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Abstract 

Prostate cancer (PCa) is the most frequently diagnosed non-skin cancer and a leading cause of mortality 

among males in developed countries. However, our understanding of the global changes of protein 

complexes within PCa tissue specimens remains very limited, although it has been well recognized that 

protein complexes carry out essentially all major processes in living organisms and that their deregulation 

drives the pathogenesis and progression of various diseases. By coupling tandem mass tagging-

synchronous precursor selection-mass spectrometry/mass spectrometry/mass spectrometry (TMT-SPS-

MS3) with differential expression and co-regulation analyses, the present study compared the differences 

between protein complexes in normal prostate, low-grade PCa, and high-grade PCa tissue specimens. 

Globally, a large downregulated putative protein-protein interaction (PPI) network was detected in both 

low-grade and high-grade PCa, yet a large upregulated putative PPI network was only detected in high-

grade but not low-grade PCa, compared with normal controls. To identify specific protein complexes that 

are deregulated in PCa, quantified proteins were mapped to protein complexes in CORUM, a collection of 

experimentally verified mammalian protein complexes. Differential expression analysis suggested that 

mitochondrial ribosomes and the fibrillin-associated protein complex were significantly overexpressed, 

whereas the ITGA6-ITGB4-Laminin10/12 and the P2X7 receptor signaling complexes were significantly 

downregulated, in PCa compared with normal prostate. Moreover, differential co-regulation analysis 

indicated that the assembly levels of some nuclear protein complexes involved in RNA synthesis and 

processing were significantly increased in low-grade PCa, and those of mitochondrial complex I and its 

subcomplexes were significantly increased in high-grade PCa, compared with normal prostate. In 

summary, the study represents the first global and quantitative comparison of protein complexes in 

prostate tissue specimens. It is expected to enhance our understanding of the molecular mechanisms 

underlying PCa development and progression in human patients, as well as lead to the discovery of novel 

biomarkers and therapeutic targets for precision management of PCa. 
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Background 

Prostate cancer (PCa) is the most frequently diagnosed non-skin cancer and a leading cause of cancer 

death among males in developed countries [1]. In the United States alone, it was estimated that 164,690 

men will be diagnosed with PCa and that 29,430 will die of this disease in 2018 [2]. Largely owing to the 

developments and advances in next-generation sequencing technologies, the past few years have 

witnessed a striking growth of genomic and transcriptomic profiles of clinical PCa specimens [3]. These 

large-scale efforts not only enhanced our understanding of the molecular underpinnings of PCa 

pathogenesis and progression, but also facilitated the identification of novel PCa biomarkers and 

therapeutic targets [4,5]. Nonetheless, despite the significant progress, genomic and transcriptomic 

profiling studies have inherent limitations ― they only indirectly and often inconclusively measure the 

properties of proteins, which are the major functional molecules and actual executors of biological 

functions in living organisms. In fact, recent studies have suggested that aberrations at the gene copy 

number, DNA methylation, and RNA expression levels often do not reliably predict changes at the 

protein expression level [6,7]. 

 

In contrast to genomic and transcriptomic technologies, mass spectrometry (MS)-based proteomic 

technologies enable comprehensive and direct analysis of proteins, and have thus been widely used in the 

proteomic profiling of clinical specimens, such as biofluid and tissue samples [8]. Compared with 

biofluid specimens such as blood and urine, tissue specimens allow more accurate sampling of proteomic 

changes in tumor cells and microenvironment, but they are more difficult to obtain. According to a recent 

survey, only about 40 proteomic studies were performed on human PCa tissue specimens in the past 

decade [9]. Moreover, most of these studies were conducted using the two-dimensional electrophoresis 

(2DE) matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) technology, which 

rarely provides adequate proteomic coverage and is only semi-quantitative. To date, comprehensive and 

quantitative proteomic studies of PCa tissue specimens have remained scarce [6,10–14]. Furthermore, 
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none of these studies investigated the global changes of multiprotein complexes along PCa development 

and progression. Notably, protein complexes act as highly specialized molecular machines and carry out 

essentially all major processes in a cell, such as gene transcription and splicing as well as protein 

synthesis and degradation [15,16]. The abnormal expression and/or activation of certain protein 

complexes may lead to the pathogenesis and progression of many diseases [17]. Hence, the identification 

of deregulated protein complexes in clinical tissue specimens offers a great potential of revealing novel 

molecular mechanisms and discovering new biomarkers and therapeutic targets for various human 

diseases including PCa. 

 

Currently, a variety of proteomic technologies are available for large-scale protein quantification [18]. 

Among these, tandem mass tagging (TMT) offers high multiplexing capability, allowing quantitative 

comparison of up to 11 samples simultaneously [19,20]. Previously, TMT suffered from the issue of 

precursor ion interference, which results in ratio compression and thus an underestimation of expression 

differences [21]. With the recent development of the synchronous precursor selection (SPS)-MS3 

technique, the ratio compression issue is largely eliminated [22]. As such, the TMT-SPS-MS3 

combination enables highly multiplexed and accurate quantification of proteomes. Indeed, a recent study 

showed that TMT-SPS-MS3 enables more accurate protein quantification than label-free quantification, 

especially for modest (<2-fold) changes [23]. Moreover, when coupled with protein co-regulation 

analysis, TMT-SPS-MS3 analysis permits systems-wide analysis of protein-protein associations with high 

accuracy [24]. 

