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INTRODUCTION 
For learned actions to be executed reliably, the 

cortex must integrate sensory information, establish 
a motor plan, and generate appropriate motor 
outputs to muscles. Animals, including humans, 
readily perform such behaviors with remarkable 
consistency, even years after acquiring the skill. 
How does the brain achieve this stability? Is the 
process of integration and planning as stable as the 
behavior itself? Here, we explore these fundamental 
questions from the perspective of populations of 
cortical neurons. Recent theoretical and 

experimental work suggests that neural function 
may be built on the activation of specific 
population-wide activity patterns – neural modes – 
rather than on the independent modulation of 
individual neurons1–5. These neural modes are the 
dominant co-variation patterns within the neural 
population1. In experimental scenarios, the activity 
of the full neural population within the cortex can 
only be partially sampled, yet the neural modes can 
be empirically estimated by applying a 
dimensionality reduction technique1,6,7 such as 
principal component analysis (PCA) to the recorded 
activity8. The set of neural modes defines a neural 
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Abstract 
Animals readily execute learned motor behaviors in a consistent manner over long periods of time, yet 

similarly stable neural correlates remained elusive up to now. How does the cortex achieve this stable 
control? Using the sensorimotor system as a model of cortical processing, we investigated the hypothesis 
that the dynamics of neural latent activity, which capture the dominant co-variation patterns within the 
neural population, are preserved across time. We recorded from populations of neurons in premotor, 
primary motor, and somatosensory cortices for up to two years as monkeys performed a reaching task. 
Intriguingly, despite steady turnover in the recorded neurons, the low-dimensional latent dynamics 
remained stable. Such stability allowed reliable decoding of behavioral features for the entire timespan, 
while fixed decoders based on the recorded neural activity degraded substantially. We posit that latent 
cortical dynamics within the manifold are the fundamental and stable building blocks underlying consistent 
behavioral execution. 
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manifold1,5,9,10, a surface that captures most of the 
variance in the recorded neural activity (Fig. 1). We 
refer to the time-dependent activation of the neural 
modes as their latent dynamics7,11,12. In this 
framework, the activity of each recorded neuron 
expresses a weighted combination of the latent 
dynamics from all the modes (Fig. 1b). The neural 
modes and their latent dynamics have provided 
increased understanding of the function of many 
regions throughout the brain1,5,13–16, insights that 
were not apparent at the level of individual neurons. 

We hypothesized that the ability to perform a 
given behavior in a consistent manner requires that 
the latent dyna mics underlying the behavior also be 

stable (Fig. 1). These latent dynamics exist in a 
relatively low-dimensional manifold that can in 
principle be estimated using any sufficiently large 
sample of recorded neurons7,11 (Fig. 1c-e). In 
virtually all studied laboratory tasks, it has sufficed 
to sample from tens to hundreds of neurons that are 
modulated by the cortical function being analyzed7. 
However, to quantify the stability of the underlying 
latent dynamics, the activity of these neurons would 
have to be recorded over long periods of time, 
typically months. This need for such stable 
recordings poses a challenge to current recording 
techniques such as multielectrode arrays17,18. Since 
each recording session likely samples a somewhat 

 

Figure 1. We hypothesize that 
different movement behaviors are 
caused by the flexible activation of 
combinations of neural modes. (a) The 
network connectivity within cortex 
results in the emergence of neural 
modes whose combined activation 
corresponds to specific activity 
patterns of the individual neurons. (b) 
Neural space for the activity patterns of 
the three neurons recorded in (a). The 
time-dependent population activity is 
represented by the trajectory in black 
(arrow indicates time direction). This 
trajectory is mostly confined to a two-
dimensional neural manifold (gray 
plane) spanned by two neural modes 
(green and blue vectors). (c) The 
activity of each recorded neuron is a 
weighted combination of the time-
varying activation of the neural modes. 
(d) Do neural manifolds for different 
tasks (show in gray and light purple) 
have similar orientations? Are the 
time-varying activations of the neural 
modes for two tasks (shown in black 
and purple) similar? These are the two 
critical questions that test our 
hypothesis. 
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different set of neurons, it is difficult to disentangle 
differences in the latent dynamics from changes in 
the recorded neurons and thus evaluate the stability 
of those dynamics. 

Here, we developed a method to examine the 
stability of the underlying latent dynamics despite 
these unavoidable changes in the set of neurons 
recorded using chronically implanted 
microelectrode arrays. With this method, we 
addressed the question of stability of latent 
dynamics, using the sensorimotor system as a model 
of cortical processing. We recorded the activity of 
neural populations, approximately one hundred 
neurons at a time, in each of three different cortical 
areas: dorsal premotor cortex (PMd), primary motor 
cortex (M1), and primary somatosensory cortex 
(S1), as monkeys performed the same reaching 
behavior. PMd plays a critical role in movement 
planning, exhibiting strong pre-movement 
preparatory activity19 that can be used to decode the 
intended movement well before it occurs20. M1 is 
the primary cortical area from which descending 
output to the spinal cord arrises21,22; its activity is 
tightly coupled to the dynamics of motor 
execution23–25, even during motor adaptation26. 
Lastly, area 2 of S1 receives and integrates both 
muscle and somatosensory feedback27,28, and likely 
plays a critical role in correcting ongoing 
movements29.  

In all three cortical regions, PMd, M1, and S1, 
we found remarkably stable latent dynamics for up 
to two years, despite large, on-going turnover of the 
recorded neurons. The stable latent dynamics, once 
identified, allowed for the prediction of various 
behavioral features, using models whose parameters 
were fixed throughout the entirety of these long 
timespans. Interestingly, these models predicted 
behavioral features virtually as accurately as similar 
models that were trained and tested within the same 
day. Therefore, we have identified a neural correlate 
of stable behavior: the low-dimensional latent 
dynamics of cortex, which underlie the full-

dimensional neural population activity. Given that 
our results hold for three cortical regions involved 
in different sensorimotor functions, we posit that 
analogous stable latent dynamics may be used 
broadly throughout cortex when performing a 
variety of learned functions, from stimulus 
recognition to complex cognitive processes.  

 

RESULTS 
Hypothesis and approach 

We studied the stability of the latent dynamics 
within the neural manifold, and their relationship 
with a behavior that was performed consistently 
over many days (Fig 1a). To identify the neural 
modes, we represented the activity of each recorded 
neuron along one axis in a high-dimensional 
embedding neural space1,8,9. In the toy example in 
Fig. 1d, the number of recorded neurons, and thus 
the dimensionality of the neural space, is three. The 
neural modes can be computed using any 
dimensionality reduction method that identifies 
patterns of neural covariation8; here we used 
principal component analysis (PCA) applied to 
smoothed firing rates8 (see Methods). 
Mathematically, the PC axes are the neural modes 
that span the neural manifold1,5,9,10 (plane in Fig. 1d).  

By projecting the recorded neural activity into 
each neural mode, we can calculate an empirical 
estimate of the “true” latent dynamics throughout 
the cortex7 (Fig. 1b,d). Changes in the neurons 
recorded over days necessarily cause a change in the 
axes that empirically define the embedding neural 
space (compare Fig. 1d to 1e), along with a 
corresponding change in the empirically estimated 
manifold and latent dynamics. These changes do not 
necessarily imply a change in the true latent 
dynamics governing cortical function; they may 
instead simply represent a different projection of the 
true stable dynamics onto a new embedding neural 
space (Fig. 1c-e). Since the projection from the full 
neural space to the empirical neural space of 
recorded neurons is linear, and PCA identifies a 
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linear empirical neural manifold within the 
empirical neural space. Thus, if the true latent 
dynamics during repeated task execution were 
indeed stable, a simple linear transformation should 
be sufficient to align the projection of the latent 
dynamics within different empirical neural spaces 
(Fig. 1f). This linear transformation may be a 
combination of global translation, rotation, scaling, 
shearing, and reflection. If the true latent dynamics 
were to change fundamentally across days, e.g., due 
to a change in the intrinsic dynamics of the 
network30, no linear transformation would be able to 
align the dynamics across different empirical 
manifolds. We have developed methods based on 

canonical correlation analysis (see Methods) to 
compensate for changes in recorded neurons and to 
compare the empirical latent dynamics over time; 
we will refer to this process as one of “aligning” the 
latent dynamics. In the following sections, we test 
the hypothesis that consistent behavior is associated 
with stable latent dynamics by analyzing neural 
population activity recorded in sensorimotor cortex 
over weeks to years. 

 

Behavior 

We trained six monkeys (Monkeys C, M, T, J, 
H, P) to perform a center-out reaching task with an 
instructed delay period, using a planar 

 
Figure 2. Task and repeatability of behavior. (a) Monkeys performed an instructed-delay reaching task using a planar 
manipulandum. (b) Schematic of the task, indicating the approximate windows used for analysis; these varied across cortical areas 
(PMd, M1, and S1). (c) Left: Example hand trajectories for three days spanning 731 days from Monkey CR. Each trace is an individual 
trial; traces are color-coded based on target location. Right: Example X and Y hand velocity traces for all reaches to the upper-right 
target on each of the three days. (d) Correlation between direction-matched single trial X and Y hand velocities across all pairs of 
days from Monkey CR (single dots: individual pair of days; lines: linear fits). (e) Distribution of across-day hand velocity correlations 
for all pairs of days from Monkey CR. Top error bars: mean ± s.d. (f) Same as (e), for data from the other six implants. 
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manipulandum (Methods; Fig. 2a). The monkey 
started each trial by holding in the central target, 
after which one of eight outer targets was presented 
(Fig. 2b). Following a variable delay period during 
which the target continued to be visible, a go cue 
was given, and the monkey had to move the 
manipulandum to the presented target to receive a 
liquid reward. Monkey C initially performed the 
task using the left hand; later, he used the right hand 
during experiments with multielectrode arrays 
implanted in the opposite hemisphere (CL and CR). 
Across monkeys, the time between recordings 
spanned from ~20 to ~750 days (see Table 1), 
allowing us to study the stability of latent dynamics 
over long periods of time.  

