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Abstract 

Perception results from the integration of incoming sensory information with pre-existing information 
available in the brain. In this EEG (electroencephalography) study we utilised the Hierarchical Frequency 
Tagging method to examine how such integration is modulated by expectation and attention. Using 
intermodulation (IM) components as a measure of non-linear signal integration, we show in three 
different experiments that both expectation and attention enhance integration between top-down and 
bottom-up signals. Based on multispectral phase coherence, we present two direct physiological 
measures to demonstrate the distinct yet related mechanisms of expectation and attention. Specifically, 
our results link expectation to the modulation of prediction signals and the integration of top-down and 
bottom-up information at lower levels of the visual hierarchy. Meanwhile, they link attention to the 
propagation of ascending signals and the integration of information at higher levels of the visual 
hierarchy. These results are consistent with the predictive coding account of perception. 
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Introduction 

Perception is not a simple ‘bottom-up’ mechanism of progressive processing of the sensory input. 
Instead, perception is made possible by processing sensory information in the context of existing 
information in the brain spanning multiple levels of the cortex. The ability of the visual system, for 
example, to reach unambiguous representations from highly complex, variable and inherently 
ambiguous sensory inputs can be understood in terms of Bayesian inference and probabilistic 
integration of prior knowledge (top-down) with stimulus features (bottom-up). Crucially, within these 
kinds of framework, the integration of top-down and bottom-up signals is dynamically modulated by 
cognitive and potentially interacting cognitive factors such as expectation and attention (1-5). 

While expectation and attention are much studied, attempts to dissociate the two and study their 
unique yet interrelated underlying mechanisms are relatively recent and far from complete (6-10). Great 
caution in experimental design is required in order to obtain empirical data that permit a genuine 
distinction between the neural processes underlying expectation and attention. A fundamental 
challenge is to keep expectation and attention sufficiently separate; studies tend to either rely on 
explicit probability cues, which introduces task demands, or to vary stimulus properties across 
conditions, which confounds claims to have revealed high-level effects. The paradigms we introduce in 
this study were designed specifically to avoid such pitfalls. 

To consider the potentially distinct roles of expectation and attention we here appeal to the predictive 
coding theory of perception. In predictive coding, the brain’s ability to infer the causes of its sensations 
is attributed to its ability to embody the statistical structure in the environment within a generative 
model describing the hierarchical and dynamic statistics of the external world (2, 11). Perception is 
understood to reflect the process of inferring the causes and states in the external world that cause the 
sensory input. Expectations, under this framework, allow predictive signals to descend from higher to 
lower levels in the cortical hierarchy, where they are tested against sensory-driven information. The gap 
between the two - the prediction error - gives rise to the ascending signals which, in turn, allow for the 
higher-level expectations and subsequent predictions to be optimised in an iterative fashion. The 
outcome of this hierarchical prediction error minimization (resolution) process is, according to predictive 
coding, perception. 

Prediction errors may result from two related sources: inaccurate top-down predictions (that do not 
match the actual state of the external environment), or imprecise or noisy bottom-up sensory 
information (such as vision in a foggy day or hearing through a brick wall). An efficient system should 
therefore incorporate an estimation of the precision (i.e., inverse of variance) of sensory signals. The 
more precise a prediction error is estimated to be, the more ‘reliable’ it is considered to be, leading to 
more revision of the generative model. Attention has been suggested to reflect such a process of 
optimizing precision estimates of prediction errors, which, in more mechanistic terms, may allow the 
‘prioritisation’ of signals expected to be more precise by means of increasing the synaptic gain of 
neuronal units encoding precision estimates (Figure 1A) (3). Expectation and attention therefore relate, 
under the predictive coding framework, to descending and ascending signals, respectively. 
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Several implications follow from this account of expectations, predictions, prediction error minimization 
and attention. On the one hand, highly predictable stimuli are expected to yield smaller prediction 
errors and thus attenuated prediction error-related neural activity. On the other hand, if attention 
estimates high precision of the signal (i.e., greater prediction error impact), then even expected stimuli 
will yield greater prediction error-related neural activity. Indeed, various studies suggest an interaction 
between attention and expectation, and have demonstrated that when stimuli are unattended (e.g., 
they are task irrelevant) high levels of expectation can result in reduced sensory signals; however, when 
stimuli are attended (e.g., they are task-relevant) expected stimuli can, in fact, result in greater neural 
activity ((12) but also see Garrido et al. (13)).  

The goal of the present study is to elucidate the mechanisms underlying attention and expectation and 
to better understand the relationship between these factors in perception. To do so, we performed 
three experiments and analyses aimed at comprehensively studying these factors while avoiding the 
potential pitfalls described above (Figure 1B).  

 

Figure 1- Theoretical background and experimental strategy  

(A) The predictive coding theory of perception, which describes perception as the inference made about the 
state of the external world and the causes of the sensory input. Under this framework, expectations allow 
predictive signals to descend from higher to lower levels in the cortical hierarchy, where they are tested 
against sensory-driven information. The discrepancy between the two - the prediction error - propagates 
up the hierarchy, allowing for the higher-level expectations and subsequent predictions to be optimised. 
Expectations and prediction errors are suggested to be coded within each hierarchical level by distinct 
neural populations referred to as state (S) and error (E) units, respectively (14, 15). Prediction errors are 
suggested to be weighted by their estimated (and expected) precision such that high precision estimates 
lead to enhancement of prediction error signals via synaptic gain mechanisms.  

(B) Conceptual figure of the 3 experiments used to comprehensively examine the role of expectation and 
attention in the integration of top-down and bottom-up signals. In experiment 1 (red oval) expectation 
was manipulated while endogenous attention and the visual stimuli were kept constant across conditions. 
In Experiment 2, attention was manipulated while expectation and the visual stimuli were held constant 
across conditions (green oval). In experiment 3, a novel analysis method of data obtained in a previous 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2018. ; https://doi.org/10.1101/446948doi: bioRxiv preprint 

https://doi.org/10.1101/446948
http://creativecommons.org/licenses/by-nc/4.0/


4 
 

study is used to simultaneously examine main effects of expectation and attention, as well as the 
interaction between the two (yellow hourglass shape). For consistency, all figures in Results use shades of 
red for expectation, and shades of green for attention.  

 
All experiments utilized the Hierarchical Frequency Tagging (HFT) method in EEG ((16); Figure 2A and 
Videos 1 and 2). The HFT method was designed to investigate hierarchical visual processing. Its strength 
lies in its ability to distinguish between neural signals derived from different cortical levels, while 
providing a measure for the integration of these signals. In brief, two frequency-tagging methods are 
combined – the Steady-State Visual Evoked Potentials (SSVEP; (17, 18) and the Semantic Wavelet-
Induced Frequency-Tagging (SWIFT; (19). While SSVEP originates primarily in lower visual areas in the 
occipital cortex (20), SWIFT has been shown to selectively tag high-level object representation areas but 
not early visual areas in both EEG (19) and fMRI (21). Spectral power of the recorded signal at the tagged 
frequencies for the SSVEP and SWIFT are understood to reflect lower- and higher-level cortical activity, 
respectively.  

Crucially, intermodulation (IM) components, that is, linear combinations of the fundamental input 
frequencies, serve as a measure of non-linear interaction. In the brain, non-linear neural interactions 
enable rich, context-dependent information processing and play a key role in perception (22-24). 
Indeed, several EEG studies have utilized IMs to reveal the mechanisms of visual object-recognition (25-
27). In the case of HFT, intermodulation of the SWIFT and SSVEP frequencies are understood to reflect 
integration of top-down SWIFT-driven signals with bottom-up SSVEP- driven signals. 

IMs are typically quantified using amplitude-based measures. Importantly, we introduce a novel 
distinction between two phase measures of the IM signal, based on the Multi Spectral Phase Coherence 
(MSPC; (28)). The first measure, MSPCstim, ties the IMs to the phases of the SWIFT and SSVEP stimulus 
modulation, and the second one, MSPCres, to the tagged SWIFT and SSVEP neural response. We argue 
these two measures distinguish neural signal integration occurring at different hierarchical levels (Figure 
2B, and described in greater detail in Discussion and Methods). We hypothesised that if expectation and 
attention indeed relate to descending and ascending signals (respectively), their influence should 
manifest differently in these two measures. 
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Figure 2- Stimulus construction and analysis methodologies 

(A) All experiments implemented the Hierarchical Frequency Tagging (HFT) method using face and house 
images. Semantic Wavelet-Induced Frequency-Tagging (SWIFT) sequences are presented at given 
frequencies, allowing tagging of image-recognition activity (red rectangles). Contrast-modulation is 
applied at a higher frequency inducing SSVEP (blue sinusoid). When analysing the EEG data in the 
frequency domain (bottom graph with multiple peaks), peaks in the power spectrum can be seen at the 
fundamental frequencies and their harmonics (red bars for SWIFT f1 and blue bars for SSVEP f2). 
Additional peaks at IM components (e.g. purple bars for f2+f1 and f2-f1) are suggested to indicate 
integration of bottom-up SSVEP-driven signals with top-down SWIFT-driven signals.  