  

In the present study, the TMT-SPS-MS3 approach was integrated with differential expression and co-

regulation analyses to investigate the global changes of protein complexes, in terms of abundance and 

protein-protein associations, in 27 optimal cutting temperature (OCT) compound-embedded and 

cryopreserved clinical tissue specimens of primary PCa (i.e., 9 normal prostate, 9 low-grade/low-risk PCa, 

and 9 high-grade/high-risk PCa). Notably, recent studies have shown that, when properly handled and 
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processed, OCT samples provide better protein recovery and MS identification than formalin-fixed and 

paraffin-embedded (FFPE) specimens [25,26]. After stringent statistical analysis, the study revealed that 

certain protein complexes were significantly deregulated in low-grade and/or high-grade PCa, compared 

with normal prostate. Further exploitation of the deregulated protein complexes may shed new light on 

the molecular basis of PCa development and progression in vivo, as well as provide novel biomarkers and 

therapeutic targets for better management of this leading male cancer. 
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Methods 

Prostate tissue specimens 

All PCa and PCa-adjacent normal tissue samples were collected from radical prostatectomy at Cedars-

Sinai Medical Center, during the period of 2010 to 2014 (Table S1). The PCa samples are either of low-

grade (Gleason score of 6) or high-grade (Gleason score of 8 or 9) prostate adenocarcinoma. All 

specimens were OCT embedded and stored at -80°C prior to proteomic analysis.  

 

Protein extraction, digestion and TMT labeling 

OCT was removed essentially as described [27]. Briefly, about 20 mm3 tissue was cut into small pieces 

and transferred to 1.5 mL Eppendorf tubes. Tissue pieces were gently washed with 1 mL ice-cold 70% 

ethanol for twice, ice-cold water for once, and ice-cold 100 mM Tris-HCl, pH 7.4 for twice. To lyse tissue, 

100 μL lysis buffer (80 mM Tris-HCl, 4% SDS, 100 mM DTT, pH7.4) was added into each tube, and the 

tissue pieces were grinded with disposable pestles using a cordless pestle motor (VWR, Radnor, PA). The 

lysates were thoroughly sonicated in a water-bath sonicator (Elma S180H) to reduce viscosity, incubated 

at 95°C for 5 min, and centrifuged at 16,000×g for 10 min. Protein concentration was determined using 

the Pierce 660 nm protein assay (Thermo Scientific) according to the manufacture’s instruction. To 

generate an internal proteomic standard, 20 μg protein from each of the 27 samples was mixed. Because a 

10-plex TMT reagent set can only accommodate up to 10 samples, the 27 tissue samples and three 

internal standard (pooled) samples were divided into three sets. Each set contains one internal standard, 

three normal prostate, three low-grade PCa, and three high-grade PCa samples. From each sample, 60 μg 

proteins were alkylated with iodoacetamide and digested with trypsin using the filter-aided sample 

preparation (FASP) method [27]. Tryptic peptides were labeled with 10-plex TMT reagents in parallel, 

essentially as we previously described [28,29]. To ensure that the internal standards for the three sets are 

identical, the three TMT126-labeled internal standard samples were mixed into one single sample. 

Subsequently, for each TMT10plex set, an equal amount of tryptic peptides (derived from about 20 μg 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 18, 2018. ; https://doi.org/10.1101/447375doi: bioRxiv preprint 

https://doi.org/10.1101/447375


proteins) with differential TMT labeling was merged into one sample, desalted using C18 spin columns 

(Thermo Scientific), and concentrated in a SpeedVac (Thermo Scientific). 

 

Peptide fractionation 

Peptide fractionation was performed using high-pH reversed-phase liquid chromatography (LC) [30]. 

Each TMT10plex-labeled peptide mixture sample was redissolved with 45 μL 10 mM ammonium 

formate, pH 10. Twenty microliters of peptide solution were injected and separated on a 20-cm Hypersil 

GOLD C18 column (1.9 μm particle size, 2.1 mm inner diameter, 175 Å pore size) heated to 35°C on an 

Ultimate 3000 XRS system (Thermo Scientific), with a flow rate of 0.5 mL/min. Mobile phase A and B 

consisted of 10 mM ammonium formate in water (pH 10) and 10 mM ammonium formate in 95% 

acetonitrile (pH 10), respectively. The 13-min LC gradient was 0% B over 3 min, 0-28% B over 7 min, 

28-90% B over 1 min, 90% B over 1 min, and 90-0% B over 1 min. For each TMT10plex set, a total of 

72 fractions were collected after 3.5 min, with a collection rate of one fraction per 6 sec. The 72 fractions 

were then concatenated into 24 fractions by combining fractions 1, 25, 49; 2, 26, 50; and so on. The 

fractions were concentrated in a SpeedVac and stored at -80°C until LC-SPS-MS3 analysis. 

 

LC-SPS-MS3 analysis 

LC-SPS-MS3 analysis was conducted on an EASY nLC 1200 connected to an Orbitrap Fusion Lumos 

mass spectrometer (Thermo Scientific). Each fraction of peptides was redissolved with 25 μL 0.2% 

formic acid, 2% acetonitrile. Ten microliters of peptide solution were loaded onto a 2-cm trap column 

(PepMap 100 C18, 75 μm inner diameter, 3 μm particles, 100 Å pore size) and separated by a 50-cm 

EASY-Spray column (PepMap RSLC C18, 75 μm inner diameter, 2 μm particles, 100 Å pore size) heated 

to 55°C, at a flow rate of 250 nL/min. Mobile phases A and B consisted of 0.1% formic acid in water and 

0.1% formic acid in 80% acetonitrile, respectively. The 3-h LC gradient was 3-25% B over 140 min, 25-

50% B over 25 min, 50-100% B over 5 min, and 100% B over 10 min. SPS-MS3 analysis was conducted 

essentially as described [23]. The parameter settings for FTMS1 include orbitrap resolution (120,000), 
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scan range (350-1400), AGC (5E5), maximum injection time (100 ms), RF lens (30%), data type 

(centroid), charge state (2-5), dynamic exclusion for 60 s using a mass tolerance of 7 ppm, and internal 

calibration using m/z 371.10123; for ITMS2 include mass range (400-1400), number of dependent scans 

(10), isolation window (0.4 m/z), activation type (rapid CID), collision energy (35%), maximum injection 

time (120 ms), AGC (2E4), and data type (centroid); for MS3 include mass range (400-1400), precursor 

ion exclusion (low m/z 50, high m/z 5), isolation window (m/z 0.7), MS2 isolation window (m/z 2), 

number of notches (10), HCD collision energy (55%), orbitrap resolution (50,000), maximum injection 

time (150 ms), AGC (2.5E5), and data type (centroid).  

