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Abstract 
 
Dopaminergic (DA) neurons in the midbrain provide topographic innervation of the striatum that 
is essential for learning and generating movements. Although traditionally DA neurons have 
been thought to primarily encode reward prediction error (RPE), recent studies have found 
movement-related signals specifically in DA neurons that project to the dorsal striatum. 
However, whether these movement signals should still be best understood in the traditional 
framework as a specialized RPE with respect to the movement in question remains a major 
open question.  For example, we recently reported that DA neurons that project to the 
dorsomedial striatum (DMS) are primarily modulated by choices contralateral to the recording 
site. Is this modulation by contralateral choice in fact a contralateral movement signal, or a 
contralaterized RPE signal? Here, we resolve this question by examining DA responses while 
carefully considering both choice and RPE on a trial-by-trial basis. We show that DA responses 
are modulated by contralateral choice with a pattern that is qualitatively distinct from RPE. This 
implies that choice encoding cannot be explained by RPE and is better explained by the 
direction of movement. These results demonstrate a fundamental separation in RPE and 
movement encoding, which may help shed light on the diversity of functions and dysfunctions of 
the DA system. 
 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447532doi: bioRxiv preprint 

https://doi.org/10.1101/447532
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Introduction 
 
A central feature of dopamine (DA) is its association with two apparently distinct functions: 
reward and movement (Niv et al. 2007; Berke 2018). Although manipulation of DA produces 
gross effects on movement initiation and invigoration, physiological recordings of DA neurons 
have historically shown few neural correlates of motor events (Wise 2004; Schultz, Dayan, and 
Montague 1997). Instead, classic studies reported responses to rewards and reward-predicting 
cues, with a pattern suggesting that DA neurons carry a “reward prediction error” (RPE) – the 
difference between expected reward and observed reward – for learning to anticipate rewards 
(Schultz, Dayan, and Montague 1997; Andrew G. Barto 1995; Cohen et al. 2012; Coddington 
and Dudman 2018; Soares, Atallah, and Paton 2016). In this classic framework, rather than 
explicitly encoding movement, DA neurons influence movements indirectly, by determining 
which movements are learned, and/or the general motivation to engage in a movement (Niv et 
al. 2007; Collins and Frank 2014; Berke 2018).  
 
However, complicating this classic view, several recent studies have suggested that 
subpopulations of DA neurons may instead have a more direct role in encoding movements. 
For example, we recently reported that whereas dopamine neurons projecting to ventral 
striatum showed classic RPE responses, a subset of midbrain DA neurons that project to the 
dorsomedial striatum (DMS) were selective for a mouse’s choice of action. In particular, they 
responded more strongly during contralateral (versus ipsilateral) choices as mice perform a 
probabilistic learning task (Parker et al. 2016). In addition, there have been several other recent 
studies that reported phasic changes in DA activity at the onset of spontaneous movements 
(Dodson et al. 2016; M. W. Howe and Dombeck 2016; da Silva et al. 2018; Barter et al. 2015).  
 
These recent observations leave open an important question: can the putatively 
movement-related responses be reconciled with Reinforcement Learning (RL) models 
describing the classic RPE response? One possibility is that movement-related responses also 
reflect RPEs, but for reward predictions tied to particular movements. Specifically, computational 
models like the actor-critic (A. G. Barto, Sutton, and Anderson 1983) and advantage learning 
(Baird 1994) learn separate predictions about the overall value of situations or stimuli and about 
the value of specific actions. It has long been suggested these two calculations might be 
localized to ventral vs dorsal striatum, respectively (Montague, Dayan, and Sejnowski 1996; 
O’Doherty et al. 2004; Takahashi, Schoenbaum, and Niv 2008). Furthermore, a human 
neuroimaging experiment reported evidence of distinct prediction errors for right and left 
movements in the corresponding contralateral striatum (Gershman, Pesaran, and Daw 2009).  
 
