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Patterns of amino acid covariation in large protein sequence align-
ments can inform the prediction of de novo protein structures, bind-
ing interfaces, and mutational effects. While algorithms that de-
tect these so-called evolutionary couplings between residues have
proven useful for practical applications, less is known about how
and why these methods perform so well, and what insights into bio-
logical processes can be gained from their application. Researchers
frequently benchmark the performance of evolutionary coupling al-
gorithms by comparing results with true structural contacts that are
derived from solved protein structures. However, the method used to
determine true structural contacts is not standardized and different
definitions of structural contacts may have important consequences
for comparing methods and understanding their overall utility. Here,
we show that structural contacts between side-chain atoms are sig-
nificantly more likely to be identified by evolutionary coupling analy-
ses compared with backbone-based interactions. We use both simu-
lation and empirical analyses to highlight that backbone-based defi-
nitions of true residue-residue contacts may underestimate the accu-
racy of evolutionary coupling algorithms by as much as 40%. These
findings suggest that more advanced machine learning and neural
network models developed to predict residue-residue contacts may
be hindered by the use of mislabeled true positive training data.
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A long-standing problem in biology is to predict the struc-1

ture of a protein based solely on its primary amino acid2

sequence (1–3). Despite advances in x-ray crystallography,3

NMR spectroscopy, and cryo-electron microscopy, the pace4

at which researchers are accumulating new genomes and gene5

sequences far out strips the ability of traditional biophysical6

methods to describe these genomes at the level of 3D-structure7

(4–7). A variety of computational methods–such as homology8

modeling (8, 9)–have been developed to support traditional9

biophysical methods, but de novo structural determination10

from primary sequence information alone remains elusive for11

all but the smallest proteins.12

In recent years, however, computational researchers have13

made substantial improvements to de novo structural deter-14

mination by leveraging co-evolutionary information contained15

within large sequence databases (10–13). Residues that co-16

evolve with one another across time may do so as a result of17

their spatial proximity with protein structures–i.e. mutations18

to an individual residue may be compensated for by subse-19

quent mutations to other directly interacting residues(14–16).20

By determining an ‘evolutionary coupling’ score for all pairs21

of amino acid residues within a structure–and assuming that22

the highest-scoring residue-residue pairs are in close spatial23

proximity–researchers can constrain the search space of pro-24

tein folding methods and accurately predict 3D-structures25

(10, 17, 18). Other applications have used evolutionary cou-26

pling scores to predict protein binding partners and interfaces27

(19, 20), as well as to predict the effect of mutations on pro- 28

tein stability and function (21). Many of these applications 29

have been further been improved through the use of machine 30

learning (22–24) and deep neural networks that leverage evolu- 31

tionary couplings along-side numerous other protein features 32

(25–36). 33

Despite the progress that has been made in this field– 34

spurred by the development of so-called Direct Coupling Anal- 35

yses and related methods–there are a number of known limita- 36

tions to current methods for computing evolutionary couplings 37

(37–40). Perhaps most importantly is a requirement for vast 38

numbers of sequence homologs (18). Additionally, the evo- 39

lutionary relatedness of sequences and the heterogeneity of 40

substitution rates across sites may impose further constraints 41

on the overall identifiability of evolutionary couplings. Finally, 42

the more distantly related a given homolog is to the target 43

structure, the more likely it is that there will be actual struc- 44

tural differences between molecules making the designation of 45

a protein family based solely on sequence homology potentially 46

problematic. 47

As researchers develop and refine algorithms to better pre- 48

dict evolutionary couplings from large multiple sequence align- 49

ments, a common work-flow is to benchmark methods against 50

known protein structures to determine thee accuracy of residue- 51

residue contact predictions (41, 42). The large number of 52

protein structures that have been solved at atomic resolution 53

provides a training data set where intra-molecular contacts 54

are known (7). However, even the most high-resolution crys- 55

tal structures of proteins require researchers to extrapolate 56
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Fig. 1. Constructing contact maps from protein structures. (A) An example structure
(PDB:1AOE). (B) A symmetrical distance matrix between all pairs of amino acid
residues measured from each residues Cα atom. (C) Medium- to long-range contacts
(> 12 residues apart) are identified using an 8Å cutoff (dark blue). (D) and (E) Same
methodology as depicted in (B) and (C), using the geometric center of each residues
side-chain as a reference point for measuring distances.

