithelial cells 
(Maxwell and Pease, 1956). The CP is the principal source of the CSF (Lun et al., 2015; Spector et al., 2015).  
 
We used a mouse model (Milner et al., 2015) similar to that of Feldner et al. to test the differences between 
the permeability of the CP of Mpdz+/+ and Mpdz-/- mice, and between the composition of their CSF, using 
approaches that have not been employed before to these ends. Based on our findings and detailed observa-
tions of the ultrastructure of the CP, we propose a new pathophysiological mechanism to explain the formation 
of hydrocephalus in the Mpdz LOF mouse model. The same mechanism could conceivably account for severe 
congenital hydrocephalus in humans carrying LOF variants of MPDZ.  
 
RESULTS 
Mpdz-/- mice harbor severe congenital hydrocephalus 
Out of a total of 112 mice bred by crossing heterozygous Mpdz mice, approximately 9 percent (10 mice) were 
homozygous for a gene-trap-induced mutation G510Vfs*19 (Milner et al., 2015). Consequently, the exons 
coding for PDZ domains 4-13 were truncated, likely resulting in nonsense-mediated mRNA decay. Mpdz-/- 
pups were indistinguishable from their littermates at birth, but their heads started to bulge and form a domed 
forehead as early as P4, becoming gradually more pronounced (Fig. 1A). This is a malformation indicative of 
hydrocephalus. The life-span of Mpdz-/- mice did not exceed 3 weeks, and by P18-P21 they were approxi-
mately 35 percent lighter than their wild type littermates (Fig. 1B). To substantiate the presence of hydro-
cephalus in the brains of Mpdz-/- mice, and to distinguish between metabolically-active and inert, possibly 
necrotic tissue, we imaged the brains of Mpdz+/+ and Mpdz-/- mice by 18F-fluorodeoxyglucose positron emis-
sion tomography (PET). The images revealed low emission levels in most of the cranial volume of Mpdz-/- 
mice in comparison to the control Mpdz+/+ mice, indicating low levels of metabolic activity (Fig. 1C, 1D). We 
did not detect low PET emissions in the brain parenchyma of the Mpdz-/- mice, ruling out occurrence of ne-
crosis tissue foci larger than 0.7 mm (Rodriguez-Villafuerte et al., 2014).  
 
To elucidate the morphology of the brain and the ventricles of Mpdz-/- hydrocephalic mice, we analyzed brains 
of P18-P21 mice by magnetic resonance (MR) T2-weighted imaging. Mpdz-/- mice harbored CSF-filled lateral 
ventricles that coalesced into a vast single void (Fig. 2A). The average total volume of Mpdz-/- ventricles was 
approximately 50-fold larger than the volume of the average total ventricle volume of Mpdz+/+ mice (Fig. 2B). 
The superior and the lateral cortices of Mpdz-/- mice were compressed by the enlarged lateral ventricles to a 
thickness of less than 1 mm. Despite this acute deformation, the total volume of the brains of Mpdz-/- mice did 
not differ significantly from the volume of Mpdz+/+ mice (Fig. 2B), possibly because of the larger overall size 
of the brain. The MRI did not detect lesions in the brain parenchyma of Mpdz-/- mice. To date, all Mpdz-/- mice 
harbored severe hydrocephalus with little variation between individuals. 
 
MRI contrast-medium leaks through the choroid plexus of Mpdz-/- mice 
Gadolinium (Gd)-chelate, a contrast-medium used clinically to image the vascular system, does not normally 
cross the blood-brain or blood-CSF barriers (Breger et al., 1989). We reasoned, therefore, that degradation 
in the integrity of the CPEC monolayer could result in contrast-medium penetration into the ventricles that 
would be detectable by T1-weighted imaging. The location of the lateral ventricles in mice with normal brains 
was identified in T2-weighted coronal brain images using hematoxylin-eosin (HE)-stained coronal sections 
as guide (Fig. EV1A). We then measured the time course of the signal intensity at locations in the T1-weighted 
images matching the ventricles identified in the T2-weighted images (Fig. EV1B). The time course of the 
signal intensity in the images of Gd-injected Mpdz+/+ brains was irregular, lacking a recognizable temporal 
trend (Fig. EV1C). Using again HE-stained coronal sections, we identified the CP villi attached to the top and 
sides of an elevated region at the bottom of the enlarged merged lateral ventricles in coronal T2-weighted 
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images of Mpdz-/- mice (Fig. 2C). This CP configuration is similar to the morphology of the CP in human 
hydrocephalic brains (Al-Dosari et al., 2013; Cardoza et al., 1988). Unlike the Mpdz+/+ brains, we were able 
to identify visually the contrast-medium signal in T1-weighted MR images of Mpdz-/- mouse brains (Fig. 2D). 
The location of the signal in T1-weighted coronal images of Mpdz-/- brains corresponded to each other accu-
rately to the location of the CP in the T2-weighted images. The trend of the time course of the MR signal 
intensity sampled in the T1-weighted coronal images was unambiguously upward, peaking within the 10 min 
duration of the experiments (Fig. 2E). These images indicate that the contrast- medium leaked through the 
CP of Mpdz-/- mice into its abnormally enlarged and merged lateral ventricles. 
 
The Sylvian aqueduct of the Mpdz-/- mouse is stenotic 
The MR-imaged Mpdz-/- brain (Fig. 2C) and the comparison of HE-stained sections of Mpdz+/+ (Fig. 3A) and 
Mpdz-/- (Fig. 3B) brains indicated that the large cranial void in the brains of Mpdz-/- mice resulted from the 
expansion and merger of the lateral ventricles, whereas the volume of the 3rd ventricle did not change notice-
ably. Fixed brains sections do not maintain the original dimensions of the organ. Though it was not evident 
that the Sylvian aqueduct is stenotic (Fig. 3B), we injected Evans blue into the lateral brain ventricles of 
Mpdz+/+ and Mpdz-/- mice. The aqueduct of the Mpdz-/- mouse appeared stenosed in the ex vivo images of 
injected brain hemispheres (Fig. 3C). Unlike the lateral ventricle or the aqueduct and fourth ventricle of the 
Mpdz+/+ mouse, little of the injected dye seeped into the surrounding parenchyma during the overnight incu-
bation of the brain in fixative. This indicates that the flow through the aqueduct of the Mpdz-/- mouse was 
slower than in the Mpdz+/+ mouse. Similar to L1-/- mice (Rolf et al., 2001), aqueduct stenosis in Mpdz-/- mouse 
could have been a result the compression of the brain rather than a cause of hydrocephalus. 
 