This leads to the specific hypothesis that putative movement-related signals in dorsal-projecting 
DA neurons might actually reflect an RPE related to the predicted value of contralateral choices. 
A choice-specific RPE could explain choice correlates, because temporal difference RPEs do 
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not do not just signal error when a reward is received, they also have a phasic anticipatory 
component triggered by predictive cues indicating the availability and timing of future reward, 
such as (in choice tasks) the presentation of levers or choice targets (Montague, Dayan, and 
Sejnowski 1996; Morris et al. 2006; Roesch, Calu, and Schoenbaum 2007). This anticipatory 
prediction error is proportional to the value of that future expected reward– indeed, we 
henceforth refer to this component of the RPE as a “value” signal, which tracks the reward 
expected for a choice. Crucially, a choice-specific value signal can masquerade as a choice 
signal because, by definition, action and value are closely related to each other: animals are 
more likely to choose actions they predict have high value–so, for instance, a value signal 
(RPE) for the contralateral choice will tend to be larger when that action is chosen than when it 
is not (Samuelson 1938). Altogether, given the fundamental correlation between actions and 
predicted value, a careful examination of the neural representation of both quantities is required 
to determine whether or not movement signals can be better explained as value-related.  
 
Thus, to address this possibility, we sought to closely examine neural correlates of value and 
movement in our DA recordings in mice performing a probabilistic learning task. Since value 
predictions are subjective, we estimated value in two ways: 1) by using reward on the previous 
trial as a simple, theory-neutral proxy, and 2)  by fitting the behavioral data with a more 
elaborate trial-by-trial Q-learning model. We compared the observed DA modulations to 
predictions based on modulation either by movement direction, and/or the expected value 
(anticipatory RPE) of contralateral or chosen actions.  
 
Ultimately, although we detected previously unappreciated value-related modulation at the time 
of lever presentation in both the terminals and cell bodies of DMS-projecting DA neurons, the 
modulation reflected the value of the chosen action rather than the contralateral one. Thus, 
value could not explain contralateral choice selectivity in these neurons, implying that this 
choice-dependent modulation in fact reflects modulation by contralateral movements and not 
value.  

Results 
 
Task, behavior and DA recordings 
 
As described previously, mice were trained on a probabilistic reversal learning task (Parker et al. 
2016). Briefly, each trial began with an illumination in the nose port, which cued the mice to 
initiate a nose poke (Figure 1a). After a 0-1s delay, two levers appeared on both sides of the 
nose port. Each lever led to reward either with high probability (70%) or low probability (10%), 
with the identity of the high probability lever swapping in a pseudorandom schedule after a block 
of at least 10 rewarded trials (Figure 1b). After another 0-1s delay, the mice either received a 
sucrose reward and an accompanying auditory stimulus (positive conditioned stimulus, or CS+), 
or no reward and a different auditory stimulus (negative conditioned stimulus, or CS-). 
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Given that block transitions were not signaled to the mouse, after each transition mice gradually 
learned to prefer the lever with the higher chance of reward. To capture this learning, we fit their 
choices using a standard trial-by-trial Q-learning model that predicted the probability of the 
animal's choice at each trial of the task (Figure 1c). In the model, these choices are driven by a 
pair of decision variables (known as Q-values) putatively reflecting the animal’s valuation of 
each option. 
 
As mice performed this task, we recorded activity from either the terminals or cell bodies of DA 
neurons that project to DMS (VTA/SN::DMS) using fiber photometry to measure the 
fluorescence of the calcium indicator GCaMP6f (Figure 1d,e; Supplemental Figure 1a,b). As 
previously reported, this revealed elevated activity during contralateral choice trials relative to 
ipsilateral choice trials, particularly in relation to the nose poke and lever presentation events 
(Figure 1f,g; Supplemental Figure 1c ) (Parker et al. 2016). 
 