from the location of particular atoms and residues to classify57

residue-residue ‘bonds’ or ‘contacts’ (43–46). A commonly58

used hueristic is to determine that any amino acid residue59

that lies within some pre-defined physical distance–frequently60

8Å–of another amino acid residue is said to be in structural61

‘contact’ (10).62

Some current applications of evolutionary coupling analyses63

use Cα atoms as a reference point for determining residue-64

residue distances while others use Cβ or other complex meth-65

ods such as the minimum distance between heavy atoms be-66

tween two residues (18). Prior research has shown that the67

number of residue-residue contacts identified via side-chain68

centers is more closely related to evolutionary rates than sim-69

ilar metrics derived from Cα atoms (47–49). However, the70

consequences of choosing different reference points to deter-71

mine the accuracy of modern evolutionary coupling approaches72

is unknown.73

Currently, there are no accepted standards in the field for74

how to determine a network of residue-residue contacts for a75

given protein structure. Further, there has yet to be a system-76

atic analysis of whether co-evolutionary signatures are more-77

or less-closely related to different types of intra-molecular con-78

tacts that may exist within a protein structure. Here, we79

systematically test the the accuracy of several evolutionary80

coupling algorithms against true positive contacts defined via81

Cα, Cβ, or side-chain geometric centers. We find that residue-82

residue contacts defined according to the distances between83

side-chain centers are much more accurately predicted by evo-84

lutionary couplings. These results imply that the dominant85

epistatic effects resulting in co-evolutionary signatures arise86

from side-chain::side-chain interactions. Our findings highlight87

the importance of the choice of contact-definition and provide88

insight into the constraints governing the evolution of protein89

structures.90

Results91

Structural contact definitions. Putatively true interactions be-92

tween amino acid residues within a given protein are frequently93

derived from the distance between residues in known protein94

structures. Figure 1 depicts an example protein structure95

(PDB:1AOE) as well as a symmetric matrix depicting all96

residue-residue contact distances (in angstroms, Å) defined 97

according to the distance between the Cα atoms of individual 98

residues. By convention, we define true contacts as residue- 99

residue pairs that are less than 8Å apart. We further note 100

that, for most applications, the most structurally interesting 101

contacts are mid- to long-range, which we define here as amino 102

acid pairs separated by a primary chain distance of at least 12 103

residues (Fig. 1B,C). We only consider this subset of possible 104

contacts for the remainder of this manuscript. 105

Many researchers have noted that the distance between 106

amino acid residues need not be defined by Cα atom-based 107

distances, and many applications rely on Cβ atoms (43–46). 108

A logical question is whether using different reference points 109

to define contacts matters in practice. To compare the con- 110

sequences of choosing different reference points, we define all 111

residue-residue contacts according to the 8Å, Cα atom-based 112

distance threshold for a given protein. Next, we use the same 113

absolute number of contacts to determine a comparable dis- 114

tance threshold (specific to each protein) to use for both Cβ 115

atom and side-chain center based distances such that an equal 116

number of putatively true contacts are identified regardless 117

of the distance metric employed (SI Fig. S1). Although the 118

distance matrices look similar for an example protein when cal- 119

culated via Cα atoms or side-chain centers (Fig. 1B compared 120

to D), the resulting maps of residue-residue contacts show 121

considerable heterogeneity (Fig. 1C compared to E). More 122

quantitatively, the set of all residue-residue distances mea- 123

sured by either Cα atoms, Cβ atoms, or side-chain centers are 124

highly correlated with one another (Fig. 2A (left), SI Fig. S2). 125

However, this strong overall correlation obscures important 126

differences in contact definitions which we observe when focus- 127

ing within the narrow region where direct amino acid residue 128

contacts are defined (Fig. 2A (right), SI Fig. S2). For 1AOE, 129
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Fig. 2. Relationship between different contact identification methods. (A) Correlation
between residue-residue distances in PDB:1AOE measured according to Cα atoms
and side-chain centers (left). A zoomed in view (right) highlights variably defined
residue-residue contacts indicated by the various colors. (B) Distribution of Spear-
man’s correlation coefficient values (ρ) between residue-residue distances for 150
different proteins. (C) Distribution of the percent agreement for contact definitions for
the same set of proteins. (SI Fig.S2 shows a comparable comparison between Cβ
and side-chain center-based distances.)
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we identified a total of 295 contacts according to the 8Å Cα130

