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Abstract: 27 

Objective: Acute kidney injury (AKI) is highly prevalent in critically ill patients with sepsis. 28 

Sepsis-associated AKI is a heterogeneous clinical entity, and, like many complex syndromes, is 29 

composed of distinct subtypes. We aimed to agnostically identify AKI subphenotypes using 30 

machine learning techniques and routinely collected data in electronic health records (EHRs).  31 

Design: Cohort study utilizing the MIMIC-III Database.  32 

Setting: ICUs from tertiary care hospital in the U.S. 33 

Patients: Patients older than 18 years with sepsis and who developed AKI within 48 hours of 34 

ICU admission.  35 

Interventions: Unsupervised machine learning utilizing all available vital signs and laboratory 36 

measurements.  37 

Measurements and Main Results: We identified 1,865 patients with sepsis-associated AKI. 38 

Ten vital signs and 691 unique laboratory results were identified. After data processing and 39 

feature selection, 59 features, of which 28 were measures of intra-patient variability, remained 40 

for inclusion into an unsupervised machine-learning algorithm. We utilized k-means clustering 41 

with k ranging from 2 – 10; k=2 had the highest silhouette score (0.62). Cluster 1 had 1,358 42 

patients while Cluster 2 had 507 patients. There were no significant differences between 43 

clusters on age, race or gender. We found significant differences in comorbidities and small but 44 

significant differences in several laboratory variables (hematocrit, bicarbonate, albumin) and 45 

vital signs (systolic blood pressure and heart rate). In-hospital mortality was higher in cluster 2 46 

patients, 25% vs. 20%, p=0.008. Features with the largest differences between clusters 47 
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included variability in basophil and eosinophil counts, alanine aminotransferase levels and 48 

creatine kinase values.  49 

Conclusions: Utilizing routinely collected laboratory variables and vital signs in the EHR, we 50 

were able to identify two distinct subphenotypes of sepsis-associated AKI with different 51 

outcomes. Variability in laboratory variables, as opposed to their actual value, was more 52 

important for determination of subphenotypes. Our findings show the potential utility of 53 

unsupervised machine learning to better subtype AKI.  54 
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Introduction:  56 

 Acute kidney injury (AKI) occurs in up to a quarter of hospitalized patients and has been 57 

repeatedly shown to be associated with increased morbidity and mortality.(1–4) Sepsis is the 58 

most common cause of AKI in critically ill patients admitted to the intensive care units (ICU). It 59 

was initially thought that sepsis-associated AKI is due to systemic hypotension leading to a 60 

decrease in renal perfusion resulting in renal ischemia and acute tubular necrosis (ATN). 61 

However, there is growing evidence of different mechanisms of sepsis-associated AKI with 62 

potentially different clinical characteristics and outcomes.(5)  63 

Thus, AKI is not likely a single clinical entity, but likely a clinical syndrome comprised of 64 

several different subtypes. However, there has not been any investigation into identifying these 65 

subphenotypes, which are all labeled sepsis-associated AKI. Electronic health records (EHRs) 66 

especially in the ICU setting, collect thousands of data points per individual patient. While there 67 

have been previous studies showing that machine learning approaches using EHR data identify 68 

distinct subtypes in chronic disease, there have not been any studies in acute disease.(6)  69 

Our primary aim was to determine if we could identify subphenotypes of sepsis-70 

associated AKI utilizing measurements done as part of patients’ routine care outside of 71 

traditional features such as age, gender, race, and comorbidities. We sought to incorporate 72 

hundreds of data features collected routinely in the EHR using unsupervised machine learning 73 

to identify subphenotypes of AKI in patients admitted to the intensive care unit with sepsis and 74 

explore differences in patient outcomes between the clusters.  75 
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Methods:  77 

Study Population: 78 

 We utilized the Medical Information Mart for Intensive Care (MIMIC-III) database to 79 

identify patients with sepsis-induced AKI. MIMIC-III is a freely accessible critical care database 80 

of patients from a large, single center tertiary care hospital (Beth Israel Deaconess Medical 81 