 

 
 
Figure 1: Mice performed a probabilistic reversal learning task during GCaMP6f recordings from 
VTA-SN::DMS terminals or cell bodies. (a ) The illumination of the central nosepoke signaled the start of the trial, 
allowing the mice to enter the nose port. After a 0-1 second jitter delay, two levers are presented to the mice, one of 
which results in a reward with high probability (70%) and the other with a low probability (10%). The levers swapped 
probabilities on a pseudorandom schedule, unsignaled to the mouse. (b) The averaged probability of how likely the 
mice are to choose each lever before and after the identity of the high probability switched. Error bars indicate 1 
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standard error. “Contra” and “Ipsi” refer to the location of the lever relative to the side of the recording.  (c) We fit 
behavior with a trial-by-trial Q learning mixed effect model. Example trace of 200 trials of a mouse's behavior 
compared to the model results. Black bars above and below the plot indicate which lever had the high probability for 
reward; Orange dots indicate mice’s actual choice; Blue dots indicate whether or not mice was rewarded; Grey line 
indicate the difference of the model’s Q values for contralateral and ipsilateral choices. d) Surgical schematic for 
recording with optical fibers from the GCaMP6f  terminals originating from VTA-SN. Projections were determined 
using viral traces. (e) Sample GCaMP6f traces from VTA/SN::DMS terminals and aGFP control animal. (f, g) 
Previous work has reported contralateral choice selectivity in DMS DA terminals (Parker et al. 2016) when the signals 
are time-locked to nose poke (f) and lever presentation (g).  
 
Predictions of Contralateral and Chosen Value Models 
 
We introduce two hypothetical frames of reference by which the DMS DA neurons activity may 
be modulated by predicted value during trial events prior to the outcome: the DA responses 
could be modulated by the value of the contralateral option (relative to ipsilateral; Figure 2a), or 
by the value of the chosen option (relative to unchosen; Figure 2b). Note that both of these can 
be understood as the anticipatory component (occasioned at lever presentation) of a temporal 
difference RPE, with respect to the respective action’s value. 
 
The first possibility is modulation by the value of the contralateral (relative to ipsilateral) action 
(Figure 2a ; such responses have been reported in human neuroimaging, Gershman et al., 
2009, Palmenteri et al. 2009; but not previously to our knowledge examined in dopamine unit 
recordings in animals). Assuming mice tend to choose the option they expect to deliver more 
reward, such responses would be larger, on average, during contralateral choices than 
ipsilateral ones (Figure 2a). Thus, when the DA responses are broken down with respect to 
both the action chosen, and its value, the direction of value modulation would depend on the 
choice: responses are highest for contralateral choices when these are relatively most valuable, 
but the lowest for ipsilateral choices when they are most valuable.  
 

Figure 2: Schematics of possible types of value 
modulation at lever presentation. Trials here are 
divided based on Q values of chosen minus 
unchosen action. (a) Contralateral value modulation 
theory postulates that the responses are selective 
for the value  of the contralateral action (relative to 
ipsilateral value) instead of the action itself. This 
means that the direction of value modulation should 
be flipped for contralateral versus ipsilateral choices. 
Since mice would more often choose an option when 
its value is higher, the average GCaMP6f  responses 
would be higher for contralateral than ipsilateral 
choices. (b) Alternatively, the responses may be 
modulated by the value of the chosen action, 
resulting in similar value modulation for contralateral 
and ipsilateral choice. This type of value modulation 
will not in itself produce contralateral selectivity seen 
in previous results. (c) However, if the responses 
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were modulated by the chosen value and the contralateral choice, the averaged GCaMP6f would exhibit the 
previously seen contralateral selectivity.  
 
The second possibility is that value modulation is relative to the chosen (versus unchosen) 
option (Figure 2b). Indeed, human neuroimaging studies have primarily reported correlates of 
the value of the chosen option in dopamine target areas (Daw et al., 2006; Boorman et al., 
2009; Li & Daw, 2011) and also has been observed in primate dopamine neurons (Morris et al., 
2006). 
 
If DMS-projecting DA neurons indeed display chosen value modulation  (Figure 2b), rather than 
contralateral value modulation, the value modulation for both contralateral and ipsilateral 
choices would be similar. Therefore, value modulation could not in itself account for preferential 
responding to contralateral actions that we observed in these neurons. In this case, to account 
for contralateral choice preference, one would have to assume DA neurons are also selective 
for the contralateral action itself (unrelated to their value modulation; Figure 2c). 
 
