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Summary 

While many disease-associated variants have been identified through genome-wide association 

studies, their downstream molecular consequences remain unclear. 

To identify these effects, we performed cis- and trans-expression quantitative trait locus (eQTL) 

analysis in blood from 31,684 individuals through the eQTLGen Consortium. 

We observed that cis-eQTLs can be detected for 88% of the studied genes, but that they have a 

different genetic architecture compared to disease-associated variants, limiting our ability to use 

cis-eQTLs to pinpoint causal genes within susceptibility loci. 

In contrast, trans-eQTLs (detected for 37% of 10,317 studied trait-associated variants) were more 

informative. Multiple unlinked variants, associated to the same complex trait, often converged on 

trans-genes that are known to play central roles in disease etiology. 

We observed the same when ascertaining the effect of polygenic scores calculated for 1,263 

genome-wide association study (GWAS) traits. Expression levels of 13% of the studied genes 

correlated with polygenic scores, and many resulting genes are known to drive these traits. 
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Main text 

Expression quantitative trait loci (eQTLs) have become a common tool to interpret the regulatory 

mechanisms of the variants associated with complex traits through genome-wide association 

studies (GWAS). Cis-eQTLs, where gene expression levels are affected by a nearby single 

nucleotide polymorphism (SNP) (<1 megabases; Mb), in particular, have been widely used for this 

purpose. However, cis-eQTLs from the genome tissue expression project (GTEx) explain only a 

modest proportion of disease heritability1.  

In contrast, trans-eQTLs, where the SNP is located distal to the gene (>5Mb) or on other 

chromosomes, can provide insight into the effects of a single variant on many genes. Trans-eQTLs 

identified before1–7 have already been used to identify putative key driver genes that contribute to 

disease8. However, trans-eQTL effects are generally much weaker than those of cis-eQTLs, 

requiring a larger sample size for detection.  

While trans-eQTLs are useful for the identification of the downstream effects of a single variant, a 

different approach is required to determine the combined consequences of trait-associated 

variants. Polygenic scores (PGS) have been recently applied to sum genome-wide risk for several 

diseases and likely will improve clinical care9,10. However, the exact consequences of different PGS 

at the molecular level, and thus the contexts in which a polygenic effects manifest themselves, are 

largely unknown. Here, we systematically investigate trans-eQTLs as well as associations between 

PGS and gene expression (expression quantitative trait score, eQTS) to determine how genetic 

effects influence and converge on genes and pathways that are important for complex traits. 

To maximize the statistical power to detect eQTL and eQTS effects, we performed a large-scale 

meta-analysis in 31,684 blood samples from 37 cohorts (assayed using three gene expression 
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platforms) in the context of the eQTLGen Consortium. This allowed us to identify significant cis-

eQTLs for 16,989 genes, trans-eQTLs for 6,298 genes and eQTS effects for 2,568 genes (Figure 

1A), revealing complex regulatory effects of trait-associated variants. We combine these results 

with additional data layers and highlight a number of examples where we leverage this resource to 

infer novel biological insights into mechanisms of complex traits. We hypothesize that analyses 

identifying genes further downstream are more cell-type specific and more relevant for 

understanding disease (Figure 1B). 
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Figure 1. Overview of the study. (A) Overview of main analyses and their results. (B) Model of genetic 

effects on gene expression. Cis-eQTL are common and widely replicable in different tissues and cell types, 

whereas trans-eQTLs and eQTS are more cell type specific. The biological insight derived from our cis-

eQTL results are usually not well interpretable in the context of complex traits, suggesting that weaker distal 

effects give additional insight about biological mechanisms leading to complex traits.    
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Local genetic effects on gene expression in blood are widespread and 

replicable in other tissues 

Using eQTLGen consortium data from 31,684 individuals, we performed cis-eQTL, trans-eQTL and 

eQTS meta-analyses (Figure 1A, Supplementary Table 1). Different expression profiling 

platforms were integrated using a data-driven method (Online Methods). To ensure the 

robustness of the identified eQTLs, we performed eQTL discovery per platform and replicated 

resulting eQTLs in the other platforms, observing excellent replication rates and consistency of 

allelic directions (Online Methods, Supplementary Note, Extended Data Figure 1A-C). We 

identified significant cis-eQTLs (SNP-gene distance <1Mb, gene-level False Discovery Rate 

(FDR)<0.05; Online Methods) for 16,989 unique genes (88.3% of autosomal genes expressed in 

blood and tested in cis-eQTL analysis; Figure 1A). Out of 10,317 trait-associated SNPs tested, 

1,568 (15.2%) were in high linkage disequilibrium (LD) with the lead eQTL SNP showing the 

strongest association for a cis-eQTL gene, (R2>0.8; 1kG p1v3 EUR; Supplementary Table 2; 

Online Methods). Genes highly expressed in blood but not under any detectable cis-eQTL effect 

were more likely (P=2×10-6; Wilcoxon two-sided test; Figure 2A) to be intolerant to loss-of-function 

mutations in their coding region11, suggesting that eQTLs on such gene would interfere with the 

normal functioning of the organism.  

We observed that 92% of the lead cis-eQTL SNPs map within 100kb of the gene (Figure 2D), and 

this increased to 97.2% when only looking at the 20% of the genes with the strongest lead cis-

eQTL effects. Of these strong cis-eQTLs, 84.1% of the lead eQTL SNPs map within 20kb of the 

gene. GWAS simulations12 indicate that lead GWAS signals map within 33.5kb from the causal 

variant in 80% of cases, which suggests that our top SNPs usually tag causal variants that map 
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directly into either the promoter region, the transcription start site (TSS), the gene body, or the 

transcription end site (TES). For strong cis-eQTLs we observed that lead cis-eQTL SNPs located 

>100kb from the TSS or TES overlap capture Hi-C contacts (37%; Figure 2E) more often than 

short-range cis-eQTL effects (16%; Chi2 test P = 2×10-5), indicating that, for long-range cis-eQTLs 

the SNP and gene often physically interact to cause the cis-eQTL effect. For instance, a capture 

Hi-C contact for IRS1 overlapped the lead eQTL SNP, mapping 630kb downstream from IRS1 

(Figure 2F). 

We observed that our sample-size improved fine-mapping: for 5,440 protein-coding cis-eQTL 

genes that we had previously identified in 5,311 samples1 we now observe that the lead SNP 

typically map closer to the cis-eQTL gene (Extended Data Figure 4).  

Cis-eQTLs showed directional consistency across tissues: in 47 postmortem tissues (GTEx v713) 

we observed an average of 14.8% replication rate (replication FDR<0.05 in GTEx; median 15.1%; 

range 3.6-29.7%; whole blood tissue excluded) and on average a 95.0% concordance in allelic 

directions (median 95.3%, range 86.7-99.3%; whole blood tissue excluded) among the cis-eQTLs 

that significantly replicated in GTEx (Extended Data Figure 5, Supplementary Note and 

Supplementary Table 3).  

However, our lead cis-eQTL SNPs show significantly different epigenetic histone mark 

characteristics, as compared to 3,668 SNPs identified in GWAS (and associated to blood related 

traits or immune-mediated diseases to minimize potential confounding). We observed significant 

differences for 20 out of 32 tested histone marks with H3K36me3, H3K27me3, H3K79me1 and 

H2BK20ac showing the strongest difference (Wilcoxon P = 10-39, 10-21, 10-19 and 10-18, 
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respectively), suggesting that cis-eQTLs have a different genetic architecture, as compared to 

complex traits and diseases. 

We tested this for 16 well-powered complex traits (Supplementary Table 20) and observed that 

genes prioritized by combining cis-eQTL and GWAS data using summary statistics based 

Mendelian randomization (SMR14; Online Methods) did not overlap significantly more with genes 

prioritized through an alternative method (DEPICT) that does not use any cis-eQTL information15. 

While the genes prioritized with SMR were informative, and enriched for relevant pathways for 

several immune traits (Supplementary Table 20), non-blood-trait-prioritized genes were difficult 

to interpret in the context of disease. Moreover, the lack of enriched overlap between DEPICT and 

SMR indicates that employing cis-eQTL information does not necessarily clarify which genes are 

causal for a given susceptibility locus. As such, some caution is warranted when using a single cis-

eQTL repository for interpretation of GWAS. 