atom-based distance threshold. Of the shortest 295 contact131

distances identified via side-chain centers–corresponding to132

a distance threshold of 7.33Å for this protein–the percent of133

residue-residue pairs that appear in both definitions is only134

56% (78% for Cα compared to Cβ and 76% for Cβ compared135

to side-chain centers).136

To assess the generality of these findings, we applied this137

analysis to a commonly used benchmark set of 150 proteins138

(23, 34, 38). Across all of these proteins, we observed a median139

correlation of 0.97 between residue-residue distances calculated140

via Cα atoms and side-chain centers (Fig. 2B) and a median141

overlap of 63% between contacts defined via Cα and side-chain142

centers (Fig. 2C). Cα- and Cβ-based definitions, as well as143

Cβ- and side-chain center-based definitions, both had median144

overlaps of 78% (SI Fig. S2). Together, these results highlight145

that true contacts vary substantially according to the reference146

point used to measure residue-residue distances.147

Simulation analyses. While the previous analysis of empirical148

structures shows that the choice of reference point has impor-149

tant consequences for true contact identification, it is not clear150

which of the different methods is more biologically "correct"151

or practically meaningful. We thus turned our attention to a152

simplified biophysical system to test the ability of evolution-153

ary coupling analyses to recover intramolecular contacts. We154

used the ROSETTA modeling software (50–52) to perform155

all-atom evolutionary simulations of the evolutionary process156

(53, 54) while selecting for the maintenance of protein stability157

(expressed as a fraction of the initial PDB model stability).158

We simulated thousands of independent evolutionary trajecto-159

ries, and used the resulting amino acid sequences from these160

simulations to calculate evolutionary couplings. We used 3 sep-161

arate algorithms to calculate evolutionary couplings, but the162

main text results depict predictions using CCMpred. Within163

this defined system, we are able to remove the constraints of164

phylogenetic biases, limited data availability, homopolymeriza-165

tion, and changes in evolutionary pressures over time between166

species–all of which partially limit the power of algorithms to167

detect true evolutionary couplings in real data (55).168

We continued to use 1AOE as an example protein and varied169

several parameters of our simulation to ensure robust results.170

We defined true positive residue-residue contacts according171

to the original PDB structure using residue-residue distances172

calculated between different quantities for comparison (Cα, Cβ,173

and side-chain center). To assess the accuracy of evolutionary174

couplings, we determined the positive predictive value (PPV)175

of the top L/2 couplings—where L is the primary chain length176

of the protein under investigation. For Cα-based contact177

definitions, we found that the PPV increases rapidly according178

to the number of independent sequences that we simulated179

and consequently used as input for evolutionary coupling180

analyses (Fig. 3A). In each case, we ran these simulations181

until we accepted mutations totaling 10x the length of the182

protein sequence. However, regardless of the selection strength183

that we imposed on the sequence evolution (colored lines in184

Fig. 3A), PPV values plateaued at a value << 1 indicating185

that evolutionary couplings were failing to accurately capture186

protein contacts. By contrast, when we analyzed the same187

evolutionary coupling values but used side-chain center-based188

distances to define contacts we observed that PPV values189

approached 1 (representing perfect prediction accuracy for190
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Fig. 3. Comparing simulation-derived evolutionary couplings to different contact
definitions. (A) For each of 5 separate selection strengths (colored lines), we ran
simulations until a number of mutations totaling 10 times the length of the protein were
accumulated per replicate. We varied the number of independent replicate sequences
(x-axis) that were used as input for evolutionary coupling analysis, and found that
couplings fail to fully recover Cα defined contacts for PDB:1AOE. (B) By contrast,
contacts defined via side-chain centers are near-perfectly recovered across a range
of simulation parameters. (C) and (D) Similar to parts (A) and (B), but along the x-axis
we now show results from simulations where a different number of accepted mutations
were accumulated per sequence. We fixed the number of replicate sequences that
were simulated–and used for evolutionary coupling analysis–at 3,000 for each of these
data points. (Results comparing Cβ and side-chain center-based contact definitions,
can be found in SI Fig. S3.)

this subset of couplings) in almost all cases. 191

We additionally explored how the number of mutations 192

accumulated per sequence affected the ability of evolutionary 193

coupling algorithms to recover intramolecular contacts. We 194

fixed the number of replicate sequences at 3000, and observed 195

that PPV values showed minimal variation according to the 196

number of accepted mutations per sequence (Fig. 3C). As be- 197

fore, however, prediction accuracies were substantially higher 198

when we defined true contacts according to side-chain center 199

distances (Fig. 3D). 200

These simulation results highlight that–across numerous 201

parameter combinations–the top L/2 evolutionary couplings 202

were all true positive intramolecular contacts as long as true 203

positives were defined according to side-chain centers and not 204

Cα carbons. Additionally, we depict Cα and side-chain center 205

based methods here because they represent extreme ends of 206

the spectrum from backbone to side-chains. Cβ-based contact 207

definitions had intermediate accuracy, plateauing at higher 208

values than Cα but lower than side-chain center definitions 209

(SI Fig. S3). 210

Empirical analyses. To see how evolutionary couplings com- 211

pare to different definitions of true residue-residue contacts in 212

empirical data, we used PHMMER to identify sequence ho- 213

mologs for each of the 150 proteins (see Materials and Methods 214

for details). We assessed the relationship between evolutionary 215

couplings and structural contacts for all proteins by calculat- 216

ing the positive predictive value (PPV) of the highest L/2 217

couplings. 218

As expected, the PPV between the top L/2 evolutionary 219

couplings and Cα-based contacts varied substantially across 220

the 150 structures. This variation may result from a num- 221

ber of different effects, and we observed a clear and expected 222
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Fig. 4. Accuracy of evolutionary couplings derived from empirical alignments. (A)
For a diverse set of 150 proteins, the PPV of the top L/2 evolutionary coupling
scores–derived from empirical sequence alignments–is progressively higher when
intramolecular contacts are defined according to Cα atoms, Cβ atoms, and side-
chain centers. (*** indicates p < 10−20, Wilcoxon signed-rank test) (B) Scatter
plot of PPVs for each protein according to Cα and side-chain center-based contact
identification methods. (C) Histogram of the ratios from the data in (B) indicate that the
median percent increase in accuracy is 43%. (D) and (E) As in (B) and (C), comparing
Cβ and side-chain center-based contact identification methods. Results show a
median percent increase in contact identification accuracy of 13%. (Results for other
evolutionary coupling algorithm implementations can be found in SI Figs. S5 & S6.)