The behavioral performance of all monkeys was 
consistent across days, as exemplified by the hand 
trajectories in Fig. 2c. To quantify stability, we 
computed the correlation between the X and Y hand 
velocities across single trials for a given target, for 
all pairs of days (Fig. 2d). In all of the cases, these 
correlations were large (mean >0.77, Fig 2d-f; Fig. 
S1 replicates Fig. 2d for the other monkeys).  

 

Changes in single neuron recordings 
across days 

We studied the neural basis for the consistent 
behavior shown in Fig. 2 using 96-channel 
microelectrode arrays chronically implanted in the 
arm areas of three different regions of cortex 
(Methods); the approximate location of the 
implanted arrays are shown in Fig. 3a. Monkeys CL 
and M had dual implants in PMd and M1; Monkeys 
J and CR had an implant in M1; Monkey T had an 
implant in PMd; and Monkeys H and P had an 
implant in Area 2 of S1. We manually spike-sorted 
the neural recordings from Monkeys C, M, and T to 
compare whether the same neurons were recorded 
across days (Methods; Fig. S2 shows example 
neurons). As illustrated by the M1 dataset from of 
Monkey CL (Fig. 3b), single neuron activity changed 
quite dramatically over 15 days. In addition to some 

variation in the behavior itself18, it is likely that 
many of these changes can be explained by turnover 
in the neurons recorded on each electrode (Figure 
3c). To quantify the turnover effect, we tracked the 
stability of both firing rate statistics and waveform 
shape of each neuron31,32 (Fig 3c, bottom, shows one 
example). Across all pairs of days for this dataset, 
the percentage of matched neurons decreased to < 
30 % after 25 days (Fig. 2d; Fig S3 shows similar 
results for six other sets of recordings from M1 and 
PMd).  

In addition to tracking characteristics of well 
discriminated single neurons, we assessed neural 
turnover by fitting tuning curves relating neural 
activity to the reach direction (Methods). For this 
and all subsequent analyses, we used the multiunit 
activity (threshold crossings) recorded on each 
electrode rather than sorted neurons, to incorporate 
as many neural events as possible while preserving 
our ability to reconstruct the latent dynamics33. We 
found that both modulation depth and preferred 
direction changed progressively over time, as shown 
in Fig. 3e for one representative dataset. There were 
similar progressive changes for all monkeys and 
cortical regions (Fig. S4). Combined, these analyses 
indicate that the set of recorded neurons changed 
substantially across days, with consequent changes 
in estimates of spatial tuning from the array 
recordings. Our hypothesis predicts that, despite 
these changes in recorded neurons, the underlying 
latent dynamics of the full neural population will be 
stable.  

 

Primary motor cortex during movement 
control 

We now investigate the hypothesis that stable 
latent dynamics within the cortex underlie the 
generation of consistent motor behavior, starting 
with the analysis of M1 activity during movement 
execution. We applied our method to “align” the 
latent dynamics across the manifolds for different 
days, even as the number and identity of recorded 
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neurons changed. We used single trial neural data to 
compute the neural manifold and the latent 
dynamics within it using PCA separately for each 
day (Methods). The dimensionality of the manifold 
for each brain region (M1: 10; PMd: 15; S1: 8) was 
selected based on previous studies12,15. Using 
canonical correlation analysis12,30,34 (CCA), we 
found the linear transformations that make the latent 
dynamics from day n maximally correlated to those 
of day one (Methods). These transformations 
compensated for the changes in the recorded 
population of neurons caused by turnover. As 
described above, if the true latent dynamics during 
repeated behavior were indeed stable, the 
trajectories of the empirically estimated latent 

dynamics would be very similar after alignment 
(Fig. 1f): the leading canonical correlations (CCs) 
would approach a value of one. On the contrary, if 
repeated behavior did not result from stable 
underlying latent dynamics within the brain, the 
trajectories would be very different even after 
attempted alignment, and all the resulting CCs 
would be low.  

The trajectories described by the empirical 
latent dynamics for datasets separated by 31 days 
were indeed very different (Fig. 4a), presumably 
reflecting the observed changes in recorded neurons 
(Fig. 3, S2, S3). However, these trajectories became 
quite similar after alignment with CCA (Fig. 4b). 

 
Figure 3. Neural recording and functional tuning stability. (a) Approximate location of all nine arrays for the seven implants; each 
monkey is represented by a different color (legend). AS, arcuate sulcus; PCD, precentral dimple; CS, central sulcus; IPS, 
intraparietal sulcus. (b) Peristimulus time histograms for all sorted neurons identified on Day 27 and Day 43 from Monkey CL (top; 
each neuron shown in a different row) and corresponding hand velocity (bottom). Each column represents the average of all trials 
to each of the eight reach directions (indicated by the arrows above each column). Note the substantial changes in the activity of 
the recorded neurons, reflected in altered firing rates and spatial tuning, despite the consistency of the behavior. (c) Example sorted 
neurons for these two datasets; note the large apparent turnover after 15 days. Bottom inset: example action potential waveforms 
and inter-spike interval (ISI) histograms for two neurons that were matched across days. (d) Percentage of individual neurons 
matched across all pairs of days from Monkey CL; matching based on the same methods as in (c). (e) Change in modulation depth 
(left), and preferred direction (right) of standard cosine tuning fits to multiunit activity. Data for all pairs of days from Monkey CL. Line 
and shaded areas: mean ± s.e.m. 
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This observation held across all pairwise 
combinations of days for this monkey; the aligned 
empirical latent dynamics remained stable for over 
40 days, the full length of time we were able to 
monitor for this monkey (Fig. 4c).  

To better interpret the magnitude of this across-
day stability, we compared it to the stability across 
random blocks of trials within each day, meant to 
provide an upper bound on the achievable CCs 
(Methods). For this monkey, the across-day CCs 
were virtually identical to the within-day CCs (red 
and gray traces in Fig. 4c). To summarize these 
results, we computed a normalized similarity: the 
ratio of the across-day CCs to the corresponding 
within-day CCs. For this dataset, the normalized 
similarity of the latent dynamics after alignment 
with CCA was 0.93 ± 0.03 (mean ± s.d.; Fig. 4g). 
The normalized similarity without alignment was 
much lower (0.38 ± 0.14; Fig. 4g). We obtained 
similar results for all M1 datasets, comprising four 
implants from three different monkeys (Fig. 4d-f,g); 
this indicates that M1 latent dynamics during 
repeated movement generation are stable for very 
long periods of time. 

Many neuroscientific studies have attempted to 
understand the information encoded within neural 
populations by predicting relevant behavioral 
features using neural activity. This is of particular 
interest within the field of brain-computer interfaces 
that seek to map motor cortical activity onto control 
signals for prostheses or paralyzed limbs23,25,35–37 - 
the limited stability of these predictive models over 
time has been an ongoing source of concern18,38. 
Consequently, we asked how accurately a linear 
model trained to predict hand kinematics based on 
latent dynamics from one day would perform on 
aligned latent dynamics from a different day (Fig. 
5a; Methods). Fig. 5b shows hand velocity reliably 
predicted 16 days later. This performance was 
almost as good as that of a model trained and tested 
on the same day, and much better than that of a 
model based directly on the recorded multiunit 

neural activity (Fig. 5b) or on the unaligned latent 
dynamics (Fig. S5a,b). This observation held for all 
pairwise comparisons of days for this dataset (Fig. 
5c). To summarize these comparisons, we computed 
a normalized predictive accuracy: the ratio of the 
across-day R2 to the within-day R2. For this 
representative example, the normalized predictive 
accuracy across all pairs of days averaged 0.96, 
indicating that the aligned latent dynamics provide 
nearly the same behavioral predictive ability as the 
neural activity recorded on the same day the model 
was built (Fig. 5g, left). However, the normalized 
predictive accuracy of models based directly on the 
recorded neural activity degraded steadily with time 
after the model was built, to R2 values as low as 0.13 
(Fig. 5c; mean R2 of 0.60). We replicated these 
results on datasets from Monkeys CR, J, and M (Fig. 
5d-f,g); for monkeys CR and M we could even 
predict hand velocity accurately two years and one 
and a half years later, respectively (Fig. 5d,f). Thus, 
the relationship between recorded neural activity 
and behavior changes day to day, and the predictive 
ability of a model trained once and held fixed 
quickly deteriorates over time. However, the low-
dimensional latent dynamics can be aligned to 
maintain the good predictive ability of a fixed 
model. Models based on the aligned latent dynamics 
predict behavioral features almost as well as models 
trained on same day neural recordings.  

We performed two controls to verify the robustness 
of our results. Although our alignment analysis is 
based on a choice of manifold dimensionality, our 
stability results were unchanged when the analyses 
were repeated for a wide range of manifold 
dimensionalities (Fig. S5c-e). Additionally, 
previous work has shown that empirically estimated 
latent dynamics are quite similar whether the 
manifold is obtained using sorted neurons or 
multiunits33. Here we generalize this result to long-
term stability, showing for three monkeys in Fig. 
S5f,g that our main result also holds when using 
sorted neurons to identify the manifold. 
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Figure 4. Stability of M1 latent dynamics over time. Example (a) “unaligned” and (b) “aligned” latent trajectories for two example 
days from Monkey CL. Note the similarity between the latent trajectories to acquire each target after alignment. Data averaged over 
all trials for a fixed target only for visualization purposes. (c) The correlation of the M1 latent dynamics averaged over the top four 
neural modes across all pairs of days from Monkey CL (single dots: pairs of days; lines: linear fits). The aligned latent dynamics 
(red) maintained a higher correlation across days than the unaligned dynamics (orange), and were almost as correlated across 
different days as the latent dynamics across different blocks of trials from the same day (gray). (d)-(f) Same as (c) for the other 
three M1 implants. (g) Normalized similarity of the aligned and unaligned M1 latent dynamics during movement execution for each 
monkey (each shown in a different panel). The mean normalized similarity of the aligned latent dynamics across different days is 
close to 1; this indicates that their canonical correlations are almost as strong as the canonical correlations of the latent dynamics 
across two blocks of trials from the same day. *** indicates P < 0.001 per Wilcoxon rank-sum test. Error bars: mean ± s.d. 
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Figure 5. Stable decoding of movement kinematics based on the aligned latent dynamics. (a) We trained linear models to predict 
movement kinematics based on different types of inputs. (b) Example X and Y velocity predictions for two recordings made 16 days 
apart. Predictions based on the aligned latent dynamics were almost as good as predictions based on the recorded neural activity 
when trained and tested on the same day (bars on the left show the R2 for the entire day). (c) Predictive accuracy for models trained 
and tested on all pairwise combinations of days (single dots: pairs of days; lines: linear fits). Models based on the aligned latent 
dynamics (green) performed almost as well as models trained and tested on the same day (gray), and much better than models 
trained on the recorded neural activity when tested across days (blue). (d)-(f) Same as (c) for the other three M1 implants. (g) 
Normalized accuracy for models based on the aligned latent dynamics (green) and the recorded neural activity (blue) when tested 
on a different day. Each panel shows one monkey; each data point is one pairwise comparison between days. The mean normalized 
predictive accuracies of the aligned latent models are close to 1; this indicates that they as predictive about behavior as models 
trained on the recorded neural activity for each day and tested on the same day. *** indicates P < 0.001 per Wilcoxon rank-sum 
test. Error bars: mean ± s.d. 
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Dorsal premotor cortex during 
movement planning 