Center in Boston, Massachusetts) from 2001 to 2012.(7) This database includes patient 82 

demographics, vital signs, laboratory results, billing codes, and notes. We included patients in 83 

the analyses if they had AKI within 48 hours of ICU admission as per Kidney Disease: Improving 84 

Global Outcomes (KDIGO) Guidelines.(8) We then defined sepsis with the Clinical Classification 85 

Software (CCS) which groups discharges into mutually exclusive categories utilizing 86 

International Classification of Diagnosis – Ninth Revision Codes (ICD-9).(9) We defined patient 87 

co-morbidities using the Elixhauser Comorbidity Software, which identifies comorbidities by 88 

grouping ICD-9-CM codes from hospital discharge records.(10) We excluded patients if they 89 

were less than 18 years old, admitted for ≤24 hours, end stage renal disease (ESRD), or 90 

missing vital signs. A study flow diagram is included in Supplemental Figure S1. As patients 91 

could be admitted several times during the 11 year period and develop AKI, we considered only 92 

the data from the first admission with AKI per person.  93 

Data Processing:  94 

 We utilized laboratory values and vital sign measurements to identify the clusters and 95 

considered all labs and vitals from admission to 48 hours after the diagnosis of AKI for inclusion. 96 

We excluded data features which were missing in > 70% of patients. As there are fundamental 97 

differences in the measurements of the laboratory tests and vital signs features, they were 98 

processed separately. For vital signs, we had a feature space of 30 (including median, SD and 99 

count). The laboratory results feature space was much larger with 691 unique features with at 100 

least one value. We removed the median features with >70% missing values; corresponding SD 101 
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and count were added later to the remaining lab features. For both class of features, we used k-102 

nearest neighbor (knn)-based imputation method using 2 neighbors. impute.knn function was 103 

used in the impute R package.(11) 104 

Since the laboratory results and vital signs have a different range of values, we used 105 

YeoJohnson (YJ) normalization separately to normalize the feature space.(12) For each class, 106 

features that were highly correlated (correlation coefficient >0.50) were excluded. The absolute 107 

values of pair-wise correlations were considered. If two variables have a high correlation, the 108 

function looks at the mean absolute correlation of each variable and removes the variable with 109 

the largest mean absolute correlation. This step was done to remove redundant features that 110 

added no additional information to the downstream clustering method. Subsequently, the 111 

features from labs and vitals were combined together and subjected to Box-Cox normalization 112 

to bring all features to a comparable scale.(12)  Finally, the data were translated and 113 

transformed at log scale just prior to actual k-means clustering. Throughout the data processing 114 

steps, laboratory features derived from albumin, bicarbonate, and potassium were kept as we 115 

clinically adjudicated them to be meaningful.(13, 14) Selected features contributed to the final 116 

unsupervised clustering.  117 

 118 

Clustering:  119 

With the final feature matrix of combined labs and vitals for all the samples, we 120 

performed unsupervised clustering using k-means. We opted to generate 25 initial 121 

configurations for a range of cluster numbers (k=2 to k=10). We calculated the silhouette score 122 

in order to select the best cluster (k). Apart from that, we performed a 10-fold cross-validation 123 

using the features among the clusters corresponding to the final selected k. We used the 124 

random forest algorithm implemented in the caret package. We opted for 5 variables to be 125 

randomly sampled as candidates at each split and used 5 trees to grow in the 10-fold cross 126 

validation. Further, we picked each of the features and measured the difference in means 127 
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between the two clusters. This was done to see the feature importance in each cluster with 128 

respect to each other. After obtaining the cluster labels, we used t-Distributed Stochastic 129 

Neighbor Embedding (tSNE) technique to reduce data to three dimensions for better 130 

visualization. We used the default parameters in the Rtsne package with perplexity=40.(15) 131 

Finally, clusters were visualized in 3D space using the scatterplot3d package in R.(16) 132 