correlation between PPV values and the number of avail-223

able homologous sequences used to determine evolutionary224

couplings (SI Fig. S4). Despite the variability in prediction225

accuracy between proteins, we observed systematic variability226

in the PPV according to which metric was used to identify true227

positive contacts (Fig. 4A). When compared with Cα-based228

distances, residue-residue distances measured according to Cβ229

atoms resulted in significantly higher PPVs, and side-chain-230

based contact distances resulted in even further improvements.231

Further, the magnitude was substantial: across all 150 proteins232

the median percent increase in PPV between Cα- and side-233

chain center-based contact identification methods was 43%234

(Fig. 4B,C). Even between the more similar Cβ- and side-chain235

center-based methods, the median percent increase in accuracy236

was 13% (Fig. 4D,E). Both comparisons were highly signifi-237

cant and persisted across the entire range of PPVs represented238

within our dataset (Fig. 4B,D). Additionally, these results239

were highly consistent across different evolutionary coupling240

algorithms (SI Figs. S5 & S6).241

Side-chain orientation and evolutionary couplings. Using the242

exact same evolutionary couplings, the previous analyses have243

shown that PPVs are substantially higher when using side- 244

chain-based distances to identify true positive intramolecular 245

contacts compared with either Cα or Cβ-based distances. To 246

look more specifically at why these differences were so pro- 247

nounced, we decided to investigate the orientation of residue- 248

residue pairs identified by the various criteria. At a simple 249

level, any two residues can be in structural contact across 250

a number of orientations of their respective side-chains: i) 251

both residue’s side-chains may point towards one another 252

with the energetic interactions occurring through side-chain 253

atoms, ii) one residue’s side-chain may point towards the other 254

residue while that residue’s side-chain points away, or iii) both 255

residue’s side-chains may point away from one another with 256

energetic interactions occurring between the respective amino 257

acid backbones (Fig. 5A). As expected, when we look only at 258

residue-residue pairs that are defined as contacts via different 259

reference points, we see that side-chain based contact defini- 260

tions strongly enrich for cases where both side-chains point 261

towards one another in an example protein (Fig. 5B). 262

Across all 150 proteins in our dataset, we calculated the 263

fraction of all residue-residue pairs (regardless of whether 264

they are putative contacts, but subject to the same primary 265

chain distance constraints applied throughout this manuscript) 266

where both side-chains point towards one another and found 267

it to be relatively small (Fig. 5C, “All pairs”). However, this 268

fraction increases progressively when we limit our analysis to 269

the subset of residue-residue pairs identified as true contacts 270

for each protein according to Cα, Cβ and side-chain centers– 271

illustrating that the trend observed in (Fig. 5B) applies broadly. 272

If instead we only look at the top-ranked evolutionary cou- 273

plings (ignoring whether or not the residue-residue pairs are 274

putatively true structural contacts), we observe that a large 275

fraction of the strongest identified evolutionary couplings are 276

between residues that point towards one another in the refer- 277

ence protein structure. Additionally, this fraction is highest 278

for the most highly ranked evolutionary couplings and is sub- 279

stantially higher than the proportion identified by Cα-based 280

distances. 281

To further illustrate this point, we turned to an alternative 282

method for determining intramolecular contacts that we have 283

not yet systematically explored: determining structural con- 284

tacts based on the minimum distance between any two heavy 285

atoms for each residue-residue pair. We implemented two 286

versions of this algorithm, determining the minimum distance 287

between: i) all heavy atoms within residues and ii) side-chain 288

heavy atoms only. In each case, and to facilitate comparison 289

between methods, we again selected the shortest X distances 290

as contacts where X is the number of contacts identified for 291

each protein via the 8Å distance threshold using Cα. For 292

the set of 150 proteins, the resulting PPVs were significantly 293

higher when contacts were defined only according to side-chain 294

atoms as opposed to the complete set of backbone and side- 295

chain atoms (SI Fig. S7). Furthermore, PPVs calculated via 296

side-chain center distances were statistically indistinguishable 297

from PPVs derived from the minimum distance between all 298

heavy atoms within side-chains. 299

Taken together, our analysis of side-chain orientations and 300

our analysis of contacts identified via minimum atomic dis- 301

tances both highlight that evolutionary couplings frequently 302

occur between residues whose side-chains point towards one 303

another. Cα-(and to a lesser extent Cβ-) based contact defini- 304
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tions classify a smaller number of contacts in this orientation,305