 

Protein Identification and Quantification 

The acquired LC-SPS-MS3 files were analyzed by MaxQuant (v1.6.0.16) [31], using the Andromeda 

algorithm [32] to search against the human Uniprot protein sequence database (released on 03/30/2018, 

containing 20,937 canonical sequences and 72,379 additional sequences) combined with the common 

contaminant protein sequences (244 sequences). The quantification type was Reporter ion MS3, the 

isobaric labels were TMT10plex, and the reporter mass tolerance was 0.003 Da. Modifications included 

carbamidomethylation of cysteines as fixed modification as well as acetylation of protein N-terminus, 

deamidation of asparagines and glutamines, and oxidation of methionines and prolines as variable 

modifications. Tryspin/P was used for digestion and up to two miscleavages were allowed. The match-

between-runs function was enabled, using 0.7 min of match time window and 20 min of alignment time 

window. The mass tolerance was 20 ppm for first search peptide tolerance and 4.5 ppm for main search 

peptide tolerance, and 0.5 Da for MS/MS match tolerance. A false discovery rate (FDR) of 1% was 

applied to filter peptide-spectrum matches (PSMs), peptides, and protein groups. The mass spectrometry 

proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomexchange.org) 

via the PRIDE partner repository [33] with database identifier PXD010744.  

 

Identification of differentially expressed proteins (DEPs) 
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Statistical analysis was performed with Perseus (v1.5.5.3) [34]. Proteins identified from the reverse 

sequence database or based on a single modified peptide, as well as non-human contaminant proteins 

identified from the contaminant sequence database, were filtered out. Subsequently, only proteins 

quantified across all the analyzed samples were selected for statistical analysis. Protein ratios against the 

internal standard (TMT126 channel) were computed and then log2-transformed. For each sample, the 

log2-transformed ratios were normalized against the Tukey’s bi-weight mean, which calculates a robust 

average that is unaffected by outliers, with the assumption that most identified proteins are not 

significantly differentially expressed across the samples. After a quality control analysis using SuperHirn 

[35], one outlier sample was detected from each group and they were removed. For the comparison 

between each group (n = 8 after the removal of outlier samples), Student’s t-test (two-tailed) was used. To 

correct the p values for multiple testing, the Storey method was applied [36]. DEPs were identified using 

q values < 0.05 and the empirical cutoff of log2-transformed fold changes of > 0.5 in absolute value. For 

gene ontology enrichment, the Database for Annotation, Visualization and Integrated Discovery (DAVID, 

v6.8) analysis was performed [37]. To generate putative protein-protein interaction (PPI) networks from 

DEPs, the Ingenuity Pathway Analysis (Ingenuity) was performed with high stringency ― only direct 

PPIs with experimental evidence were used. 

 

Identification of differentially expressed protein complexes 

To identify specific protein complexes that are differentially expressed, the CORUM annotation for each 

protein was added to the data matrix in Perseus (v1.5.5.3), followed by the extraction of CORUM 

complexes containing at least five quantified proteins using R statistical software (R Development Core 

Team; https://www.r-project.org/) (v3.5.0). The mean log2-ratio of all proteins in a CORUM complex was 

calculated for each sample, and then compared across the three groups (i.e., normal, low-grade, and high-

grade) by Student’s t-test (two-tailed). The CORUM complexes with p values of < 0.05 and the mean 

difference of > 0.3 in absolute value were accepted as differentially expressed complexes. Here, the cutoff 
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for the mean difference was set as 0.3 because it corresponds to p < 0.05, based on the normal distribution 

of all mean differences of low-grade PCa and high-grade PCa versus normal controls (s.d. = 0.142). 

 

Identification of differentially regulated protein complexes 

Differential co-regulation analysis provides a level of information about protein-protein associations, 

which is not possible to obtain using the widely used differential expression analysis  [24,38]. Differential 

co-regulation analysis was conducted using R (v3.5.0) to analyze the pairwise correlation of proteins 

within each CORUM complex. The Spearman’s method was used to assess correlation of proteins within 

each complex. Subsequently, the Fisher z-transformation was performed to stabilize the variance of 

sample correlation coefficients in each condition, as described in [39,40]. To avoid obtaining infinite z 

scores, all Spearman’s Rho values of 0.99 through 1 were replaced by 0.99 and those of -1 through -0.99 

were replaced by -0.99. For each CORUM complex, to determine whether the difference of mean z scores 

between two conditions (e.g., normal prostate vs low-grade PCa) is statistically significant, the following 

steps were performed: 1) 8 out of the 24 samples were randomly sampled twice and used as condition A 

and condition B, respectively; 2) for each condition, Spearman’s Rho values and z scores were computed 

as mentioned above; 3) the mean z score difference between conditions A and B was calculated; 4) the 

steps 1 to 3 were repeated for 10,000 times, and null hypothesis distribution of the mean z score 

differences was generated; and 5) the significance of each observed mean z score difference was 

computed using the null hypothesis distribution. CORUM protein complexes with p values of < 0.05 and 

mean z score differences of > 0.5 in absolute value were accepted as differentially regulated protein 

complexes. As the standard deviation of all mean z score differences of low-grade PCa and high-grade 

PCa versus normal was 0.324, the cutoff for the mean z score difference of 0.5 corresponds to p < 0.1. 
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Results 

TMT-SPS-MS3 analysis for quantitative profiling of prostate tissue specimens 

The TMT-SPS-MS3 method was applied to quantitatively compare the proteomes across the 27 OCT-

embedded prostate tissue samples, followed by differential expression and co-regulation analyses to 

identify in vivo deregulated protein complexes (Fig. 1). The specimens were divided into three risk groups 

according to the prostatectomy Gleason scores, including normal prostate (abbreviated as N, n=9), low-

grade PCa (LG, n=9), and high-grade PCa (HG, n=9). Of note, the Gleason score (on a scale of 6 to 10) is 

one of the most commonly used systems for evaluating the aggressiveness of primary PCa, and a higher 

Gleason score is generally associated with a worse prognosis [41,42]. 