Statistical Analysis:  133 

 After cluster identification, we conducted analysis to explore differences between 134 

clusters. We used t-test for continuous variables, and Fisher’s exact test or chi-Square for 135 

categorical variables. We included need for renal replacement therapy, mechanical ventilation, 136 

and in-hospital mortality as outcomes of interest. We used log binomial regression to determine 137 

the association between cluster and adverse outcomes while accounting for patient 138 

characteristics that were significantly different on univariate analysis. We chose log binomial 139 

regression instead of logistic regression due to the high rates of in-hospital mortality. As this 140 

study was done on publically available, de-identified data, it was considered IRB exempt. 141 

Analysis was done using SAS 9.4 and R 3.4.3 software. 142 

 143 
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Results: 145 

Clinical Features of Patients with Sepsis-associated AKI: 146 

 We identified 1,865 patients who had sepsis-associated AKI. Patients had a mean age 147 

of 66.3±15 years; 57% were men, and 75% were white. Most patients were admitted to the 148 

medical intensive care unit (MICU) (70%). Patients had a high prevalence of hypertension 149 

(51%), cardiac arrhythmias (38%), and diabetes mellitus (34%).  150 

Feature selection: 151 

Ten vital signs were available in the MIMIC-III database. Each vital sign was included as 152 

a median, SD, and count (number of times measured) for a total of 30 features. We identified 153 

691 unique features corresponding to laboratory results, the total feature space including 154 

median, SD, and count was 2,073.  After implementing data preprocessing (see Methods), total 155 

feature space after combining these vitals and labs contained 135 features. The feature 156 

selection step further reduced the number of features to 59 (9 vitals and 50 labs). Missingness 157 

of the original features and final features are presented in Supplemental Figure 2 and 3 158 

respectively. 159 

Unsupervised Clustering to identify Subphenotypes: 160 

 From these combined features with transformed values, we implemented the k-means 161 

clustering ranging from k=2 to k=10. We relied on silhouette score for the independent 162 

assessment and selection of the cluster selection. We found k=2 with maximum silhouette score 163 

of 0.62; which was highest among the other cluster runs (Supplementary Figure 4). Cluster 1 164 

had 1,358 patients while cluster 2 had 507 patients. (Figure 1) To assess robustness of 165 

clusters, we performed 10-fold cross-validation after we identified cluster labels. We obtained an 166 

average of 97.6% accuracy using the random forest algorithm. 167 

Clinical and Biological Characteristics of Each Phenotype: 168 

 We identified several patient and admission characteristics that were significantly 169 

different between clusters. (Supplemental Table 1) Cluster 1 patients had higher prevalence of 170 
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congestive heart failure (CHF) (37% vs. 31%, p=0.009) and lower prevalence of diabetes 171 

mellitus (DM) (36% vs. 39%, p=0.01). Mean Simplified Acute Physiology Score (SAPS) II scores 172 

were lower in Cluster 1, 45±15 vs. 47.6±16, p=0.002. Patients in cluster 1 were less likely to be 173 

admitted to the MICU (68% vs 76%, p=0.001) and less likely to have urgent/emergency 174 

admissions (97% vs 99%, P=0.02).  There were statistically significant differences in several 175 

laboratory features such as hemoglobin, platelets, sodium, bicarbonate, and albumin however 176 

the absolute differences were relatively small. Cluster 1 had significantly higher systolic blood 177 

pressure (SBP), lower heart rate, and lower respiratory rate.  178 

 To determine the importance of each feature on clustering, we determined the mean 179 

difference between two clusters at the log scale (Figure 2).  The largest differences were seen 180 

in basophil variability, eosinophil variability, creatine kinase and ALT variability. Features such 181 

as sodium, temperature, and pH level were not substantially different between clusters and 182 

likely had a smaller effect on cluster determination. 183 

Association between Phenotype and Outcomes: 184 

 There was no difference in dialysis need between the two clusters (Table 1). However, 185 

Cluster 2 had lower proportion of patients requiring mechanical ventilation (49% vs. 54%, 186 

P=0.03) and higher rates of in-hospital mortality (25% vs. 20%, P=0.008). 30-day mortality was 187 

also higher in Cluster 2, however this was not statistically significant (30% vs 26%, P=0.11).  188 