One third of trait-associated variants have trans-eQTL effects  

An alternative strategy for gaining insight into the molecular functional consequences of disease-

associated genetic variants is to ascertain trans-eQTL effects. We tested 10,317 trait-associated 

SNPs (P ≤ 5×10-8; Online Methods, Supplementary Table 2) for trans-eQTL effects (SNP-gene 

distance >5Mb, FDR < 0.05) to better understand their downstream consequences. We identified 

a total of 59,786 significant trans-eQTLs (FDR<0.05; Supplementary Table 4, Extended Data 

Figure 6), representing 3,853 unique SNPs (37% of tested GWAS SNPs) and 6,298 unique genes 

(32% of tested genes; Figure 1A). When compared to the previous largest trans-eQTL meta-

analysis1 (N=5,311; 8% of trait-associated SNPs with a significant trans-eQTL), these results 
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indicate that a large sample size is critical for identifying downstream effects. Colocalization 

analyses in a subset of samples (n=4,339; Supplementary Note) using COLOC16 estimated that 

52% of trans-eQTL signals colocalize with at least one cis-eQTL signal (posterior probability > 0.8; 

Extended Data Figure 7A-B). Corresponding colocalizing cis-eQTL genes were enriched for 

transcription factor activity (“regulation of transcription from RNA polymerase II promoter”; P < 

1.3×10-9; Extended Data Figure 7C). Finally, highly expressed genes without a detectable trans-

eQTL effect were more likely to be intolerant to loss-of-function variants (P=6.4×10-7; Wilcoxon 

test, Figure 2B), similar to what we observed for cis-eQTLs.  
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Figure 2. Results of the cis- and trans-eQTL analysis. All genes tested in (A) cis-eQTL analysis, (B) 

trans-eQTL analysis, and (C) eQTS analysis were divided into 10 bins based on average expression levels 

of the genes in blood. Highly expressed genes without any eQTL effect (grey bars) were less tolerant to 

loss-of-function variants (Wilcoxon test on pLI scores). Indicated are medians per bin. (D) Genes with strong 

effect sizes are more likely to have a lead SNP within (top panel) or close to the gene (bottom panel)  (E) 

Top cis-eQTL SNPs positioning further from transcription start site (TSS) and transcription end site (TES) 

are more likely to overlap capture Hi-C contacts with TSS. (F) Enrichment analyses on epigenetic marks of 

cis-eQTL lead SNPs, compared to SNPs identified through GWAS and associated to blood-related or 

immune-mediated diseases, reveal significant differences in epigenetic characteristics. 

 

In order to study the biological nature of the trans-eQTLs we identified, we conducted several 

enrichment analyses (Supplementary Note, Extended Data Figure 8, Figure 3). We observed 

2.2 fold enrichment for known transcription factor (TF) - target gene pairs17 (Fisher’s exact test P = 

10-62; Supplementary Note), with the fold enrichment increasing to 3.2 (Fisher’s exact test P < 10-

300) when co-expressed genes were included to TF targets. Those genes are potentially further 

downstream of respective TF targets in the molecular network. Similarly, we observed 1.19 fold 

enrichment of protein-protein interactions18 among trans-eQTL gene-gene pairs (Fisher’s exact test 

P=0.05). Some of these cis-trans gene pairs encode subunits of the same protein complex (e.g. 

POLR3H and POLR1C). While significant cis-trans gene pairs were enriched for gene pairs 

showing co-expression (Pearson R > 0.4; Fisher’s exact test P=10-35), we did not observe any 

enrichment of chromatin-chromatin contacts19 (0.99 fold enrichment; Fisher’s exact test P=0.3). 

Using the subset of 3,831 samples from BIOS, we also ascertained whether the trans-eQTL effect 

was mediated through a gene that mapped within 100kb from the trans-eSNP (i.e. using the cis-

gene as G × E term). We observed significant interaction effects for 523 SNP-cis-trans-gene 
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combinations (FDR < 0.05; Supplementary Table 5), reflecting a 5.3 fold enrichment compared 

to what is expected by chance (Fisher's exact P = 7 × 10-67). For instance, for rs7045087 

(associated to red blood cell counts) we observed that the expression of interferon gene DDX58 

(mapping 38bp downstream from rs7045087) significantly interacted with trans-eQTL effects on 

interferon genes HERC5, OAS1, OAS3, MX1, IFIT1, IFIT2, IFIT5, IFI44, IFI44L, RSAD2 and 

SAMD9 (Extended Data Figure 9).  
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Figure 3. Mechanisms leading to trans-eQTLs. Shown are the results of enrichment analyses for known 

TF associations, HiC contacts, protein-protein interactions, gene co-expression and mediation analyses. 

We estimate that 17.4% of the identified trans-eQTLs are explainable by (indirect) TF binding or 

mediation by cis-genes (Supplementary Note). This leaves 82.6% of the observed trans-eQTL 

effects unexplained. While it is likely that many of these trans-eQTLs reflect unknown (indirect) 

effects of TFs, we speculate that novel and unknown regulatory mechanisms could also play a role. 

By making all trans-eQTL results (irrespective of their statistical significance) publicly available, we 

envision this dataset will help to yield such insight in the future. 
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To estimate the proportion of loci where the trait-associated SNP explained the trans-eQTL signal 

in the locus, we performed locus-wide conditional trans-eQTL analysis in a subset of 4,339 samples 

for 12,991 trans-eQTL loci (Online Methods; Extended Data Figure 10; Supplementary Table 

6). In 43% of these loci, we observed that the trait-associated SNP was in high LD with the trans-

eQTL SNP having the strongest association in the locus (R2 > 0.8, 1kG p1v3 EUR; Supplementary 

Table 7). For 95 cases, the strongest cis- and trans-eQTL SNPs were both in high LD with GWAS 

SNP (R2 > 0.8 between top SNPs, 1kG p1v3 EUR; Supplementary Table 7). 

The majority (64%) of trans-eQTL SNPs have previously been associated with blood composition 

phenotypes, such as platelet count, white blood cell count and mean corpuscular volume20. In 

comparison, blood cell composition SNPs from the same study comprised only 20.7% od all the 

tested trait-associated SNPs. This was expected, since SNPs that regulate the abundance of a 

specific blood cell type would result in trans-eQTL effects on genes, specifically expressed in that 

cell type. 

Therefore, we aimed to distinguish trans-eQTLs caused by intracellular molecular mechanisms 

from blood cell type QTLs using eQTL data from lymphoblastoid cell line (LCL), induced pluripotent 

cells (iPSCs), several purified blood cell types (CD4+, CD8+, CD14+, CD15+, CD19+, monocytes 

and platelets) and blood DNA methylation QTL data. In total, 3,853 (6.4%) of trans-eQTLs showed 

significant replication in at least one cell type or in the methylation data (Extended Data Figure 

11, Supplementary Table 11A). While this set of trans-eQTLs (denoted as the “intracellular 

eQTLs”) is less likely to be driven by cell type composition, we acknowledge that the limited sample 

size of the available trans-eQTL replication datasets make our replication effort very conservative. 

Furthermore, trans-eQTLs caused by variants associated with cell type proportions may be 
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informative for understanding the biology of a trait. Therefore, we did not remove these kinds of 

trans-eQTLs from our interpretative analyses. 

Next, we aimed to replicate the identified trans-eQTLs in the tissues from GTEx13. Although the 

replication rate was very low (0-0.03% of trans-eQTLs replicated in non-blood tissues, FDR < 0.05, 

same allelic direction; Supplementary Table 11B), we did observe an inflation of signal (median 

chi-squared statistic) for identified trans-eQTLs in several GTEx tissues (Extended Data Figure 

12). Non-blood tissues showing the strongest inflation were liver, heart atrial appendage and non-

sun-exposed skin. 

Trans-eQTLs are effective for discerning the genetic basis of complex traits  

As described above, trans-eQTLs can arise due to cis-eQTL effects on TFs, whose target genes 

show trans-eQTL effects. We describe below such examples, but also highlight trans-eQTLs where 

the eQTL SNP works through a different mechanism. 

Combining cis- and trans-eQTL effects can pinpoint the genes acting as drivers of trans-

eQTL effects. For example, the age-of-menarche-associated SNP rs153233121 is in high LD with 

the top cis-eQTL effect for transcription factor ZNF131 (R2 > 0.8, 1kG p1v3 EUR). Cis-eQTL and 

trans-eQTL effects for this locus co-localized for 25 out of the 75 downstream genes (Figure 4A). 

In a recent short hairpin RNA knockdown experiment of ZNF13122, three separate cell isolates 

showed downregulation of four genes that we identified as trans-eQTL genes: HAUS5, TMEM237, 

MIF4GD and AASDH (Figure 4A). ZNF131 has been hypothesized to inhibit estrogen signaling23, 

which may explain how the SNP in this locus contributes to altering the age of menarche. 
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Figure 4. Examples of cis- and trans-eQTLs. (A) Cis-eQTL on ZNF131 is prioritized because 

several trans-eQTL genes are down-regulated by ZNF131 in functional study. (B) Phospholipid-

associated SNP shows cis-and trans-eQTLs on lipid metabolism genes. (C) Type I diabetes 

associated SNP has no cis-eQTLs, but trans-eQTL genes point to interferon signaling pathway. 

(D) Circadian rhythm genes CLOCK (in cis) and NR1D1, NR1D2, TEF (in trans) identified for height 

associated SNP. (E) eQTLs for asthma SNP tag cell type abundance of B and NK cells. (F) Trans-

eQTL genes for REST locus are highly enriched for REST transcription factor targets and for 

neuronal expression. 

Trans-eQTLs extend insight for loci with multiple cis-eQTL effects. In the FADS1/FADS2 

locus, rs174574 is associated with lipid levels24 and affects 17 genes in trans (Figure 4B). The 

strongest cis-eQTLs modulate the expression of FADS1, FADS2 and TMEM258, with latter being 

in high LD with GWAS SNP (R2>0.8, 1kG p1v3 EUR). FADS1 and FADS2 have been implicated24 

since they regulate fatty acid synthesis, and consistent with their function, trans-eQTL genes from 

this locus are highly enriched for triglyceride metabolism (P < 4.1×10-9, GeneNetwork25 

REACTOME pathway enrichment). Since this locus has extensive LD, variant and gene 

prioritization is difficult: conditional analyses in 4,339 sample subset showed that each of cis-eQTL 

gene is influenced by more than one SNP, but none of these are in high LD with rs174574 (R2 < 

0.8, 1kG p1v3, EUR). As such, our trans-eQTL analysis results are informative for implicating 

FADS1 and FADS2, whereas cis-eQTLs are not.  