We have shown M1 latent dynamics during 
repeated, consistent behavior to be stable for very 
long periods of time, allowing for stable decoding of 
movement kinematics. As M1 is primarily involved 
in the execution aspect of movement generation, we 
asked whether a similar stability principle might 
apply to PMd activity during motor planning (Fig. 
6a). Pre-movement planning activity in PMd 
captures many features of the subsequent behavior, 
including reaction time39, speed40, and even the 
ability to learn15. We thus expected that consistent 
movements would be preceded by motor planning 
dynamics that are stable over time. We tested the 
stability of PMd latent dynamics during planning 
using the same CCA alignment procedure we used 
for M1. As was the case for M1, despite changes in 
recorded neurons (example in Fig. S6a; see also Fig. 
S3,4), PMd latent dynamics were stable over weeks 
and even months; Fig. 6c and Fig. S6 show data for 
three different monkeys. The stability of the aligned 
latent dynamics across days was nearly 
indistinguishable from within-day stability (Fig. 6c, 
red and gray, and Fig. 6d, red). Without alignment, 
the leading latent dynamics were quite different 
across days (Fig. 6c, orange, and Fig. 6d).  

We next tested whether these stable latent 
dynamics in PMd could be used reliably to predict 
behavior. Previous work has shown that it is 
possible to determine the intended movement from 
the PMd planning activity before it occurs41. We 
used naïve Bayesian classifiers20, trained on either 
the full recorded neural activity or the latent 
dynamics during the instructed delay period, to 
predict the upcoming reach target (Fig. 6a; 
Methods). We asked whether these models would 
perform well when used days after training, 
comparing the across-day performance to that of 
models trained within the test day. Sixteen days after 
training, the accuracy of models based on aligned 
latent dynamics remained close to that of models 

based on neural activity recorded within the same 
day (Fig. 6b). In general, the accuracy of the across-
day models based on aligned latent dynamics was 
virtually identical to that of within-day models 
based on recorded neural activity (Fig 6e). The 
normalized classification accuracy, defined as the 
ratio of the across-day accuracy to the within-day 
accuracy, shows that alignment of latent dynamics 
allowed the across-day models to predict nearly as 
well as the within-day models (Fig. 6f). These 
results were replicated using PMd datasets from two 
other monkeys (Fig. 6f, Fig. S6), showing that even 
models trained up to ~500 days earlier yielded 
results comparable to a model trained on the same 
day (Fig. S6c). Comparison of this performance to 
the steady, progressive performance decline of fixed 
models based on recorded neural activity (Fig. 6e, 
Fig S6c) provides further evidence in support of our 
hypothesis that stable latent dynamics underlie 
consistent behavior.  

 

Primary sensory cortex during feedback 
control 

An important aspect of motor control is the 
integration of sensory feedback. While we receive 
feedback about our movements through many 
different modalities, one of the most critical 
sensations for motor control is proprioception, our 
sense of body positioning and movement. Studies of 
patients with impaired proprioception show that this 
particular kind of feedback is crucial for generating 
coordinated movements42–44. Here, we examine area 
2 of primary somatosensory cortex (S1), a 
proprioceptive part of the brain that integrates 
feedback from cutaneous and muscle receptors and 
also shares connections with the  motor cortex29,45–

49. Given the stability of latent dynamics during 
planning and execution in PMd and M1, we 
anticipated seeing similar stability in the 
somatosensory activity of S1. We tested this 
hypothesis by analyzing data from S1 during 
reaching (Fig. 7a). After alignment, latent dynamics 
in S1 were stable for the full ~30 and ~45 day 
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periods we tested, respectively, for both Monkey P 
and Monkey H (Fig 7b, Fig S7b). As with the other 
cortical regions, the normalized stability of the 
aligned latent dynamics was near the upper bounds 
set by the within-day correlations of latent dynamics 
for both monkeys (Fig. 7d).  

S1 encodes rich information about the state of 
the limb and its evolution over time29, which allows 
for quite accurate decoding of movement 
kinematics29. We tested whether the relationship 
between aligned latent dynamics and hand velocity 
was stable over time using models similar to those 

 
Figure 6. Stability of PMd latent dynamics during movement planning. (a) We trained classifier models to predict the intended target 
based on neural activity, either recorded or latent. (b) Example confusion matrix showing classification performance. Within-day 
models (left) performed quite accurately (73% correct). The performance of across-day models (middle) based on the aligned latent 
dynamics was well above chance (54%), while models based on recorded neural activity (right) performed quite poorly (23%) when 
trained and tested on different days. Color bar: classification accuracy. Data from Days 27 and 43 from Monkey CL. (c) Correlation 
of the PMd latent dynamics averaged over the top four neural modes across all pairs of days from Monkey CR (single dots: pairs of 
days; lines: linear fits). The aligned latent dynamics (red) are more highly correlated across days than unaligned dynamics (orange), 
and almost as highly correlated as the latent dynamics from different blocks of trials from the same day (gray). (d) Normalized 
similarity of the aligned and unaligned PMd latent dynamics during movement planning for each monkey (each shown in a different 
panel). The mean normalized similarity of the latent dynamics from two different days is close to 1, indicating that they are almost 
as correlated as the latent dynamics across two blocks of trials from the same day. *** indicates P < 0.001 per Wilcoxon rank-sum 
test. (e) Classification accuracy for models trained and tested on all different pairs of days. Models based on the aligned latent 
dynamics (green) performed almost as well as models trained and tested on the same day (gray), and much better than models 
trained on recorded neural activity and tested on different days (blue). (f) Normalized predictive accuracy for models based on the 
aligned latent dynamics (green) and recorded neural activity (blue) tested on a different day. Each panel shows one monkey; each 
data point is one pairwise comparison between days. The mean normalized accuracies of the aligned models are close to and even 
above 1, indicating that they provide almost as much predictive ability about behavior as models trained on neural activity recorded 
on the same day. *** indicates P < 0.001 per Wilcoxon rank-sum test. Top error bars: mean ± s.d. 
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used for M1 (Fig 7a; Methods). Models based on the 
aligned latent dynamics predicted movement 
reliably over time for both monkeys (Fig. 7c, Fig. 
S7c). As was the case for the motor cortical regions, 
the accuracy of these predictions was similar to that 
of models trained and tested on the same day (Fig. 
7e). In contrast, the performance of models based on 
recorded neural activity degraded quickly after a 
few days (Fig. 7c, Fig. S7c). Taken together, these 
results suggest that stable behavior is associated 
with stable latent dynamics throughout 
sensorimotor cortex, as predicted by our hypothesis.  

  

DISCUSSION 
Once learned, behaviors can be readily executed 

with accuracy and consistency. How the brain 
achieves this behavioral stability is still an open 
question. Existing readouts of neural activity have 
been fraught with the problem of ever-changing 
neurons making it extremely difficult to answer 
questions about the long-term stability of cortical 
dynamics. Here we have shown that repeated 
execution of a given behavior is accompanied by 
stable latent dynamics in several sensorimotor areas 
of cortex. These stable latent dynamics are 
associated with all three main aspects of movement 

 
Figure 7. Stability of S1 latent dynamics during feedback control. (a) Models trained to predict movement kinematics based on 
different types of inputs. (b) Correlation of the S1 latent dynamics averaged over the top four neural modes across all pairs of days 
from Monkey P (single dots: pairs of days; lines: linear fits). The aligned latent dynamics (red) are much more correlated across 
days than the unaligned dynamics (orange), and almost as correlated as the latent dynamics from different blocks of trials from the 
same day (gray). (c) Predictive accuracy for models trained and tested on all different pairs of days. Models based on the aligned 
latent dynamics (green) performed almost as well as models trained and tested on the same day (gray), and much better than 
models trained on recorded neural activity when tested across days (blue). (d) Normalized similarity of the aligned (red) and 
unaligned (orange) S1 latent dynamics during movement execution. Each panel shows one monkey; each data point is one pairwise 
comparison between days. The mean normalized similarity of the latent dynamics from two days is close to 1. This indicates that 
they are almost as similar as the latent dynamics across two blocks of trials from the same day. *** indicates P < 0.001 per Wilcoxon 
rank-sum test. (e) Normalized predictive accuracy for models based on the aligned latent dynamics (green) and recorded neural 
activity (blue) when tested on a different day. Each panel shows one monkey: each data point is one pairwise comparison between 
days. The mean normalized accuracies of the aligned models are close to 1, indicating that they provide almost as much predictive 
ability about the behavior as models trained on neural activity recorded on the same day. *** indicates P < 0.001 per Wilcoxon rank-
sum test. Top error bars: mean ± s.d. 
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generation50: planning the upcoming movement, 
controlling its execution, and integrating 
somatosensory information. Moreover, the 
stabilized latent dynamics maintained a fixed 
relationship with the behavior; remarkably, models 
based on the stabilized latent dynamics predict 
behavior up to two years after training almost as 
well as models built within the same day. Our results 
show surprising stability in the latent dynamics 
underlying the consistent execution of the same 
behavior over long periods of time. 