Mpdz is localized apically in CPCEs; its deficiency induces depletion of tight junction proteins 
We probed the CPs of Mpdz+/+ and Mpdz-/- mice with antibodies specific to Mpdz and to several junction 
transmembrane and membrane-associated proteins to identify potential structural differences between their 
respective CPEC junctions. Mpdz was detected exclusively near the apical face of CPECs from third ventricle 
villi (Fig. 4A). This localization encompasses the sites of the tight junctions, which are the topmost structure 
in intercellular junctions. However, the conspicuous abundance of Mpdz on the CPEC apical surface suggests 
it may play an additional role unrelated to intercellular junction maintenance. The tight junction-associated 
scaffold protein ZO1 appeared more abundant in the CPEC monolayer of CP villi from the lateral ventricles 
of Mpdz+/+ mice (Fig. 4B), whereas the abundances of the adherens junction protein epithelial (E)-cadherin 
were similar to each other (Fig. 4C). Since quantification of the immunofluorescence of two-dimensional (2D) 
sections is not a robust measure of the overall abundance of the probed protein in the 3D CP, we opted to 
simulate the deficiency of Mpdz by knocking down MPDZ in human (h) primary CPECs by lentiviral transduc-
tion of MPDZ-targeted shRNA. We then used immunoblotting to compare the abundances of ZO1, Jam-C, 
and E-cadherin, to those of hCPECs transduced by non-targeting shRNA. The protein abundances measured 
by densitometry of the immuno-adsorbed protein bands were similar to those suggested by the corresponding 
immunofluorescence images (Fig. 4D), confirming that the abundances of ZO1 and Jam-C were lower in 
Mpdz-/- mice or in hCPEC wherein Mpdz was knocked down, whereas that of E-cadherin did not change. 
 
Epithelial cells of Mpdz-/- CP and their intercellular junctions are structurally and functionally defective  
Transmission electron microscopy (TEM) detected substantial structural differences between the CPEC mon-
olayers of Mpdz+/+ and Mpdz-/- mice. While the structures of CP villi from the lateral ventricles of Mpdz+/+ and 
Mpdz-/- mice imaged by TEM appeared grossly similar to each other (Fig. 5A), examination at higher magni-
fication uncovered the presence of a large number of voids of varying sizes in the CPECs of Mpdz-/- mice 
(Fig. 5B). Furthermore, the length of the adherens junctions was shorter, whereas the length of spaces be-
tween adjoining Mpdz-/- CPECs was longer in comparison to adjoining Mpdz+/+ CPECs (Fig. 5B). CPEC tight 
junctions, the foremost barrier to paracellular permeability (Zihni et al., 2016), between the CPECs of lateral 
ventricle villi from P18-P21 Mpdz-/- mice were shorter, wider, and less electron-dense than those of Mpdz+/+ 
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mice (Fig. 5C), indicating that their protein concentration was lower than that of Mpdz+/+ CPEC junctions. TEM 
imaging of CPEC tight junctions of P12-P14 mice revealed similar differences, though they were subtler than 
at P18-P21 (Fig. EV2). A second outstanding difference between Mpdz+/+ and Mpdz-/- CPECs was the state 
of the mitochondria. Numerous mitochondria in CPECs from lateral ventricle villi of Mpdz-/- mice lacked a 
major part of their cristae, and some of those contained autophagosomes (Fig. 5D). It is possible that some 
of the voids in the Mpdz-/- CPECs were remnants of fully-dissolved mitochondria. The structural differences 
between the CPEC tight junctions in Mpdz+/+ and in Mpdz-/- mice suggests that the former were less impervi-
ous to leakage than those between Mpdz+/+ CPECs, likely accounting for the contrast-medium leakage from 
the CP into the lateral brain ventricles of Mpdz-/- mice. Unlike CPECs, we did not detect structural differences 
between the junctions of the fenestrated endothelial cells that comprise the walls of the CP capillaries in 
Mpdz+/+ and Mpdz-/- mice (Fig. EV3).  
 
To determine the dependence of the barrier function of CPEC monolayers on Mpdz, we compared the time 
course of impedance, an established permeability surrogate (Bischoff et al., 2016), of human papilloma CPEC 
(hpCPEC) monolayers (Feldner et al., 2017; Ishiwata et al., 2005) transduced by MPDZ-targeting or by non-
targeting shRNA. The impedance of the control group was persistently higher throughout the 70-h duration 
of the measurement (Fig. 5E). While the MPDZ-deficient hpCPECs (Fig. 5E, inset) reached a plateau in 
approximately 60 h, the impedance of the control group of cells continued to rise, reaching a 42 percent 
higher impedance than the MPDZ-deficient hpCPECs. The lower impedance of these cells indicates they 
posed lower resistance to the alternating electrical current passing through the monolayer they formed, com-
pared to the control group, and are, therefore, more permeable, in agreement with the structural findings. 
 
Transcytosis through the CP is higher in Mpdz-/- than in Mpdz+/+ mice 
To fully characterize the barrier function of the CP, we compared the transcellular permeabilities of the CP of 
Mpdz+/+ and Mpdz-/- mice by tracking fluid phase uptake and receptor dependent transcytosis. We used horse-
radish peroxidase injected in vivo for ex-vivo chromogenesis by hydrogen-peroxide-induced oxidation of 3,3’-
diaminobenzidine (DAB) (Broadwell and Brightman, 1983). The number of internalized DAB particles per cell 
in CPEC sections from lateral ventricle villi of Mpdz-/- mice was approximately 6-fold higher than in those of 
Mpdz+/+ mice (Fig. 6A), suggesting that the rate of fluid phase uptake through the CPECs of Mpdz-/- mice was 
substantially higher than its rate in Mpdz+/+ mice. Quantification of the number of DAB particles per cell 
showed that the fluid phase uptake by CPECs of Mpdz-/- mice was more than 6-fold higher relative to that of 
Mpdz+/+ mice (Fig. 6B). Many of the larger endocytosed DAB particles consisted of concentric layers (magni-
fied fields in Fig. 6A), a phenomenon seen in previous studies on ependymal cells (Broadwell and Sofroniew, 
1993) and brain endothelial cells (Broadwell et al., 1996). The endocytosed DAB formed a morphologically 
heterogenous population of particles in the CPECs of both mouse genotypes, most of which were located in 
macropinosomes, following engulfment by ruffles on the CPEC basal surface (Fig. 6C). This is similar to 
previous observations on DAB endocytosis in mouse CPECs (Balin and Broadwell, 1988). We noticed a 
marked difference between the distributions of the macropinosomes in CPECS of Mpdz+/+ and Mpdz-/- mice: 
whereas in the former the majority was located near the basal side facing the lumen of the CP villus (Fig. 6C), 
most macropinosomes were located near the apical side of the CPECs of the latter, facing the ventricle (Fig. 
6D). In CPECs of Mpdz+/+ mice, more than twice macropinosomes were near the basal than near the apical 
side; in CEPCs of Mpdz-/- mice, the ratio was reversed to more than 3-fold macropinosomes near the apical 
side (Fig. 6D). This difference between macropinosome distributions indicates that the rate of macropinosome 
transcytosis from the CPEC basal to apical side was higher in lateral ventricle villi of Mpdz-/- than of Mpdz+/+ 
mice. 
 