Trans-eQTLs can shed light on loci with no detectable cis-eQTLs. rs1990760 is associated 

with multiple immune-related traits (Type 1 Diabetes (T1D), Inflammatory bowel disease (IBD), 

Systemic Lupus Erythematosis (SLE) and psoriasis26–29). For this SNP we identified 17 trans-eQTL 

effects, but no detectable gene-level cis-eQTLs in blood (Figure 4C) and GTEx. However, the risk 
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allele for this SNP causes an Ala946Thr amino acid change in the RIG-1 regulatory domain of 

MDA5 (encoded by IFIH1 - Interferon Induced With Helicase C Domain 1), outlining one possible 

mechanism leading to the observed trans-eQTLs. MDA5 acts as a sensor for viral double-stranded 

RNA, activating interferon I signalling among other antiviral responses. All the trans-eQTL genes 

were up-regulated relative to risk allele to T1D, and 9 (52%) are known to be involved in interferon 

signaling (Supplementary Table 12). 

Trans-eQTLs can reveal cell type composition effects of the trait-associated SNP. Trans-

eQTL effects can also show up as a consequence of a SNP that alters cell-type composition. For 

example, the asthma-associated SNP rs721638930 has 14 cis-eQTL effects, most notably on 

IKZF3, GSDMB, and ORMDL3 (Figure 4E). SMR prioritized all three cis-genes equally (Extended 

Data Figure 13), making it difficult to draw biological conclusions (similar as we observed for the 

FADS locus). However, 94 out of the 104 trans-eQTL genes were up-regulated by the risk allele 

for rs7216389 and were mostly expressed in B cells and natural killer cells31 (Figure 4E). IKZF3 is 

part of the Ikaros transcription factor family that regulates B-cell proliferation31,32, suggesting that a 

decrease of IKZF3 leads to an increased number of B cells and concurrent trans-eQTL effects 

caused by cell-type composition differences. 

Some trans-eQTLs influence genes strongly expressed in tissues other than blood. We 

observed trans-eQTL effects on genes that are hardly expressed in blood, indicating that our trans-

eQTL effects are informative for non-blood related traits as well: rs17087335, which is associated 

with coronary artery disease33, affects the expression of 88 genes in trans (Figure 4F), that are 

highly expressed in brain (hypergeometric test, ARCHS4 database, q-value = 2.58×10-17; Figure 

4F, Supplementary Table 13), but show very low expression in blood. SNPs linked with 

rs17087335 (R2 > 0.8, 1kG p1v3 EUR) are associated with height (rs2227901, rs3733309 and 
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rs17081935)34,35, and platelet count (rs7665147)20. The minor alleles of these SNPs downregulate 

the nearby gene REST (RE-1 silencing transcription factor), although none of these variants is in 

LD (R2<0.2, 1kG p1v3 EUR) with the lead cis-eQTL SNP for REST. REST is a TF that 

downregulates the expression of neuronal genes in non-neuronal tissues36,37. It also regulates the 

differentiation of vascular smooth muscles, and is thereby associated with coronary phenotypes38. 

85 out of 88 (96.6%) of the trans-eQTL genes were upregulated relative to the minor allele and 

were strongly enriched by transcription factor targets of REST (hypergeometric test for ENCODE 

REST ChIP-seq, q-value = 1.36×10-42 , Figure 4F).  As such, trans-eQTL effects on neuronal genes 

implicate REST as the causal gene in this locus. 

Trans-eQTLs identify pathways not previously associated with a phenotype. Some trans-

eQTLs suggest the involvement of pathways which are not previously thought to play a role for 

certain complex traits: SMR analysis prioritized CLOCK as a potential causal gene in the height-

associated locus on chr 4q12 (PSMR=3×10-25; PHEIDI=0.02; Figure 4D). In line with that, height-

associated SNP rs1311351834 is also in high LD (R2>0.8, 1kG p1v3 EUR) with the top cis-eQTL 

SNP for CLOCK. The upregulated TF CLOCK forms a heterodimer with TF BMAL1, and the 

resulting protein complex regulates circadian rhythm39. Three known circadian rhythm trans-eQTL 

genes (TEF, NR1D1 and NR1D2) showed increased expression for the trait-increasing allele, 

suggesting a possible mechanism for the observed trans-eQTLs through binding of 

CLOCK:BMAL1. TEF is a D-box binding TF whose gene expression in liver and kidney is 

dependent on the core circadian oscillator and it regulates amino acid metabolism, fatty acid 

metabolism and xenobiotic detoxification (Gachon et al., 2006). NR1D1 and NR1D2 encode the 

transcriptional repressors Rev-ErbA alpha and beta, respectively, and form a negative feedback 

loop to suppress BMAL1 expression40. NR1D1 and NR1D2 have been reported to be associated 
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with osteoblast and osteoclast functions41, revealing a possible link between circadian clock genes 

and height. 

Unlinked trait-associated SNPs converge on the same downstream genes in trans. We 

subsequently ascertained, per trait, whether unlinked trait-associated variants showed trans-eQTL 

effects on the same downstream gene. Here we observed 47 different traits where at least four 

independent variants affected the same gene in trans, 3.4× higher than expected by chance (P = 

0.001; two-tailed two-sample test of equal proportions; Supplementary Table 8). For SLE, for 

example, we observed that the gene expression levels of IFI44L, HERC5, IFI6, IFI44, RSAD2, 

MX1, ISG15, ANKRD55, OAS3, OAS2, OASL and EPSTI1 (nearly all interferon genes) were 

affected by at least three SLE-associated genetic variants, clearly showing the involvement of 

interferon signaling in SLE (Figure 5). 
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Figure 5. SNPs associated with SLE converge to the shared cluster of interferon response genes. 

Shown are genes which are affected by at least three independent GWAS SNPs. SNPs in partial LD are 

grouped together. Heat map indicates the direction and strength of individual trans-eQTL effects (Z-scores). 

This convergence of multiple SNPs on the same genes lends credence to recent hypotheses with 

regards to the ‘omnigenic’ architecture of complex traits8: indeed multiple unlinked variants do 

affect the same ‘core’ genes. The recent omnigenic model42 proposes a strategy to partition 

between core genes, which have direct effects on a disease, and peripheral genes, which can only 

affect disease risk indirectly through regulation of core genes. In Supplementary Equations, we 
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show that this model also implies a correlation between polygenic risk scores and expression of 

core genes. We therefore studied this systematically by aggregating multiple associated variants 

into polygenic scores and ascertaining how they correlate with gene expression levels.  

eQTSs identify key driver genes for polygenic traits 

To ascertain the coordinated effects of trait-associated variants on gene expression, we used 

available GWAS summary statistics to calculate PGSs for 1,263 traits in 28,158 samples (Online 

Methods, Supplementary Table 14). We reasoned that when a gene shows expression levels 

that significantly correlate with the PGS for a specific trait (an expression quantitative trait score; 

eQTS), the downstream trans-eQTL effects of the individual risk variants converge on that gene, 

and hence, that the gene may be a driver of the disease. 

Our meta-analysis identified 18,210 eQTS effects (FDR < 0.05), representing 689 unique traits 

(54%) and 2,568 unique genes (13%; Supplementary Table 15, Figure 1A). As expected, most 

eQTS associations represent blood cell traits (Extended Data Figure 14, Supplementary Table 

16): for instance the PGS for mean corpuscular volume correlated positively with the expression 

levels of genes specifically expressed in erythrocytes, such as genes coding for hemoglobin 

subunits. However, we also identified eQTS associations for genes that are known drivers of other 

traits. 