(B) The Multi Spectral Phase Coherency (MSPC) (28)   quantifies the degree to which an IM frequency 
component is driven by the phases of the fundamental input frequencies. In other words, the degree to 
which the IM component reflects an interaction between those input frequencies. Within each epoch, we 
first calculate the difference between the sum of the (weighted) phases of the fundamental input 
frequencies, and the phase of the IM component. Then, we compute the coherence of this value across 
multiple epochs applying the same method as in the well-known phase-locking value (see Methods for a 
detailed description.) Here, we introduced a novel distinction between two measures – MSPCstim and 
MSPCres - which differ in what they consider the ‘input’ signals to be. Specifically, the MSPCstim ties the 
IM phase to the phases of the stimulus itself (i.e. the images presented on the screen), while MSPCres ties 
it to the phases of the tagged neural responses (Figure 7). We suggest that these measures distinguish 
between neural interactions occurring at lower and higher cortical levels, respectively. 

 

Two new paradigms were designed to ensure two critical experimental aspects: that expectation and 
attention are manipulated individually without confounding each other, and that their modulatory 
effects are determined cognitively without introducing demand characteristics and without coinciding 
with any differences in the visual stimuli. In addition to these, new analyses performed on previously 
published data (Gordon et al., 2017) allowed a direct examination not only of expectation and attention 
main effects but of the interaction between the two. Indeed, the two phase measures we introduce 
here were modulated differently by expectation and attention, providing direct physiological evidence 
for their distinct hierarchical modulation of perceptual processing.    
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Results 

Expectation- Experiment 1 

Behavioral task: 

Experiment 1 manipulated expectation by using two tasks, specifically designed to avoid explicit 
indication of expectation levels in the instructions (thus minimizing demand characteristic), while 
holding attention and the visual stimuli constant across conditions. In each HFT trial a series of 
consecutive SWIFT-scrambled sequences (of one house and one face image) were presented to 
participants (Video 3) who were required to perform one of two tasks. In the image-repetition (IR) task, 
participants were requested to press the space-bar when either image repeated itself either 3 or 4 times 
(as instructed before each trial). Stimuli in these trials were considered ‘unexpected’ as participants 
could not predict the upcoming image. In the pattern-violation (PV) tasks, participants were required to 
memorise a pattern of 5-6 images presented to them as text (‘Face, House,...’ etc.) before the trial. 
When the trial began, the pattern repeated itself over and over and participants were instructed to 
press the space-bar when the pattern was violated. Thus, in PV trials, almost all upcoming images were 
highly predictable thus expectations were much more reliable than in the IR trials. Each series of face 
and house images (e.g. FHHFHFHHFH…) appeared in one PV and in one IR trial (using different images), 
such that the series used for both task were, in fact, identical. 

Participants were tested for 4 blocks, in the order of PV-, IR-, PV- and IR- block. After completing all 4 
blocks, participants were asked to compare between the PV and the IR tasks and to report whether they 
noticed the underlying patterns in the IR tasks. Indeed, despite the PV blocks preceding their matching 
IR blocks (see Methods), only N=3 out of 15 confirmed noticing an underlying pattern in some IR trials. 
This validates our assumption that the PV and IR tasks manipulated the expectation for upcoming 
stimuli. Second, N=10 out of 15 participants reported finding it more difficult to recognise the actual 
images of the IR compared to the PV trials. Several participants reported that the house and the face 
images tended to perceptually ‘blend’ more with each other in the IR trials (note that some elements of 
the images, such as edges with strong contrasts, may remain visible to some degree also in the 
‘scrambled’ frames, accounting for why images could sometimes be perceived as blended; see Video 3). 
Given that the same method was used to construct all stimuli in the experiment, the reported 
differences in perception can be strictly attributed to the task instructions, highlighting the impact of 
one’s expectation on conscious perception.  

EEG analysis- Expectation modulates MSPCstim but not MSPCres: 

After applying the fast Fourier Transform (FFT) on the EEG data of each trial, we verified that tagging 
was obtained for both the SWIFT and the SSVEP frequencies (SWIFT = f1 = 1.2 Hz, and SSVEP = f2 = 15 
Hz). Peak amplitude SNRs at both fundamental frequencies and their harmonics were evident in the FFT 
spectrum averaged across all electrodes, trials, participants (Figure S1A). 

Critically for the purpose of this paper, we examined the effect of expectation (predictability) on the IM 
signals. Based on the Multispectral Phase Coherency (MSPC)   , we quantified the degree to which the 
IM phases were driven by the SWIFT and SSVEP phases. As detailed in Methods, we introduce a novel 
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distinction between the MSPCstim measure in which the stimulus (image) SWIFT and SSVEP phases are 
considered the driving inputs, and the MSPCres measure in which the EEG SWIFT and SSVEP neural 
response phases are considered the driving inputs (both MSPCstim and MSPCres were computed 
individually within each electrode). As detailed in Discussion, we suggest these measures to indicate 
cortical signal integration occurring at different levels.  

MSPC values were calculated individually for each channel (with reference to its own SSVEP and SWIFT 
phases) within each trial (see Methods). Analyses were then performed on the average of both second-
order IM components (f2-f1=13.8Hz and f2+f1=16.2Hz) in a posterior ROI (17 electrodes) including all 
occipital (Oz, O1 and O2), parieto-occipital (POz, PO3-PO4, and PO7-PO8) and parietal (Pz and P1-P8) 
electrodes. As shown in Figure 3, MSPCstim was higher for the PV (expected) trials compared to the IR 
(unexpected) trials (χ2 =22.9, p<0.001), indicating increased neural integration between the SWIFT and 
SSVEP signals when stimuli are expected. This effect was not evident for the MSPCres measure (χ2 
=1.36, p>0.05). The significance of the MSPCstim vs. MSPCres result will be discussed later when 
comparing the relationship between these measures across all experiments and analyses. 

 

 

Figure 3- Expectation modulates MSPCstim but not MSPCres 

Multi Spectral Phase Coherence (MSPC) averaged across the two second order IM components (f1+f2 and f1-f2) in 
the expected and the unexpected conditions. Results are shown for a posterior ROI (17 electrodes, top) and the 
scalp topographies (bottom). Error bars represent standard error across subjects (N=15). The MSPCstim measure 
(left) quantifies IM responses by examining the degree to which the IM phase is driven by the phases of SWIFT and 
SSVEP stimulus (image) modulation. Conversely, the MSPCres measure (right) examines the degree to which the 
IM phase is driven by the tagged SWIFT and SSVEP neural response phases. These measures are therefore 
suggested to indicate signal integration occurring at earlier and at later stages of cortical processing, respectively. 
MSPCstim (right) was higher for the PV (expected) trials compared to the IR (unexpected) trials (χ2 =22.9, p<0.001), 
indicating increased neural integration between the SWIFT and SSVEP signals when stimuli are expected. This 
effect was not evident for the MSPCres measure (χ2 =1.36, p>0.05).  
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Attention- Experiment 2 

Behavioral task: 

In experiment 2, HFT trials with house and face images were presented to participants with contrast 
modulation (SSVEP) at 12Hz. Unlike experiment 1, two different SWIFT frequencies were used for the 
house and the face images (0.8Hz and 1Hz, counterbalanced across trials). Importantly, images were 
superimposed via alpha-blending, enabling simultaneous tagging of both frequencies (one for each 
image type) within each trial. In each trial, participants were requested to count either the faces or the 
houses, or to perform a demanding central-attention task. These behavioral tasks defined each image as 
either ‘attended’ or ‘unattended’ within each trial. Note that only 70-85% of the SWIFT cycles contained 
the face or house images while the rest of the cycles contained their matching ‘noise’ sequences (See 
Methods). This ensured that the attentional task was sufficiently demanding (Video 4).  