and including backbone atoms in minimum-distance based306

contact identification methods actually decreases the accuracy307

of contact predictions based on evolutionary couplings.308

Discussion309

The co-evolutionary patterns of amino acid substitutions can310

provide important information about protein structures. There311

are a number of competing methods currently employed by312

different researchers to detect evolutionary couplings between313

residues, and the ability to recover true residue-residue con-314

tacts has been the primary metric used to assess performance315

of various methods. However, true structural contacts are316

ill-defined and variability in contact definitions can prohibit317

comparison between the efficacy of different methods, as well318

as obscure the biological interpretation of evolutionary con-319

straints. We show here that evolutionary couplings are signifi-320

cantly more accurate at detecting true residue-residue contacts321

based off of side-chain center distances. Critically, these find-322

ings provide important biological insight protein evolution and323

epistatic interactions between residues. Our model posits that324

although different types of interactions between amino acid325

residues may stabilize protein structures, evolutionary cou-326

plings predominantly consist of residues whose contact occurs327

via interactions between the side-chain atoms of both residues.328

Evolutionary couplings are themselves important, but more329

recently these values have been used as input into more ad-330

vanced machine learning and neural network-based algorithms331

that supplement evolutionary couplings with a variety of other332

information to predict intramolecular contacts. However, our333

analysis suggests that there may be biases in training data–334

essential to supervised learning techniques–based on how in-335
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residues may interact via: each residue’s side chain atoms (type i), the side-chain of
one residue and the backbone of the other (type ii), or the backbone atoms of each
residue (type iii). (B) For intramolecular contacts identified in PDB:1AOE, the relative
proportion of different interaction types varies according to contact identification
method. Residue-residue contacts defined via side-chain centers are enriched in
type i interactions (blue). (C) For 150 proteins, the fraction of residue-residue pairs
where the side-chains point towards one-another is highest in contacts defined via
side-chain centers (purple). Further, the top ranked evolutionary couplings (regardless
of whether they are defined as contacts) are progressively enriched in residue-residue
pairs where the side-chains point towards one another (yellow).