 

Identification and analysis of DEPs 

After TMT-SPS-MS3 analysis, database searching, and protein identification filtering, a total of 5,562 

protein groups were identified with an FDR of ≤1%. Among these, 5,297, 4,662, and 3,642 protein groups 

were quantified in at least one, two, and three TMT sets, respectively (Fig. S1 and Table S2). The 3,642 

protein groups that were quantified across all the 27 samples were used for the following statistical and 

bioinformatic analyses. 

 

Quantified profiles were examined degree of variation between samples for quality assessment using 

superHirn [35], and samples with high degree of between-sample variation were removed prior to further 

statistical analysis (Fig. S2). For the remaining 24 samples (n=8 for each group), after Student’s t test 

(two-tailed) and multiple comparison correction, the cutoffs of q < 0.05 and log2-ratios of > 0.5 in 

absolute value were applied to identify DEPs (Table S3). A total of 197 DEPs, including 143 

downregulated and 54 upregulated proteins, were identified in LG samples in comparison to the N 

samples (Fig. 2A and Table S4). Of these, MAM domain-containing protein 2 (MAMDC2) and pyrroline-

5-carboxylate reductase 1 (PYCR1) were the most dramatically downregulated and upregulated proteins, 
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respectively (Fig. 2A, lower panel). In HG samples (versus N samples), a total of 309 DEPs (215 

downregulated and 94 upregulated) were identified, among which glutathione S-transferase mu 1 

(GSTM1) and spondin-2 (SPON2) were the most remarkably downregulated and upregulated proteins, 

respectively (Fig. 3B and Table S4). In comparison, the proteomic difference between LG and HG 

samples was small ― only 33 DEPs (29 downregulated and 4 upregulated in HG, compared with LG) 

were identified, of which ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 (CD38) and decaprenyl 

diphosphate synthase subunit 2 (PDSS2) were the most substantially downregulated and upregulated 

proteins, respectively (Fig. 3C and Table S5).  

 

A comparison of the 197 DEPs in the LG (vs N) group and the 309 DEPs in the HG (vs N) group 

suggested that 115 DEPs are shared by the two groups, whereas 82 and 194 are unique to the LG and HG 

groups, respectively (Fig. 3A and Table S4). Interestingly, most of the 194 DEPs unique to the HG group 

were also differentially expressed in the LG group, albeit to a lesser degree (with log2-ratios of -0.5 to 0.5) 

(Fig. 3B, red circles). Similarly, most of the 115 shared DEPs were less changed in the LG group than in 

the HG group (Fig. 3B, black “x”s). Collectively, the findings suggest that, compared with normal 

prostate, most protein expression level changes that are statistically significant in high-grade PCa were 

already present in low-grade PCa samples, although the extent is less pronounced. In contrast, most of the 

82 DEPs unique to the LG group were less markedly changed in the HG group (Fig. 3B, orange triangles). 

Intriguingly, DAVID analysis of the 82 LG-only DEPs revealed a highly significant over-representation 

of extracellular exosomes (53 proteins, p = 2E-24) (Table S6), suggesting the possibility of differential 

exosome biogenesis and/or shedding in the two groups. 

 

To determine whether the DEPs may interact with each other and form protein complexes, IPA was 

applied to reconstruct networks of proteins with direct PPI evidence that was experimentally obtained. In 

the LG group (vs N), only 13 out of the 54 (24%) upregulated DEPs form three small PPI networks, but 

92 out of the 143 (64%) downregulated DEPs form a large PPI network (Fig. 3C). In comparison, in the 
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HG group (vs N), 58 out of the 94 (62%) upregulated DEPs form a large upregulated PPI network, and 

157 out of the 215 (73%) downregulated DEPs form a large downregulated PPI network (Fig. 3D). 

Notably, the upregulated protein subnetworks are almost exclusively localized in cytoplasm and nucleus, 

whereas the downregulated protein subnetworks are mainly localized in extracellular space, plasma 

membrane, and cytoplasm. 

 

Identification of differentially expressed CORUM protein complexes 

The CORUM database is a manually curated repository of experimentally characterized protein 

complexes from mammalian organisms, especially human [43]. To identify specific protein complexes 

that are deregulated in primary PCa, the 3,642 quantified protein groups were mapped to the CORUM 

database. A total of 179 protein complexes were found to contain at least five proteins in each complex, 

and they were selected for further analysis (Table S7). To identify differentially expressed CORUM 

protein complexes, the log2-ratios of proteins in each complex were averaged for each tissue sample, 

followed by Student’s t test for the comparison of LG vs N groups and of HG vs N groups. After applying 

the cutoffs of p < 0.05 and the log2-ratios of > 0.3 in absolute value, six complexes (four up and two down) 

were found to be differentially expressed in the LG group (vs N), and 11 complexes (eight up and three 

down) were differentially expressed in the HG group (vs N) (Fig. 5A, Fig. 5B, and Table S8). Of note, the 

six complexes found in the LG group are a part of the 11 complexes found in the HG group (Fig. 5B). 