EEG analysis- Attention modulates MSPCres but not MSPCstim: 

First, we verified that we were able to obtain separate tagging for the relevant frequencies (two SWIFT: 
0.8Hz and 1Hz, and SSVEP: 12 Hz) (Figure S1B). Indeed, peak amplitude SNRs at all three fundamental 
frequencies were evident in the FFT spectrum averaged across all electrodes, trials and participants 
(Figure S1B).  

As in experiment 1, MSPC values were calculated individually for each channel within each trial (see 
Methods) and statistical analyses were performed on the average of both second-order IM components 
in a posterior ROI. Interestingly, as opposed to results from experiment 1, the effect of attention was 
evident in the MSPCres measure but not MSPCstim (Figure 4). Specifically, MSPCSres was higher for the 
attended compared to the unattended images (χ2 = 41.4, p<<0.001). This effect was not evident for the 
MSPCstim measure (χ2 = 1.21, p>0.05).  
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Figure 4- Attention modulates MSPCres but not MSPCstim 

Multi Spectral Phase Coherence (MSPC) averaged across the two second order IM components (f1+f2 and f1-f2) in 
the expected and the unexpected conditions. Results are shown for a posterior ROI (17 electrodes, top) and the 
scalp topographies (bottom). Error bars represent standard error across subjects (N=11). The MSPCstim measure 
(left) quantifies IM responses by examining the degree to which the IM phase is driven by the phases of SWIFT and 
SSVEP stimulus (image) modulation. Conversely, the MSPCres measure (right) examines the degree to which the 
IM phase is driven by the tagged SWIFT and SSVEP neural response phases. These measures are therefore 
suggested to indicate signal integration occurring at earlier and at later stages of cortical processing, respectively. 
MSPCres (left) was higher for the attended compared to the unattended images (χ2 = 41.4, p<<0.001), indicating 
increased neural integration between the SWIFT and SSVEP signals when stimuli are attended. This effect was not 
evident for the MSPCstim measure (χ2 = 1.21, p>0.05).  

Further analysis of the data from experiment 1 and 2 show comparable results for various higher order 
IMs, and is consistent with the suggestion that the attentional modulation manifests at higher cortical 
levels (Supplemental Information). In brief, the effect of attention was most notable for the 4th order 
IMs (2f2+2f1) and additional analysis suggests this effect to reflect interactions occurring at later rather 
than earlier processing stages.    

Interaction of attention and expectation- reanalysis of previous study 

After differentiating expectation and attention in Experiments 1 and 2, and establishing that both 
expectation and attention are associated with enhanced IMs, we returned to our previously published 
data (16) to examine the interaction between these factors, and to evaluate the consistency of the 
results from that study with those of experiment 1 and experiment 2 here (Supplemental Information).  
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The interaction between expectation and attention was not significant for MSPCstim (χ2 = 3.47, p>0.05) 
but it was indeed highly significant for MSPCres (χ2 = 19.56, p<0.001). In fact, the slope of MSPCres 
against expectation was negative for unattended images (χ2 = 5.05, p<0.05). Additional post-hoc 
analyses performed individually for expectation and attention were consistent with the results from 
experiment 1 and Experiment 2, where MSPCstim showed greater enhancement with expectation and 
MSPCres showed greater enhancement with attention (Supplemental Information). These results are 
interpreted further in Discussion.  

 

 

 

Figure 5- The expectation-attention interaction is significant for MSPCres but not MSPCstim 

Predicted MSPCstim (left) and MSPCres (right) values obtained from a full Linear Mixed Effects interaction model, 
with their standard error indicated by the shaded area. The model included expectation, attention and an 
expectation-attention interaction term as the fixed effects, while the random effects included a random intercept 
for frequency nested within channels nested within participants, and random expectation and attention slopes for 
each participant. Consistent with the colors used in the previous figures, attended images are represented by the 
dark green lines and unattended images by the light green lines, while the pink-red gradient indicates increasing 
expectation. The significance of the interaction term was tested using the likelihood ratio test between the full 
model and the reduced model which excluded the interaction fixed effect. The expectation-attention interaction 
was not significant for MSPCstim (χ2 = 3.47, p<0.05) but was highly significant for MSPCres (χ2 = 19.56, p<0.001).  

Finally, we performed several analyses to examine the relation between the MSPC and amplitude 
measures. Specifically, we examined whether reduced SWIFT, SSVEP and/or IM response amplitudes can 
account for the reduction of MSPCres in the unattended compared to the attended conditions. While 
we expect the MSPC and amplitude measures to correlate to some degree, we confirmed that the 
amplitude measures accounted for no more than 20% of the MSPC variance. Further details of the 
analyses are provided in Supplemental Information. 
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4. Discussion 

The goal of this study was to examine the mechanisms underlying attention and expectation in 
perception, focusing on their modulation of top-down and bottom-up signal integration. All experiments 
utilised the Hierarchical Frequency Tagging (HFT) method (16) in which SSVEP- and SWIFT- driven signals 
reflect activity in lower (V1/V2) and higher levels in the visual hierarchy, respectively (19, 21). We 
reasoned, within the predictive coding framework, that the SWIFT-tagged signals reflect top-down, 
semantically rich predictions while SSVEP-tagged signals reflect bottom-up sensory input (or prediction 
errors). Importantly, intermodulation (IM) frequency components are a distinct and objective indicator 
for non-linear integration of multiple input frequencies. Accordingly, IMs are hypothesised here to be 
influenced by, and provide an indication of, the level of integration between top-down predictions and 
bottom-up prediction-error signals. 

Two new experiments and a reanalysis of an existing data set were examined in this study, covering a 
range of experimental modulations of expectation and attention. The first experiment modulated 
expectation while holding attention constant, and the second experiment modulated attention while 
holding expectation levels constant. Critically, both experiments used the same sensory input across 
conditions, while cognitive modulations were achieved only by means of the behavioral tasks at hand. 
Our results provide direct neural evidence for the increased integration of bottom-up and top-down 
signals through modulation of expectation and attention.   

Importantly, we argue that the dissociation between the MSPCstim and MSPCres measures found here 
relates expectation and attention to distinct mechanisms impacting the integration of descending and 
ascending signals at lower and at higher levels of the visual hierarchy, respectively.  

We believe this is the first direct demonstration of the different neurophysiological manifestations of 
the mechanisms by which expectation and attention change the very integration of top-down signals 
with bottom-up signals in perception. 

In the following, we show how our results can be both explained by, and provide support to the 
predictive coding model of perception (Figure 1A). 

4.1 Terminology and theoretical background 

The terms expectation and attention have been confounded in various cognitive studies (for discussion, 
see (8)). Furthermore, both attention and expectation are composed of many different aspects (e.g. 
spatial vs. feature-based attention, selective vs. sustained attention, etc.; expectation can result from 
implicit learning of statistical contingencies or through explicit instruction, etc.), which can have distinct 
neural origins and underlying mechanisms. Like Summerfield et al. (8), we use the term attention to 
denote the motivational relevance of an event and the term expectation to denote its conditional 
probability.  

The terms ‘predictions’ and ‘expectations’ can be used in the more technical predictive coding literature 
to denote somewhat different aspects of the perceptual circuitry. Predictions are the descending signals 
that are used to explain away sensory or neural input in lower areas. Expectations on the other hand are 
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the inferences made about the state of the external world (or more technically speaking, the inferred 
values assigned by the generative model to the hidden causes and states in the external world). In that 
sense, predictions are compared against sampled sensory inputs in the sensory cortex or against 
expectations at intermediate hierarchical levels (3, 14). We use ‘expected’ and ‘predictable’ 
interchangeably here. 

Attention, in cognitive neuroscience literature, is commonly viewed as mechanisms which: 1) increase 
baseline neural activity, sometimes referred to arousal or alertness, 2) selectively enhance relevant 
neural responses, and 3) selectively inhibit irrelevant responses (29). In predictive coding, such signal 
modulation is suggested to be achieved by means of internal estimates (and expectations) of precision 
(the inverse of signal variability). Greater precision estimates lead to greater weighting of the prediction 
error, effectively serving as a gain control for the bottom-up signals and allowing greater modification of 
higher-level expectations and predictions (30, 31). Attention, under this framework, enables signal 
enhancement by modulating the gain on the prediction errors obtained through varied estimations of 
prediction-error precision estimations (3). 

EEG signals are thought to be generated by the spread of postsynaptic potentials along the apical 
dendrites of pyramidal cells (32). In other words, they are generated by activity at afferent rather than 
efferent pathways. With this in mind, the modulatory effects of expectation and attention, as described 
above, can be expected to manifest differently at lower and higher visual areas, respectively.  