To compare receptor-mediated transcytosis through the CPECs of Mpdz+/+ and Mpdz-/- mice, we focused on 
the abundance and endocytosis of the low-density lipoprotein (LDL) receptor, because apolipoprotein E 
(ApoE), an LDL carrier, was the most overabundant protein in the CSF of Mpdz-/- mice (see below). Since 
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LDL traverses the blood-brain-barrier by LDLR-mediated endocytosis, followed by transcytosis (Dehouck et 
al., 1997), we tested the presence of LDLR in CPECs of Mpdz+/+ and Mpdz-/- mice. The higher intensity of the 
immunofluorescence signal emanating from CP sections from lateral ventricle villi of Mpdz-/- mice indicated 
that LDLR was more abundant than in its Mpdz+/+ counterpart (Fig. 7A). The mean fluorescence intensity per 
CPEC of Mpdz-/- mice was higher by approximately 40 percent (Fig. 7B). The higher transcytosis through the 
Mpdz-/- CP could have been a response to the condition of hydrocephalus that is unrelated to the Mpdz LOF 
or could have been induced by the absence of functional Mpdz. To test the causal connection between MPDZ 
expression and LDLR abundance, we knocked down MPDZ in hCPECs by lentiviral transduction of MPDZ-
targeting shRNA and compared the abundances of LDLR to hCPECs transduced by non-targeting shRNA. 
LDLR was more abundant in the MPDZ-deficient hCPECs by more than two-fold, suggesting that the deple-
tion of MPDZ induced an increase in the amount of LDLR through a yet unknown pathway (Fig. 7C). To test 
the correlation between the abundance of MPDZ and the extent of LDLR transcytosis, we tracked the consti-
tutive endocytosis (Zou and Ting, 2011) of endogenous LDLR in hCPECs that were transduced by MPDZ-
targeting or by non-targeting shRNA. LDLR was close to 2-fold more abundant on the cell surface prior to the 
initiation of endocytosis and higher by 54 percent after 8 min of constitutive endocytosis in MPDZ-deficient 
hCPECs (Fig. 7D).  
 
Protein concentration is substantially higher in the CSF of Mpdz-/- mice 
The total protein concentration in the CSF of Mpdz-/- mice at P18-P21 was more than twice higher than that 
of Mpdz+/+ mice (Fig. 8A). We compared the composition of the serum and the CSF of Mpdz+/+ and Mpdz-/- 
mice by tandem liquid chromatography and mass spectroscopy (LC-MS/MS). The serum compositions of the 
two genotypes were highly similar, with only one over-abundant protein in the CSF of either Mpdz+/+ or Mpdz-

/- mice (Fig. 8B). In contrast, the composition of the CSF differed substantially between the two genotypes 
(Fig. 8C). We detected a total of 313 proteins in all the samples pooled together, after excluding hemoglobin 
subunits a and b, catalase, peroxiredoxin and carbonic anhydrase-1 as serum contaminants (You et al., 2005) 
(Dataset EV1). Out of these, all but 13 proteins had been detected in murine CSF in previous studies 
(Cunningham et al., 2013; Dislich et al., 2015; Smith et al., 2014). The CSF of Mpdz-/- mice contained 23 
proteins that were either absent in the CSF of Mpdz+/+ mice, or that were at least 2-fold significantly more 
abundant in the CSF of Mpdz-/- mice (Table 1). Only two proteins were at least 2-fold significantly more abun-
dant in the CSF of Mpdz+/+ mice. The similarity between the serum protein compositions of Mpdz+/+ and Mpdz-

/- mice shows that protein over-abundance in the CSF of Mpdz-/- mice is not a direct result of the serum 
composition but a consequence of the functional differences between the CPs of Mpdz+/+ and Mpdz-/- Mice.  
 
All the proteins that were at least 2-fold more abundant in the CSF of Mpdz-/- mice are secreted or known to 
have soluble forms (fibronectin, gelsolin, and vitronectin). They can be classified into several molecular func-
tion groups: components of the blood coagulation cascade (complement C4-B, complement factor H, proper-
din/complement factor P, and the fibrinogen b chain), extracellular matrix (extracellular matrix protein 1 
(Ecm1), fibronectin, and vitronectin), lipoproteins (apoliproteins D and E), immune response (beta-2-micro-
globulin and the macrophage colony-stimulating factor 1 receptor), cytokines and cytokine binding proteins 
(a-fetoprotein/insulin-like growth factor binding protein 1 (Afp), a-2-HS-glycoprotein, granulin (Grn), hepato-
cyte growth factor activator, and insulin-like growth factor (IGF) binding proteins 2 and 4), enzymes and en-
zyme binding proteins (a-2-macroglobulin-P, lysozyme C-2, and sulfhydryl oxidase 1), and protease inhibitors 
(angiotensinogen and pigment epithelium-derived factor). Out of these, Afp, Ecm1, and Grn were found only 
in the CSF of Mpdz-/- mice. 
 
The overabundance of proteins in the of CSF of Mpdz-/- mice could have resulted from an overall increase in 
the rate of CSF production. To test this premise, we compared the abundances of the Na+-K+-2Cl- cotrans-
porter 1 (Nkcc1), recently shown to contribute significantly to CSF production (Steffensen et al., 2018), in the 
CP of Mpdz+/+ and Mpdz-/- mice. Quantification of confocal images of CP sections indicated that Nkcc1 was 
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approximately 75 percent more abundant in the CP from lateral ventricle villi of Mpdz-/- mice (Fig. 8D). Similar 
to LDLR, knockdown of MPDZ in hCPECs was accompanied by an increase of approximately 68 percent in 
NKCC1 abundance (Fig. 8E). 
 
The presence of blood coagulation cascade proteins in the CSF has been linked to neuro-inflammation 
(Ehling et al., 2011; Wang et al., 2011). ApoE is produced in the CP and secreted in response to neuronal 
injury (Lehtimaki et al., 1995). Its presence may indicate that the pressure exerted by the expanding hydro-
cephalus injured the brain parenchyma. The four IGF-binding proteins are inhibitors of the insulin growth 
factor like receptor (Kelley et al., 2002; Srinivas et al., 1993). Their over-abundance could be a negative 
feedback triggered by the swelling of the Mpdz-/- brain, to suppress further IGF1-induced neurogenesis 
(Annenkov, 2009). Angiotensinogen is the precursor protein of angiotensins, generated by cleavage of its N-
terminus by renin (Skeggs et al., 1957). The angiotensins maintain blood pressure homeostasis in response 
to fluid intake or loss (Gardes et al., 1982). Their production could have been triggered by the elevated brain 
blood pressure in hydrocephalic mice. Pigment epithelium-derived factor supports neuron differentiation and 
growth (Steele et al., 1993). The functional classifications of these proteins suggest that their over-abundance 
is part of a multifaceted physiological response to the stress imposed on the brain by the expanding hydro-
cephalus, rather than a haphazard collection of unrelated proteins. We did not detect lesions in the brain of 
hydrocephalus-harboring P21 mice either macro- or microscopically. Correspondingly, none of the overabun-
dant proteins in the CSF of Mpdz-/- mice is cytoskeletal; gelsolin has a secreted isoform (Yin et al., 1984). 
Furthermore, there was no statistically significant difference between the concentrations of serum albumin, 
amyloid A-4, amyloid P-component, and paraoxonase-1 in the CSF of Mpdz+/+ and Mpdz-/- mice (Dataset 
EV1). It is unlikely, therefore, that the overabundance of these proteins reflects breakdown of the brain pa-
renchyma. 
 