 
 
DA in dorsomedial striatum is modulated by chosen value, not contralateral value 
 
In order to determine which type of value modulation better captured the signal in DA neurons 
that project to DMS, we compared the GCaMP6f signal in these neurons for high and low value 
trials. We focused on the lever presentation since this event displayed a clear contralateral 
preference (Figure 1g). As a simple and objective proxy for the value of each action (i.e., the 
component of the RPE at lever presentation for each action), we compared  responses when 
the animal was rewarded (high value), or not (low value), on the previous trial. (To simplify 
interpretation of this comparison, we included only trials in which the mice made the same 
choice as the preceding trial, which accounted for 76.6% of the trials.) The traces (Figure 3a) 
indicated that the VTA/SN::DMS terminals were modulated by the previous trial’s reward. The 
value-related responses reflected chosen value – higher responding when the previous choice 
was rewarded, whether contralateral or ipsilateral – and therefore did not explain the 
movement-related effect. This indicates that the DMS-projecting DA neurons represent both 
chosen value and movement direction during the trial (similar to Figure 2c).  
 
We repeated this analysis using trial-by-trial Q values extracted from the model, which we 
reasoned should reflect a finer grained (though more assumption-laden) estimate of the action’s 
value. (For this analysis, we were able to include both stay and switch trials.) Binning trials by 
chosen (minus unchosen) value, a similar movement effect and value gradient emerged as we 
had seen with the previous trial outcome analysis (Figure 3b). Trials with higher Q values had 
larger GCaMP6f responses, regardless which side was chosen, again suggesting that 
VTA/SN::DMS terminals were modulated by the expected value of the chosen (not contralateral) 
action, in addition to being modulated by contralateral movement.  
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To quantify these effects statistically, we used a linear mixed effects regression at each of time 
point of the time-locked GCaMP6f. The explanatory variables included the action chosen (contra 
or ipsi), the differential Q values (oriented in the reference frame suggested by the data, chosen 
minus unchosen), the value by action interaction, and an intercept (Figure 3c). The results 
verify significant effects of both movement direction and action value; that is, although a 
significant value effect is seen, it does not explain away the movement effect. Furthermore, the 
appearance of a consistent chosen value effect across both ipsilateral and contralateral choices 
is reflected in a significant value effect and no significant interaction during the period when 
action and value coding are most prominent (0.25 - 1 seconds after lever presentation), as 
would have been predicted by the contralateral value model. (There is a small interaction 
between the variables earlier in the trial, before 0.25 seconds, reflecting small differences in the 
magnitude of value modulation on contralateral versus ipsilateral trials.) Conversely, when the 
regression is re-estimated in terms of contralateral value rather than chosen value, a sustained, 
significant interaction does emerge, providing formal statistical support for the chosen value 
model; see Supplemental Figure 2.  
 
We performed the same value modulation analyses on the cell bodies, rather than terminals, of 
VTA/SN::DMS neurons (Figure 3d-f ). This was motivated by the possibility that there may be 
changes in neural coding between DA cell bodies and terminals due to synapses forming 
directly on DA terminals. In this case, we found very similar modulation by both chosen value 
and contralateral movement in both recording locations.  
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Figure 3: DA neurons that project to DMS are modulated by both chosen value and movement direction. (a) 
GCaMP6f signal relative to the lever presentation time for contralateral trials (blue) and ipsilateral trials (orange), as 
well as rewarded (solid) and non-rewarded previous trial (dotted) from VTA/SN::DMS terminals. Colored fringes 
represent 1 standard error from activity averaged across recording sites (n = 12). (b) GCaMP6f signal for 
contralateral trials (blue) and ipsilateral trials (orange), and further binned by the difference of Q values of chosen and 
unchosen action. Colored fringes represent 1 standard error from activity averaged across recording sites (n = 12). 
(c) Mixed effect model regression on each datapoint from 3 seconds of GCaMP6f traces. Explanatory variables 
include the action of the mice (blue), the difference in Q values for chosen vs unchosen actions (orange), their 
interaction (green), and an intercept. Colored fringes represent 1 standard error from estimates. Dots at bottom mark 
timepoints when the corresponding effect is significantly different from zero at p<.05 (small dot), p<.01 (medium dot), 
p<.001 (large dot). (d-f) Same as (a-e), except VTA/SN::DMS cell body averaged across recording sites (n = 7) 
instead of terminals.  