 

The most upregulated protein complexes are mitochondrial ribosomes, including the entire 55S ribosome 

as well as the 39S large subunit and the 28S small subunit (Fig. 5B-5D). Other overexpressed protein 

complexes include two protein complexes involved in ribosome biogenesis (i.e., the fibrillarin-associated 

protein complex and the Nop56p-associated pre-rRNA complex), a complex involved in RNA splicing 

(the SRm160/300 splicing coactivator complex), and the cytoplasmic ribosomes (the entire ribosome and 

the 60S ribosomal subunit). The most downmodulated protein complex is the ITGA6-ITGB4-

Laminin10/12 complex, an integrin-laminin complex important for cell-matrix adhesion (Fig. 5B-5D). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 18, 2018. ; https://doi.org/10.1101/447375doi: bioRxiv preprint 

https://doi.org/10.1101/447375


The other downregulated complexes include the Polycystin-1 multiprotein complex, which plays a key 

role in focal adhesion, and the P2X7 receptor signaling complex. 

 

Identification of differentially regulated CORUM protein complexes 

Protein-protein associations are essential for the assembly of functional protein complexes. Recent studies 

provided compelling evidence that co-regulation analysis of protein pairs permits the analysis of protein-

protein associations with high accuracy [24,38]. To identify differentially associated/assembled protein 

complexes in vivo, differential co-regulation analysis was performed for the aforementioned 179 CORUM 

complexes.  

 

Firstly, for each CORUM complex, the Spearman correlation of each protein pair was computed and then 

converted into a z score to stabilize the variance [39,40]. For instance, the DNA-PK-Ku-eIF2-NF90-NF45 

complex, which plays a critical role in DNA double-strand break repair, is formed after the Ku 

heterodimer binds to a suitable DNA end [44,45]. As expected, the XRCC5 and XRCC6 proteins ― 

subunits of the stable Ku heterodimer [45] ― have high Spearman’s Rho values and z scores in all the N, 

LG, and HG groups (Fig. 5A, upper panel). In comparison, the ILF2 and XRCC5 protein pair has low 

Spearman’s Rho and z score in the N group but has high values in the LG and HG groups (Fig. 5A, lower 

panel). This suggests increased protein-protein association between ILF2 and XRCC5 in the LG and HG 

groups, compared with the N group. A heatmap visualization of the z scores of all protein pairs within the 

complex showed that most protein pairs have higher z scores in the LG and HG groups than in the N 

group (Fig. 5B). This indicates that more DNA-PK-Ku-eIF2-NF90-NF45 complexes may be assembled in 

PCa cells than in normal prostate cells, probably in response to higher DNA damage in cancer cells.  

 

Secondly, to statistically compare the assembly levels of each CORUM protein complex across the three 

groups, the z scores for all protein pairs within a complex were averaged and the mean z scores were used 

to estimate the assembly levels of the protein complexes. As shown in Fig. 6A, the mean z scores of all 
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the 179 protein complexes in the N group roughly follow a normal distribution. In comparison, both the 

LG and HG groups have shoulder peaks on the right side, suggesting that certain protein complexes may 

have stronger protein-protein associations (i.e., higher assembly levels) in the LG and/or HG groups than 

in the N group. Furthermore, a heatmap analysis showed that the protein complexes changed in the LG 

group are mostly different from those changed in the HG group, in comparison to the N group (Fig. 6B). 

 

Thirdly, for each CORUM protein complex, the distribution of 10,000 random mean z score differences 

was plotted, and the p value corresponding to an observed difference of mean z score between two groups 

was calculated. For example, for the DNA-PK-Ku-eIF2-NF90-NF45 complex, the 10,000 random mean z 

score differences follow a normal distribution (mean = 0, s.d. = 0.228). Therefore, the observed mean z 

score difference of 0.98 between the N and LG groups corresponds to p = 0.002 (Fig. 6C).  

 

Finally, applying the cutoffs of p < 0.05 and mean z score difference of > 0.5 in absolute value, 38 (34 up 

and 4 down) and 16 (15 up and 1 down) protein complexes were found to be differentially assembled in 

the LG and HG groups, respectively, compared with the N group (Fig. 6D and Table S9). Notably, nearly 

all of the differentially assembled protein complexes are not significantly differentially expressed (Table 

S9 versus Fig. 4B). After the removal of redundancy (i.e., protein complexes comprising the same set of 

quantified proteins), 30 (27 up and 3 down) and 14 (13 up and 1 down) protein complexes were 

differentially assembled in the LG and HG groups, respectively (Table 1). Intriguingly, the protein 

complexes with increased assembly levels in the LG group (vs N) are mainly nuclear protein complexes, 

including those involved in chromatin remodeling, DNA damage response, as well as RNA synthesis and 

processing (Table 1 and Fig. S3). In comparison, the protein complexes with increased assembly levels in 

the HG group (vs N) are mainly subcomplexes of mitochondrial complex I (NADH-ubiquinone 

oxidoreductase) and Nucleosome Remodeling Deacetylase (NuRD) complex (Table 1).  
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Discussion 

Proteins differentially expressed in PCa versus normal prostate tissue 

In this study, nearly 400 proteins were found to be differentially expressed between PCa and normal 

prostate tissue. In comparison, only 33 proteins were differentially expressed between low-grade and 

high-grade PCa specimens, even though the two groups have very different patient outcomes [41,42]. 

Nevertheless, this is consistent with the finding of another global proteomic study of primary PCa tissue 

samples, which showed that only a small number of proteins were differentially expressed between low-

risk and high-risk PCa groups [10]. It remains enigmatic how the modest proteomic changes lead to 

different PCa aggressiveness and distinct patient outcomes. However, it is possible that only a small 

subpopulation of PCa cells (e.g., PCa stem cells) are responsible for PCa metastasis and drug resistance. 

These cells might have more profound proteomic changes than the bulk of PCa cells in high-grade PCa, in 

comparison to PCa cells in low-grade PCa. 