One crucial interpretational point is that we have 
studied the neural dynamics underlying the planning 
and execution of one stereotyped reaching behavior. 
The corresponding neural dynamics are intimately 
and necessarily linked to the behavior that results. A 
different behavior, such as shaking a cocktail 
shaker, would require its own dynamics. A 
comparative analysis of the neural dynamics 
corresponding to these two different behaviors 
performed in succession might reveal some 
similarities; however, they most likely would differ 
by much more than observed here when monitoring 
the same behavior over time. The extent to which 
latent dynamics are shared between behaviors is an 
area of active investigation. A recent study from our 
lab has shown both differences and similarities in 
M1 latent dynamics when comparing different but 
related wrist movement tasks12. Another study in 
mice has shown even greater differences in M1 
dynamics between forepaw reaching and 
quadrupedal locomotion51. The present results show 
that our empirical estimates of the latent dynamics 
can vary greatly, yet when a specific behavior is 
consistently repeated, the true latent dynamics are 
stable over months to years. The differences across 
days arise from projecting the true latent space onto 
empirical neural spaces that keep changing; these 
differences can be compensated for through the 
simple linear transformations employed by CCA. 
Given the ubiquity of linear population-level 
analyses such as PCA in modern neuroscience 

experiments, our fundamental observation has 
important implications for understanding how 
neural populations throughout the brain consistently 
perform behaviorally relevant functions. 

 

Stable latent dynamics in the face of 
changing neural recordings 

Canonical correlation analysis (CCA) 
effectively identifies linear transformations that 
maximize the correspondence between two sets of 
signals. One concern is whether CCA is too 
powerful, potentially always able to find linear 
transformations that make empirical latent dynamics 
look similar, thus misleading us into thinking that 
the true latent dynamics are stable even if they are 
not. We argue against this scenario. A fundamental 
change in the intrinsic dynamics of the full neural 
population would reduce canonical correlations. 
Our previous work using CCA provides supporting 
evidence12: when the latent dynamics were shuffled 
in time and compared using CCA to the original 
version , the CCs degraded to ≤ 0.3. Additionally, in 
cases where there is a many-to-few mapping, such 
as from motor cortex onto the lower-dimensional 
space of limb muscles, there is not a unique set of 
dynamics that could generate the observed 
behavioral output52. Simulation work by Sussillo, 
Shenoy et al. provides such an example. They 
trained recurrent neural networks (RNNs) to 
generate outputs that reproduced muscle activity 
(EMG) recorded during reaching. When they did not 
constrain the network architecture to be sparsely 
connected, the CCs between the simulated and 
actual latent dynamics were low, even though the 
RNN accurately reproduced the recorded EMGs30. 
This is a compelling example of how a consistent 
behavior, in this case measured by the EMG output 
of the RNN, is not necessarily associated with stable 
latent dynamics. A similar observation of variable 
latent dynamics leading to consistent behavior has 
recently been made in the analysis of hippocampal 
data52. On the basis of this evidence, we propose that 
the stability of latent dynamics reported here is not 
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a trivial consequence of its association with 
consistent repeated behavior; instead, it reflects a 
fundamental feature of cortical function that leads to 
that behavior.  

It is a feature of multielectrode array recordings 
that the exact set of well-discriminated neurons 
changes progressively over time17 (Fig. 3c, Fig. S3). 
Nonetheless, we have shown that CCA can 
compensate for the apparent changes in the latent 
dynamics observed within the changing empirical 
neural space of the recordings. How is it possible to 
find stable latent dynamics based on unstable neural 
recordings? Here we assume that a true low-
dimensional neural manifold to which the dynamics 
of the full neural population is confined does exist1 
(Fig. 1c). How do we access this true manifold from 
data? We can apply dimensionality reduction to the 
empirical neural space spanned by a specific set of 
recorded neurons. The resulting empirical manifold 
can only account for the projection of the true 
manifold onto the neural space of the recordings. As 
the recorded neurons change, the empirical neural 
space changes, and so does the projected neural 
manifold accessible to our measurements (Fig. 
1d,e). However, the dynamics within the true neural 
manifold has unique signatures specific to the task; 
these get preserved in the projection onto changing 
empirical neural spaces11, making the projected 
dynamics amenable to alignment. As such, CCA 
was able to identify linear transformations to align 
the latent dynamics over days, despite the fact that 
these latent dynamics had been projected onto 
different empirical neural spaces. The 
transformation from the true neural manifold onto 
the empirical neural manifold involves two linear 
transformations. First, the true latent dynamics 
within the full neural space —which incorporates all 
neurons modulated by the task— is projected onto 
the empirical neural space of the recorded neurons. 
This transformation involves a dimensionality 
reduction from approximately 106 to 102. Then, the 
empirical latent space embedded within the 

empirical neural space is found using PCA; this 
transformation involves a dimensionality reduction 
from approximately 102 to 10. Since both of these 
operations are linear, it is thus not surprising that the 
alignment of empirical latent dynamics can be 
achieved with a linear method such as CCA.  

 

Stability of latent dynamics throughout 
the cerebral cortex 

We have reported here on the stable latent 
dynamics in three cortical areas during execution of 
the same behavior across days, months, and even 
years. The activity in each one of these regions is 
closely tied to the behavior 50. We posit that the 
stability of the behavior and the stability of the 
corresponding latent dynamics are intimately tied to 
each other, however, the stability of the population 
dynamics associated with a specific behavior might 
well change across brain areas, perhaps decreasing 
the further removed the brain area is from the 
periphery and the outside world. For example, 
decision-making dynamics in prefrontal cortex 
depend not only on the resulting behavior, but also 
on internal states (emotion, arousal, etc.) and 
sensory inputs (sight, sound, touch, etc.) that 
influence the behavioral decision53. There could 
thus be different neural dynamics that reflect 
changes in internal state but underlie a stable 
behavioral output. Within the motor cortex, recent 
work indicates that the supplementary motor area 
(SMA) does not exhibit the rotational dynamics 
consistently observed in M154; note that SMA is a 
“higher” motor cortical area whose activity reflects 
motor timing or sequence production4,55. We would 
expect that the dynamics of areas further removed 
from behavior and more affected by other 
modulatory or sensory influences are less preserved 
over long spans of time, as their activity captures 
more than simply the afferent state of the limb, or 
observable behavioral output52. Still, the results 
reported here support the hypothesis that when the 
activity of a brain area is intimately tied to a 
behavioral output, such as M1 in the context of 
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movement, the underlying latent dynamics 
corresponding to stable behavior are preserved. 
Importantly, we have provided evidence that the 
stability of the latent dynamics is fundamentally of 
cortical origin, and cannot be trivially explained by 
non-cortical aspects of the behavior such as the 
mechanics of movement. For instance, we have 
shown that latent dynamics in PMd are stable during 
motor planning, when no behavior has yet occurred. 

 

Practical implications for brain-
computer interfaces  

Brain-computer interfaces (BCIs) are based on 
decoding algorithms that map neural activity onto 
control variables. This technology holds great 
promise to revolutionize rehabilitation and assistive 
technologies56,57. Several groups have used BCI 
decoders based on recorded neural activity to 
control computer cursors58,59, robots60,61, and even 
paralyzed limbs through muscle62,63 or spinal cord 
stimulation64. Due to neural turnover, the neural 
signals that provide inputs to these decoders 
typically change after a few days, rapidly leading to 
degraded BCI performance65,66. Many groups have 
been working to develop computational techniques 
to continually recalibrate these decoders, and 
thereby restore some of their degraded function67,68. 
Other groups have suggested that the use of input 
signals such as multiunit threshold crossings65 or 
local field potentials69 could reduce the magnitude 
of these changes, at the risk of reducing the amount 
of available information. The stable latent dynamics 
reported here offer an intriguing alternative to 
existing approaches: BCIs based on latent dynamics 
as opposed to recorded neural activity could be 
periodically aligned through a linear procedure such 
as CCA, thereby achieving stable performance 
through months or even years of neural turnover. 
Recent work has shown that approaches based on 
latent dynamics can be used to improve decoding 
stability70,71,38, adjust for changes in neural inputs72, 
and enable unsupervised decoding68. 

 

Summary 
Here we have shown that the latent dynamics 

associated with the repeated, consistent execution of 
a given behavior are stable for as long as two years. 
Our results cover three cortical areas: PMd, M1, and 
S1. Stability was in each case associated with a 
different function: movement planning, execution, 
and somatosensory input processing, respectively. 
This well-preserved relationship between stable 
latent dynamics and consistent behavior contrasted 
with the large changes observed in the activity of 
single neurons. These observations have broad 
implications for experiments studying neural 
activity over time: the activity of individual neurons 
is best viewed as a sample of underlying true latent 
dynamics throughout the surrounding brain region. 
Similar latent dynamics have been identified in 
many cortical regions (see reviews in Refs.1,8), and 
for a wide variety of tasks, including working 
memory73,74, decision making13,75,76, visual77,78, 
olfactory9,74, and auditory79 discrimination, 
navigation80, and movement12,14,15,81–83. Moreover, 
these latent dynamics exhibit some common 
characteristics across cortical regions13,73–75 and 
even across species82,84. These commonalities 
suggest that the stabilization of latent dynamics may 
be ubiquitously exploited by the brain for many 
behaviorally-relevant purposes, including sensation, 
perception, decision making, and movement.  

The notion of latent dynamics is increasingly 
accepted as a useful tool for systems neuroscience 
research, as the low-dimensional neural manifold is 
more amenable to analysis and visualization than the 
neural space. It is also a useful tool for brain-
computer interfaces design, as a low-dimensional 
input space facilitates the specification of predictors 
of movement features. While useful, we posit a view 
for these latent dynamics that goes beyond that of a 
mere tool. In this conceptual framework, the 
computational abilities of the brain are implemented 
through the dynamics of neural populations; these 
dynamics are low dimensional and confined to 
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specific neural manifolds; in sensorimotor 
representations, these manifolds are task-specific 
and acquired during task learning. Here we have 
provided evidence that latent dynamics are not just 
a convenient mathematical abstraction for model 
building, but the extant and stable building blocks of 
consistent behavior.  