For example, 11 out of 26 genes associating with the PGS for high density lipoprotein levels 

(HDL43,44; FDR<0.05; Figure 6A) have previously been associated with lipid or cholesterol 

metabolism (Supplementary Table 18). ABCA1 and ABCG1, which positively correlated with the 

PGS for high HDL, mediate the efflux of cholesterol from macrophage foam cells and participate in 
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HDL formation. In macrophages, the downregulation of both ABCA1 and ABCG1 reduced reverse 

cholesterol transport into the liver by HDL45 (Figure 6B). The genetic risk for high HDL was also 

negatively correlated with the expression of the low density lipoprotein receptor LDLR (strongest 

eQTS P=3.35×10-20) known to cause hypercholesterolemia46. Similarly, the gene encoding the TF 

SREBP-2, which is known to increase the expression of LDLR, was downregulated (strongest 

eQTS P=3.08×10-7). The negative correlation between SREBF2 expression and measured HDL 

levels has been described before47, indicating that the eQTS reflects an association with the actual 

phenotype. Zhernakova et al.  proposed a model where down-regulation of SREBF2 results in the 

effect on its target gene FADS2. We did not observe a significant HDL eQTS effect on FADS2 (all 

eQTS P>0.07), possibly because the indirect effect is too small to detect. We hypothesize that HDL 

levels in blood can result in a stronger reverse cholesterol transport into the liver, which may result 

in downregulation of LDLR48 
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Figure 6. Examples of eQTS. (A) Polygenic risk score (PRS) for high density lipoprotein associates to lipid 

metabolism genes. (B) The role of ABCA1, ABCG1, and SREBF2 in cholesterol transport. (C) Polygenic 

scores for serine, glycine, n-acetylglycine and creatine levels negatively associate with gene expression of 

PHGDH, PSAT1, and AARS. (D) Serine biosynthesis pathway. (E) PRS for educational attainment identifies 

genes with neuronal functions. (F) Polygenic score for smoking status upregulates GPR15, which plays a 

role in lymphocyte differentiation. (G) eQTS genes for immune-related diseases are enriched for genes 

specifically expressed in certain blood cell types. 

eQTS analysis also identified genes relevant for non-blood traits, such as the association of GPR15 

(P=3.7×10-8, FDR<0.05; Figure 6F) with the trait ‘ever versus never smoking’49. GPR15 is a 

biomarker for smoking50 that is overexpressed and hypomethylated in smokers51. We observe 

strong GPR15 expression in lymphocytes (Figure 6F), suggesting that the association with 

smoking could originate from a change in the proportion of T cells in blood52. As GPR15 is involved 

in T cell homing and has been linked to colitis and inflammatory phenotypes, it is hypothesized to 

play a key role in smoking-related health risks53.  

The PGS for another non-blood trait, educational attainment54, correlated significantly with the 

expression of 21 genes (FDR<0.05; Figure 6E, Supplementary Table 15). Several of the strongly 

associated genes are known to be involved in neuronal processes (Supplementary Table 19) and 

show expression in neuronal tissues (GTEx v7, Extended Data Figure 15). STX1B (strongest 

eQTS P=1.3×10-20) is specifically expressed in brain, and its encoded protein, syntaxin 1B, 

participates in the exocytosis of synaptic vesicles and synaptic transmission55. Another gene highly 

expressed in brain, LRRN3 (Leucine-rich repeat neuronal protein 3; strongest eQTS P=1.7×10-11) 

was negatively associated with the PGS for educational attainment, and has been associated with 

autism susceptibility56. The downregulated NRG1 (neuregulin 1; strongest eQTS P=4.5×10-7), 
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encodes a well-established growth factor involved in neuronal development and has been 

associated to synaptic plasticity57. NRG1 was also positively associated with the PGS for monocyte 

levels20 (strongest eQTS P=1.5×10-7), several LDL cholesterol traits (e.g. medium LDL particles44; 

strongest eQTS P=6.2×10-8), coronary artery disease33 (strongest eQTS P=1.5×10-6) and body 

mass index in females58 (strongest eQTS P=9.2×10-12). 

eQTS can also identify pathways known to be associated with monogenic diseases. For example, 

the PGSs for serine, glycine, the glycine derivative n-acetylglycine and creatine59,60 (Figure 6C) 

were all negatively associated with the gene expression levels of PHGDH, PSAT1 and AARS (P < 

5.3×10-7). PHGDH and PSAT1 encode crucial enzymes that regulate the synthesis of serine and, 

in turn, glycine61 (Figure 6D), while n-acetylglycine and creatine form downstream of glycine62. 

Mutations in PSAT1 and PHGDH can result in serine biosynthesis defects including phosphoserine 

aminotransferase deficiency63, phosphoglycerate dehydrogenase deficiency64, and Neu-Laxova 

syndrome65, all diseases characterized by low concentrations of serine and glycine in blood and 

severe neuronal manifestations. AARS encodes alanyl-tRNA synthetase, which links alanine to 

tRNA molecules. A mutation in AARS has been linked to Charcot Marie Tooth disease66, while the 

phenotypically similar hereditary sensory neuropathy type 1 (HSN167) can be caused by a mutation 

in the gene encoding serine palmitoyltransferase. The gene facilitates serine’s role in sphingolipid 

metabolism68. Disturbances in this pathway are hypothesized to be central in the development the 

neuronal symptoms69, suggesting a link between AARS expression and the serine pathway. 

Unexpectedly, the genetic risk for higher levels of these amino acids was associated with lower 

expression of PHGDH, PSAT1, and AARS, implying the presence of a negative feedback loop that 

controls serine synthesis. 
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We next evaluated 6 immune diseases for which sharing of loci has been reported previously, and 

also observed sharing of downstream eQTS effects for these diseases (Supplementary Table 

20). For example, the interferon gene STAT1 was significantly associated with T1D, celiac disease 

(CeD), IBD and primary biliary cirrhosis (PBC). However, some of these genes are also marker 

genes for specific blood-cell types, such as CD79A, which showed a significant correlation with 

T1D and PBC. To test whether disease-specific eQTS gene signatures are reflected by blood cell 

proportions, we investigated single-cell RNA-seq data31 (Online Methods; Figure 6G). For 

ulcerative colitis (a subtype of IBD), we observed significant depletion of expression in 

megakaryocytes. SLE eQTS genes were enriched for antigen presentation (GeneNetwork 

P=1.3×10-5) and interferon signaling (GeneNetwork P=1.4×10-4), consistent with the well-described 

interferon signature in SLE patients70,71. Moreover, the SLE genes were significantly enriched for 

expression in mature dendritic cells, whose maturation depends on interferon signaling72. For CeD, 

we observed strong depletion of eQTS genes in monocytes and dendritic cells, and a slight 

enrichment in CD4+ and CD8+ T cells. The enrichment of cytokine (GeneNetwork P=1.6×10-15) 

and interferon (GeneNetwork P=7.8×10-13) signaling among the CeD eQTS genes is expected as 

a result of increased T cell populations. 

Cell-type-specificity of eQTS associations 

We next ascertained to what extent these eQTS associations can be replicated in non-blood 

tissues. We therefore aimed to replicate the significant eQTS effects in 1,460 LCL samples and 

762 iPSC samples. Due to the fact these cohorts have a comparatively low sample sizes and study 

different cell types, we observed limited replication: 10 eQTS showed significant replication effect 

(FDR<0.05) in the LCL dataset, with 9 out of those (90%) showing the same effect direction as in 
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the discovery set (Extended Data Figure 16A, Supplementary Table 17). For iPSCs, only 5 

eQTS showed a significant effect (Extended Data Figure 16B, Supplementary Table 17). Since 

only a few eQTS associations are significant in non-blood tissues and the majority of identified 

eQTS associations are for blood-related traits, we speculate these effects are likely to be highly 

cell-type specific. This indicates that large-scale eQTL meta-analyses in other tissues could 

uncover more genes on which trait-associated SNPs converge. 

Discussion 

We here performed cis-eQTL, trans-eQTL and eQTS analyses in 31,684 blood samples, reflecting 

a six-fold increase over earlier large-scale studies1,5. We identified cis-eQTL effects for 88.3% and 

trans-eQTL effects for 32% of all genes that are expressed in blood.  

We observed that cis-eQTL SNPs map close to the TSS or TES of the cis-gene: for the top 20% 

strongest cis-eQTL genes, 84.1% of the lead eQTL SNPs map within 20kb of the gene, indicating 

that these are variants immediately adjacent to the start or end of transcripts that primarily drive 

cis-eQTL effects. The trait-associated variants that we studied showed a different pattern: 77.4% 

map within 20kb of the closest protein-coding gene, suggesting that the genetic architecture of cis-

eQTLs is different from disease-associated variants. This is supported by the epigenetic 

differences that we observed between these two groups and can also partly explain, why we did 

not observe significantly increased overlap between genes prioritized using pathway enrichment 

analysis15 and genes prioritized using our cis-eQTLs. 
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In contrast, for numerous traits we observed that multiple unlinked trans-eQTL variants often 

converge on genes with a known role in the biology for these traits (e.g. the involvement of 

interferon genes in SLE). 

We therefore focused on trans-eQTL and eQTS results to gain insight into trait-relevant genes and 

pathways (Figures 4, 6). We estimate that 17.4% of our trans-eQTLs are driven by transcriptional 

regulation, whereas the remaining fraction is driven by not-yet-identified mechanisms. Our results 

support a model which postulates that, compared to cis-eQTLs, weaker distal and polygenic effects 

converge on core (key driver) genes that are more relevant to the traits and more specific for trait-

relevant cell types (Figure 1B). The examples we have highlighted demonstrate how insights can 

be gained from our resource, and we envision similar interpretation strategies can be applied to 

the other identified trans-eQTL and eQTS effects. The catalog of genetic effects on gene 

expression we present here (available at www.eqtlgen.org) is a unique compendium for the 

development and application of novel methods that prioritize causal genes for complex traits14,73, 

as well as for interpreting the results of genome-wide association studies. 
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Methods 

Cohorts 

eQTLGen Consortium data consists of 31,684 blood and PBMC samples from 37 datasets, pre-

processed in a standardized way and analyzed by each cohort analyst using the same settings 

(Online Methods). 26,886 (85%) of the samples added to discovery analysis were whole blood 

samples and 4,798 (15%) were PBMCs, and the majority of samples were of European ancestry 

(Supplementary Table 1). The gene expression levels of the samples were profiled by Illumina 

(N=17,421; 55%), Affymetrix U291 (N=2,767; 8.7%), Affymetrix HuEx v1.0 ST (N=5,075; 16%) 

expression arrays and by RNA-seq (N=6,422; 20.3%). A summary of each dataset is outlined in 

Supplementary Table 1. Detailed cohort descriptions can be found in the Supplementary Note. 