Patients in Cluster 2 had a 40% higher risk of in-hospital mortality after adjustment for age, 189 

gender, ethnicity, CHF, DM, hematologic malignancy, and first ICU care unit with an adjusted 190 

odds ratio of 1.4, 95% CI 1.1-1.8.  191 

 192 

  193 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2018. ; https://doi.org/10.1101/447425doi: bioRxiv preprint 

https://doi.org/10.1101/447425
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Discussion:  194 

We identified two distinct clusters of patients from patients within the larger syndrome of 195 

sepsis-associated AKI using unsupervised machine learning on routinely measured laboratory 196 

measurements and vital signs. Measures of variability were important to the identification of 197 

clusters. Clusters were significantly different in regards to comorbidities, laboratory 198 

measurements, and vital signs. We also found that these subphenotypes differed significantly in 199 

terms of mortality and mechanical ventilation.  200 

There has been speculation that AKI in the ICU is not a single clinical entity but likely a 201 

complex syndrome comprising of several different subtypes.(17) Due to widespread use of 202 

EHRs, granular data are collected as part of routine clinical care on every ICU patient. These 203 

massive troves of data provide us with the opportunity to investigate this hypothesis in a data-204 

driven manner. Subendophenotyping in chronic disease, such as diabetes has been conducted 205 

using similar EHR data with great success, and patient subgroups are found to have differing 206 

outcomes and genetic pathways.(6) Previous work, using trial data from an acute respiratory 207 

distress syndrome (ARDS) clinical trial has shown that there exist different subtypes with 208 

differing outcomes.(18) However, to the best of our knowledge this is the first instance of 209 

utilizing routinely collected EHR data from the ICU setting for subphenotyping of sepsis-210 

associated AKI. Thus, this reinforces the concept, that even acute derangements may have 211 

distinct clinical types, an important implication for personalizing care to each individual.   212 

 We found that in-hospital mortality was 25% higher in patients in cluster 2.  Cluster 2 213 

patients had similar demographics and co-morbidities as Cluster 1 patients which indicate the 214 

clustering was not driven by these features. Additionally although features included in most ICU 215 

prediction models for mortality were also included as features in our clustering model, they likely 216 

played a small role in clustering as differences between the clusters on these variables were 217 
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small.(19, 20)  Of note, there was no difference in renal function parameters of KDIGO AKI 218 

stages, creatinine, or blood urea nitrogen (BUN) levels. Additionally, there was no difference in 219 

dialysis need or continuous renal replacement therapy (CRRT) need. This was surprising as 220 

there is abundant literature stating that severity of AKI, especially the need for dialysis, is 221 

associated with high morbidity and mortality.(21, 22) This may be partially explained by our time 222 

restriction of including labs only prior to AKI diagnosis and within 48 hours after AKI 223 

diagnosis.(23) These findings together highlight that individual features that are traditionally 224 

associated with differences in mortality in critically ill patients were not sufficient to identify the 225 

subphenotypes we have found here.  226 

 The purpose of this study was to agnostically identify subphenotypes within a larger 227 

clinical syndrome in a data driven manner. Thus, all laboratory features and vital signs were 228 

considered for potential inclusion into the analysis. The only limitations were to exclude features 229 

that were missing in >70% of patients (since they were unlikely to be informative) and highly 230 

correlated features.  Additionally, we included measurements related to potassium, bicarbonate, 231 

and albumin into the model as these were considered clinically relevant features. We felt that it 232 

was not only important to include actual values but also the frequency and variability of 233 

continuous variables; and in fact 28 of the 59 features selected for inclusion were measures of 234 

variability and 9 of the 59 were counts. This is a significant advancement compared to previous 235 

models of clustering, where only summary measures of the predictors (mean/median) are used 236 

for either predictive modeling or clustering.  237 

 Through this inclusive data-driven approach, we included several features/factors that 238 

are not traditionally considered as related to ICU mortality into our clustering method including 239 

variability in key laboratory parameters. There is growing data that variability in values are 240 

important predictors of adverse events that should be considered in the clinical care of critically 241 

ill patients.(24–26) Eosinophil variability was among the factors with the largest difference 242 
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between clusters. It has been established that eosinopenia occurs during an acute infection.(27) 243 

Several studies have found that eosinopenia can be used as a marker of sepsis on admission to 244 