 

Acknowledgements 
This work was supported in part by “Talent 

Attraction” Grant 2017-T2/TIC-5263 from the 
Community of Madrid (J.A.G.), by a grant from the 
Whitaker International Scholars Program (M.G.P.), 
and by Grant NS053603 from the National Institute 
of Neurological Disorder and Stroke (S.A.S. and 
L.E.M.). 

 

References 

1. Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, 
S. A. Neural Manifolds for the Control of 
Movement. Neuron 94, 978–984 (2017). 

2. Shenoy, K. V, Sahani, M. & Churchland, M. M. 
Cortical control of arm movements: a dynamical 
systems perspective. Annu. Rev. Neurosci. 36, 337–
59 (2013). 

3. Elsayed, G. & Cunningham, J. P. Structure in neural 
population recordings: significant or 
epiphenomenal? Nat Neurosci 25, 1–14 (2017). 

4. Remington, E. D. et al. Flexible Sensorimotor 
Computations through Rapid Reconfiguration of 
Cortical Dynamics. Neuron 98, 1005–1019.e5 
(2018). 

5. Sadtler, P. T. et al. Neural constraints on learning. 
Nature 512, 423–6 (2014). 

6. Gao, P. & Ganguli, S. On simplicity and complexity 
in the brave new world of large-scale neuroscience. 
Curr. Opin. Neurobiol. 32, 148–155 (2015). 

7. Gao, P. et al. A theory of multineuronal 
dimensionality, dynamics and measurement. 
bioRxiv 214262 (2017). doi:10.1101/214262 

8. Cunningham, J. P. & Yu, B. M. Dimensionality 
reduction for large-scale neural recordings. Nat. 
Neurosci. 17, 1500–1509 (2014). 

9. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity 
versus identity coding in an olfactory system. 

Neuron 39, 991–1004 (2003). 

10. Yu, B. M. et al. Gaussian-Process Factor Analysis 
for Low-Dimensional Single-Trial Analysis of 
Neural Population Activity. J. Neurophysiol. 102, 
614–635 (2009). 

11. Ganguli, S. & Sompolinsky, H. Compressed 
Sensing, Sparsity and neural data. Annu. Rev. 
Neurosci. 35, 463–483 (2012). 

12. Gallego, J. A. et al. Multiple tasks viewed from the 
neural manifold: Stable control of varied behavior. 
bioRxiv 1–27 (2017). doi:10.1101/176081 

13. Mante, V., Sussillo, D., Shenoy, K. V & Newsome, 
W. T. Context-dependent computation by recurrent 
dynamics in prefrontal cortex. Nature 503, 78–84 
(2013). 

14. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & 
Shenoy, K. V. Cortical activity in the null space: 
permitting preparation without movement. Nat. 
Neurosci. 17, 440–8 (2014). 

15. Perich, M. G., Gallego, J. A. & Miller, L. A Neural 
Population Mechanism For Rapid Learning. bioRxiv 
(2017). doi:10.1101/138743 

16. Gallego, J. A. et al. Cortical population activity 
within a preserved neural manifold underlies 
multiple motor behaviors. Nat. Commun. 9, 4233 
(2018). 

17. Dickey, A. S., Suminski, A., Amit, Y. & 
Hatsopoulos, N. G. Single-unit stability using 
chronically implanted multielectrode arrays. J. 
Neurophysiol. 102, 1331–9 (2009). 

18. Stevenson, I. H. et al. Statistical assessment of the 
stability of neural movement representations. J. 
Neurophysiol. 106, 764–74 (2011). 

19. Shen, L. & Alexander, G. E. Neural correlates of a 
spatial sensory-to-motor transformation in primary 
motor cortex. J. Neurophysiol. 77, 1171–94 (1997). 

20. Santhanam, G. et al. Factor-analysis methods for 
higher-performance neural prostheses. J. 
Neurophysiol. 102, 1315–30 (2009). 

21. Rathelot, J.-A. & Strick, P. L. Muscle representation 
in the macaque motor cortex: an anatomical 
perspective. Proc. Natl. Acad. Sci. U. S. A. 103, 
8257–62 (2006). 

22. Fetz, E. E. & Cheney, P. D. Postspike facilitation of 
forelimb muscle activity by primate 
corticomotoneuronal cells. J. Neurophysiol. 44, 
751–72 (1980). 

23. Morrow, M. M. & Miller, L. E. Prediction of muscle 
activity by populations of sequentially recorded 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 18, 2018. ; https://doi.org/10.1101/447441doi: bioRxiv preprint 

https://doi.org/10.1101/447441
http://creativecommons.org/licenses/by-nd/4.0/


 

Page 17 of 33 

primary motor cortex neurons. J. Neurophysiol. 89, 
2279–88 (2003). 

24. Lillicrap, T. P. & Scott, S. H. Preference 
distributions of primary motor cortex neurons 
reflect control solutions optimized for limb 
biomechanics. Neuron 77, 168–79 (2013). 

25. Sergio, L. E., Hamel-Pâquet, C. & Kalaska, J. F. 
Motor cortex neural correlates of output kinematics 
and kinetics during isometric-force and arm-
reaching tasks. J. Neurophysiol. 94, 2353–78 
(2005). 

26. Cherian, A., Fernandes, H. L. & Miller, L. E. 
Primary motor cortical discharge during force field 
adaptation reflects muscle-like dynamics. J. 
Neurophysiol. (2013). doi:10.1152/jn.00109.2012 

27. Friedman, D. P. & Jones, E. G. Thalamic input to 
areas 3a and 2 in monkeys. J. Neurophysiol. 45, 59–
85 (1981). 

28. Pons, T. P., Garraghty, P. E., Cusick, C. G. & Kaas, 
J. H. The somatotopic organization of area 2 in 
macaque monkeys. J. Comp. Neurol. 241, 445–466 
(1985). 

29. Weber, D. J. et al. Limb-state information encoded 
by peripheral and central somatosensory neurons: 
implications for an afferent interface. IEEE Trans. 
Neural Syst. Rehabil. Eng. 19, 501–13 (2011). 

30. Sussillo, D., Churchland, M. M., Kaufman, M. T. & 
Shenoy, K. V. A neural network that finds a 
naturalistic solution for the production of muscle 
activity. Nat. Neurosci. 18, 1025–33 (2015). 

31. Rebesco, J. M., Stevenson, I. H., Körding, K. P., 
Solla, S. a & Miller, L. E. Rewiring neural 
interactions by micro-stimulation. Front. Syst. 
Neurosci. 4, 1–15 (2010). 

32. Tolias, A. S. et al. Recording chronically from the 
same neurons in awake, behaving primates. J. 
Neurophysiol. 98, 3780–3790 (2007). 

33. Trautmann, E. M. et al. Accurate estimation of 
neural population dynamics without spike sorting. 
1–42 (2017). doi:10.1101/229252 

34. Bach, F. R. & Jordan, M. I. Kernel Independent 
Component Analysis. J. Mach. Learn. Res. 3, 1–48 
(2002). 

35. Evarts, E. V. Relation of Discharge Frequency To 
Conduction Velocity in Pyramidal Tract Neurons. J. 
Neurophysiol. 28, 216–228 (1965). 

36. Humphrey, D. R., Schmidt, E. M. & Thompson, W. 
D. Predicting measures of motor performance from 
multiple cortical spike trains. Science 170, 758–762 

(1970). 

37. Thach, W. T. Correlation of neural discharge with 
pattern and force of muscular activity, joint position, 
and direction of intended next movement in motor 
cortex and cerebellum. J. Neurophysiol. 41, 654–76 
(1978). 

38. Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & 
Shenoy, K. V. Making brain-machine interfaces 
robust to future neural variability. Nat. Commun. 7, 
1–12 (2016). 

39. Churchland, M. M., Yu, B. M., Ryu, S. I., 
Santhanam, G. & Shenoy, K. V. Neural Variability 
in Premotor Cortex Provides a Signature of Motor 
Preparation. J. Neurosci. 26, 3697–3712 (2006). 

40. Churchland, M. M., Santhanam, G. & Shenoy, K. V. 
Preparatory activity in premotor and motor cortex 
reflects the speed of the upcoming reach. J. 
Neurophysiol. 96, 3130–3146 (2006). 

41. Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A. & 
Shenoy, K. V. A high-performance brain-computer 
interface. Nature 442, 195–8 (2006). 

42. Sainburg, R. L., Poizner, H. & Ghez, C. Loss of 
proprioception produces deficits in interjoint 
coordination. J. Neurophysiol. 70, 2136–2147 
(1993). 

43. Sainburg, R. L., Ghilardi, M. F., Poizner, H. & 
Ghez, C. Control of limb dynamics in normal 
subjects and patients without proprioception. J. 
Neurophysiol. 73, 820–835 (1995). 

44. Ghez, C. & Sainburg, R. Proprioceptive control of 
interjoint coordination. Can. J. Physiol. Pharmacol. 
73, 273–284 (1995). 

45. Pons, T. P. & Kaas, J. H. Corticocortical 
connections of area 2 of somatosensory cortex in 
macaque monkeys: a correlative anatomical and 
electrophysiological study. J. Comp. Neurol. 248, 
313–335 (1986). 

46. Porter, L. L. & Sakamoto, K. Organization and 
synaptic relationships of the projection from the 
primary sensory to the primary motor cortex in the 
cat. J. Comp. Neurol. 271, 387–396 (1988). 

47. Scott, S. H. A Functional Taxonomy of Bottom-Up 
Sensory Feedback Processing for Motor Actions. 
Trends Neurosci. 39, 512–526 (2016). 

48. Prud’homme, M. J. & Kalaska, J. F. Proprioceptive 
activity in primate primary somatosensory cortex 
during active arm reaching movements. J. 
Neurophysiol. 72, 2280–301 (1994). 