tramolecular contacts are defined; the definition of putatively 336

"true" structural contacts relies on the method used to cal- 337

culate residue-residue distances. We show that evolutionary 338

couplings more accurately predict side-chain center-based con- 339

tacts, and the strongest evolutionary couplings are consistently 340

enriched for residue-residue pairs where the side-chains are 341

oriented towards one-another. We speculate that accuracy 342

of supervised algorithms may be improved with more prop- 343

erly labeled training data that corresponds with these known 344

biophysical constraints. Alternatively, supervised learning al- 345

gorithms may be able to achieve even greater improvements in 346

accuracy by separating different types of residue-residue con- 347

tacts according to their atomic interactions, training separate 348

models to detect each type, and integrating the results. 349

A number of issues constrain the maximal accuracy that 350

can be expected from using evolutionary couplings alone to 351

predict contacts. Anischenko et al. (2017) illustrated that 352

many so-called false positive signals resulting from evolu- 353

tionary coupling analyses arise from repeat proteins, homo- 354

oligomerization, and structural variation within protein fam- 355

ilies (55). Here, we show that another source of false posi- 356

tive signals may simply be ill-defined true positive contacts. 357

Without changing anything about the way evolutionary cou- 358

plings are calculated, we show their accuracy at predicting 359

intramolecular contacts is progressively higher for different 360

contact-definitions. Further, the magnitude of this difference 361

is not trivial: across a diverse set of proteins we show that 362

side-chain center based contacts are predicted with a median 363

of 43% and 13% higher accuracy than comparable Cα and 364

Cβ based contacts. Thus a substantial number of false posi- 365

tive predictions made by evolutionary coupling analyses may 366

simply due to the false classification of true positives. 367

While improving contact identification methods is an impor- 368

tant practical result, our findings improve our understanding 369

of protein evolution by showing that side-chain interactions 370

are more important for governing epistasis between amino 371

acid residues within individual protein structures. Although 372

the overall structural geometry of a protein is dictated by the 373

shape of the protein backbone, consideration of side-chains 374

is critical for maintaining this geometry and determining the 375

co-evolutionary dynamics of substitutions. Our findings do not 376

suggest that intra-molecular contacts between the backbone 377

atoms of residues are not important for folding or stabilizing 378

protein structures. Rather, our results suggest that contacts 379

between backbone atoms are not likely to be detected by evo- 380

lutionary coupling analyses and imply that epistatis between 381

residues is largely governed by whether side-chain atoms are 382

in direct contact. 383

Direct coupling analyses and related methods have sig- 384

nificantly improved our ability to leverage the experiment 385

of natural sequence evolution for the purpose of predicting 386

important properties of proteins. While these methods con- 387

tinue to find novel applications, they are beginning to provide 388

mechanistic insight into the evolutionary process (56). Ulti- 389

mately, it may even be possible to incorporate more realistic 390

pair-wise interactions into models of sequence evolution and 391

inference, which are almost exclusively site-independent. Fur- 392

ther technical improvements, such as explicitly accounting 393

for the phylogenetic relatedness of sequences, may allow for 394

even more accurate inference of evolutionary couplings and 395

consequently insight into biological mechanisms. 396
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Materials and Methods397