 

Compared with normal prostate, the most remarkably up- and down-regulated proteins in low-grade PCa 

were identified as PYCR1 and MAMDC2, respectively. PYCR1 is a metabolic enzyme that catalyzes the 

NAD(P)H-dependent conversion of pyrroline-5-carboxylate to proline [46]. Previous studies showed that 

1) compared with normal prostate, PYCR1 was significantly upregulated in PCa at both mRNA and 

protein levels, 2) the expression levels of PYCR1 were significantly associated with Gleason scores, and 

3) PYCR1 is involved in PCa cell proliferation and colony formation [47,48]. MAMDC2 is a poorly 

characterized proteoglycan containing four MAM domains, which are commonly found in surface 

receptors [49]. To our knowledge, no other studies reported that MAMDC2 was remarkably 

downregulated in low-grade PCa, compared with normal prostate. 

 

Compared with normal prostate, the most dramatically up- and down-regulated proteins in high-grade 

PCa were identified as SPON2 and GSTM1, respectively. SPON2 is an extracellular matrix (ECM) 
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protein belonging to the F-Spondin family. It was found to be a candidate serum and histological 

diagnostic biomarker for PCa and a candidate prognostic biomarker for colorectal cancer [50–53]. 

GSTM1 encodes a mu class cytoplasmic glutathione-S-transferase, which functions in cellular 

detoxification of many carcinogens. A recent meta-analysis suggested that GSTM1 deletion was 

significantly associated with PCa in overall, Asian, Eurasian, and American populations [54]. 

 

Compared with low-grade PCa, the most notably up- and down-regulated proteins in high-grade PCa 

were identified as PDSS2 and CD38, respectively. PDSS2, an enzyme that synthesizes the prenyl side-

chain of coenzyme Q, was included in the Promark panel for the prediction of PCa aggressiveness and 

lethality [55,56]. CD38, a cyclic ADP-ribose synthase, is the main NAD’ase in cells. Recent studies 

indicated that 1) decreased expression of CD38 in luminal progenitor cells can initiate PCa and is linked 

to lower overall survival, 2) CD38 expression inversely correlates with PCa progression, and 3) CD38 

inhibits PCa proliferation by reducing cellular NAD+ pools [57,58]. 

 

The putative PPI networks of DEPs 

The present study revealed that, compared with normal prostate, both low-grade and high-grade PCa have 

decreased expression of many ECM and plasma membrane proteins, which form large putative PPI 

networks. The ECM remodeling is probably due to increased proteolysis by matrix metalloproteinases 

and extracellular vesicles [59]. The most striking difference between low-grade and high-grade PCa is 

that only small PPI networks were more abundant in the former group, whereas a large PPI network was 

upregulated in the latter group. It suggests that high-grade PCa cells may potentially coordinate different 

protein complexes to achieve higher aggressiveness.  

 

Differentially expressed CORUM protein complexes 

A prominent finding is the over-production of mitochondrial ribosomes in low-grade PCa and, to a greater 

extent, in high-grade PCa, compared with normal prostate. To our knowledge, the over-production of 
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mitochondrial ribosomes in primary PCa has not yet been reported, although Iglesias-Gato et al. recently 

showed that mitochondrial protein content was upregulated in primary PCa and a subset of metastatic PCa 

[10,14]. In human cells, mitochondrial ribosomes synthesize proteins encoded by 13 mitochondrial DNA-

encoded genes. Recent studies suggested reduced mitochondrial DNA content in PCa [60,61], so it is 

possible that PCa cells overexpress mitochondrial ribosomes to compensate the decrease of mitochondrial 

DNA content.  

 

In addition, protein complexes related to ribosome biogenesis as well as cytoplasmic ribosomes were 

found to be overexpressed in high-grade PCa. This is consistent with previous findings that neoplastic 

prostate cells are characterized by enlarged, prominent nucleoli, and that nucleolar number and size are 

positively correlated with PCa malignancy [62].  

 

Differentially regulated protein complexes 

The protein co-regulation analysis revealed that the assembly levels of the DNA-PK-Ku-eIF2-NF90-

NF45 complex and three subcomplexes of the chromatin remodeling NuRD complex were significantly 

increased in both low-grade and high-grade PCa, compared with normal prostate. Notably, these 

complexes play crucial roles in DNA damage repair [44,45,63]. The increased assembly levels of the 

complex may reflect higher genotoxic stress, which results in genome instability, in PCa cells than in 

normal prostate cells. 

 

The co-regulation analysis also showed that the assembly levels of many nuclear complexes, especially 

those involved in RNA transcription and processing, are significantly increased in low-grade PCa but not 

in high-grade PCa, compared with normal prostate. It is unclear why their assembly levels in high-grade 

PCa did not reach the levels in low-grade PCa. One possibility is that high-grade PCa samples are more 

heterogenous and a subset is not dependent on increased assembly of these nuclear complexes. 
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The most prominent complexes with higher assembly levels in high-grade PCa, compared with normal 

prostate and low-grade PCa, are mitochondrial complex I and its subcomplexes (Table 1). As the largest 

complex of the mitochondrial electron transport chain, mitochondrial complex I contributes ~40% of the 

proton motive force required for mitochondrial ATP synthesis [64]. Moreover, via modulating the 

NAD+/NADH ratio, mitochondrial complex I controls the synthesis of aspartate, a precursor of purine 

and pyrimidine synthesis. Although still controversial, epidemiological studies demonstrated that 

Metformin, a mitochondrial complex I inhibitor, reduces incidence and mortality of PCa patients [65]. It 

is possible that a combination of Metformin with androgen deprivation therapy may particularly benefit 

PCa patients with higher assembly levels of mitochondrial complex I in PCa cells. 