4.2 What can be learnt from the intermodulation components 

As the IM components are key to our analysis, it is important to clarify several issues. First, the IM signal 
depends on two main factors: the amplitude and phase of the input signals, and the specific mechanism 
of signal integration at hand. The former factor is straightforward as changing the power or shifting the 
phase of the input can lead to a shift in output power or phase, respectively. Using IMs to infer 
something about the latter factor is, however, less trivial since non-linear neuronal dynamics may be 
consistent with various models of neural processing, ranging from cascades of non-linear forward filters 
(e.g., convolution networks used in deep learning) through to the recurrent architectures implied by 
predictive coding. It is therefore not easy to link specific computational or neuronal processes to the IM 
responses and IMs can only provide indirect evidence for predictive coding as well as other theories of 
perception. However, as we will argue, various arguments indeed point to the recurrent and top-down 
mediation of the IM responses in our data.  

The second issue to consider is the interpretation of the MSPC measure in the context of our novel 
distinction between MSPCstim and MSPCres. As described in Methods, the MSPC measure aims to 
quantify the degree to which the phase of an IM component is driven by the phases of the input 
frequencies. The question then is what we consider those driving inputs to be? SSVEP and SWIFT phases 
can be quantified either by the stimulus itself or by the EEG response signal (as tagged and obtained by 
the FFT). We term these options MSPCstim and MSPCres, respectively. When considering these two 
measures, one may a priori expect them to behave quite similarly. After all, the stimulus (image) and the 
response (EEG) phases can be expected to be highly correlated with each other, leading to highly 
correlated MSPCstim and MSPCres measures. Threfere, our finding here is highly non-trivial; the 
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expectation and attention manipulations influenced these measures in a highly different manner 
(Figures 3-5), directly indicating distinct neural processes for expectation and attention. As we describe 
in greater detail in Methods, we reason that MSPCstim and MSPCres may allow a distinction between 
interactions occurring at lower and higher levels of hierarchical processing, respectively. Hence, while 
MSPCstim and MSPCres may be correlated, distinct underlying correlates should account for the 
differences in results obtained across the three experiments.   

4.3 Expectation and attention: main effects and their interaction  

Combining results from all experiments, we suggest MSPCstim and MSPCres to be more strongly related 
to the expectation, and to the attention modulation, respectively.  

The MSPCstim measure demonstrated a consistent increase with expectation, as evident in the data 
obtained from experiment 1 and from Gordon et al. (16). Describing a stimulus as being predictable 
implies that the prediction signal precedes the onset of the stimulus itself. Hence, when the sensory 
input arrives, the prediction can be tested against (interact with) the incoming sensory-driven 
information in a highly ‘online’ manner. In such conditions, as in the PV trials in experiment 1 and the 
‘high-certainty’ trials in Gordon et al., top-down predictions and bottom up sensory evidence can 
interact quickly at early visual areas, and the resulting IM phase can be expected to be strongly related 
to the stimulus phase (see suggested primary source of MSPCstim in Figure 6). This observation is 
consistent with various studies demonstrating effects of expectation at early visual areas (33-35). 

The MSPCres measure, on the other hand, showed a greater increase with attention in experiment 2 
and the Gordon et al. data compared to the MSPCstim, with no consistent modulation by expectation. 
Here, we have suggested MSPCres to be more strongly related to signal integration occurring at higher 
levels of the visual hierarchy. Attention, in predictive coding, is suggested to optimise perception by 
allowing the ascending error signals to exert a greater influence on the expectations at the higher 
cortical level (31). Therefore, attended (compared to unattended) images should allow greater 
integration of bottom-up error signals with higher level expectations, as reflected by the MSPCres (see 
suggested primary source of MSPCres in Figure 6). Additional support for this claim is provided by the 
MSPCres analysis of the 4th-order IMs, which suggests the modulatory effect of attention to involve 
interactions occurring a later stage than initial sensory processing (see SI). 

In addition, an interesting relationship between expectation and attention follows the account of 
precision-weighted prediction errors (Figure 1A). On the one hand, highly predictable stimuli will yield 
small prediction errors. On the other hand, if a stimulus is highly relevant (attended), the influence of 
the prediction-errors on the higher-level expectations will be enhanced (31). Indeed, the significant 
interaction found for the MSPCres measure (Figure 5, right panel) supports such a relationship between 
expectation and attention. When stimuli were unattended, MSPCres decreased with higher expectation, 
in line with reduced prediction error signals. However, when stimuli were attended, not only did 
MSPCres not decline with expectation, it in fact trended upward.  

Given that EEG signals are understood to be generated primarily by activity at afferent synapses, and in 
accordance with current predictive coding models, we argue that all our results can be accounted for by 
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the association of predictions with descending signals and attention with ascending, precision-weighted 
error signals (as illustrated in Figure 6). When stimuli are expected, predictions become more accurate, 
and their integration with sensory evidence at low visual areas improve. Hence, the MSPCstim response, 
which we suggest reflects neural integration at early visual areas, is enhanced with expectation, 
regardless of attention. In turn, when stimuli are attended, the propagation (or influence) of ascending 
error signals to (or on) the higher hierarchical level is enhanced. Hence, the MSPCres response, which 
we suggest reflects neural integration at later visual areas, is enhanced with attention. In contrast, when 
the expected stimuli are unattended (not task-relevant), not only are the prediction-errors gated out by 
(un)attention, there are also smaller to begin with, hence the reduced MSPCres. 

 

 

Figure 6 – Expectation, attention, MSPC and predictive coding  

Results presented in this study can be accounted for by the predictive coding framework of perception as follows: 
1) Expectation (the probability for the appearance of specific stimuli) relates to descending prediction signals. 2) 
Better predictions (as afforded by the PV trials in experiment 1) increase the efficiency of top-down and bottom-up 
signal integration at low-level visual areas, as reflected by the increased MSPCstim with expectation (Figures 2 and 
4). 3) Attention reflects a (precision-weighted) control mechanism for the propagation of prediction error-signals. 
4) Attention effectively increases the influence of prediction error signals on expectations at higher hierarchical 
levels, as reflected by the increased MSPCres with attention (Figures 3 and 4). 5) The effect of expectation on the 
integration of top-down and bottom-up information at lower visual areas is less dependent on attention than the 
integration at higher levels. Hence, while MSPCstim increased with expectation for both attended and unattended 
stimuli (Figure 5), the influence of expectation on MSPCres was attention-dependant (Figure 5). 
While we choose to interpret our results under the predictive coding framework of perception, 
alternative explanations should be considered as well. One possibility is that some of the differences 
between the MSPCstim and MSPCres responses may be attributed to the locations of the neural 
generator sources mediating our expectation and attention modulations. For example, the posterior ROI 
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used in our analyses may have captured attention-related parietal activity more so than expectation-
related frontal activity.  

Whether and how expectation and attention interact in perception is an ongoing debate in the scientific 
literature. Several studies have demonstrated a relationship between expectation and attention 
consistent with the interaction reported here. For example, using multivariate pattern analysis in fMRI, 
Jiang et al. demonstrated that the ability to discriminate expected and unexpected stimuli was notably 
enhanced with attention (36). In a different fMRI study, Kok et al. showed that a significantly reduced 
neural response to predicted stimuli was observed in V1 (but not in V2 and V3) only for the unattended 
stimuli. Attention, on the other hand, was shown to correlate with an enhancement of the forward drive 
of information from V1 to V2 and V3, and was therefore proposed to reflect an increase in the 
postsynaptic gain of prediction error neurons (37). Expectation-attention interactions have also been 
demonstrated in several EEG studies focusing on ERP components occurring within 100-200ms after 
stimulus onset (38). 

Critically, the methods used in the current study avoid some of the principal limitations of those studies:  

1) The effects of expectation and attention were not confounded neither with each other nor by 
changes in low level properties of the sensory stimuli. This was accomplished by designing the 
paradigms of experiment 1 and Experiment 2 such that one cognitive domain was manipulated at a time 
by changing the behavioural task at hand.  

2) The primary variable used in our analyses provides a direct neural measure of signal integration 
within the context of hierarchical processing. This was accomplished by using the Hierarchical Frequency 
Tagging method and by focusing analysis on IM components using the MSPCstim and MSPCres 
measures.  

The above, with the combined results from multiple experiments, offer a unique advantage: the ability 
to obtain a direct and objective neurophysiological measure for the influence of expectation and 
attention on the integration of distinct streams of neural information in perception.  