MICU and is a significant predictor of ICU 28-day all-cause mortality.(28, 29) However, no 245 

studies have evaluated eosinophil variability and the association with outcomes in AKI.  246 

Creatine kinase was also higher in cluster 2 patients, who had higher mortality. Creatine kinase 247 

elevations can be seen in rhabdomyolysis, acute myocardial infarctions, and strokes. The 248 

etiology of creatine kinase measurements in this cohort of patients is currently unclear. 249 

However, it has been documented that hospitalized patients with fevers, especially those with 250 

bacteremia have been found to have elevated creatine kinase.(30) Additionally, observational 251 

data suggests an association between creatine kinase elevations and adverse outcomes. (31, 252 

32)  Thus, our data suggest, that creatine kinase may be an unexplored biomarker of risk in 253 

patients with septic AKI. 254 

The results of our study should be considered in light of some limitations. We used the 255 

CCS category of septicemia to define our sepsis population; therefore we are unable to 256 

determine the timing of sepsis diagnosis and AKI diagnosis. However, this was mitigated by 257 

limiting AKI diagnosis to within 48 hours of ICU admissions and thus identifying patients with 258 

sepsis-associated AKI at the expense of a smaller sample size. We only included laboratory 259 

results and vital signs into our clustering algorithm. We decided not to include demographics 260 

and comorbidities, since we wanted to explore whether unbiased biochemical and biometric 261 

measurements could lead to viable clustering approaches. Indeed, the absolute difference in 262 

clusters on the basis of demographics and comorbidities was small and did not explain the 263 

difference in mortality. As to be expected, a majority of patients in both clusters was admitted to 264 

the MICU as their first ICU service. However, there was a notable difference between clusters 265 

on ICU first service, with more Cluster 2 patients being admitted to the MICU. There are 266 

inherent differences between patients admitted to different specialty units on admission 267 
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diagnoses, nosocomial infection rates, and mortality. (33–35) Unfortunately, we are unable to 268 

identify medical patients who were boarded in non-medical ICUs as this may have an impact on 269 

mortality. Finally, while the MIMIC-III database is a large, granular, ICU database; it is a single 270 

center database. Although, we did cross-fold validation to ensure the clusters were robust, 271 

external validation in ICU databases from different centers is needed.  272 

In conclusion, we were able to identify two distinct subphenotypes of sepsis-associated 273 

AKI using multidimensional biochemical and biometric data. These subphenotypes had similar 274 

baseline demographics, comorbidities, and AKI severity; however Cluster 2 patients had worse 275 

in-hospital mortality. Several factors which are not classically associated with adverse outcomes 276 

in sepsis-induced AKI were important contributors to the identification of subphenotypes. This 277 

approach could serve as a first step to identify clinical subtypes within the septic AKI syndrome 278 

and when combined with other –omics data, could help identify dysregulated pathways which 279 

could be targeted for therapeutic intervention. 280 

  281 
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Tables: 402 

Table 1: Differences in outcomes by cluster 403 

 Cluster 1 
N=1358 

Cluster 2 
N=507 

P value 

Outcomes    
Any Dialysis 134 (10) 45 (9) 0.52 
CRRT 74 (6) 29 (6) 0.82 
CRRT duration (hours) 126±115 109±94 0.5 
Mechanical Ventilation 739 (54) 248 (49) 0.03 
Mechanical ventilation duration 
(hours) 

157±178 172±173 0.2 

In-hospital Mortality 267 (20) 129 (25) 0.008 
30-day Mortality 354 (26) 151 (30) 0.11 
 404 

  405 
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Figures: 406 

Figure 1: 3-D Representation of clusters utilizing t-Distributed Stochastic Neighbor Embedding 407 

(t-SNE) method. This method condenses the 59 features into 3 transformed values which allows 408 

for 3-D representation. Each dot represents a single patient. The separation between two dots 409 

represents differences of features between two patients. Cluster 1 is represented in blue while 410 

Cluster 2 is represented in green.  411 

Figure 2: Mean Difference of Normalized Features between Cluster 1 and Cluster 2. 412 
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