DISCUSSION 
Our results indicate that Mpdz LOF has a two-fold effect on the barrier function of murine CP: it increases 
both passive paracellular permeability, as indicated by the leakage of the GD-based MRI contrast-medium, 
and the rate of protein transcytosis, as indicated by the higher abundance of close to 10 percent of all the 
proteins found in the CSF of Mpdz+/+ and Mpdz-/- mice. The first effect is likely caused by degradation of the 
integrity of CPEC intercellular junctions, because we did not find structural differences between the junctions 
of the fenestrated endothelial cells of CP vessels. The second effect, which is likely to be a physiological 
response to the stress inflicted on the brain by the formation of hydrocephalus, could involve both cell mono-
layers. 
 
The first mouse model of hydrocephalus, generated by a L1cam LOF mutation, harbored neural defects, but 
the ependymal cells that coat the ventricle lumen appeared normal (Dahme et al., 1997). The brain malfor-
mations typical to the L1 syndrome were attributed to the inter-neuronal adhesion function of L1CAM (Miura 
et al., 1992), but no mechanism had been invoked to account specifically for the formation of hydrocephalus. 
AP1S2 is also located in the X chromosome, and like L1CAM, underlies several syndromic defects, one of 
which is hydrocephalus. In some cases, AP1S2-linked hydrocephalus was associated with stenosis of the 
Sylvian aqueduct (Saillour et al., 2007). No causal connection has been made between AP1S2 LOF mutations 
and the formation of hydrocephalus. 
 
The hydrocephalus observed in carriers of CCDC88C mutations resulted presumably from a dysfunction of 
Wnt non-canonical signaling, because these mutations truncate the C-terminus of DAPLE, the protein it en-
codes, disabling its binding to the PDZ domain of DVL. Since DVL is required for the formation of Wnt-induced 
planar polarity of ependymal cells (Ohata et al., 2014), it is conceivable that CCDC88C-linked hydrocephalus 
was caused by the loss of the alignment of the cilia of the ependymal cells on the lumen of the ventricles, and 
the resulting slowdown of CSF flow. Furthermore, DAPLE binds to (Redwine et al., 2017) and functions as 
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an activating adaptor of dynein (Reck-Peterson et al., 2018), a molecular motor that is required for cilium 
motility (Gibbons and Rowe, 1965). To date, the premise that CCDC88C mutations cause hydrocephalus by 
impeding ciliary function has not been tested. 
 
The localization of MPDZ to epithelial and endothelial intercellular junctions, its binding of multiple transmem-
brane junction proteins, and its high abundance in the CP are collectively suggestive of a causal connection 
between the formation of hydrocephalus and MPDZ LOF mutations in humans and mice. Presumably, if 
MPDZ is required for the stabilization of transmembrane proteins at endothelial and epithelial cell junctions, 
its absence would impair junction integrity. Though this scenario had been entertained for both human (Al-
Dosari et al., 2013; Saugier-Veber et al., 2017) and murine (Feldner et al., 2017) MPDZ-linked hydrocephalus, 
no direct causative connection has been established between possible MPDZ LOF deleterious effects on 
intercellular junction integrity and the formation of hydrocephalus in humans or mice carrying MPDZ LOF 
mutations. The first reported MPDZ mutation linked to severe congenital hydrocephalus in humans would 
have truncated 12 of the 13 PDZ domains (Al-Dosari et al., 2013). A subsequent study reported 3 new muta-
tions that caused truncation of MPDZ within PDZ domain #3, a frame shift within PDZ domain #1, and a 
truncation within PDZ domain #5 (Saugier-Veber et al., 2017). All three mutations were expected to introduce 
a premature stop codon and result in nonsense-mediated decay of the transcript. In all three affected individ-
uals, the aqueduct of Sylvius was stenotic, and the ependyma in the aqueduct as well as in the third and 
fourth ventricles linked by the aqueduct was interspersed with denuded focal lesions. Since MPDZ is abun-
dant in aqueduct ependymal cells of normal individuals, the ependymal lesions were attributed to the for-
mation of defective tight junctions, but there was no direct evidence for this eventuality. 
 
The initiation of hydrocephalus in the Mpdz LOF mouse model of Feldner et al. was attributed to deterioration 
of ependymal cell integrity as a result of weakened tight junctions, similar to the explanation of MPDZ-linked 
human hydrocephalus. No evidence was provided to support this premise. In contrast, we provided direct 
evidence that the CP of Mpdz-/- mice was leaky and structurally defective, implying that the hydrocephalus 
formed because of imbalance between the rate of CSF production and removal from the lateral ventricles 
through the relatively narrow 3rd ventricle, aqueduct, and 4th ventricle, resulting in the expansion and merging 
of the lateral ventricles into the large void we detected in the brains of Mpdz-/- mice. Our pathophysiological 
model is not necessarily in conflict with the findings of Feldner et al. but would consider the ependymal lesions 
and stenosis of the Sylvian aqueduct observed by them as possible effects rather than causes. 
 