 

Limitations 

Similar to all other comprehensive proteomic studies of prostate tissue specimens, the sample size in this 

study is relatively small. In addition, other categories of prostate tissue specimens, such as those of benign 

prostatic hyperplasia, PCa with Gleason scores of 7, and more importantly metastatic PCa, were not 

investigated. Nonetheless, larger-scale analysis of prostate tissue specimens in the near future will clarify 

the landscape of global protein complex changes during PCa development and progression, leading to the 

discovery of novel biomarkers and drug targets for precision management of PCa patients. 
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Conclusions 

In summary, TMT-SPS-MS3 profiling of clinical prostate tissue specimens, followed by differential 

expression and co-regulation analyses, led to the discovery of protein complexes deregulated in primary 

PCa. Compared with normal prostate, low-grade PCa tissue samples have 1) more abundant 

mitochondrial ribosomes and nuclear fibrillarin (FIB)-associated protein complex, 2) higher assembly 

levels of some nuclear protein complexes such as those involved in chromatin remodeling, DNA damage 

response, RNA synthesis, and RNA processing, 3) decreased abundance of protein subnetworks localized 

in extracellular space, plasma membrane, and cytoplasm, as well as of two CORUM complexes, and 4) 

decreased assembly levels of three CORUM complexes. In addition, compared with normal prostate, 

high-grade PCa tissue samples have 1) more abundant cytoplasmic and nuclear protein subnetworks as 

well as mitochondrial ribosomes, cytosolic ribosomes, ribosome biogenesis-related protein complexes, 

and an RNA splicing-related complex, 2) increased assembly of mitochondrial complex I and NuRD 

complexes, 3) decreased abundance of protein subnetworks localized in extracellular space, plasma 

membrane, and cytoplasm as well as of three CORUM complexes, and 4) decreased assembly of the 

profilin 1 complex. To our knowledge, this study represents the first comprehensive analysis of protein 

complexes in PCa tissue specimens. It is expected to enhance our understanding of the changes of protein 

complexes along PCa progression and lead to the identification of novel biomarkers and therapeutic 

targets for precision management of PCa patients. 
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Table 1. Differentially regulated protein complexes identified by protein co-regulation analysis 

Name Annotation 
LG vs N HG vs N 

Diff_Z P Trend Diff_Z P Trend 

MeCP1 complex 
Chromatin remodeling (NuRD 

complex) 
0.59 0.044 Up 0.59 0.044 Up 

NRD complex (Nucleosome remodeling and 
deacetylation complex) 

Chromatin remodeling (NuRD 
complex) 

0.52 0.049 Up 0.65 0.014 Up 

Anti-HDAC2 complex 
Chromatin remodeling (NuRD 

complex) 
0.52 0.032 Up 0.58 0.016 Up 

Brg1-associated complex II 
Chromatin remodeling 
(SWI/SNF complex) 

0.65 0.016 Up -0.19 0.487  

DNA-PK-Ku-eIF2-NF90-NF45 complex DNA damage response 0.98 0.002 Up 0.94 0.003 Up 
Rap1 complex DNA damage response 0.90 0.015 Up 0.29 0.441  

SMN-PolII-RHA complex DNA transcription (PolII) 0.77 0.004 Up 0.35 0.183  
BRCA1-RNA polymerase II complex DNA transcription (PolII) 0.72 0.000 Up 0.18 0.355  

RNA polymerase II (RNAPII) DNA transcription (PolII) 0.57 0.008 Up 0.23 0.283  
Large Drosha complex Drosha-DGCR8 complex 0.83 0.003 Up 0.49 0.079  

DGCR8 multiprotein complex Drosha-DGCR8 complex 0.80 0.010 Up 0.40 0.194  

NuA4/Tip60 HAT complex 
Histone acetyltransferase 

complex 
0.55 0.036 Up 0.23 0.375  

SIN3-ING1b complex I Histone deacetylase complex 0.57 0.012 Up 0.07 0.769  
ITGA6-ITGB4-Laminin10/12 complex ITGA-Laminin complex 0.77 0.049 Up 1.22 0.002 Up 

Respiratory chain complex I (intermediate 
VII/650kD), mitochondrial 

Mitochondrial complex I-
related 

0.65 0.009 Up 0.64 0.010 Up 

Toposome Mitotic cell cycle 0.89 0.007 Up 0.13 0.685  
Polyadenylation complex (CSTF1, CSTF2, CSTF3, 

SYMPK CPSF1, CPSF2, CPSF3) 
mRNA 3'-end processing 0.66 0.019 Up 0.09 0.737  

C complex spliceosome Spliceosome-related 0.70 0.003 Up 0.27 0.254  
Exon junction complex Spliceosome-related 0.68 0.036 Up 0.51 0.114  

CDC5L complex Spliceosome-related 0.58 0.002 Up 0.22 0.240  
Spliceosome Spliceosome-related 0.55 0.006 Up 0.18 0.354  

SMN complex Spliceosome-related 0.50 0.009 Up -0.02 0.937  

12S U11 snRNP 
Spliceosome-related (Minor 

spliceosome) 
0.78 0.001 Up 0.02 0.946  

18S U11/U12 snRNP 
Spliceosome-related (Minor 

spliceosome) 
0.76 0.003 Up 0.15 0.557  

20S methylosome and RG-containing Sm protein 
complex 

Spliceosome-related (Sm 
proteins) 

0.76 0.013 Up -0.27 0.377  

6S methyltransferase and RG-containing Sm 
proteins complex 

Spliceosome-related (Sm 
proteins) 

0.71 0.005 Up 0.10 0.692  

17S U2 snRNP Spliceosome-related (U2) 0.73 0.002 Up 0.22 0.355  
CDCA5-PDS5A-RAD21-SMC1A-PDS5B-SMC3 

complex 
Mitotic cell cycle -0.72 0.042 Down -0.12 0.729  

Profilin 1 complex Profilin complex -0.54 0.003 Down -0.54 0.003 Down 
SMN containing complex Spliceosome-related -0.63 0.008 Down -0.42 0.077  