 
Direction of movement predicts DMS DA responses 
 
An additional observation supports the interpretation that the contralateral choice selectivity in 
DMS-projecting DA neurons is related to the direction of movement, and not the value of the 
choice. When the responses are time-locked to the lever press itself, there is a reversal of the 
response selectivity between contralateral and ipsilateral trials, shortly after the lever press 
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(Figure 4a, b ). Although body tracking is not available, this event coincided with a reversal in 
the animal’s physical movement direction, from moving toward the lever from the central 
nosepoke before the lever press, to moving back to the central reward port after the lever press. 
In contrast, there is no reversal in the value modulation at the time of the lever press. The fact 
that the movement-related modulation (and not value modulation) followed the mice's 
movement direction during the trial further indicates that movement direction explains the choice 
selectivity in these DA neurons, and resists explanation in terms of RPE-related signaling. 
 
 

Figure 4: DA 
neurons that project 
to DMS reverse their 
choice selectivity 
after the lever press, 
around the time the 
mice reverse their 
movement direction. 
(a) GCaMP6f signal 
from VTA/SN::DMS 
terminals time-locked 
to the lever press, for 
contralateral choice 
trials (blue) and 
ipsilateral choice trials 

(orange), as well as rewarded (solid) and non-rewarded previous trial (dotted). The GCaMP6f traces for each choice 
crosses shortly after the lever-press, corresponding to the change in the mice's head direction around the time of the 
lever press (shown schematically above the graph). Colored fringes represent 1 standard error from activity averaged 
across recording sites (n = 12). (b) Same as (a),  except VTA/SN::DMS cell body averaged across recording sites (n = 
7) instead of terminals.  

Discussion 
Recent reports of qualitatively distinct DA responses, movement and RPE-related, have revived 
perennial puzzles about how the system contributes to both movement and reward, and more 
specifically raise the question whether there might be a unified computational description of both 
components in the spirit of the classic RPE models (Parker et al. 2016; Berke 2018; Coddington 
and Dudman 2018). To investigate these questions, we dissected movement and value 
selectivity in the responses of terminals and cell bodies of DMS-projecting DA neurons (Figure 
3). Contrary to the hypothesis that movement related activity might reflect a RPE for 
contralateral value, multiple lines of evidence clearly indicated that the neurons instead contain 
distinct movement- and value-related signals, tied to different frames of reference. We did 
observe value-related signals preceding and following the leverpress, which were not previously 
appreciated in the DMS signal and which are consistent with the anticipatory component of a 
classic RPE response. But because these were oriented with respect to the value of the chosen 
action, not the contralateral one, they cannot explain the side-specific movement selectivity. The 
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two responses also showed clearly distinct time courses; in particular, the side selectivity 
reversed polarity following the leverpress, but value modulation did not.  
 
The RPE account of the DA response has long held out hope for a unifying perspective on the 
system’s dual roles in movement and reward, by proposing that the system’s reward-related 
responses ultimately affect movement indirectly, either by driving learning about movement 
preferences (Montague, Dayan, and Sejnowski 1996) or by modulating motivation to act (Niv et 
al. 2007). It also accounts for multiple seemingly distinct components of the classic DA 
response, including anticipatory and reward-related responses, and responses to novel neutral 
cues. However, the present analyses clearly show that side-specific responses in DMS resist 
explanation in terms of an extended RPE account, and instead simply reflect planned or 
ongoing movements. Such a signal is, of course, well situated to play a direct role eliciting or 
executing contralateral movements, via differentially modulating the direct and indirect pathways 
out of the striatum (Alexander and Crutcher 1990; Collins and Frank 2014).  
 
However, it is less clear how this signal might interact with the plasticity mechanisms 
hypothesized to be modulated by the RPE response (Reynolds and Wickens 2002); (Frank, 
Seeberger, and O’reilly 2004; Steinberg et al. 2013). For instance, how would recipient 
synapses distinguish an RPE component of the signal (appropriate for surprise-modulated 
learning) from a component more relevant to movement elicitation (Berke 2018)? One possibility 
is that plasticity in the dorsal striatum itself follows different rules, which might require an action 
rather than a prediction error signal; for instance, it has been suggested that some types of 
instrumental learning are correlational rather than error-driven (Doeller, King, and Burgess 
2008) and in particular that habit learning in adjacent dorsolateral striatum might be based on 
directly recording elicited movements rather than error-driven learning of values (Miller, 
Shenhav, and Ludvig 2018). Overall, our results point to the need for an extended 
computational account that incorporates the movement signals as well as the RPE ones. 
 