The composition of the CSF of Mpdz-/- mice is indicative of the stress posed on the brain by the swelling of 
the lateral ventricles. This response could have been instigated, conceivably, by the ependymal lesions ob-
served by Feldner et al., as well as by other injuries to the brain parenchyma that became ultimately fatal at 
3 weeks of age. The protein over-abundance in the CSF of Mpdz-/- mice is likely the result of augmented 
transcytosis, a process that occurs normally in the CP (Grapp et al., 2013). The higher rate of fluid-phase 
uptake by the CPECs of Mpdz-/- mice could have contributed to fluid accumulation in their lateral ventricles. 
The large imbalance between the protein contents in the CSF and the interior of the choroid plexus could 
have caused an osmotic pressure gradient between the two compartments, further driving fluid flow from the 
choroid plexus into the ventricles. At this time, we are aware of a single comparative proteomic analysis of 
CSF of normal and hydrocephalic subjects (Finehout et al., 2004). This study did not analyze, however, CSF 
from patients harboring congenital hydrocephalus, but that of a single subject with normal pressure hydro-
cephalus and from two normal patients. The study detected a relatively low total number of only 82 proteins, 
possibly because the samples were resolved by 2D electrophoresis rather than undergoing liquid chromatog-
raphy prior to mass spectrometry. This may have reduced the sensitivity of the assay. 
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The manner in which the Mpdz loss-of-function mutation in vivo or Mpdz knockdown in vitro brings about an 
increase in the abundances of LDLR, and Nkcc1, and a decrease in the abundances of ZO1 and Jam-C, is 
unknown at this time. 
MATERIALS AND METHODS 
Animals 
Mice were housed in in ventilated cages and supervised by the Thomas Jefferson University Laboratory 
Animal Services Animal (Welfare Assurance Number D16-00051) and used according to protocols approved 
by the Institutional Animal Care & Use Committee and renewed annually. Thomas Jefferson University is 
accredited by the Association for Assessment and Accreditation of Laboratory Animal Care. C57BL/6J Mpdz+/- 
mice (Milner et al., 2015) were kindly gifted by Dr. Kari Buck, Oregon Health and Science University). The 
Mpdz mutation was generated by Bay Genomics as gene-trap model MpdzGt(XG734)Byg. It translates to a 
G510Vfs*19 change in the protein sequence. Mpdz-/- mice were bred by heterozygote crossing and used 
between P0 and P21. Within each genotype, the inclusion of gender and of individual mice was random. The 
reporting of in vivo experiments in this article conforms with the Animal Research: Reporting of In Vivo Ex-
periments (ARRIVE) guidelines (Kilkenny et al., 2010). 
 
Cell Culture, MPDZ Knockdown, and Immunoblotting 
Human hCPEC (ScienCell Research Laboratories) were grown in Epithelial Cell Medium purchased from the 
same provider. Mpdz was knocked down by transduction with lentivirus expressing a validated shRNA (clone 
TRCN0000349430, Millipore-Sigma) or a non-targeting shRNA (pLKO.1-puro shRNA Control, Millipore-
Sigma). The virus was produced in HEK293 cells (American Type Cell Culture) that were transfected (Fugene 
HD, Promega) with packaging and coat protein plasmids (pCMVR8.74 and pMD2.G, respectively, Addgene). 
Lentivirus particles were concentrated from the cell culture medium by centrifugation (Speedy Lentivirus Pu-
rification kit, ABM). hCPEC were lysed 3 days after lentivirus transduction in RIPA buffer (ThermoFisher 
Scientific (TFS)) supplemented with protease inhibitor cocktail tablets (Roche), and immunoblotted with LDLR 
antibody (Millipore-Sigma) diluted 1:1000. LDLR band density was quantified by an ImageJ plugin and nor-
malized relative to the load-control band density (antibody to b-actin, Millipore-Sigma) diluted 1:2000. 
 
PET imaging 
Mice aged 18-21 days were injected through the tail vein with 0.4–0.5 mCi of [18F]flourodeoxyglucose (18FDG, 
Siemens Medical Solutions USA, Inc). and imaged as described (Seidler et al., 2006). Emission intensity was 
quantified by measuring the signal per unit area in two dimensional regions of interest (ROIs), after subtracting 
the background signal. 
 
Magnetic Resonance Imaging 
Mice aged 18-21 days anesthetized by 3 percent isoflurane inhalation were imaged with a 4.7 Tesla, 50 cm 
horizontal bore instrument by T1 and T2-weighted modalities at the Small Animal Imaging Facility of the 
University of Pennsylvania. Body core temperature was kept at 37°C by a rectal probe. Mice were injected 
through the tail vein with 50 µl 0.1 mmol/kg diethylene-triaminepentaacetic acid (DPTA) dimeglumine salt Gd 
chelate (Mr 938 Da, Magnevist®, Bayer) immediately after the completion of T2-weighted imaging, and un-
derwent T1-weighted imaging for 10 min. Ventricle and total brain volumes were quantified by the ITK-SNAP 
(V3.2) application (http://www.itksnap.org) (Yushkevich and Gerig, 2017). Signal intensities in T1-weighted 
images were quantified at each time point by ImageJ (version 1.52d, https://imagej.nih.gov) at ROIs corre-
sponding to the location of the ventricles in T2-weighted images of the same section. Change in total intensity 
relative to the initial value was normalized in each ROI by division by the difference between the maximum 
and minimum values. 
 
Histology, immunohistochemistry, and optical microscopy 
Anesthetized mice aged 18-21 were perfused intracardially with physiologic saline, followed by 4 percent 
paraformaldehyde (PFA) in PBS, pH 7.4. Brains were removed, fixed overnight in 4 percent PFA/PBS, 
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immersed in 30 percent (w/v) sucrose in TBS, pH 7.4, at 4°C until they became submerged, and frozen to 
180°C in an optimal cutting temperature medium (Fisher Scientific) Coronal sections were cut at 20 µm 
(HM560, Microm), mounted on glass slides (SuperFrost Plus, TFS) and air-dried overnight. Sections were 
blocked in 5 percent normal goat serum for 1 h at 23°C and incubated overnight at 4°C by primary antibodies 
to ZO1 (Invitrogen) diluted 1:200, LDLR (eBiosciences) diluted 1:100, E-cadherin (BD Biosciences) diluted 
1:200, Jam-C (R&D Systems) diluted 1:200, Nkcc1 (Cell Signaling Tech.) diluted 1:200, and MPDZ (gift of 
Prof. Elior Peles, Weizmann Institute of Science (Poliak et al., 2002)) diluted 1:100. The primary antibodies 
were detected by secondary antibodies to the IgG of the appropriate host species of the primary antibodies, 
conjugated to Alexa Fluor® 488 or 555 (TFS) diluted 1:1000. The sections were mounted in anti-fade 4′,6-
diamidino-2-phenylindole (DAPI)-containing medium (ProLong, TFS). Immunofluorescence intensity was 
quantified with ImageJ by measuring the average pixel intensity within manually-defined contours of 2D cell 
images, to exclude effects of cell size. Only cells that were sectioned through the nucleus were quantified. 
HE-stained sections were imaged by scanning with a 10X objective (EVOS, FSI) and stitching the fields. 
Immunolabeled sections were imaged by laser-scanning confocal microscopy (Nikon A1R+).  
 