Instead of formulating the question at hand as whether expectation and attention increase or decrease 
neural activity, we place a spotlight on the role of signal integration in perception. In line with the 
predictive coding framework of perception, we view expectation and attention as distinct yet related 
mechanisms facilitating precision-weighted prediction error minimization, and serving the common goal 
of Bayes optimal perceptual inference. Our results highlight the role of feedback loops and integration 
of information across multiple hierarchical levels in the cortex, and relate expectation and attention to 
descending and ascending signals, influencing information integration at lower and higher cortical levels, 
respectively.  
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Materials and Methods 

Hierarchical Frequency Tagging  

The Hierarchical Frequency Tagging (HFT) method is based on the combination of two frequency tagging 
methods: a contrast modulation inducing Steady-State Visual Evoked Potential (SSVEP) tagging activity 
at lower visual areas, and an object-recognition modulation inducing Semantic Wavelet-Induced 
Frequency-Tagging (SWIFT) tagging activity at higher visual areas. 

A detailed description of the method for creating SWIFT sequences can be found elsewhere (19). The 
crux of the SWIFT method is that it scrambles contours while conserving local low-level attributes such 
as luminance, contrast and spatial frequency. A SWIFT ‘sequence’ is a series of frames that, when 
presented sequentially, create a ‘movie’ that starts from a scrambled frame, progresses toward the 
middle (‘peak’) of the sequence where the original image can be briefly identified, after which the image 
becomes scrambled again. When such a SWIFT sequence is presented repetitively at a given frequency, 
the original images peaks at that frequency (i.e. once each SWIFT ‘cycle’) allowing the SWIFT tagging to 
be obtained (if the image is recognised).  

To create a SWIFT sequence, we first scrambled the original image using the discrete Meyer wavelet and 
six decomposition levels. The local contour at each location and scale was then represented by a 3D 
vector. To create the sequence of frames, we then randomly selected two additional vectors of identical 
length and origin and defined the circular path that connected the three vectors (maintaining vector 
length along the path). We then performed additional cyclic wavelet-scrambling by rotating each 
original vector along the circular path and applying the inverse wavelet transform to obtain the image in 
the pixel domain. This way, we were able to smoothly scramble the original image by destroying contour 
information while conserving the local low-level attributes. The Matlab script for creating SWIFT 
sequences can be found at Koenig-Robert et al. (19). 

In all experiments described here, we constructed each trial using SWIFT sequences created from one 
face and one house image, randomly selected for each trial from a pool of images. SWIFT sequences 
were presented consecutively, resulting in a ‘movie’ in which the original images (either the house or 
the face) were identifiable briefly around the peak of each such cycle (Video 1). 

The SWIFT method preserves the low-level local visual properties across all frames within each sequence 
(cycle). These properties could differ significantly between a pair of SWIFT sequences used within a 
single trial (one for a face and the other for a house). Therefore, to preserve the low-level local visual 
properties across the whole trial, it was essential to alpha-blend (with equal weights) frames from both 
the house and the face sequences. As described below, a single SWIFT frequency was used in 
experiment 1 (Video 3), with either the face or the house image appearing in each cycle. To allow only 
one image to be recognised in each cycle, we created additional ‘noise’ sequences and alpha-blended 
them with the frames of the ‘image’ sequences presented in that cycle. This was done in the following 
way: First, we selected one of the scrambled frames from each of the original SWIFT sequences (the 
frame most distant from the original image presented at the peak of the cycle). Then, we created noise 
sequences by applying the SWIFT method on each of the selected scrambled frames. In this way, each 
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original ‘image’ sequence had a corresponding ‘noise’ sequence that matched the low-level properties 
of the image sequence. Finally, during the actual presentation of the stimuli, we alpha-blended (with 
equal weights) the frames of the ‘image’ sequence that appeared in that cycle with the ‘noise’ frames of 
the other image category (see Figure 2A at Gordon et al. (16)). In Experiment 2, 15-30% of ‘image’ cycles 
were replaced with ‘noise’ cycles to make the counting task attentionally demanding (Video 4; see 
further details below). This way, the overall low level visual attributes were constant across all frames 
within the trial, regardless of the identifiable image in each cycle. 

To minimise the possibility of confounding our results with the tagging of low-level visual features 
(specifically, by the cyclic repetition of the scrambled frames presented in between peaks) we created 
three sets of ‘image’ and ‘noise’ SWIFT sequence variants for each of the original images and 
continuously alternated between the sets during the trial. The timing of the transition between SWIFT 
variants (of a single original image) was designed to allow smooth transitions. This was done as follows: 
1) If the image to be presented in the coming cycle is the same as the one presented in the current cycle 
(e.g. face-face), then the SWIFT variant of the ‘image’ sequence would be swapped at the peak of the 
current cycle (i.e. at the frame containing the original image). 2) If the image to be presented in the 
coming cycle is not the same as the one presented in the current cycle (e.g. face-house in experiment 1 
or face-noise in Experiment 2), the transition between the image and its matching noise sequences 
would occur at the frame from which the ‘noise’ sequence was created. This way, we could better 
control for potential tagging of low-level visual features while ensuring smooth transitions between 
cycles.  

For SSVEP, a global sinusoidal contrast modulation was applied on the whole movie. To avoid both 
excessively strong SSVEP signals and total blanks of the SWIFT sequences, the contrast modulation was 
limited to 70% of the full contrast range (from 30% to 100% of the original image contrast) (Video 2). 

Participants and experimental procedure  

All participants were university students aged between 18 and 34 years. A total of n=15 out of 24 
participants were included in the analysis of experiment 1, and n=11 out of 16 in experiment 2. 
Exclusion criteria were based on EEG quality and on task performance (see below.) In all experiments, 
participants were comfortably seated in a dimly lit room 55-60 cm in front of the monitor (LCD, 120Hz 
refresh rate). Stimuli were presented at the center of the screen over a grey background and 
participants were asked to keep their fixation at the center of the display. Participants were asked to 
minimise blinking or moving during each trial, but were encouraged to do so if needed in the breaks 
between trials. Trials always began by the participant pressing the spacebar. 

Importantly, both new experiments performed in this study were designed such that the high-level 
factor was manipulated without modifying the stimuli used across experimental conditions. In other 
words, the predictability of the stimuli in the experiment 1 and the relevance of the stimuli in 
experiment 2 were manipulated through task instructions, without any confounds introduced by 
changes in low-level visual features.  
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Behavioral tasks 

Experiment 1-  Expectation: 

Images appeared at 1.2Hz, alternating between a face and a house image in specific orders. In each trial, 
participants were required to perform one of two tasks such that each task was performed in half the 
trials.  

In the image-repetition (IR) task, participants were asked to press the spacebar when they identified any 
image repeating itself either 3 or 4 times in a row. The specific number (3 or 4) was displayed on the 
screen prior to each trial. For example, for a trial in which the participant was instructed to look for an 
image repeating itself 3 times in a row, the face (F) and house (H) images may have been presented in 
the following order: 

FHHFFHFHHFFHFHHFFF…  

The ‘target’ image would then be the 18th image (F shown in bold). Throughout the paper, these trials 
are referred to as the image-repetition (IR) trials. 

In the pattern-violation (PV) task, participants were provided a pattern describing a series of 5-6 images 
prior to each trial, and were instructed to memorise the pattern well. Participants were told that the 
images presented in the trial would follow the given pattern, which will repeat itself over and over 
again. The task was then to press the spacebar as soon as they identified an image that violated the 
expected pattern. 

For example, the following pattern may be verbally presented on the screen before a trial:  

“Face, House, House, Face, Face, House” 

After memorising the pattern, participants would begin the trial by pressing the spacebar. Images would 
then appear in the following order: 

FHHFFH FHHFFH FHHFFF…  

The ‘target’ image in this case would be the 18th image shown in bold. the spaces between each pattern 
in the above example are provided here for illustration alone. In the actual trials, images appeared 
consecutively as per the 1.2 Hz SWIFT frequency. Throughout the paper, these trials are referred to as 
the pattern-violation (PV) trials. 

As can be seen, the sequence of images and the target image are identical in both above examples, 
allowing differences in conscious perception, behavioural performance and evoked neural activity to be 
attributed strictly to the task-related requirements rather than the visual stimuli. We hoped that 
participants would not be aware of the underlying pattern when performing the IR task, rendering the 
series of images appear more random. As detailed in Results, this was indeed the case.  

A global SSVEP contrast modulation was applied at 15Hz in all trials. 
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After 1-2 training trials, four 11-trial blocks were administered in the following order- PV block, IR Block, 
PV block, IR block. Every series that appeared in the PV block was repeated in the following IR block in a 
random order of trials, using a different set of face and house images. PV and IR trials were then 
analysed as paired.  