Dataset compilation and processing. We downloaded the so-called398

PSICOV dataset of 150 proteins that have been extensively studied399

(23, 34, 38). We processed each starting “.PDB” file to select a single400

chain, ensure a consistent numbering of residues (1...n), test for401

unknown or non-standard residues, select the most likely state for all402

disordered sequence atoms, and remove all extraneous information403

(including “HETATM” lines). Next, to ensure that all residues404

were represented in full and repair those that were not, we used405

PYROSETTA to read in the “.PDB” files using the ‘pose_from_pdb’406

function and wrote the output as our final clean structure.407

Determining structural contacts and contact-types. From each408

cleaned “.PDB” file, we calculated residue-residue distance ma-409

trices using custom python scripts (the euclidean distance from410

3-dimensional atomic coordinates). All residues contain a Cα atom411

so this calculation was straightforward. For Cβ calculations, we412

used the Cβ atom of all residues except glycine, where we continued413

to use the Cα atom. For side-chain center calculations, we calcu-414

lated the geometric center of each residue based on the coordinates415

of all non-backbone heavy atoms. This calculation included Cβ416

atoms but excluded Cα atoms for all amino acids except glycine,417

where we continued to use Cα as the reference point.418

To calculate minimum atomic distances between two residues,419

we calculated all pairwise euclidean distances between heavy atoms420

and selected the minimum distance. In extending this analysis421

to only consider side-chain atoms, we continued to consider Cβ422

atoms as part of the side-chain but not Cα. Again, we relaxed423

this restriction for glycine and included Cα as a side-chain atom to424

permit calculations.425

For all methods, contacts were assessed by first removing all426

residue-residue pairs where the two residues were shorter than 12427

amino acids apart in primary chain distance. Contacts were deter-428

mined throughout this manuscript for each structure according to429

an 8Å cutoff between Cα atoms. Since accuracy values are par-430

tially dependent on the number of true positives that are called,431

we maintained a constant number of true positive contact classifi-432

cations throughout to facilitate comparison between methods. For433

each contact definition (Cβ, side-chain center, minimum atomic434

distances), we selected n residue-residue pairs with the shortest435

distances where n is the number of contacts defined according to436

the aforementioned Cα-based method.437

To classify residue-residue pairs (a and b) via their side-chain438

orientations, we chose a residue (a) and drew two vectors: i) from439

the Cα atom coordinate to the side-chain center for that residue and440

ii) from the Cα atom coordinate to the Cα atom coordinate for the441

other residue in question (b). If the angle between these two vectors442

was less than π/2 radians, the side-chain of residue a was said to443

point towards residue b. To determine the residues classification as444

in Fig.5A, we next repeated the calculation using residue b as the445

reference and classified the residue-residue pair accordingly.446

Evolutionary coupling algorithms. For each of the 150 proteins in our447

dataset, we followed a principled method to retrieve homologous448

sequences. We first extracted the primary amino acid sequence449

from the “.PDB” file. We next used PHMMER to search through450

progressively larger databases in order to retrieve up to 10,000451

homologous sequences. To do so, we downloaded local versions452

of the rp15, rp35, rp55, and rp75 databases. We first searched453

the smallest, least redundant, database for each sequence using an454

E-value threshold of 0.0001. For any sequence with greater than455