Transcytosis 
Mice aged 2-3 weeks were anesthetized and injected with HRP (0.5 mg/g body weight HRP type II, Sigma 
Aldrich) in PBS through the left ventricle. After 5 min circulation, mice were euthanized, and the brain was 
excised and immersed immediately in 4 percent PFA/PBS during CP dissection. The dissected CP was fixed 
by 5 percent glutaraldehyde and 4 percent PFA in 0.1 M sodium-cacodylate for 1 h at 23°C, followed by 
overnight fixation by 4 percent PFA in 0.1 M sodium-cacodylate at 4°C. After fixation, the tissue was washed 
three times and immersed overnight in 0.1 M sodium-cacodylate. CPs were then incubated in 0.01 percent 
hydrogen peroxide, and 0.5 mg/mL of DAB (Sigma Aldrich) in 0.05 M Tris-HCl pH 7.6 for 45 min at 23°C. The 
CPs were stored in 5 percent glutaraldehyde and 4 percent PFA in 0.1 M sodium-cacodylate until preparation 
for TEM. Transcytosis was quantified by counting the number of DAB-stained vesicles per cell. 
 
LDLR endocytosis 
Human papilloma CPECs grown on glass coverslips were incubated on ice with antibody to LDLR (eBiosci-
ences) diluted 1:100, for 30 min, washed by ice-cold growth medium, and transferred to 37°C growth medium. 
After 8 min, the coverslips were washed by ice-cold PBS pH 2.5 for 30 s to remove remaining cell surface 
antibody, fixed with 4 percent PFA/PBS for 20 min @ RT, and permeabilized with 0.1 percent Triton X-100 in 
PBS for 5 min at 23°C. The primary antibody was detected by a 30 min incubation at 23°C with anti-chicken 
IgG conjugated to Alexa Flour 488 (TFS). Coverslips were mounted on slides (ProLong, TFS) before imaging 
by confocal microscopy (Nikon A1R+). 
 
Evans blue intracranial injection  
Mice anesthetized by ketamine/xylazine were injected through the left ventricle with five microliter Evans blue 
dye diluted 1:100 in PBS by a 10 ml syringe (Hamilton). The syringe was left in the injection site to prevent 
fluid reflux of fluid during the next 5 min, after which the mice were euthanized by decapitation. The heads 
were fixed immediately fixed in 4% paraformaldehyde/PBS overnight. Brains were dissected and imaged on 
a stereomicroscope (Leica MZ10F). 
 
Electron microscopy 
Brains removed as described were dissected under a stereomicroscope (Leica MZ10F) to isolate the choroid 
plexus from the lateral ventricles. Isolated choroid plexi were fixed overnight in 2 percent glutaraldehyde, 
stained with 1 percent OsO4 and 0.5 percent uranyl acetate, pelleted in 2 percent agarose (Millipore-Sigma, 
Type IX ultra-low gelling temperature), dehydrated in an acetone/water dilution series, and embedded in Ar-
aldite resin (EMbed 812, Electron Microscopy Sciences). Sections of 60 nm cut by ultramicrotome (Leica 
UCT) were mounted on square-mesh or oval-hole grids and imaged by TEM (FEI Tecnai G12) at 80 keV. 
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Mass spectrometry and measurement of CSF protein concentrations 
Mice aged 18-21 days were anesthetized as described, their heads shaved, and immobilized stereotactically 
(Robot Stereotaxic, Neurostar) while maintaining body temperature at 37°C (TCAT-2LV controller, Phy-
sitemp). Anesthetic depth was verified by assessing reflexes before and during surgery. After peeling off the 
skin to expose the cranium, a 1.0 mm-diameter hole was drilled above the left lateral ventricle at -0.1 mm 
relative to the bregma, -0.80 mm from the midline, and 2.5 mm beneath the dura. A volume of 3-5 µL CSF 
was drawn from normal mice by a 10 µL syringe (Hamilton) at a rate of 1 µl/min and stored immediately on 
dry ice. CSF was drawn identically from hydrocephalic mice aside from the location of the hole that was drilled 
2 mm left of the peak of the skull. A volume of 2 µL of each sample was reconstituted in 50 μL 6 M urea/100 
mM Tris, pH 8.0 and digested by 3 μg trypsin overnight at room temperature. Samples were desalted by spin 
columns (Pierce™ C18, TFS) and reconstituted in 30 μL 1 percent acetic acid. Volumes of 50 μL of each 
sample were injected into a reversed-phase capillary chromatography column (Acclaim™ PepMap™ C18, 
Dionex), eluted by acetonitrile/0.1 percent formic acid gradient at a flow rate of 0.3 μL/min into the intake of 
a linear trap quadrupole (Orbitrap Elite™, TFS) hybrid mass-spectrometer and electro-sprayed at 1.9 kV. 
Amino acid sequences were determined from peptide molecular weights and ion collision-induced dissocia-
tion spectra by searching the Uniprot mouse protein database with MaxQuant (V1.5.2.8) application. CSF 
protein concentrations were measured by spectrometry of a 1:10 diluted CSF sample (NanoDrop, TFS). 
 
Statistics 
The significance of the difference between means was determined by two-tailed Student’s t-test. The null 
hypothesis was considered untrue if the probability satisfied the condition P≤0.05. Based on initial sample 
variance, we increased sample size to test the statistical significance of inter-group difference, to fulfill the 
above criterion. The variances were similar between the tested groups, except for the control groups in den-
sitometry measurements, which were set to 1. We excluded outliers if they were 1.5X the interquartile differ-
ence (between the medians of the upper and lower halves of the data set) above the top median or below to 
bottom median (Tukey's fence). This applied only to Fig. 7D. The normality of all data sets was confirmed by 
the Shapiro-Wilk test (Shapiro and Wilk, 1965), implemented by the Origin application (OriginLab). Sample 
identity was masked during data quantification of immunofluorescence images or of immunoblot bands. Blind-
ing of investigators in regard to animals was not possible because the hydrocephalic mice were conspicuous.
  
DATA AVAILABILITY 
The dataset of proteins identified in the CSF of Mpdz+/+ and Mpdz-/- mice and their ratios is available in the 
PRIDE archive as PXD011535 (http://www.ebi.ac.uk/pride/archive/projects/PXD011535). 
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THE PAPER EXPLAINED 
Problem: Congenital hydrocephalus is a potentially life-threatening condition that occurs at a frequency of 
one case per 1000 births. Its main characteristic is accumulation of cerebrospinal fluid in the chambers of 
the brain, leading to swelling of the brain that is confined by the rigid skull. The only current treatment is 
shunting, an invasive procedure that fails within two years in 50 percent of the cases. Though this condition 
is hereditary, the manner by which a mutation results in hydrocephalus is not understood. 
 
Results: Magnetic resonance was used to image contrast medium in 3-week old mice deficient of Mpdz, a 
large scaffold protein shared by humans. The medium leaked from the choroid plexus into the ventricles of 
the brain, showing that Mpdz is required for the integrity and function of the choroid plexus. The leakiness 
was caused by defects in the epithelial cell layer that surrounds the blood vessels of the choroid plexus. 
Another consequence of the loss of Mpdz was a more than twice higher protein concentration in the cerebro-
spinal fluid of the mutant mice. 
 