Each of the cohorts completed genotype and expression data pre-processing, PGS calculation, 

cis-eQTL-, trans-eQTL- and eQTS-mapping, following the steps outlined in the online analysis 

plans, specific for each platform (see URLs) or with slight alterations as described in 

Supplementary Table 1 and the Supplementary Note. All but one cohort (Framingham Heart 

Study), included non-related individuals into the analysis.  

Genotype data preprocessing 

The primary pre-processing and quality control of genotype data was conducted by each cohort, 

as specified in the original publications and in the Supplementary Note. The majority of cohorts 

used genotypes imputed to 1kG p1v3 or a newer reference panel. GenotypeHarmonizer74 was 

used to harmonize all genotype datasets to match the GIANT 1kG p1v3 ALL reference panel and 
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to fix potential strand issues for A/T and C/G SNPs. Each cohort tested SNPs with minor allele 

frequency (MAF) > 0.01, Hardy-Weinberg P-value > 0.0001, call rate > 0.95, and MACH r2 > 0.5.  

Expression data preprocessing 

Illumina arrays 

Illumina array datasets expression were profiled by HT-12v3, HT-12v4 and HT-12v4 WGDASL 

arrays. Before analysis, all the probe sequences from the manifest files of those platforms were re-

mapped to GRCh37.p10 human genome and transcriptome, using SHRiMP v2.2.3 aligner75 and 

allowing 2 mismatches. Probes mapping to multiple locations in the genome were removed from 

further analyses. 

For Illumina arrays, the raw unprocessed expression matrix was exported from GenomeStudio. 

Before any pre-processing, the first two principal components (PCs) were calculated on the 

expression data and plotted to identify and exclude outlier samples. The data was normalized in 

several steps: quantile normalization, log2 normalization, probe centering and scaling by the 

equation ExpressionProbe,Sample = (ExpressionProbe,Sample - MeanProbe) / Std.Dev.Probe. Genes showing no 

variance were removed. Next, the first four multidimensional scaling (MDS) components, 

calculated based on non-imputed and pruned genotypes using plink v1.0776, were regressed out 

of the expression matrix to account for population stratification. We further removed up to 20 first 

expression-based PCs that were not associated to any SNPs, as these capture non-genetic 

variation in expression. Each cohort also ran MixupMapper77 software to identify incorrectly labeled 

genotype-expression combinations, and to remove identified sample mix-ups. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

33 

Affymetrix arrays 

Affymetrix array-based datasets used the expression data previously pre-processed and quality 

controlled as indicated in the Supplementary Note. 

RNA-seq 

Alignment, initial quality control and quantification differed slightly across datasets, as described in 

the Supplementary Note. Each cohort removed outliers as described above, and then used 

Trimmed Mean of M-values (TMM) normalization and a counts per million (CPM) filter to include 

genes with >0.5 CPM in at least 1% of the samples. Other steps were identical to Illumina 

processing, with some exceptions for the BIOS Consortium datasets (Supplementary Note).  

 

Cis-eQTL mapping 

Cis-eQTL mapping was performed in each cohort using a pipeline described previously1. In brief, 

the pipeline takes a window of 1Mb upstream and 1Mb downstream around each SNP to select 

genes or expression probes to test, based on the center position of the gene or probe. The 

associations between these SNP-gene combinations was calculated using a Spearman 

correlation. Next, 10 permutation rounds were performed by shuffling the links between genotype 

and expression identifiers and re-calculating associations. The false discovery rate (FDR) was 

determined using 10 meta-analyzed permutations: for each gene in the real analysis, the most 

significant association was recorded, and the same was done for each of the permutations, 
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resulting in a gene-level FDR. Cis-eQTLs with a gene-level FDR < 0.05 (corresponding to P < 

1.829×10-5) and tested in at least two cohorts were deemed significant. 

Trans-eQTL mapping 

Trans-eQTL mapping was performed using a previously described pipeline1 while testing a subset 

of 10,317 SNPs previously associated with complex traits. We required the distance between the 

SNP and the center of the gene or probe to be >5Mb. To maximize the power to identify trans-

eQTL effects, the results of the summary statistics based or iterative conditional cis-eQTL mapping 

analyses (Supplementary Note) were used to correct the expression matrices before trans-eQTL 

mapping. For that, top SNPs for significant conditional cis-eQTLs were regressed out from the 

expression matrix. Finally, we removed potential false positive trans-eQTLs caused by reads cross-

mapping with cis regions (Supplementary Note). 

Genetic risk factor selection 

Genetic risk factors were downloaded from three public repositories: the EBI GWAS Catalogue78 

(downloaded 21.11.2016), the NIH GWAS Catalogue and Immunobase  (www.immunobase.org; 

accessed 26.04.2016), applying a significance threshold of P ≤ 5×10-8. Additionally, we added 

2,706 genome-wide significant GWAS SNPs from a recent blood trait GWAS20. SNP coordinates 

were lifted to hg19 using the liftOver command from R package rtracklayer v1.34.179 and 

subsequently standardized to match the GIANT 1kG p1v3 ALL reference panel. This yielded 

10,562 SNPs (Supplementary Table 2). We tested associations between all risk factors and 
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genes that were at least 5Mb away to ensure that that they did not tag a cis-eQTL effect. All 

together, 10,317 trait-associated SNPs were tested in trans-eQTL analyses. 

eQTS mapping 

PGS trait inclusion 

Full association summary statistics were downloaded from several publicly available resources 

(Supplementary Table 13). GWAS performed exclusively in non-European cohorts were omitted. 

Filters applied to the separate data sources are indicated in the Supplementary Note. All the 

dbSNP rs numbers were standardized to match GIANT 1kG p1v3, and the directions of effects 

were standardized to correspond to the GIANT 1kG p1v3 minor allele. SNPs with opposite alleles 

compared to GIANT alleles were flipped. SNPs with A/T and C/G alleles, tri-allelic SNPs, indels, 

SNPs with different alleles in GIANT 1kG p1v3 and SNPs with unknown alleles were removed from 

the analysis. Genomic control was applied to all the P-values for the datasets not genotyped by 

Immunochip or Metabochip. Additionally, genomic control was skipped for one dataset that did not 

have full associations available80 and for all the datasets from the GIANT consortium, as for these 

genomic control had already been applied. All together, 1,263 summary statistic files were added 

to the analysis. Information about the summary statistics files can be found in the Supplementary 

Note and Supplementary Table 14. 

PGS calculation 

A custom Java program, GeneticRiskScoreCalculator-v0.1.0c, was used for calculating several 

PGS in parallel. Independent effect SNPs for each summary statistics file were identified by double-
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clumping by first using a 250kb window and subsequently a 10Mb window with LD threshold 

R2=0.1. Subsequently, weighted PGS were calculated by summing the risk alleles for each 

independent SNP, weighted by its GWAS effect size (beta or log(OR) from the GWAS study). Four 

GWAS P-value thresholds (P<5×10-8, 1×10-5, 1×10-4 and 1×10-3) were used for constructing PGS 

for each summary statistics file.  

Pruning the SNPs and PGS 

To identify a set of independent genetic risk factors, we conducted LD-based pruning as 

implemented in PLINK 1.981 with the setting --indep-pairwise 50 5 0.1. This yielded in 4,586 

uncorrelated SNPs (R2<0.1, GIANT 1kG p1v3 ALL). 

To identify the set of uncorrelated PGS, ten permuted trans-eQTL Z-score matrices from the 

combined trans-eQTL analysis were first confined to the pruned set of SNPs. Those matrices were 

then used to identify 3,042 uncorrelated genes, based on Z-score correlations (absolute Pearson 

R < 0.05). Next, permuted eQTS Z-score matrices were confined to uncorrelated genes and used 

to calculate pairwise correlations between all genetic risk scores to define a set of 1,873 

uncorrelated genetic risk scores (Pearson R2 < 0.1). 

Empirical probe matching 

To integrate different expression platforms (four different Illumina array models, RNA-seq, 

Affymetrix U291 and Affymetrix Hu-Ex v1.0 ST) for the purpose of meta-analysis, we developed an 

empirical probe-matching approach. We used the pruned set of SNPs to conduct per-platform 

meta-analyses for all Illumina arrays, for all RNA-seq datasets, and for each Affymetrix dataset 

separately, using summary statistics from analyses without any gene expression correction for 
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principal components. For each platform, this yielded an empirical trans-eQTL Z-score matrix, as 

well as ten permuted Z-score matrices, where links between genotype and expression files were 

permuted. Those permuted Z-score matrices reflect the gene-gene or probe-probe correlation 

structure. 