Within 3 minutes from completing the experiment (i.e. after the end of the fourth block), participants 
were asked to compare the difficulty level between the PV and IR tasks, and to report whether they 
have noticed the underlying patterns in the IR tasks.  

Experiment 2- Attention: 

HFT trials were constructed using house and face images. Contrary to experiment 1, here, the two image 
categories were presented at different SWIFT frequencies. In other words, the house and face images 
each cycled at its own frequency (0.8Hz and 1Hz, counterbalanced.) (Video 4). This allowed us to 
separately tag the EEG responses associated with the recognition of each image. Participants were 
instructed before each trial to count one of the image categories (e.g. ‘count houses’). Each image was 
therefore considered attended or unattended depending on what the participant was instructed to 
count during the trial. To ensure participants were actively paying attention to only one of the 
categories, rather than just following a certain ‘rhythm’, images were presented in only 70-85% of their 
respective cycles, and were substituted with their matching ‘noise’ sequence in the remaining cycles 
(Video 4). Trials were 31.5 seconds long, allowing the total amount of counted images to range from 17 
to 26 images per trial. Participants were instructed not to expect trials with less than 10-15 images and 
were requested to be as accurate as possible when counting.  

To further verify the dependence of the SWIFT response on attention, we added a third condition in 
which participants were required to perform a demanding central-attention task, leaving only minimal 
spatial attention elsewhere on the screen (39, 40). In this task, participants were instructed to attend to 
a central cross that varied in the height of the horizontal line (above or below the midline) and color 
(red, green or blue). The cross was updated at pseudo-random times, jittering over 850-1000ms to 
reduce frequency tagging by this stimulus (a constant time interval would yield an excessively strong 
tagging of the cross frequency). Participants were instructed to count the number of occurrences of two 
conjunction targets, defined as an upward and red cross or a downward and green cross. These central 
stimuli were also present in the count-face and count-house tasks, but they were irrelevant and ignored 
(Video 4).  

Ten trials were administered in a random order for each of the three behavioural tasks (counting 
houses, faces or crosses), reaching 30 trials in total. The two images were presented at SWIFT 
frequencies of 0.8Hz and 1Hz, counterbalanced across trials. The global SSVEP contrast modulation was 
applied at 12Hz. 

Data acquisition and processing 

Data were collected at two facilities, both using BrainProducts 64 scalp electrode EEG systems. Data for 
half of the participants from experiment 1 (n=12) and all participants from experiment 2 (n=16) were 
collected using an active-electrode actiCHamp system. Data for the other half of experiment 1 (n=12) 
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were collected using a passive-electrode BrainAmp-MR system (not within an MR environment). 
Continuous EEG was sampled at 1,000 Hz for all participants.  

Data processing was performed using the EEGLAB toolbox (41) in MATLAB. All data were resampled to 
500 Hz. A high-pass filter was applied at 0.3 Hz and data was converted to average reference after 
replacing noisy electrodes. To define noisy electrodes, each sample point was regarded as being noisy if 
it was either greater than +80 μV (or lower than -80 μV), contained a sudden fluctuation greater than 
30μV from the previous sample point, or if the signal was more than ±5 std from the mean of the trial 
data in each channel. Cycles in which over 2% of sample points were noisy were regarded as noisy 
cycles. Channels were replaced using spherical spline interpolation if they were considered noisy in over 
10% of cycles. An additional CleanLine procedure was then applied to reduce AC power artifacts around 
50Hz and 100Hz. The CleanLine plugin for EEGLAB (Mullen, 2012. Available online at: 
http://www.nitrc.org/projects/cleanline) reduces sinusoidal (line) noise while avoiding typical phase 
distortions that can be caused by notch filters.  

Exclusion criteria  

Exclusion criteria were defined based on the quality of the EEG recording and the behavioral results. For 
the former, individual trials were marked for exclusion if over 10% of channels were considered noisy in 
that trial after pre-processing (as described above.) Participants with over 20% of bad trials were 
excluded from the analysis. A total of 5 participants from experiment 1 and 4 participants from 
experiment 2 were excluded based on this criteria for poor EEG recordings.  

To ensure participants were sufficiently engaged with the tasks, we excluded participants whose 
responses were considered invalid in over 30% of trials. For experiment 1, responses were considered 
invalid if the spacebar was not pressed during the trial, or if it was pressed before the appearance of the 
target image (this criterion was applied on the PV trials). For Experiment 2, responses were considered 
invalid if they differed by more than +3 from the correct number (i.e. the actual number of times the 
attended image appeared in the trial). A total of 4 additional participants from experiment 1, and 1 
additional participant from Experiment 2 were excluded based on this criteria for poor response 
accuracy.  

Spectral analysis 

EEG amplitudes and phases were extracted at the tagging and intermodulation frequencies by applying 
the Fast Fourier Transform (FFT) over a predefined subset period in each trial. For experiment 2, the FFT 
was applied on the 25 second epoch ranging from 3-28 seconds from trial onset, yielding a half-
bandwidth (i.e. frequency resolution) of 0.04Hz (=1/25s) (12,500 sample-points). For experiment 1 we 
applied the FFT on either 10 or 20 seconds of data, depending on the amount of data available in each 
trial (trial lengths in this experiment varied according to the location of the target image and the 
participant’s response). To reduce onset effects and the nosier signals often seen near trial onsets, we 
excluded the first SWIFT cycle of each trial from all analyses. Trials with more than 17 seconds of 
available data were zero-padded to 20 seconds and analysed as a 20-second trial, with a half-bandwidth 
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of 0.05Hz (=1/20s). Trials with less than 17 seconds of data (but more than 10) were analysed using the 
first 10 seconds, with a half-bandwidth of 0.1Hz (=1/10s).  

Signal-to-noise ratios (SNR) were computed by dividing the amplitude at any given frequency by the 
arithmetic mean amplitude across its neighbouring frequencies (42, 43). The specific number of 
neighbouring frequencies used for the SNR calculation depended on the length of data used in each 
analysis (as described above), ranging from 4 on each side (from f-0.4HZ to f+0.4HZ) for the 10-second 
epochs to 8 on each side (from f-0.32Hz to f+0.32Hz) for the 25-second epoch.  Any neighbouring 
harmonic or IM frequency falling within that range was removed from the SNR calculation.  

While a theoretically limitless number of IM components exist (all linear combinations of the 
fundamental input frequencies:  n1f1 + n2f2, n = ±1,±2,±3…), we focused our primary analyses on the 
two lowest (2nd) order components (f1 + f2) which tended to have the highest amplitude SNRs (as in 
Gordon et al.). Additional analyses were then performed on 3rd and 4th order IMs to broaden the scope 
of our investigation, as described in greater detail in Supplemental Information. 

Multi Spectral Phase Coherence 

Distinct aspects of non-linear interactions may be revealed by examining both phase and amplitude 
information. Applying phase analyses rather than amplitude analyses alone may have several 
advantages. First, amplitude and phase information may indicate different aspects of neural processing, 
with the phase-coherence believed to reflect the relative timing of neural activity (44). Second, noise 
that is not associated with stimulus processing is by definition not time-locked to stimulus onset, and is 
therefore not expected to demonstrate any phase consistency across trials. Consequently, phase 
analyses may be more robust to noise, potentially allowing the detection of genuine response 
components even when the amplitude is low.  

The phase-coupling measure we use in this study is the multi-spectral phase coherence (MSPC) 
introduced by Yang et al. (28). The MSPC is especially useful for the study of intermodulation 
components since rather than comparing a frequency phase to a time-locked event, it allows it to be 
compared against the phases of the fundamental frequencies. In that sense, instead of asking ‘how 
strongly is the IM phase driven by a given event in time’ (as with the classic phase-locking factor), the 
MSPC asks ‘how strongly is the IM phase determined by the phases of the input frequencies driving the 
IM response’. The MSPC can be calculated between input (I) frequencies f1,f2...fr and any given output 

(O) IM (or harmonic) frequency (where  is a linear combination of the input frequencies 
with weights n1,n2...nr). Mathematically, this is given by the formula: 

 

Where is the phase of the input frequency fr (in epoch k), and is the phase of the 
output IM (in that same epoch). 
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There are various additional conceptual differences between the more commonly used phase-locking 
value (PLV) and the MSPC measure we apply here. First, for PLV, the phase of only one frequency of 
interest is extracted from each epoch to calculate PLV values. Here, for each MSPC calculation, we 
extract the phases of three frequencies from each epoch- two fundamental and one IM component 
phase. Second, PLV is often used to examine the coherence between different neural signals by testing 
the consistency of the difference (Δφ) between phases of distant channels. Here, we test the 
consistency of the difference between the phases of the fundamental frequencies and the IM 
component within a channel.  