49. London, B. M. & Miller, L. E. Responses of 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 18, 2018. ; https://doi.org/10.1101/447441doi: bioRxiv preprint 

https://doi.org/10.1101/447441
http://creativecommons.org/licenses/by-nd/4.0/


 

Page 18 of 33 

somatosensory area 2 neurons to actively and 
passively generated limb movements. J. 
Neurophysiol. 109, 1505–1513 (2013). 

50. Scott, S. Optimal Feedback Control and the Neural 
Basis of Volitional Motor Control. Nat. Rev. 
Neurosci. 5, 532–546 (2004). 

51. Miri, A. et al. Behaviorally Selective Engagement 
of Short-Latency Effector Pathways by Motor 
Cortex. Neuron 1–14 (2017). 
doi:10.1016/j.neuron.2017.06.042 

52. Low, R. J., Lewallen, S., Aronov, D., Nevers, R. & 
Tank, D. W. Probing variability in a cognitive map 
using manifold inference from neural dynamics. 
bioRxiv (2018). doi:10.1101/418939 

53. Siegel, M., Buschman, T. J. & Miller, E. K. Cortical 
information flow during flexible sensorimotor 
decisions. Science (80-. ). 348, 1352–1355 (2015). 

54. Lara, A. H., Cunningham, J. P. & Churchland, M. 
M. Different population dynamics in the 
supplementary motor area and motor cortex during 
reaching. Nat. Commun. (2018). 
doi:10.1038/s41467-018-05146-z 

55. Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. 
Flexible timing by temporal scaling of cortical 
responses. Nat. Neurosci. (2017). 
doi:10.1038/s41593-017-0028-6 

56. Bensmaia, S. J. & Miller, L. E. Restoring 
sensorimotor function through intracortical 
interfaces: progress and looming challenges. Nat. 
Rev. Neurosci. 15, 313–25 (2014). 

57. Ethier, C., Gallego, J. & Miller, L. Brain-controlled 
neuromuscular stimulation to drive neural plasticity 
and functional recovery. Curr. Opin. Neurobiol. 33, 
95–102 (2015). 

58. Paninski, L. et al. Instant neural control of a 
movement signal. Nature 416, 141–2 (2002). 

59. Carmena, J. M. et al. Learning to control a brain-
machine interface for reaching and grasping by 
primates. PLoS Biol. 1, E42 (2003). 

60. Collinger, J. L. et al. High-performance 
neuroprosthetic control by an individual with 
tetraplegia. Lancet 381, 557–64 (2013). 

61. Hochberg, L. R. et al. Reach and grasp by people 
with tetraplegia using a neurally controlled robotic 
arm. Nature 485, 372–5 (2012). 

62. Ethier, C., Oby, E. R., Bauman, M. J. & Miller, L. 
E. Restoration of grasp following paralysis through 
brain-controlled stimulation of muscles. Nature 
485, 368–71 (2012). 

63. Moritz, C. T., Perlmutter, S. I. & Fetz, E. E. Direct 
control of paralysed muscles by cortical neurons. 
Nature 456, 639–42 (2008). 

64. Capogrosso, M. et al. A brain-spine interface 
alleviating gait deficits after spinal cord injury in 
primates. Nature 539, 284–288 (2016). 

65. Chestek, C. et al. Long-term stability of neural 
prosthetic control signals from silicon cortical 
arrays in rhesus macaque motor cortex. J. Neural 
Eng. 8, 45005 (2011). 

66. Wu, W. & Hatsopoulos, N. G. Real-time decoding 
of nonstationary neural activity in motor cortex. 
IEEE Trans. Neural Syst. Rehabil. Eng. 16, 213–22 
(2008). 

67. Orsborn, A. L. et al. Closed-Loop Decoder 
Adaptation Shapes Neural Plasticity for Skillful 
Neuroprosthetic Control. Neuron 82, 1380–1393 
(2014). 

68. Dyer, E. L. et al. A cryptography-based approach 
for movement decoding. Nat. Biomed. Eng. 1, 967–
976 (2017). 

69. Flint, R. D., Wright, Z. A., Scheid, M. R. & Slutzky, 
M. W. Long term, stable brain machine interface 
performance using local field potentials and 
multiunit spikes. J. Neural Eng. 10, 56005 (2013). 

70. Pandarinath, C. et al. Inferring single-trial neural 
population dynamics using sequential auto-
encoders. Nat. Methods 15, 152884 (2018). 

71. Kao, J. C., Ryu, S. I. & Shenoy, K. V. Leveraging 
neural dynamics to extend functional lifetime of 
brain-machine interfaces. Sci. Rep. 7, 1–16 (2017). 

72. Farshchian, A. et al. Adversarial Domain 
Adaptation for Stable Brain-Machine Interfaces. 1–
13 (2018). 

73. Markowitz, D. a, Curtis, C. E. & Pesaran, B. 
Multiple component networks support working 
memory in prefrontal cortex. Proc Natl Acad Sci 
USA 112, 11084–11089 (2015). 

74. Kobak, D. et al. Demixed principal component 
analysis of neural population data. Elife 5, 1–37 
(2016). 

75. Machens, C. K., Romo, R. & Brody, C. D. 
Functional, but not anatomical, separation of ‘what’ 
and ‘when’ in prefrontal cortex. J. Neurosci. 30, 
350–60 (2010). 

76. Raposo, D., Kaufman, M. T. & Churchland, A. K. 
A category-free neural population supports 
evolving demands during decision-making. Nat. 
Neurosci. 17, 1784–1792 (2014). 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 18, 2018. ; https://doi.org/10.1101/447441doi: bioRxiv preprint 

https://doi.org/10.1101/447441
http://creativecommons.org/licenses/by-nd/4.0/


 

Page 19 of 33 

77. Cowley, B. R., Smith, M. A., Kohn, A. & Yu, B. M. 
Stimulus-Driven Population Activity Patterns in 
Macaque Primary Visual Cortex. PLoS Comput. 
Biol. 12, e1005185 (2016). 

78. Stringer, C., Pachitariu, M., Carandini, M. & Harris, 
K. D. High-dimensional geometry of population 
responses in visual cortex. 1–22 (2018). 
doi:10.1101/374090 

79. Luczak, A., Barthó, P. & Harris, K. D. Spontaneous 
Events Outline the Realm of Possible Sensory 
Responses in Neocortical Populations. Neuron 62, 
413–425 (2009). 

80. Harvey, C. D., Coen, P. & Tank, D. W. Choice-
specific sequences in parietal cortex during a 
virtual-navigation decision task. Nature 484, 62–8 
(2012). 

81. Russo, A. A. et al. Motor Cortex Embeds Muscle-
like Commands in an Untangled Population 
Response. Neuron 1–14 (2018). 
doi:10.1016/j.neuron.2018.01.004 

82. Churchland, M. M. et al. Neural population 
dynamics during reaching. Nature (2012). 
doi:10.1038/nature11129 

83. Elsayed, G. F., Lara, A. H., Kaufman, M. T., 
Churchland, M. M. & Cunningham, J. P. 
Reorganization between preparatory and movement 
population responses in motor cortex. Nat. 
Commun. 13239 (2016). 
doi:10.1038/ncomms13239 

84. Pandarinath, C. et al. Neural population dynamics 
in human motor cortex during movements in people 
with ALS. Elife 4, 313 (2015). 

85. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & 
Massey5, J. T. On the relations between the 
direction of two-dimensional arm movements and 
cell discharge in primate motor cortex. J. Neurosci. 
2, 1527–1537 (1982). 

86. Cisek, P. & Kalaska, J. F. Neural correlates of 
reaching decisions in dorsal premotor cortex: 
specification of multiple direction choices and final 
selection of action. Neuron 45, 801–14 (2005). 

 

METHODS 

Behavioral task 
We trained six monkeys to sit in a primate chair 

and make reaching movements using a custom 
planar manipulandum. All six of the monkeys 
performed a similar two-dimensional center-out task 

(Fig. 2a,b) for long periods of time; across all 
monkeys we collected 137 days of data, with 
timespans between three weeks and approximately 
two years. In  the task, the monkey moved his hand 
to the center of the workspace to begin each trial. 
After a variable waiting period, the monkey was 
presented with one of eight outer targets (or four 
targets for Monkey H), equally spaced in a circle and 
selected randomly with uniform probability. 
Monkeys C, M, and T were trained to hold during a 
variable delay period during which the target 
remained visible before receiving an auditory go 
cue. Monkeys P and H were not subjected to this 
delay period. Early recordings from Monkey C also 
omitted this instructed delay period, though he was 
later trained on the delayed version of the task. With 
respect to our main results, we saw no difference 
between these groups of sessions. To receive a 
liquid reward, the monkeys were required to reach 
the outer target within 1 s. Monkeys C, M, and T 
were required to hold within that outer target for 0.5 
s. For Monkey P and early sessions with Monkey H, 
this outer target hold period was omitted. Monkey H 
was later subject to a brief hold period of 100 ms, to 
ensure that he decelerated to end the reach within 
the target. Thus, there were some kinematic 
differences between the early and later sessions with 
Monkey H; since much of the movement was 
similar, we observed similar results even when all of 
the recordings and all sessions were considered. As 
the monkeys performed this task, we recorded the 
position of the endpoint at a sampling frequency of 
1 kHz using encoders in the joints, and digitally 
logged the specific timing of task events such as the 
go cue.  

 

Behavioral data analysis 
In all of the following analyses, we considered 

only the trials in which the monkey successfully 
achieved the outer target within the specified time 
and received a reward. We then subselected trials 
such that all sessions contained an equal number of 
reaches in each of the target directions. Within each 
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trial, we isolated a window of interest that captured 
the majority of the movement. Comparison of the 
dynamics requires each trial on each day to have the 
same number of data points. We thus adjusted this 
window slightly according to the behavioral 
idiosyncrasies (reaching speed, etc.) of each 
monkey, so as to maximize the number of samples 
while preserving an equal number of data points 
across trials. For example, monkeys with naturally 
slower reach speeds were assigned longer windows. 
Our results were qualitatively unchanged with 
reasonable adjustments to this window. For 
Monkeys M, T, C, and J we used a window starting 
120 ms before movement onset and ending 420 ms 
after movement onset. For Monkeys P and H, we 
used windows beginning at the go cue and ending 
after 570 ms or 660 ms, respectively.  