Impact: Our study provides a straightforward connection between the mutation and the appearance of con-
genital hydrocephalus. The new insights may facilitate the development of non-invasive approaches for the 
treatment of the condition. 
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FIGURE LEGENDS 
Fig. 1: Hydrocephalus was detected by PET in Mpdz-/- mice. A. Images of P4 (top) and P21 (bottom) 
Mpdz+/+ and Mpdz-/- mice. Arrowheads point to the domed foreheads of the latter. B. Mean weights of P18-
P21 Mpdz+/+ and Mpdz-/- mice (n=8÷12, mean ± SD). C. Coronal, axial, and sagittal (top to bottom) PET 
images of P18-P21 Mpdz+/+ and Mpdz-/- mice. The emission intensity is shown as a 7-point temperature scale 
from black (0) to white (7). D. Mean PET emission intensities in the indicated brain sections (n=4, mean ± 
SD). 
 
Fig. 2: Severe hydrocephalus and leakage of contrast medium were detected in Mpdz-/- mice by MRI. 
A. Coronal, sagittal, and axial (clockwise from top left corner image of each genotype) MR images of Mpdz+/+ 
and Mpdz-/- P18-P21 mice. Ventricles are pseudo-colored in red and 3D-reconstructed in the lower left panels. 
B. Means of total ventricle volumes and total brain volumes of Mpdz+/+ and Mpdz-/- mice (n=8, mean ± SD). 
C. A coronal HE-stained section (center) flanked by anatomically-corresponding coronal T2-weighted MR 
images of Mpdz-/- P18-P21 mice. Arrows or arrowheads show the match between the lateral ventricle CP in 
the HE section and in the MR images. D. Duplicate rows of T2-weighted coronal images and anatomically-
corresponding T1-weighted coronal images at 1 min and at the peak-signal time point after contrast-medium 
injection; the bottom row shows a similar set of axial images. Areas surrounded by squares are magnified in 
the insets; arrows mark the contrast-medium signal in the T1-weighted images. Each row corresponds to one 
mouse aged 18-21-days. E. Time courses of the normalized T1-weighted image intensities corresponding to 
the areas surrounded by numbered squares on the T2-weighted images. Scale bars, 1 mm; insets, 0.5 mm. 
 
Fig. 3: The Sylvian aqueduct of the Mpdz-/- mouse is stenotic. A. Coronal HE-stained brain sections of a 
P18 Mpdz+/+ mouse (out of a total of three) showing the 3rd ventricle, and the proximal and distal sections of 
the aqueduct of Sylvius; these features are marked by arrows in the insets. B. The same, for P18 Mpdz-/- 
mice. C. Top views of brains of P7 Mpdz+/+ and Mpdz-/- mice that show the sites of Evans blue injection, and 
the midline planes (dashed line) sectioned to produce the sagittal images below. They show the extent of 
Evans blue spread in the ventricles and surrounding tissue (one out of three experiments). In, injection; LV, 
lateral ventricle; SA, Sylvian Aqueduct; V3, third ventricle; V4, fourth ventricle. Scale bars, 1 mm; insets, 0.25 
mm. 
 
Fig. 4: Mpdz was localized proximal to the apical surface of CPECs. A. Immunofluorescence images of 
10 µm-thick sections of CP from third ventricle villi of Mpdz+/+ and Mpdz-/- mice were immunolabeled as shown. 
The areas in the square frames are magnified in the bottom panels. B, C. CP sections from lateral ventricle 
villi immunolabeled for ZO1 (B) or E-cadherin (E-cad; C). The images are representative of 2 Mpdz+/+ mice 
and 3 Mpdz-/- mice. Scale bars, top panels, 100 µm; bottom panels, 10 µm. D. Immunoblots with the indicated 
antibodies (top) and their quantifications. The densitometry measurements were normalized relative to the 
signal of the samples transduced by non-targeting shRNA (Ctrl). Note that the same b-actin immunoblot was 
used twice because the Jam-C and E-cadherin samples were immunoblotted on the same membrane (mean 
± SD, n=3). 
 
Fig. 5: CPECs of Mpdz-/- mice harbored structural defects. A. TEM images of longitudinal sections of 
lateral ventricle CP villi of P18-P21 Mpdz+/+ and Mpdz-/- mice. Scale bar, 2 µm. B. A large number of voids of 
varying sizes was evident in the CPECs of Mpdz-/- mice. Higher magnification images of the areas in the 
rectangles are shown underneath the panels. Adherens junctions are denoted by horizontal lines and arrows; 
voids are indicated by arrows. Scale bar, 1 µm; insets, 200 nm. C. Triplicate images of tight junctions proximal 
to the apical faces of CPECs in Mpdz+/+ and Mpdz-/- mice. Scale bar, 100 nm D. Mitochondria were smaller 
and frequently lacked large portions of their cristae. Autophagosomes are present in some of them (arrows). 
Scale bar, 200 nm. The images are representative of 2 Mpdz+/+ mice and 2 Mpdz-/- mice. E. Time course and 
standard deviations of the impedance of confluent hpCPEC monolayers that were transduced by either MPDZ 
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or non-targeting (Ctrl) shRNA. Each record represents 4 wells. MPDZ immunoblot of each cell group is shown 
in the inset. 
 
Fig. 6: Fluid-phase uptake by CPECs is higher in Mpdz-/- relative to Mpdz+/+ mice. A. TEM images of 
CPEC sections from lateral ventricle villi of two Mpdz+/+ and two Mpdz-/- P14-P16 mice injected with HRP. The 
CPs were reacted with hydrogen peroxide and DAB ex-vivo. The dark particles are DAB deposits internalized 
by micropinocytosis. The magnified fields to the right show individual particles engulfed in macropinosomes. 
Note the layered structure of the particles, and the macropinosome that is open to the ventricular space in 
the Mpdz-/- section. Scale bars, 1 µm; insets, 100 nm. B. Mean number of engulfed DAB particles per cell in 
Mpdz+/+ and Mpdz-/- mice (mean ± SD, n=22). C. A CPEC section showing the engulfment of a DAB particle 
by its basal ruffles in the magnified field. Scale bars in panels C and D, 1 µm; insets, 200 nm. D. A CPEC 
section showing a preponderance of macropinosomes close to the apical face of the cell, and a magnified 
field that contains several macropinosomes. E. Mean numbers of DAB-containing macropinosomes close to 
the apical or basal sides of CPECs from Mpdz+/+ or Mpdz-/- mice (mean ± SD, n=20).  
 