HDAC1-associated protein complex 
Chromatin remodelling 

(NuRD complex) 
0.50 0.069  0.60 0.029 Up 

Respiratory chain complex I (incomplete 
intermediate), mitochondrial 

Mitochondrial complex I-
related 

0.44 0.238  0.95 0.011 Up 

Respiratory chain complex I (lambda subunit) 
mitochondrial 

Mitochondrial complex I-
related 

0.22 0.450  0.83 0.004 Up 

Respiratory chain complex I (early intermediate 
NDUFAF1 assembly), mitochondrial 

Mitochondrial complex I-
related 

0.19 0.537  0.75 0.016 Up 

Respiratory chain complex I (holoenzyme), 
mitochondrial 

Mitochondrial complex I-
related 

0.01 0.959  0.56 0.023 Up 

CPSF6-ITCH-NUDT21-POLR2A-UBAP2L 
complex 

mRNA 3'-end processing 0.19 0.358  0.59 0.005 Up 

URI complex (Unconventional prefoldin RPB5 
Interactor) 

URI complex 0.35 0.137  0.66 0.004 Up 
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Figure 1 

 

 

Figure 1. Workflow for quantitative proteomic comparison of three groups of prostate tissue

specimens (i.e., normal control, low-grade PCa, and high-grade PCa) using TMT-SPS-MS3. A total

of 30 OCT-embedded prostate tissue samples were digested in parallel into tryptic peptides by FASP,

followed by chemical labeling with three sets of TMT10plex reagents. The three TMT126-labeled pooled

mixture samples (shown as blue circles) were mixed and then equally divided into three portions (shown

as blue circles divided into thirds). Differentially TMT-labeled peptide samples were mixed, and then

each TMT10plex mixture sample was fractionated into 72 fractions by high-pH RPLC and concatenated

into 24 fractions. Each fraction of peptides was analyzed by LC-SPS-MS3. The acquired 72 RAW files

were analyzed by MaxQuant to identify and quantify proteins. Proteins quantified across all the 30

samples were used for differential expression and co-regulation analyses to identify in vivo deregulated

protein complexes. 
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Figure 2 

 

Figure 2.  Identification of DEPs between (A) N vs LG, (B) N vs HG, and (C) LG vs HG. The upper

panel shows the volcano plots of all the 3,642 quantified protein groups, and the lower panel shows the

boxplots for the most remarkably changed proteins in each comparison. Here, the abbreviations DEP, N,

LG, and HG stand for differentially expressed proteins, normal, low-grade, and high-grade, respectively. 

 

er 

he 

N, 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 18, 2018. ; https://doi.org/10.1101/447375doi: bioRxiv preprint 

https://doi.org/10.1101/447375


Figure 3 
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Figure 3. Comparison of protein groups differentially expressed in LG and HG PCa, compared 

with N samples. (A) Venn diagram of protein groups differentially expressed in LG and HG PCa, 

compared with N samples. A total of 82 DEPs were LG only, 194 were HG only, and 115 were shared by 

both LG and HG. (B) Scatter plot for the comparison of log2(LG/N) and log2(HG/N) ratios for the 82 LG-

only, 115 shared, and 194 HG-only DEPs. The cyan shade covers the area where the absolute values of 

log2(LG/N) are less than those of log2(HG/N), i.e., the changes in the LG group are less remarkable than 

those in the HG group. (C) Putative networks of direct PPIs for proteins significantly upregulated (left) or 

downregulated (right) in LG PCa, compared with N samples. The four subcellular localization layers are 

extracellular space, plasma membrane, cytoplasm, and nucleus (from top to bottom). (D) Putative 

networks of direct PPIs for proteins significantly upregulated (left) or downregulated (right) in HG PCa, 

compared with N samples.  
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Figure 4 

 

 

Figure 4. CORUM protein complexes differentially expressed in LG and HG PCa, compared with 

N samples. (A) Volcano plot showing log2-transformed fold changes plotted against negative log10-

transformed p values for the 179 CORUM protein complexes. (B) List of protein complexes significantly 

(p < 0.05, indicated by *) up- or down-regulated in LG and/or HG PCa, compared with N samples. (C) 

Boxplots showing the differential expression of the ITGA6-ITGB4-Laminin10/12 complex and the 39S 

Mitochondrial Ribosomal Subunit, which are the most remarkably downregulated and upregulated in HG 

PCa (vs N), respectively. (D) Direct PPI networks of quantified proteins belonging to the ITGA6-ITGB4-

Laminin10/12 complex (left) and the 39S Mitochondrial Ribosomal Subunit (right). The numbers under 

gene names indicate the log2(HG/N) ratios.  
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Figure 5 

 

 

Figure 5. A representative example showing the differences of specific protein pairs in the DNA-

PK-Ku-eIF2-NF90-NF45 protein complex across the three sample groups. (A) Scatter plots showing 

the Spearman’s Rho of XRCC6 plotted against that of XRCC5 (upper panel) as well as the Spearman’s 

Rho of ILF2 plotted against that of XRCC5 (lower panel) in the N, LG, and HG groups (from left to 

right). (B) Heatmap of z scores of all protein pairs (excluding self-pairs) within the DNA-PK-Ku-eIF2-

NF90-NF45 protein complex. 
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Figure 6 

 

Figure 6. Identification of differentially associated CORUM protein complexes. (A) Density plot of 

the mean z scores for the 179 CORUM protein complexes in N, LG, and HG samples. (B) Heatmap of the 

mean z scores for the 179 CORUM protein complexes in N, LG, and HG specimens. (C) A representative 

example for the determination of p value corresponding to an observed mean z score difference. The peak 

shows the distribution of 10,000 mean z score differences between two sets of eight randomly selected 

samples. (D) Volcano plot showing mean z score differences plotted against negative log10-transformed p 

values for the 179 CORUM protein complexes. 
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