The logic behind performing within-channel calculations is that the sources associated with the SWIFT, 
the SSVEP and the IM responses should, in principle, have an additive (and therefore separable) 
influence on the resulting EEG signal at each channel. Moreover, if we assume that for any given 
channel, the phase of the signal associated with the activity of a particular source depends on a 
characteristic time delay, then the dynamics of a single electrode should contain information about the 
dynamics of multiple electrodes (45). Therefore, we used within-channel data to examine the 
relationship between the IM and the SWIFT and SSVEP phases while avoiding the complexity involved in 
cross-channel computations. 

 

Figure 7- Multi Spectral Phase Coherence 

The method for calculating MSPC. (A) Schematic example of weaker (left) and stronger (right) phase coherence. 
Both the phase-locking value (PLV) and the MSPC measures examine the consistency of a given phase term across 
multiple epochs. This can be visualised by first converting the phase term from each epoch into a unit (length=1) 
vector pointing at its phase angle. Phase coherence is then obtained by computing the average vector (the sum of 
all vectors divided by the number of epochs). The result is a vector whose length can vary from 0 (each vector 
pointing at random directions, no phase coherence across epochs) to 1 (all vectors pointing at the same direction, 
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perfect coherence across epochs). (B) The primary difference between PLV and MSPC measures is the phase-term 
used for each epoch. For the PLV, only the phase of one specific frequency (or frequency band) is extracted for 
each channel/epoch and is used as the phase-term for computing phase-locking. When examining coherence 
between distant channels, the phase-term used for the PLV would be the difference (Δφ) between the phases 
extracted from the different channels. In contrast, the phase-term used for the MSPC calculations here is based on 
the difference (Δφ) between the phase of a specific IM component and the (weighted) phases of the fundamental 
frequencies within each channel/epoch. In other words, instead of examining the extent to which the phase is 
driven by an event in time, the MSPC examines the extent to which the IM phases are driven by the phases of the 
fundamental frequencies. Our distinction between MSPCstim and MSPCres is reflected by the two MSPC formulas 
shown at the bottom of the figure. Specifically, MSPCstim defines the phases of the stimuli (the on-screen image) 
as the driving fundamental frequencies (left formula, upper case F1 and F2), and MSPCres defines the EEG 
response phases as the driving fundamental frequencies (right, lower case f1 and f2). Note, that the weights of the 
fundamental frequencies in those formulas (n1 and n2) are the coefficients that define the IM frequency (e.g., given 
F1= 1.2 Hz and F2= 15 Hz, the weights for the 3rd order IM component 2*F1 + F2= 17.4 Hz would be n1=2 and n2=1). 

 

A novel distinction we introduce here is between the calculation of the MSPC based on the stimulus and 
the response. We define the stimulus phase as the phase of the SSVEP contrast modulation and the 
phase of the SWIFT sequence relative to the original image. We define the response phase as the phases 
of the Fourier Transform of the EEG at the relevant frequencies (i.e., the SWIFT and SSVEP frequencies). 
MSPC values were calculated for each channel individually.  

We reasoned that separately considering the stimulus phase and the response phase as the driving 
‘inputs’ of the IM response may allow a distinction between interactions occurring at lower and higher 
levels of hierarchical processing, respectively. The logic behind this is as follows: While the stimulus 
phases should relate strongly to the phases of low-level retinal signals, the response phases reflect 
activity occurring further up the visual pathway. Importantly however, the primary sources of the SSVEP 
and SWIFT EEG signals are not the same but rather low and high visual levels, respectively (19). If the 
processing time-delays between retinal input and activity at SSVEP-generating regions and SWIFT-
generating regions were different, yet constant, the MSPC measure should not differ when calculated 
based on the stimulus or based on the response phases of the SSVEP and SWIFT. This is because MSPC 
measures the degree of consistency between an IM frequency phase and the combined SSVEP and 
SWIFT phases across epochs, which should not depend on the addition of constants. However, the 
processing times leading to activity at SSVEP- and SWIFT-generating regions may not be constant across 
all stimuli. For example, the timing can vary depending on factors such as expectation, attention, image 
visibility, recognition, etc. Therefore, when examined across multiple epochs, the IM response phase 
may have a different relationship with the combination of the SSVEP and SWIFT stimulus phases than 
with the combination of the SSVEP and SWIFT response phases. This is the logic behind our assumption 
that these two measures, which we denote MSPCstim and MSPCres, may reveal different information 
about interactions occurring at lower and at higher levels of the visual hierarchy, respectively.  

MSPC measures were calculated in a within-trial manner by dividing each trial into a series of 5-second 
(experiment 1) or 10-second (experiment 2) epochs, with a 1-second step from epoch to epoch (shorter 
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epochs were used for experiment 1 since the average length of data available for each trial was shorter 
than those of experiment 2). 

Expectation-Attention interaction (Reanalysis of eLife).  

In addition to the two experiments described above, new analyses were performed on the data 
published in Gordon et al. (16). A detailed description of the paradigm and analysis methods can be 
found in the original publication. In brief, house and face SWIFT cycles were presented in each trial in a 
pseudo-random order and participants were asked to count either the houses or the faces. Certainty 
(expectation) levels were categorised based on the proportion of house and face images appearing in 
each trial, and ranged from low certainty (faces and houses appeared at nearly 50% of cycles each) to 
high certainty (one of the two images appeared in nearly 100% of cycles).  

Importantly, while the behavioural task allowed us to verify participants were engaged with the task, it 
introduced a within-trial difference between the attended (counted) and unattended images, which was 
not analysed in that study. Given that one underlying SWIFT frequency was used (each cycle peaking at 
either the face or the house image) and the spectral analysis was performed on full trials, face- and 
house-driven EEG responses could not be distinguished from each other in the frequency domain. The 
effect of expectation on amplitude SNRs was examined in the original study using the linear mixed-
effects (LME) analyses with a model that included certainty as the fixed effect and channels nested 
within participants as random effects.  

Here, we first calculated new MSPCstim and MSPCres measures for the 2nd order IM components. Then, 
to allow the additional examination of potential interactions between expectation and attention 
(counted vs. uncounted images), an additional attention-dependent variable was added- the attentional 
category of the more frequent (higher-certainty) image. In other words, this variable indicated whether 
the image presented in most cycles (above half) in any given trial was the counted or the not-counted 
image. This way, we could now distinguish between the effects of high expectation for attended vs for 
unattended images. In the new LME model, expectation, attention, and an expectation-attention 
interaction were included as the fixed effects. Random effects included a random intercept for 
frequency nested within channels nested within participants, and random expectation, attention and 
interaction slopes for each participant.  

To examine the consistency of the full interaction LME model with the results from experiment 1 and 
Experiment 2, we performed additional post-hoc tests to individually examine expectation and 
attention. For conditions similar to those of experiment 1, we first tested the effect of expectation 
within the attended condition. Then, for conditions similar to those of Experiment 2, we used a median 
split to reduce expectation to two bins (expected and unexpected) and we tested the effect of attention 
within the expected condition. 

As in the original study, we tested for the significance of a given factor or interaction by performing a 
likelihood ratio test between the full model, as described above, and the reduced model which did not 
include the factor in question (46). 
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Supplemental Information 

Spectra of experiment 1 and experiment 2  

 

 

Figure S1. Related to Figure 3 and Figure 4 – Amplitude SNRs demonstrate successful frequency tagging in 
Experiments 1 and 2  

Results of the fast Fourier transform (FFT) averaged across all electrodes, trials and participants. Amplitude SNR 
peaks can be seen at the tagging frequencies (solid lines) and their harmonics (dashed lines) in both experiment 1 
(A) (SWIFT: 1.2 Hz and SSVEP: 15 Hz, N=15) and Experiment 2 (B) (two SWIFT: 0.8Hz and 1Hz, and SSVEP: 12 Hz, 
N=11). Note that in Experiment 2 no SWIFT tagging was obtained when counting crosses (the peak at ~1.08 Hz 
matches the average amount of time between cross presentations which was 925ms). 