We used RNA-seq permuted Z-score matrices as a gold standard reference and calculated for 

each gene the Pearson correlation coefficients with all the other genes, yielding a correlation profile 

for each gene. We then repeated the same analysis for the Illumina meta-analysis, and the two 

different Affymetrix platforms. Finally, we correlated the correlation profiles from each array 

platform with the correlation profiles from RNA-seq. For each array platform, we selected the probe 

showing the highest Pearson correlation with the corresponding gene in the RNA-seq data and 

treated those as matching expression features in the combined meta-analyses. This yielded 19,960 

genes that were detected in RNA-seq datasets and tested in the combined meta-analyses. Genes 

and probes were matched to Ensembl v7182 (see URLs) stable gene IDs and HGNC symbols in 

all the analyses. 

Cross-platform replications 

To test the performance of the empirical probe-matching approach, we conducted discovery cis-, 

trans- and eQTS meta-analyses for each expression platform (RNA-seq, Illumina, Affymetrix U291 

and Affymetrix Hu-Ex v1.0 ST arrays; array probes matched to 19,960 genes by empirical probe 

matching). For each discovery analysis, we conducted replication analyses in the three remaining 

platforms, observing strong replication of both cis-eQTLs, trans-eQTLs and eQTS in different 

platforms, with very good concordance in allelic direction. 
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Meta-analyses 

We meta-analyzed the results using a weighted Z-score method1, where the Z-scores are weighted 

by the square root of the sample size of the cohort. For cis-eQTL and trans-eQTL meta-analyses, 

this resulted in a final sample size of N=31,684. The combined eQTS meta-analysis included the 

subset of unrelated individuals from the Framingham Heart Study, resulting in a combined sample 

size of 28,158. 

Quality control of the meta-analyses 

For quality control of the overall meta-analysis results, MAFs for all tested SNPs were compared 

between eQTLGen and 1kG p1v3 EUR (Extended Data Figure 3), and the effect direction of each 

dataset was compared against the meta-analyzed effect (Extended Data Figure 2A-C). 

FDR calculation for trans-eQTL and eQTS mapping 

To determine nominal P-value thresholds corresponding to FDR=0.05, we used the pruned set of 

SNPs for trans-eQTL mapping and permutation-based FDR calculation, as described previously1. 

We leveraged those results to determine the P-value threshold corresponding to FDR=0.05 and 

used this as a significance level in trans-eQTL mapping in which all 10,317 genetic trait-associated 

SNPs were tested. In the eQTS analysis, an analogous FDR calculation was performed using a 

pruned set of PGSs. We analyzed only SNP/PGS-gene pairs tested in at least two cohorts. 
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Positive and negative set of trans-eQTLs 

Based on the results of integrative trans-eQTL mapping, we defined true positive (TP) and true 

negative (TN) sets of trans-eQTLs. TP set was considered as all significant (FDR<0.05) trans-

eQTLs. TN set of trans-eQTLs was selected as non-significant (max absolute meta-analysis Z-

score 3; all FDR>0.05) SNP-gene combinations, adhering to following conditions: 

1. The size of TN set was set equal to the size of TP set (59,786 trans-eQTLs). 

2. Each SNP giving trans-eQTL effects on X genes in the TP set, is also giving trans-eQTL 

effects on X genes in the TN set. 

3. Each gene that is affected in trans by Y SNPs in the TP set, is also affected in trans by Y 

SNPs in the TN set. 

4. Adhere to the correlation structure of the SNPs: if two SNPs are in perfect LD, they affect 

the same set of genes, both in the TP set and in the TN set.  

5. Adhere to the correlation structure of the genes: if two genes are perfectly co-expressed, 

they are affected by the same SNPs, both in the TP set and in the TN set. 

This set of TN trans-eQTLs was used in subsequent enrichment analyses as the matching set for 

comparison. 

Conditional trans-eQTL analyses 

We aimed to estimate how many trans-eQTL SNPs were likely to drive both the trans-eQTL effect 

and the GWAS phenotype. The workflow of this analysis is shown in Extended Data Figure 6. We 
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used the integrative trans-eQTL analysis results as an input, confined ourselves to those effects 

which were present in the datasets we had direct access to (BBMRI-BIOS+EGCUT; N=4,339), and 

showed nominal P < 8.3115× 10-06 in the meta-analysis of those datasets. This P-value threshold 

was the same as in the full combined trans-eQTL meta-analysis and was based on the FDR=0.05 

significance threshold identified from the analysis run on the pruned set of GWAS SNPs after 

removal of cross-mapping effects. We used the same methods and SNP filters as in the full 

combined trans-eQTL meta-analysis, aside from the FDR calculation, which was based on the full 

set of SNPs, instead of the pruned set of SNPs.  

For each significant trans-eQTL SNP, we defined the locus by adding a ±1Mb window around it. 

Next, for each trans-eQTL gene we ran iterative conditional trans-eQTL analysis using all loci for 

given trans-eQTL gene. We then evaluated the LD between all conditional top trans-eQTL SNPs 

and GWAS SNPs using a 1 Mb window and R2>0.8 (1kG p1v3 EUR) as a threshold for LD overlap. 

Trans-eQTL mediation analysis 

To identify potential mediators of trans-eQTL effects we used  a G x E interaction model:  

t = 𝛽0 + 𝛽1 × s + 𝛽2 × m + 𝛽3 × s × m 

Where t is the expression of the trans-eQTL gene, s is the trans-eQTL SNP, and m is the 

expression of a potential mediator gene within 100kb of the trans-eQTL SNP. On top of the gene 

expression normalization that we used for the rest of our analysis, we used a rank-based inverse 

normal transformation to enforce a normal distribution before fitting the linear model, identical to 

the normalization used by Zhernakova et al.47 in their G × E interaction eQTL analyses. We fitted 

this model separately on each of the cohorts that are part of the BIOS consortium. We transformed 

the interaction P-values to Z-scores and used the weighted Z-score method83 to perform a meta-
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analysis on the in total 3,831 samples. The Benjamini & Hochberg procedure84 was used to limit 

the FDR to 0.05. The plots in Extended Data Figure 9 are created with the default normalization, 

the regression lines are the best-fitting lines between the mediator gene and the trans eQTL gene, 

stratified by genotype. We used a Fisher’s exact test to calculate the enrichment of significant (FDR 

≤ 0.05) interactions between our TP trans-eQTLs and the interactions identified in the TN trans-

eQTL set.  

TF and tissue enrichment analyses 

We downloaded the curated sets of known TF targets and tissue-expressed genes from the Enrichr 

web site85,86. TF target gene sets included TF targets as assayed by ChIP-X experiments from 

ChEA87 and ENCODE88,89 projects, and tissue-expressed genes were based on the ARCHS4 

database90. Those gene sets were used to conduct hypergeometric over-representation analyses 

as implemented into the R package ClusterProfiler91.  

SMR analyses 

To gain further insight into genes that are important in the biology of the trait, we used the combined 

cis-eQTL results to perform SMR14 for 16 large GWAS studies (Supplementary Table 20). We 

derived cis-eQTL beta and standard error of the beta (SE(beta)) from the Z-score and the MAF 

reported in 1kG v1p3 ALL, using the following formulae14 

beta = z / (√(2p(1-p)(n+z2)) 
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SE(beta) = 1 / (√(2p(1-p)(n+z2)) 

Where p is the MAF and n is the sample size. 

The cis-eQTLs were converted to the dense BESD format. The 1kG p1v3 ALL reference panel was 

also used to calculate LD, and SMR analysis was run using the SMR software v0.706 without any 

P-value cut-offs on either GWAS or eQTL input. 

DEPICT 

We applied DEPICT v19415 to the same 16 recent GWAS traits as above (Supplementary Table 

20), using all variants that attain a genome-wide significant P-value threshold. Specifically, we 

looked at the gene prioritization and gene set enrichment analyses to compare the results with the 

output of other prioritization methods (SMR 14). 

Comparison of gene prioritization with DEPICT and SMR 

To investigate the consistency between results from two gene prioritization methods, we compared 

the enrichment of overlapping genes for 16 GWAS traits (Supplementary Table 20). We confined 

ourselves to genes that were tested in SMR and that fell within the DEPICT loci, and tested whether 

genes significant in SMR (P-value < 0.05 / number of tested genes) and DEPICT (FDR < 0.05) 

were enriched (one-sided Fisher’s Exact Test). 
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Epigenetic marks enrichment 

We ascertained epigenetic properties of the lead cis-eQTL SNPs, and contrasted these to a set of 

3,688 trait-associated SNPs that were associated with either blood-related traits (such as mean 

corpuscular volume or platelet counts) or immune-mediated diseases. The SNPs were annotated 

with histone and chromatin marks information from the Epigenomics Roadmap Project. We 

summarized the information by calculating the overlap ratio across 127 human cell types between 

the epigenetic marks and the SNP within a window size of +/- 25bp: if a SNP co-localizes with a 

mark for all 127 cell-types, the score for that SNP will be 1; if a SNP co-localizes with a mark for 

none of the cell-types, the score will be 0. 

The reason we chose only SNPs associated to blood-related traits and immune-mediated diseases 

was to minimize potential confounding due to a subtle bias in the Epigenomics Roadmap Project 

towards blood cell-types: 29 of the 127 cell-types that we studied were blood cell types. However, 

when redoing the epigenetic enrichment analysis, while excluding these blood cell types, we did 

not see substantial differences in the enriched and depleted histone marks. 