We performed all subsequent analyses by 
comparing all pairs of sessions performed by each 
monkey, only looking forward in time. For example, 
with three days of recordings, we compared day 1 to 
day 2, day 1 to day 3, and day 2 to day 3. In general, 
when a recording on day 𝑗 was compared to a 
subsequent recording on day 𝑘, the result was 
assigned to (𝑘 − 𝑗) days between sessions. First, we 
studied the hand kinematics to assess behavioral 
consistency. We took the derivative of the endpoint 
position to compute the endpoint velocity. Within 
each session, we ordered all trials by reach direction 
and concatenated all trials. Since the trials were 
subselected to equalize the counts across both time 
and reach directions (last column of Table 1), the 
resulting data matrices were of equal size for all 
days. Each matrix entry represented a datapoint 
from the same time sample and target across all 
days, allowing for a point-by-point direct 
comparison of dynamics. To assess the stability of 
behavior over time, we computed the correlation 
(Pearson’s R) for the 2-D velocity signals between 
pairs of days in all possible combinations. 

 

Neural implants 
All surgical and experimental procedures were 

approved by the Institutional Animal Care and Use 
Committee (IACUC) of Northwestern University. 
In order to record chronically from populations of 
cortical neurons, we implanted 96-channel Utah 
electrode arrays in M1, PMd, or S1 using standard 
surgical procedures. Monkeys T (male, macaca 
fascicularis) and M (male, macaca mulatta) were 
implanted in PMd of the right hemisphere: Monkey 
M also received a second array in right M1 in the 
same procedure. Monkey C (male, macaca mulatta) 
received two implants: first, a single array in right 
M1 (denoted CR throughout the text), followed years 
later by implants in both M1 and PMd of the left 
hemisphere (denoted CL). Monkey J (male, macaca 
mulatta) received an array in the left M1. Both 
Monkeys P and H (male, macaca mulatta) received 
arrays in S1 (Brodmann’s Area 2) of the left 
hemisphere. Table 1 summarizes the implants and 
sessions of neural recordings for each monkey. 

Neural activity was recorded during the 
behavior using a Cerebus system (Blackrock 
Microsystems, Salt Lake City, UT). The recordings 
on each channel were digitized, band-pass filtered 
(250-5000 Hz), and then converted to spike times 
based on threshold crossings. The threshold was set 
according to the root-mean square (RMS) activity 
on each channel (Monkeys C, M, T, and J: 
5.5×RMS; Monkey P: 4×RMS; Monkey H: 
5×RMS). Although most of the analyses of this 
paper focus on the multiunit threshold crossings on 
each recording channel, we also manually spike-
sorted the recordings from Monkeys M, C, and T to 
identify putative single-neurons, which we used in 
the control analyses for M1, as well as in the 
tracking across days analysis (see below). 

 

Tracking single neurons over days 
For all sessions recorded with Monkeys C, M, 

and T, we sorted the waveforms that exceeded the 
threshold to identify putative single neurons. Each 
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of these sorted units can be uniquely described by its 
waveform shape and its inter-spike interval (ISI) 
distribution. We applied a statistical test based on 
these metrics to determine whether or not a given 
neuron was recorded on two different days17. In 
brief, the waveform shape and ISI of two neurons 
recorded on a given electrode on two different days 
was compared against an empirical null distribution 
taken from neurons recorded on all other electrodes, 
thus known to be from different neurons. Cells were 
considered to match if the joint probability of both 
metrics matching was less than 0.01. 

 

Analysis of neural spatial tuning across 
days 

We described the spatial tuning of the multiunit 
on each electrode by using cosine tuning curves85. 
On each recording electrode, we computed the 
average firing rate within the time window used for 
decoding or classification (during motor execution 
for M1 and S1, and during motor planning for PMd, 
respectively). On each session, we then averaged 
across all trials for each reach direction and used 
linear regression to fit the tuning curve according to: 

𝑓 = 𝑏 + 𝑎 cos(𝜃 − 𝜃∗),	 
where 𝑏 is the baseline mean firing rate, 𝑎 is the 
depth of modulation, and 𝜃∗ is the preferred 
direction85; these three parameters describe the 
directional tuning of the average firing rate 𝑓 for 
each recording electrode. For each electrode, we 
tracked the changes in the parameters of this model 
across all pairs of days for which neural activity was 
recorded on that electrode on both days. For this 
subset of electrodes, we assessed the magnitude of 
the change in mean firing rate, modulation depth, 
and preferred direction, the latter as a circular 
difference. 

 

Neural latent dynamics analysis 
To characterize the dynamics of the latent 

activity associated with the recorded neural activity 
in each session, we computed a smoothed firing rate 

as a function of time for the multiunit activity on 
each electrode. We obtained these smoothed firing 
rates by applying a Gaussian kernel (s.d.: 50 ms) to 
the binned square-root-transformed firings (bin size: 
30 ms) of each recorded multiunit10. We excluded 
electrodes whose activity had a low mean firing rate 
(< 1 Hz mean firing rate across all bins), but did not 
perform any additional preselection, such as based 
on directional tuning. For each session, this 
produced a neural data matrix X of dimensions n by 
𝑇, where 𝑛 is the number of recorded units and 𝑇 is 
total number of time points from all concatenated 
trials on a given day; 𝑇 is thus given by: number of 
targets per day × number of trials per target × 
number of time points per trial. We performed this 
concatenation as described above, by subselecting 
the same number of trials for all sessions and targets 
for each monkey (Table 1) and ordering the 
datapoints by time and target. For the analysis of M1 
and S1 activity, we considered the same window of 
interest during a trial as we did for the behavioral 
analysis (see above); these values were chosen to 
represent movement execution in M1, and feedback 
control in S1. For the PMd activity, we analyzed the 
preparatory activity within a window aligned with 
movement onset, starting 390 ms before movement 
onset, and ending 60 ms after movement onset. This 
window started after the putative visual response 
elicited by the target presentation86, and it was 
advantageous because it included mostly 
preparatory activity, but also some of the dynamics 
of the transition from preparation to movement.  

For each session, the activity of n recorded 
multiunits was represented as an empirical neural 
space, an n-dimensional sampling of the state of the 
cortical area of interest. In this space, the joint 
recorded activity is represented as a single point 
whose coordinates are determined by the firing rate 
of the corresponding multiunits (Fig. 1a). Within 
this space, we computed the low-dimensional neural 
manifold by applying principal component analysis 
(PCA) to the neural data matrix X. This yielded 𝑛 
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principal components (PCs), each a linear 
combination of the smoothed firing rates of all 𝑛 
recorded units. These PCs are ranked based on the 
amount of neural variance they explain. We defined 
an 𝑚-dimensional session-specific neural manifold 
by keeping only the leading 𝑚 PCs, which we refer 
to as neural modes (Fig. 1a). Based on previous 
work by our group and others, we chose the 
following dimensionality values: 𝑚=10 for M1, 
𝑚=15 for PMd, 𝑚=8 for S1. The specific choice of 
𝑚 is not critical, as our results held across a broad 
range of 𝑚 values (Fig. S5a-c).  

We computed the latent dynamics within the 
neural manifold by projecting the time-dependent 
smoothed firing rates of the recorded neurons onto 
the PCs that span the neural manifold. This 
produced a data matrix L of dimensions m by 𝑇, 
where 𝑚 is the dimensionality of the manifold and 
T is total number of time points from all 
concatenated trials on a given day. Recent 
theoretical and experimental work has demonstrated 
that when the recorded neural activity is projected 
onto the low-dimensional manifold to obtain the 
latent dynamics, the result is not sensitive to whether 
the manifold was estimated on the basis of single 
units or multiunits33. Nevertheless, we repeated all 
the analyses for a subset of three monkeys with M1 
implants by using putative single neurons to obtain 
the manifold, and verified that our results held (Fig. 
S5d-g). 

 

Alignment of latent dynamics across days 
The substantial turnover across days observed in 

our neural recordings (Fig. 3, S3,4) implies that the 
empirical neural space in which the experimentally 
accessible neural manifold and the latent dynamics 
are embedded changed across days. Our hypothesis 
predicts that the true latent dynamics associated with 
consistent behavior should be stable across days. In 
order to verify this hypothesis, we need to 
compensate for the fact that the true latent dynamics 
is being projected onto different empirical 

manifolds on different days. If our hypothesis is 
correct, we expect to be able to compensate for this 
change in the embedding space by using canonical 
correlation analysis34 (CCA). Given the 
concatenated single-trial latent dynamics  L5 and 
L6 from two days A and B, CCA finds linear 
transformations that applied to L5 and L6 make the 
corresponding latent dynamics maximally 
correlated.  

CCA starts with a QR decomposition of the 
transposed latent dynamics matrices L5 and L6, 
L5T = Q5R5, L6

T = Q6R6 . The first m column 
vectors of Q7 , 𝑖 = 𝐴, 𝐵, provide an orthonormal 
basis for the column vectors of L7

T, 𝑖 = 𝐴, 𝐵. We 
then construct the 𝑚	by 𝑚	inner product matrix of 
Q5 and Q6 and perform a singular value 
decomposition to obtain 

Q5
TQ6 = U S VT 

The new manifold directions that CCA finds so 
as to maximize the pairwise correlations between 
latent dynamics across the two tasks are the 
corresponding 𝑚 by 𝑚 matrices  

𝐌5 = 𝐑5=𝟏𝐔,										𝐌6 = 𝐑6=𝟏𝐕. 
The elements of the diagonal matrix S are the 
resulting canonical correlations (CCs), sorted from 
largest to smallest. They quantify the similarity in 
the aligned latent dynamics. For comparison with 
the CCs between aligned latent dynamics for 
different days, we computed the CCs between the 
corresponding unaligned latent dynamics, given by 
the pairwise correlations between the rows of L5 
and L6. 