 

MSPC and Amplitude measures  

We performed a series of analyses to examine the potential confound between the MSPC and amplitude 
measures. Specifically, given the significantly reduced SWIFT amplitude tagging for unattended images 
(Figure S1), we wished to examine whether the reduction of MSPCres in the unattended images was a 
consequence of a potential decrease in the reliability of phase measures when amplitudes are low. For 
this, we performed additional analyses to evaluate the relation between MSPCres and the IM amplitude, 
and between MSPCres and the SWIFT amplitude (note that while different SWIFT frequencies were used 
in Experiment 2 for the attended and unattended images, only a single SSVEP frequency was applied, 
hence the SSVEP cannot be differentiated for the attended and unattended images in that experiment).  

We performed all correlation analyses using the Spearman correlation within each participant. This way, 
we could avoid unwanted effects that can result from differences in the EEG topographies across 
participants or from the potentially different distributions of the MSPCres and amplitude measures. To 
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do so, we first computed the MSPCres and the amplitude SNR for the second order IMs (f1+-f2) and the 
SWIFT frequency across trials for a given EEG channel for each participant. Then, for each participant we 
calculated the Spearman correlation between the MSPCres and the amplitude measures across all 
electrodes.  

To examine the relationship between the MSPCres and the amplitude SNR of the IMs we performed two 
tests: 1) a correlation analyses between MSPCres and the amplitude SNR of the 2nd order IMs, and 2) a 
LME model (like the one used in Figure 5) with amplitude SNR as the predicted variable instead of the 
MSPCres. The results of the within-participant correlations analyses demonstrated low correlations 
between the MSPCres and the IM amplitude SNRs (average R2=0.06, min R2=0.00 and max R2=0.22 
across all participants). The results of the LME indicated that while MSPCres decreased with expectation 
in the unattended condition, the amplitude SNR in fact trended upward.  

We also computed correlation between the MSPCres and the amplitude SNR of the SWIFT frequency. 
Also here, the within-participant correlations demonstrated low correlations (average R2=0.04, min 
R2=0.00 and max R2=0.19 across all participants). 

Taken together, these results indicated that the amplitude of the IM and SWIFT frequencies alone 
cannot account well for the behaviour of the MSPCres. 

Interaction of attention and expectation- Related to Figure 5 

After differentiating expectation and attention in Experiments 1 and 2, and establishing that both 
expectation and attention are associated with enhanced IMs, we returned to our previously published 
data (16) to examine the interaction between these factors, and to evaluate the consistency of the 
results from that study with those of Experiments 1 and 2 presented here. 

In Gordon et al., we analyzed frequency-domain amplitudes for SSVEP, SWIFT and IM, as a function of 
the number of counted stimuli, which confounded the effects of expectation and attention. Here, we 
separated the main effects of expectation and attention from their interaction within that single 
paradigm, using the MSPC-based measures as above. To do so, an additional ‘attention’ variable was 
added to the model, allowing us to examine the interaction between expectation and attention. The 
new ‘attention’ variable indicated, for each trial, whether it was the counted (attended) or the 
uncounted image that appeared in most cycles. Then, a likelihood ratio test between was performed 
between the full LME interaction model (including expectation, attention and the expectation-attention 
interaction as the fixed effects) and the reduced model (including expectation and attention as fixed 
effects, without the interaction term) (see Methods).  

The interaction between expectation and attention was not significant for MSPCstim (χ2 = 3.47, p>0.05) 
but it was indeed highly significant for MSPCres (χ2 = 19.56, p<0.001). In fact, the slope of MSPCres 
against expectation was negative for unattended images (χ2 = 5.05, p<0.05) (Figure 5). These results are 
interpreted further in Discussion.  

To examine the consistency of the results from this data with those of experiment 1 and 2, we 
performed individual post-hoc analyses for expectation and attention. For conditions more similar to 
those of experiment 1, we tested the effect of expectation within the attended condition. For conditions 
more similar to those of Experiment 2, we used a median split to reduce expectation into two bins 
(expected and unexpected) and we then tested the effect of attention within the high expectation bin. 
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Consistent with the results from Experiments 1, the effect of expectation within the attended condition 
was significant for MSPCstim (χ2 = 7.35, p<0.01) but not for MSPCres (χ2 = 1.86, p>0.05), and the effect 
of attention within the expected condition was more notable for MSPCres (χ2 = 12.11, p<0.001) than for 
MSPCstim (χ2 = 4.53, p=0.033). The effect of attention on MSPCstim did not survive the false discovery 
rate (FDR) correction for multiple comparisons (p= 0.066 after FDR adjustment).  

 

Higher order IMs 

After establishing the modulatory influence of expectation and attention on the 2nd order IMs (f2+f1), 
we performed additional analyses on the 3rd (f2+2f1, 2f2+1f1 ) and 4th (2f2+2f1) order components. 
High-order IMs can arise from a sequence of lower-order computations. Here, we examined  MSPCres at 
the higher-order IMs to compare between two plausible computational sequences.  

Before doing so, we first examined whether the effects of the behavioural manipulations were evident 
in the 3rd and 4th order IMs. For experiment 1 (expectation modulation), only the 4th order IMs 
demonstrated similar modulatory influence of expectation, with MSPCstim of those IMs being higher in 
the PV (expected) compared to the IR (unexpected) trials (χ2= 8.04, p<0.01). This effect was 
nevertheless not as significant as the effect observed for the 2nd order components (χ2= 22.9, p<0.001). 
For experiment 2 (attention modulation), both the 3rd and the 4th order IMs demonstrated a similar 
modulatory influence of attention, with MSPCres being significantly higher for counted (attended) 
compared to non-counted (unattended) images (χ2 > 20 and p<<0.001 for both comparisons).  

The 4th order IMs can be described as the harmonic of the 2nd order IM (i.e. F2,F1 → (f2+f1) → 2(f2+f1)), 
or, alternatively, as the 2nd order IM between the harmonics of the fundamental frequencies (i.e. F2,F1 
→ 2f2, 2f1 → 2f2+2f1). To dis nguish between these two possibili es, we ran addi onal MSPCres 
analyses in which we defined either the IM components f1+f2 and f1-f2, or the harmonics 2f2 and 2f1 as 
the driving input frequencies of the 4th order 2f2+2f1 IMs. In other words, we examined whether the 4th 
order IMs reflects ‘early-interaction’, driven by the 2nd order IMs (as would be the case if an initial 
interaction between the input signals is followed by another non-linear process) or ‘late-interaction’, 
driven by the harmonics of the fundamental frequencies (as would be the case if the input signals are 
processed individually and then interact).  

For statistical analysis, we defined an LME model in which attention, the MSPC computation method 
(i.e. bases on 2f1 and 2f2 or based on f2-f1 and f2+f1) and the interaction between the two were 
included as the fixed effects. Random effects included a random intercept for frequency nested within 
channels nested within participants, and random attention, MSPC computation method and interaction 
slopes for each participant.  

The MSPCres of the 4th order IMs was significantly higher when calculated based on the harmonics of 
the fundamental frequencies (2f1 and 2f2) than when calculated based on their 2nd order IMs (f2+f1 and 
f2-f1) (χ2= 27.2, p<0.001) (Figure S2). These results therefore favour the ‘late-interaction’ option in 
which the input signals are processed individually before interacting with each other. Indeed, the  
interaction between attention and the MSPC computation method was significant (χ2= 8.4, p<0.01), 
indicating that attention had a significantly greater influence on the degree to which the 4th order IMs 
were driven by the 2f1 and 2f2 harmonics than by the f1+f2 IMs. These results provide additional 
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support linking the MSPCres measure and the attentional modulation to interactions occurring at later 
stages than where initial stimulus processing and interactions occurs.  

 
Figure S2. Related to Figure 4 – The 4th order IMs reflect the late interaction (i.e., the second order IM between the 
second harmonics) rather than the early interaction (i.e., the second harmonics of the second order IM)  

Additional analyses of the 4th order IMs were performed to compare between two potential two-stage 2nd order 
sequences- non-linear processing of each of the input signal followed by an interaction between the two (i.e. F2,F1 
→ 2f2, 2f1 → 2f2+2f1, le  bars), or an interac on between the input signals followed by an additional non-linear 
process (i.e. F2,F1 → (f2+f1) → 2(f2+f1), right bars). Higher MSPCres values were obtained, for both the attended 
and the unattended images, when defining the 2nd harmonics of the SWIFT and SSVEP response frequencies as the 
driving input signals. This indicates that the 4th order IMs are driven more by these 2nd harmonics than by their 2nd 
order IMs. Furthermore, attention had a significantly greater influence on the degree to which the 4th order IMs 
were driven by the 2f1 and 2f2 harmonics than by the f1+f2 IMs. These results are consistent with the notion that 
the attention modulation influences processes occurring at later stages than where initial input processing and 
interactions occur.   
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