Chromosomal contact analyses 

Capture Hi-C overlap for cis-eQTLs 

To assess whether cis-eQTL lead SNPs overlapped with chromosomal contact as measured using 

Hi-C data, we used promoter capture Hi-C data92, downloaded from CHiCP93 (see URLs). We took 

the lead eQTL SNPs and overlapped these with the capture Hi-C data and studied the 10,428 cis-

eQTL genes for which this data is available. We then checked whether the Capture Hi-C target 
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maps within 5kb of the lead SNP. Of 508 cis-eQTL genes that mapped over 100 kb from the TSS 

or TES, 223 overlapped capture Hi-C data (27.8%). Of 7,984 cis-eQTL genes that mapped within 

100kb from the TSS or TES, 1,641 overlapped capture Hi-C data (17.0%, Chi2 test P = 10-14). To 

ensure this was not an artefact, we performed the same analysis, while flipping the location of the 

capture Hi-C target with respect to the location of the bait, and did not observe any significant 

difference (Chi2 test P = 0.59). 

Hi-C overlap enrichment analysis for trans-eQTLs 

To assess whether trans-eQTLs were enriched for chromosomal contacts as measured using Hi-

C data, we downloaded the contact matrices for the human lymphoblastoid GM12878 cell line19 

(GEO accession GSE63525). We used the intrachromosomal data at a resolution of 10kb with 

mapping quality of 30 or more (MAPQGE30), and normalized using the KRnorm vectors. For each 

of the 59,786 trans-eQTLs, we evaluated whether any contact was reported in this dataset. We 

divided each trans-eQTL SNP and any of their proxies (R2>0.8, 1kG p1v3, EUR, acquired from 

SNiPA94; URLs) in 10kb blocks. The trans-eQTL genes were also assigned to 10kb blocks, and to 

multiple blocks if the gene was more than 10kb in length (length between TSS and TES, Ensembl 

v71). For each individual trans-eQTL SNP-gene pair, we then determined if there was any overlap 

with the Hi-C contact matrices. We repeated this analysis using the true negative set of trans-

eQTLs described before to generate a background distribution of expected contact. 

Data availability 

Full summary statistics from eQTLGen meta-analyses are available on the eQTLGen website: 

www.eqtlgen.org which was built using the MOLGENIS framework95.  
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Code availability 

Individual cohorts participating in the study followed the analysis plans as specified in the URLs or 

with slight alterations as described in the Methods and Supplementary Note. All tools and source 

code, used for genotype harmonization, identification of sample mixups, eQTL mapping, meta-

analyses and for calculating polygenic scores are freely available at 

https://github.com/molgenis/systemsgenetics/.  
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URLs 

Full summary statistics from this study, www.eqtlgen.org 

ExAC pLI scores, http://exac.broadinstitute.org/downloads; 

Ensembl v71 annotation file, 

ftp://ftp.ensembl.org/pub/release-71/gtf/homo_sapiens; 

Reference for genotype harmonizing, 

ftp://share.sph.umich.edu/1000genomes/fullProject/2012.03.14/GIANT.phase1_release_v3.2010

1123.snps_indels_svs.genotypes.refpanel.ALL.vcf.gz.tgz 

eQTLGen analysis plan for Illumina array datasets, 

https://github.com/molgenis/systemsgenetics/wiki/eQTL-mapping-analysis-cookbook; 

eQTLGen analysis plan for RNA-seq datasets, 

https://github.com/molgenis/systemsgenetics/wiki/eQTL-mapping-analysis-cookbook-for-RNA-

seq-data; 

eQTLGen analysis plan for Affymetrix array datasets, 

https://github.com/molgenis/systemsgenetics/wiki/QTL-mapping-analysis-cookbook-for-

Affymetrix-expression-arrays; 

GenotypeHarmonizer, https://github.com/molgenis/systemsgenetics/wiki/Genotype-Harmonizer; 

Protocol to resolve sample mixups, https://github.com/molgenis/systemsgenetics/wiki/Resolving-

mixups; 

Enrichr gene set enrichment libraries, 

http://amp.pharm.mssm.edu/Enrichr/; 

GeneOverlap package for enrichment analyses, 

https://www.bioconductor.org/packages/release/bioc/html/GeneOverlap.html; 
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SHRiMP aligner used for re-mapping Illumina probes, 

http://compbio.cs.toronto.edu/shrimp/; 

EBI GWAS Catalogue, 

https://www.ebi.ac.uk/gwas/; 

Immunobase, 

http://www.immunobase.org/; 

ClusterProfiler package used for tissue enrichment analyses, 

http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html; 

Capture Hi-C data, 

https://www.chicp.org/ 

SNiPA, used to acquire proxy SNPs, 

http://snipa.helmholtz-muenchen.de/snipa3/ 

Regulatory Circuits, used to acquire TF data, 

www.RegulatoryCircuits.org 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

48 

 
 
 
References: 

1. Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known 

disease associations. Nat. Genet. 45, 1238–1243 (2013). 

2. Kirsten, H. et al. Dissecting the genetics of the human transcriptome identifies novel trait-

related trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci†. 

Hum. Mol. Genet. 24, 4746–4763 (2015). 

3. Lloyd-Jones, L. R. et al. The Genetic Architecture of Gene Expression in Peripheral Blood. 

Am. J. Hum. Genet. 100, 228–237 (2017). 

4. Jansen, R. et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. 

Hum. Mol. Genet. 26, 1444–1451 (2017). 

5. Joehanes, R. et al. Integrated genome-wide analysis of expression quantitative trait loci aids 

interpretation of genomic association studies. Genome Biol. 18, 16 (2017). 

6. Brynedal, B. et al. Large-Scale trans-eQTLs Affect Hundreds of Transcripts and Mediate 

Patterns of Transcriptional Co-regulation. Am. J. Hum. Genet. 100, 581–591 (2017). 

7. Yao, C. et al. Dynamic Role of trans Regulation of Gene Expression in Relation to Complex 

Traits. Am. J. Hum. Genet. 100, 571–580 (2017). 

8. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An Expanded View of Complex Traits: From Polygenic 

to Omnigenic. Cell 169, 1177–1186 (2017). 

9. Lewis, C. M. & Vassos, E. Prospects for using risk scores in polygenic medicine. Genome 

Med. 9, 96 (2017). 

10. Natarajan, P. et al. Polygenic Risk Score Identifies Subgroup With Higher Burden of 

Atherosclerosis and Greater Relative Benefit From Statin Therapy in the Primary Prevention 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

49 

Setting. Circulation 135, 2091–2101 (2017). 

11. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 

285–291 (2016). 

12. Wu, Y., Zheng, Z., Visscher, P. M. & Yang, J. Quantifying the mapping precision of genome-

wide association studies using whole-genome sequencing data. Genome Biol. 18, 86 (2017). 

13. Melé, M. et al. The human transcriptome across tissues and individuals. Science 348, 660–

665 (2015). 

14. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex 

trait gene targets. Nat. Genet. 48, 481–487 (2016). 

15. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted 

gene functions. Nat. Commun. 6, 5890 (2015). 

16. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic 

association studies using summary statistics. PLoS Genet. 10, e1004383 (2014). 

17. Marbach, D. et al. Tissue-specific regulatory circuits reveal variable modular perturbations 

across complex diseases. Nat. methods 13, 366–370 (2016). 

18. Li, T. et al. A scored human protein-protein interaction network to catalyze genomic 

interpretation. Nat. methods 14, 61–64 (2017). 

19. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles 

of chromatin looping. Cell 159, 1665–1680 (2014). 

20. Astle, W. J. et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to 

Common Complex Disease. Cell 167, 1415–1429.e19 (2016). 

21. Perry, J. R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for 

age at menarche. Nature 514, 92–97 (2014). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

50 

22. Ding, Y. et al. ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells 

through regulation of HAUS5. Oncotarget 8, 48545–48562 (2017). 

23. Oh, Y. & Chung, K. C. Small ubiquitin-like modifier (SUMO) modification of zinc finger protein 

131 potentiates its negative effect on estrogen signaling. J. Biol. Chem. 287, 17517–17529 

(2012). 

24. Lemaitre, R. N. et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a 

meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS 

Genet. 7, e1002193 (2011). 

25. Deelen, P. et al. Improving the diagnostic yield of exome-sequencing, by predicting gene-

phenotype associations using large-scale gene expression analysis. bioRxiv preprint (2018). 

26. Plagnol, V. et al. Genome-wide association analysis of autoantibody positivity in type 1 

diabetes cases. PLoS Genet. 7, e1002216 (2011). 

27. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel 

disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 

(2015). 

28. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, 

UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–

1233 (2009). 

29. Yin, X. et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic 

heterogeneity of psoriasis susceptibility. Nat. Commun. 6, 6916 (2015). 

30. Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of 

asthma. New Engl. J. Med. 363, 1211–1221 (2010). 

31. van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

51 

eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018). 

32. Wang, J. H. et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 

9, 543–553 (1998). 

33. Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-

analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015). 

34. Wood, A. R. et al. Defining the role of common variation in the genomic and biological 

architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014). 