We used the within-day variability in the latent 
dynamics across blocks of trials for a given day to 
obtain an upper bound for the across-day CCs. We 
split all the trials in one day into two non-
overlapping sets of trials, ensuring that the groups 
were matched by target and time points, and 
performed CCA on the latent dynamics (100 
repetitions). The mean value for each of the m 
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ordered CCs in this distribution was used to define 
the within-day CCs. To represent more compactly 
how the alignment process compensates for the 
changes in latent dynamics due to neural turnover 
and its resultant change in embedding space, we 
computed the normalized similarity, the ratio of the 
across-day aligned or unaligned CCs to the upper-
bound provided by the within-day CCs. 

 

Decoding hand velocity from motor and 
somatosensory neural activity 

To test whether the aligned latent dynamics in 
M1 and S1 maintain movement-related information, 
we built linear decoders to predict the two-
dimensional hand velocity from neural data. Our 
hypothesis was that the aligned latent dynamics 
should provide accurate predictions of hand 
kinematics over time. To test this hypothesis, we 
compared the predictive accuracy of three different 
types of decoders: 1) a within-day neural decoder 
trained and tested on the same day based on the 
recorded neural activity, 2) an across-day neural 
decoder trained on the neural activity recorded on 
the first day and tested on neural activity recorded 
on subsequent days, and 3) an across-day latent 
decoder trained on the latent dynamics of the first 
day and tested on the aligned latent dynamics of 
subsequent days. 

All decoders were standard Wiener filters 
(REFs) that used as inputs the neural activity, either 
the multiunit firing rates for the within-day and 
across-day neural decoders or the across-day 
aligned latent dynamics. We also included three bins 
of recent spiking history, for a total of 90 ms. These 
additional neural inputs incorporate information 
about intrinsic neural dynamics and account for 
axonal transmission delays. When decoding from 
M1, whose activity causes the ensuing movement, 
the additional bins preceded hand velocity signals. 
When decoding from S1, whose activity is largely in 
response to the executed movement, the additional 
bins lagged behind hand velocity signals. The R2 

value between actual and predicted hand velocity 
was used to quantify decoder performance as a 
predictive accuracy. 

The within-day decoder was trained and tested 
on the same session, using a six-fold leave-one-out 
cross-validation procedure to protect against 
overfitting. Before splitting the recorded neural 
activity for the session into six blocks, the 
corresponding trials were shuffled to remove any 
bias due to time through the session. The R2 values 
for the six test blocks were averaged to obtain a final 
reported value. The within-day performance 
provided an upper-bound to the performance of 
across-day decoders. The across-day neural 
decoders were computed for all pairwise 
combinations of days, training on the neural activity 
recorded on the first of the two days and testing on 
the later day. The across-day aligned decoders were 
trained and tested on latent dynamics after 
alignment. To compare across all sessions and 
monkeys more easily, we normalized the across-day 
predictive accuracy by dividing it by the within-day 
predictive accuracy to obtain the normalized 
predictive accuracy. 

 

Predicting target direction from PMd 
planning activity 

We trained naive Bayes classifiers to predict the 
direction of the upcoming movement based on pre-
movement planning activity20. As inputs to the 
classifier we used PMd neural activity recorded 
during a 450 ms window for all three monkeys (see 
above). This window focused primarily on the 
planning period before movement onset. As we did 
for movement prediction, we trained three types of 
classifiers: within-day, across-day based on 
recorded neural activity, and across-day based on 
aligned latent dynamics. Within the input window, 
we averaged all activity to obtain a single value 
representing the activity for that trial, resulting in 
either an 𝑛-dimensional neural input or an 𝑚-
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dimensional  latent input (whether aligned or 
unaligned).  

The naive Bayes classifiers, trained using 
Matlab (fitcnb), provided a probabilistic assignment 
of the inputs to one of eight classes, corresponding 
to the eight possible target directions. The predicted 
classes were assumed to be independent; hence the 
classifiers were naive. To ensure that all targets had 
the same prior probability, the training data included 
the same number of trials for each target.  

Performance of the trained classifiers was 
quantified by the percentage of correct 
classifications. To quantify the performance of the 
within-day classifiers, we performed a cross-
validation procedure in which we left out one 
random trial to each target and trained the classifier 
on the remaining data. We then tested the classifier 

on this left-out sample. We repeated this procedure 
100 times, and averaged the test performance. As 
before, we normalized the performance of the 
across-day classifiers by dividing it by the within-
day performance to compute the normalized 
accuracy. 

 

Statistics 
We applied statistical tests to compare the 

across-day recorded neural activity and across-day 
aligned latent dynamics.  For all statistical tests, we 
used distributions that had been normalized by 
dividing by the within-day values, either for 
canonical correlation or decoding and classification 
performance. We used a Wilcoxon rank-sum test to 
compare the distributions with a significance 
threshold of P < 0.001.

 
Table 1. Database of neural and behavioral recordings 

Monkey Age during 
experiment 

(years) 

Implant site Number of 
recording 
sessions 

Range of days Minimum number of 
rewarded reaches per 

target and session 

M 6-7 
Right PMd 17 508 17 

Right M1 18 508 17 

T 10 Right PMd 6 21 17 

CR 

6-8 

Right M1 36 731 12 

CL 
Left PMd 14 42 10 

Left M1 14 42 10 

J 19 Left M1 12 71 16 

P 8 Left S1 6 28 10 

H 8 Left S1 14 44 12 
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SUPPLEMENTARY FIGURES 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 18, 2018. ; https://doi.org/10.1101/447441doi: bioRxiv preprint 

https://doi.org/10.1101/447441
http://creativecommons.org/licenses/by-nd/4.0/


 

Page 26 of 33 

 
Figure S1. Additional data: task description and consistent behavior. (a-f) Correlation between direction-matched single trial X and Y hand velocities 
across all pairs of days (single dots: individual trials; lines: linear fits) from Monkey M (a), Monkey T (b), Monkey CL (c), Monkey J (d), Monkey P (e), 
and Monkey H (f).  
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Figure S2. Example neural activity during reaching on two days from Monkey CR. Each row shows the firing rates on a different electrode for Day 
27 (left column) and Day 43 (right column). Each color represents a different sorted neuron. The eight plots arranged in a circular manner show the 
firing rate as a function of time during a reach to each of the eight targets, aligned on movement onset and averaged across all trials to the same 
target. The inset in the top left of each panel shows the average waveform of each sorted neuron; the inset at the top right shows the ISI distribution 
for each sorted neuron. 
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Figure S3. Additional data: neural recording stability. (a) Percentage of individual sorted M1 neurons matched across all pairs of days based on 
action potential waveforms and inter-spike interval (ISI) histograms. Data from Monkey CL (top; duplicated from Fig. 3d), Monkey M (middle; inset 
highlights the first 50 days), and Monkey CR (bottom; inset highlights the first 35 days). (b) Percentage of individual sorted PMd neurons matched 
across all pairs of days as in (a). Data from Monkey CL (top), Monkey M (middle), and Monkey T (bottom).  
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Figure S4. Additional data: neural tuning stability. For each implant: change in mean firing rate (top plot), modulation depth (middle plot), and 
preferred direction (bottom plot) of standard cosine tuning fits to multiunit activity across all pairs of days. Line and shaded areas: mean ± s.e.m. 
Plots are grouped by implant and brain area (M1: left; PMd: middle; S1: right). 
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Figure S5. Controls for the alignment procedure using M1 data. (a) Predictive accuracy when decoding hand velocity for all pairs of days from 
Monkey CL, using the unaligned latent dynamics as inputs instead of the multiunit activity used in Figure 4. (b) Predictive accuracy of decoders 
using the latent dynamics within-day and across-day (unaligned), as well as across-day after alignment, for Monkeys CL, CR, and M. (c) Correlation 
of the M1 latent dynamics averaged over the top four neural modes across all pairs of days from Monkey CL using a 6-D manifold (single dots: pairs 
of days; lines: linear fits). (d) Normalized similarity of the aligned and unaligned M1 latent dynamics in the 6-D empirical latent space for Monkey CL. 
(e) Mean and s.e.m. for normalized similarity distributions as shown in (b), for all four M1 implants for 6, 8, 10, and 12-D manifolds. The 10-D data 
presented here summarizes the distributions shown in Figure 4. The significance of the separation between aligned and unaligned distributions held 
regardless of the choice of latent space dimensionality. (f) Correlation of the M1 latent dynamics averaged over the top four neural modes across 
all pairs of days from Monkey CL using sorted neurons rather than multiunit activity (single dots: pairs of days; lines: linear fits). (g) Normalized 
similarity of the aligned and unaligned M1 latent dynamics in the standard 10-D empirical space obtained using sorted neurons for Monkeys CL, CR, 
and M. Error bars: Mean ± s.d. 
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Figure S6. Additional data: PMd alignment and decoding. (a) Peristimulus time histograms for all sorted PMd neurons identified on Day 27 and Day 
43 from Monkey CL (top; each neuron shown in a different row) and corresponding hand velocity (bottom). Each column represents the average of 
all trials to each of the eight reach directions (indicated by the arrows above each column). Data was recorded during the pre-movement planning 
and the transition to movement; hand velocities are thus largely zero. Note the substantial changes in the planning activity of the recorded PMd 
neurons across days. (b) Correlation of the PMd latent dynamics averaged over the top four neural modes across all pairs of days from Monkey M 
(left) and Monkey T (right) (single dots: pairs of days; lines: linear fits). Error bars: Mean ± s.d. (c) Classification accuracy for models trained and 
tested on all different pairs of days for Monkey M (left) and Monkey T (right).  
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Figure S7. Additional data: S1 alignment and decoding. (a) Peristimulus time histograms for all sorted S1 neurons identified on Day 1 and Day 29 
from Monkey P (top; each neuron shown in a different row) and corresponding hand velocity (bottom). Each column represents the average of all 
trials to each of the eight reach directions (indicated by the arrows above each column). (b) Correlation of the S1 latent dynamics averaged over 
the top four neural modes across all pairs of days from Monkey H (single dots: pairs of days; lines: linear fits). (c) Predictive accuracy for models 
trained and tested on all different pairs of days for Monkey H. 
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