10,000 hits we stopped and selected the top scoring 10,000 hits456

for further analysis. For sequences with fewer than 10,000 hits457

we moved to the next largest database and repeated the process.458

Finally for the small number of sequences for which we did not459

accumulate at least 1,000 sequences in the largest database (rp75),460

we used the online version of PHMMER to search the UniprotKB461

database and downloaded the maximum results.462

For each protein, we next aligned the hits along-side the reference463

sequence using MAFFT (L-INS-i method with default parameters).464

Next, we cleaned these results to remove all columns that were465

gapped in the reference (“.PDB”) sequence. All other columns and466

sequences in the sequence alignments were retained regardless of467

gap coverage.468

Using these alignments, we next calculated evolutionary cou- 469

plings between residue-residue pairs. All results in the main 470

manuscript are displayed using CCMpred with default parameters 471

(0.8 local sequence re-weighting threshold, 0.2 pairwise regulariza- 472

tion coefficients, average product correction). We additionally used 473

the ‘plmc’ method from the EVcouplings framework with default 474

parameters (no average product correction) and PSICOV (default 475

parameters excepting: “-z 50 -r 0.001”) to ensure the robustness of 476

our findings. 477

Except where otherwise noted (Fig. 5), main text results (Fig. 3, 478

Fig. 4) were calculated using the top L/2 couplings for each protein 479

where L is the length of the reference amino acid sequence. Positive 480

Predictive Value (PPV) is calculated as the number of classified 481

contacts among these top couplings divided by the total number of 482

top couplings considered. 483

Evolutionary simulations. For the example protein used throughout 484

the text (PDB:1AOE) we performed mutation accumulation simu- 485

lations using PYROSETTA. We first read in the “.PDB” structure 486

(with di-sulfide bonds turned off), and minimized it so as to optimize 487

thermodynamic stability by rotamer selection and backbone move- 488

ments. We next fixed the backbone, and implemented an expedited 489

evolutionary algorithm to select amino acid point mutations (no 490

insertions or deletions were allowed) according to their predicted 491

impact on structural stability. At each step, we selected a random 492

amino acid position, and attempted to mutate it randomly to one 493

of the remaining 19 amino acids. We re-packed the structure within 494

a 12Å radius of the mutation and determined whether or not to 495

accept it based off of the resulting change in structural stability. 496

Mutations which either did not alter or which increased stability 497

(i.e. resulted in a decreased ∆G) were accepted. Mutations that 498

decreased stability were accepted with a probability proportional 499

to their ∆∆G as in Teufel and Wilke (2017). At the end of the 500

evolutionary process, the resulting amino acid sequence was stored 501

for future analysis. 502

We performed thousands of independent replicates of this expe- 503

dited evolutionary process where we altered the number of accepted 504

mutations that we accumulated, the number of replicate evolution- 505

ary experiments that we performed, and the fraction of the initial 506

wild-type stability value that we used for our selection criteria. Col- 507

lections of the resulting sequences were analyzed via evolutionary 508

coupling algorithms in the same manner as empirical sequences, 509

with no need for sequence alignment. 510

Data access. All code and data are currently being compiled and 511

edited. They will be made freely available at the following link: 512

https://github.com/adamhockenberry/side-chain-couplings which 513

will itself evolve throughout the submission process to reflect final 514

manuscript analyses. 515
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