35. He, M. et al. Meta-analysis of genome-wide association studies of adult height in East Asians 

identifies 17 novel loci. Hum. Mol. Genet. 24, 1791–1800 (2015). 

36. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a 

coordinate repressor of multiple neuron-specific genes. Science 267, 1360 LP-1363 (1995). 

37. Chong, J. A. et al. REST: a mammalian silencer protein that restricts sodium channel gene 

expression to neurons. Cell 80, 949–957 (1995). 

38. Cheong, A. et al. Downregulated REST transcription factor is a switch enabling critical 

potassium channel expression and cell proliferation. Mol. cell 20, 45–52 (2005). 

39. Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization 

and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010). 

40. Bass, J. & Lazar, M. A. Circadian time signatures of fitness and disease. Sci. 354, 994–999 

(2016). 

41. Song, C. et al. REV-ERB agonism suppresses osteoclastogenesis and prevents 

ovariectomy-induced bone loss partially via FABP4 upregulation. FASEB J. : Off. Publ. Fed. 

Am. Soc. Exp. Biol. 32, 3215–3228 (2018). 

42. Liu, X., Li, Y. I. & Pritchard, J. K. Trans effects on gene expression can drive omnigenic 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

52 

inheritance. bioRxiv (2018). 

43. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. 

Nature 466, 707–713 (2010). 

44. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 

45, 1274–1283 (2013). 

45. Wang, X. et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage 

reverse cholesterol transport in vivo. J. Clin. Investig. 117, 2216–2224 (2007). 

46. Goldstein, J. L. & Brown, M. S. Binding and degradation of low density lipoproteins by 

cultured human fibroblasts. Comparison of cells from a normal subject and from a patient 

with homozygous familial hypercholesterolemia. J. Biol. Chem. 249, 5153–5162 (1974). 

47. Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci 

in whole blood. Nat. Genet. 49, 139–145 (2017). 

48. Singh, A. B., Kan, C. F. K., Shende, V., Dong, B. & Liu, J. A novel posttranscriptional 

mechanism for dietary cholesterol-mediated suppression of liver LDL receptor expression. J. 

Lipid Res. 55, 1397–1407 (2014). 

49. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci 

associated with smoking behavior. Nat. Genet. 42, 441–447 (2010). 

50. Kõks, S. & Kõks, G. Activation of GPR15 and its involvement in the biological effects of 

smoking. Exp. Biol. Med. 242, 1207–1212 (2017). 

51. van Iterson, M., van Zwet, E. W., BIOS Consortium & Heijmans, B. T. Controlling bias and 

inflation in epigenome- and transcriptome-wide association studies using the empirical null 

distribution. Genome Biol. 18, 19 (2017). 

52. Bauer, M., Fink, B., Seyfarth, H.-J., Wirtz, H. & Frille, A. Tobacco-smoking induced GPR15-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

53 

expressing T cells in blood do not indicate pulmonary damage. BMC Pulm. Med. 17, 159 

(2017). 

53. Kõks, G. et al. Smoking-Induced Expression of the GPR15 Gene Indicates Its Potential Role 

in Chronic Inflammatory Pathologies. Am. J. Pathol. 185, 2898–2906 (2015). 

54. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational 

attainment. Nature 533, 539–542 (2016). 

55. Smirnova, T., Miniou, P., Viegas-Pequignot, E. & Mallet, J. Assignment of the human 

syntaxin 1B gene (STX) to chromosome 16p11.2 by fluorescence in situ hybridization. 

Genomics 36, 551–553 (1996). 

56. Sousa, I. et al. Polymorphisms in leucine-rich repeat genes are associated with autism 

spectrum disorder susceptibility in populations of European ancestry. Mol. Autism 1, 7 

(2010). 

57. Agarwal, A. et al. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons 

disrupts synaptic plasticity. Cell reports 8, 1130–1145 (2014). 

58. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. 

Nature 518, 197–206 (2015). 

59. Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and 

reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016). 

60. Shin, S.-Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 

543–550 (2014). 

61. El-Hattab, A. W. Serine biosynthesis and transport defects. Mol. Genet. Metab. 118, 153–

159 (2016). 

62. Leuzzi, V., Alessandrì, M. G., Casarano, M., Battini, R. & Cioni, G. Arginine and glycine 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

54 

stimulate creatine synthesis in creatine transporter 1-deficient lymphoblasts. Anal. Biochem. 

375, 153–155 (2008). 

63. Hart, C. E. et al. Phosphoserine aminotransferase deficiency: a novel disorder of the serine 

biosynthesis pathway. Am. J. Hum. Genet. 80, 931–937 (2007). 

64. Klomp, L. W. et al. Molecular characterization of 3-phosphoglycerate dehydrogenase 

deficiency--a neurometabolic disorder associated with reduced L-serine biosynthesis. Am. J. 

Hum. Genet. 67, 1389–1399 (2000). 

65. Shaheen, R. et al. Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by 

mutations in PHGDH. Am. J. Hum. Genet. 94, 898–904 (2014). 

66. McLaughlin, H. M. et al. A recurrent loss-of-function alanyl-tRNA synthetase (AARS) 

mutation in patients with Charcot-Marie-Tooth disease type 2N (CMT2N). Hum. Mutat. 33, 

244–253 (2012). 

67. Auer-Grumbach, M. Hereditary sensory neuropathy type I. Orphanet J. rare Dis. 3, 7 (2008). 

68. Hanada, K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. 

et Biophys. Acta 1632, 16–30 (2003). 

69. Glinton, K. E. et al. Disturbed phospholipid metabolism in serine biosynthesis defects 

revealed by metabolomic profiling. Mol. Genet. Metab. 123, 309–316 (2018). 

70. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells 

of patients with severe lupus. Proc. Natl. Acad. Sci. United States Am. 100, 2610–2615 

(2003). 

71. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus 

blood. J. Exp. Med. 197, 711–723 (2003). 

72. Pantel, A. et al. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

55 

for maturation and metabolic shift to glycolysis after poly IC stimulation. PLoS Biol. 12, 

e1001759 (2014). 

73. Hormozdiari, F. et al. Colocalization of GWAS and eQTL Signals Detects Target Genes. Am. 

J. Hum. Genet. 99, 1245–1260 (2016). 

74. Deelen, P. et al. Genotype harmonizer: automatic strand alignment and format conversion for 

genotype data integration. BMC Res. notes 7, 901 (2014). 

75. Rumble, S. M. et al. SHRiMP: accurate mapping of short color-space reads. PLoS Comput. 

Biol. 5, e1000386 (2009). 

76. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based 

linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). 

77. Westra, H.-J. et al. MixupMapper: correcting sample mix-ups in genome-wide datasets 

increases power to detect small genetic effects. Bioinforma. 27, 2104–2111 (2011). 

78. MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association 

studies (GWAS Catalog). Nucleic acids Res. 45, D896–D901 (2017). 

79. Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with 

genome browsers. Bioinformatics 25, (2009). 

80. Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in 

individuals of European descent. Nat. Genet. 48, 1031–1036 (2016). 

81. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 

datasets. GigaScience 4, 7 (2015). 

82. Zerbino, D. R. et al. Ensembl 2018. Nucleic acids Res. 46, D754–D761 (2018). 

83. Zaykin, D. V. Optimally weighted Z-test is a powerful method for combining probabilities in 

meta-analysis. J. Evol. Biol. 24, 1836–1841 (2011). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

56 

84. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful 

Approach to Multiple Testing: a practical and powerful approach to multiple testing. J. R. 

Stat. Soc. Ser. B 57, 289–300 (1995). 

85. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis 

tool. BMC Bioinforma. 14, 128 (2013). 

86. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 

2016 update. Nucleic acids Res. 44, W90–W97 (2016). 

87. Lachmann, A. et al. ChEA: transcription factor regulation inferred from integrating genome-

wide ChIP-X experiments. Bioinforma. 26, 2438–2444 (2010). 

88. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Sci. 

306, 636–640 (2004). 

89. ENCODE Project Consortium. A user’s guide to the encyclopedia of DNA elements 

(ENCODE). PLoS Biol. 9, e1001046 (2011). 

90. Lachmann, A. et al. Massive mining of publicly available RNA-seq data from human and 

mouse. Nat. Commun. 9, 1366 (2018). 

91. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing 

biological themes among gene clusters. Omics : J. Integr. Biol. 16, 284–287 (2012). 

92. Javierre, B. M. et al. Lineage-Specific Genome Architecture Links Enhancers and Non-

coding Disease Variants to Target Gene Promoters. Cell 167, 1369–1384.e19 (2016). 

93. Schofield, E. C. et al. CHiCP: a web-based tool for the integrative and interactive 

visualization of promoter capture Hi-C datasets. Bioinforma. 32, 2511–2513 (2016). 

94. Arnold, M., Raffler, J., Pfeufer, A., Suhre, K. & Kastenmuller, G. SNiPA: an interactive, 

genetic variant-centered annotation browser. Bioinformatics 31, (2015). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

57 

95. Swertz, M. et al. The MOLGENIS toolkit: rapid prototyping of biosoftware at the push of a 

button. BMC Bioinforma. 11, 12 (2010). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367