Fig. 7: LDLR abundance and endocytosis by CPECs are higher in Mpdz-/- relative to Mpdz+/+ mice. A. 
Immunofluorescence images of 10 µm-thick sections from lateral ventricle CP villi of Mpdz+/+ and Mpdz-/- P14-
P16 mice immunolabeled by anti-LDLR. Scale bars, 50 (top) and 25 (bottom) µm. B. Mean fluorescence 
intensities (normalized relative to the highest recorded intensity) per cell in several LDLR-immunolabeled CP 
sections (mean ± SD, n=101). C. Immunoblots showing the abundances of LDLR and MPDZ in hCPECs 
transduced by MPDZ-targeting or non-targeting shRNA. Mean abundances are quantified by densitometry of 
the LDLR bands, normalized relative to the b-actin bands (mean ± SD, n=3). D. Fluorescence images of 
hCPECs transduced by either MPDZ or non-targeting (Ctrl) shRNA and immunolabeled by anti-LDLR either 
before (0 min) or after 8 min of constitutive endocytosis of LDLR. The histograms below show the mean 
fluorescence intensities per hCPEC in each cell group, normalized relative to the highest recorded intensity 
(mean ± SD, n=41÷53). 
 
Fig. 8: The protein content in the CSF of Mpdz-/- mice was higher than in the CSF of Mpdz+/+ mice. A. 
Mean protein concentration in the CSF of Mpdz+/+ and Mpdz-/- P14-P21 mice (mean ± SD, n=2÷3). B. Volcano 
plot showing that the protein contents in sera of P15-P21 Mpdz+/+ and Mpdz-/- mice are similar to each other. 
C. A volcano plot showing that 23 proteins are at least two-fold significantly more abundant in the CSF of 
P15-21 Mpdz-/- mice (red circles, protein names are indicated) whereas only two proteins were more abundant 
in the CSF of Mpdz+/+ mice (green circles). The CSF composition was analyzed in 3 Mpdz-/- and 3 Mpdz+/+ 
mice. D. Images of 10 µm-thick sections from lateral ventricle CP villi of Mpdz+/+ and Mpdz-/- mice, immuno-
labeled for Nkcc1. The areas in the marked squares are magnified below. Scale bars, top, 50 µm, bottom 20 
µm. The histograms show the mean fluorescence intensities per hCPEC in each cell group, normalized rela-
tive to the highest recorded intensity (mean ± SD, n=103). E. Immunoblots of LDLR and Mpdz, with b-actin 
as loading control. The MPDZ immunoblot shows the efficiency of the shRNA-mediated knockdown. Bands 
from three immunoblots were quantified by normalization to b-actin bands (mean ± SD).  
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TABLES 
Table 1: Over-abundant proteins in the CSF of Mpdz-/- mice, and their parameters in the LC-MS/MS analysis, 
grouped functionally into 7 sets (from top to bottom): extracellular matrix, blood coagulation cascade, lipopro-
teins, immune response, cytokines and cytokine-binding proteins, enzymes and enzyme-binding proteins, 
and protease inhibitors. LFQ, label-free quantification. 
 

Protein name  Gene 
ID 

MW 
(kDa) 

Isoelectric 
point 

Average LFQ intensi-
ties (´103) 

LFQ 
KO/W
T ratio 

P-
value 

Mpdz+/+ Mpdz-/- 

Extracellular matrix 
protein 1 Ecm1 48.356 6.28 9.247 108.1 11.691 0.0012 

Fibronectin Fn1 272.53 5.3 594.234 6292.53 10.589 0.015 
Gelsolin Gsn 85.94 5.72 2186.3 9651.9 4.415 0.0018 
Vitronectin Vtn 54.84 5.56 409.711 1280.37 3.125 0.026 

Complement C4-B C4b 192.91 8.7 586938 3005.67 5.121 0.0091 
Complement factor H Cfh 139.14 6.54 3049.323 9739.17 3.194 0.042 
Properdin Cfp 50.32 7.43 101.668 283.75 2.791 0.042 

Fibrinogen b chain Fgb 54.75 8.32 45.285 2175.04 48.03 0.027 

Apolipoprotein D ApoD 21.53 5.46 45.159 604.07 13.377 0.0003 
Apolipoprotein E ApoE 35.87 5.46 955.539 50725 53.085 0.011 

b-2-microglobulin B2m 13.78 7.97 425.157 1419.5 3.339 0.0074 
Macrophage colony-
stimulating factor 1 re-
ceptor 

Csf1r 109.18 5.87 22.71 141.25 6.22 0.01 

a-fetoprotein Afp 67.34 7.97 78.845 567.28 7.195 0.008 

a-2-HS-glycoprotein Ahsg 37.32 5.94 7831.367 44357.3 5.664 0.024 
Granulin Grn 63.46 6.41 13.719 101.49 7.398 0.020 
Hepatocyte growth 
factor activator Hgfac 70.57 11.45 26.246 109.89 4.187 0.047 

Insulin-like growth fac-
tor-binding protein 2 Igfbp2 32.846 7.2 62.722 1156.4 18.437 0.0005 

Insulin-like growth fac-
tor-binding protein 4 Igfbp4 27.81 6.62 2.61 53257 20.381 0.0003 

a-2-macroglobulin-P A2m 164.35 6.1 125.699 4668.7 37.142 0.0007 
Lysozyme C-2 Lyz2 16.69 8.99 49.978 2118.97 42.398 0.017 
Sulfhydryl oxidase 1 Qsox1 63.34 6.43 60.672 288.44 4.754 0.035 

Angiotensinogen Agt 51.99 5.18 106.615 877.37 8.229 0.003 
Pigment epithelium-
derived factor Serpinf1 46.23 6.45 36.352 408.52 11.238 0.0009 
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EXPANDED VIEW FIGURE LEGENDS 
The Expanded View material consists of 3 figures and one data set. 
 
Fig. EV1: No contrast medium is detected in the brain ventricles of Mpdz+/+ mice. A. Coronal T2-
weighted MR image and an anatomically-corresponding HE-stained section. B. Triplicate rows of T2-
weighted and T1-weighted coronal images 1 min and 10 min post contrast-medium injection. The squares 
surround the locations of the lateral ventricles. Each row corresponds to one P18-P21 mouse. Scale bars, 1 
mm. C. Time courses of the normalized T1-weighted image intensities corresponding to the locations of the 
areas surrounded by numbered squares in the T2-weighted images. 
 
Fig. EV2: The structure of CPEC tight junctions of P12-14 Mpdz-/- mice is defective. A gallery of 3 TEM 
images of tight junctions between the CPECs from lateral ventricle CP villi of Mpdz+/+ and Mpdz-/- P12-14 
mice. Scale bars, 100 nm. 
 
Fig. EV3: Capillaries between CPECs of Mpdz-/- mice do not harbor structural defects. TEM images of 
sections of capillaries from lateral ventricle CP villi of Mpdz+/+ and Mpdz-/- P15-P21 mice. The magnified fields 
show intercellular junctions between endothelial cells or fenestrae. Scale bars, 1 µm; insets, 250 nm. 
 
Dataset EV1: Set of all proteins identified in the CSF of 3 Mpdz+/+ and 3 Mpdz-/- mice. 
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Fig. EV2
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Fig. EV3
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