Another striking aspect of the results was the co-occurrence of two distinct frames of reference 
in the signal. Movement selectivity tracked choices contralateral versus ipsilateral of the 
recorded hemisphere – appropriate for motor control– but the value component instead related 
to the reward expected for the chosen, versus unchosen, action. This is suitable for a classic 
RPE for learning “state” values (since overall value expectancy at any point in time is 
conditioned on the choices the animal has made; (Morris et al. 2006), and also consistent with 
the bulk of BOLD responses in human neuroimaging, where value-related responding 
throughout dopaminergic targets tends to be organized on chosen-vs-unchosen lines (Daw et 
al. 2006; Boorman et al. 2009; Li and Daw 2011; O’Doherty 2014). At the same time, there have 
been persistent suggestions that given the high dimensionality of an organism’s action space, 
distinct action-specific error signals would be useful for learning about different actions (Russell 
and Zimdars 2003; Frank and Badre 2012; Diuk et al. 2013) or types of predictions (Gershman 
and Schoenbaum 2017; Lau, Monteiro, and Paton 2017).  Along these lines, there is evidence 
from BOLD neuroimaging for contralateral error and value signals in the human brain 
(Gershman, Pesaran, and Daw 2009; Palminteri et al. 2009). Though the current study finds no 
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evidence for such laterally decomposed RPEs in DMS, the decomposition of error signals 
remains an important possibility for future work aimed at understanding heterogeneity of 
dopamine responses, including also other anomalous response features like ramps (Mark W. 
Howe et al. 2013; Berke 2018; Gershman 2014; Hamid et al. 2016).  
 
Interestingly, our results were consistent across at both recording sites with DMS-projecting DA 
neurons: the cell bodies and the terminals (Figure 3d-f, Figure 4b). This indicates that the 
movement selectivity was not introduced in DA neurons at the terminal level, e.g. via striatal 
cholinergic interneurons or glutamatergic inputs (Kosillo et al. 2016).  
 
An important limitation of the study is the use of fiber photometry, which assesses bulk 
GCaMP6f responses at the recording site rather than resolving individual neurons. Thus it 
remains possible that individual neurons do not multiplex the two signals we observe, and that 
they are instead segregated between distinct populations. Future work should use higher 
resolution methods to examine these questions at the level of individual DA neurons. A related 
limitation of this study is the relatively coarse behavioral monitoring; notably, we infer that the 
reversal in selectivity seen in Figure 4 reflects a change in movement direction, but head 
tracking would be required to verify this more directly. More generally, future work with finer 
instrumentation could usefully dissect response components related to finer-grained 
movements, and examine how these are related to (or dissociated from) value signals. 
 

Methods 
 
This article reports new analysis on data originally reported by (Parker et al. 2016). We briefly 
summarize the methods from that study here.  
 
Mice and Surgeries 
 
This article reports on data from 17 male TH::IRES-Cre mice, from which GCaMP6f recordings 
were obtained from DA neurons via fiber photometry. In the case of VTA/SN::DMS cell body 
recordings, Cre-dependent GCaMP6f virus was injected into the DMS, and fibers were placed 
on the cell bodies in VTA/SNc, enabling recordings from retrogradely labeled cells (n=4 mice). 
In the case of DA terminal recordings, Cre-dependent GCaMP6f virus was injected into the 
VTA/SNc, and fibers were placed in the DMS (n=12 mice). The recording hemisphere was 
counterbalanced across mice.  
 
Instrumental Reversal Learning Task 
 
The recordings were obtained while the mice performed a reversal learning task in an operant 
chamber with a central nose poke, retractable levers on each side of the nose poke, and reward 
delivery in a receptacle beneath the central nose poke.  
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Each trial began with the illumination of the center nose port. After the mice entered the nose 
port, the two levers were presented with a delay that varied between  0-1 seconds. The mice 
then had 10 seconds to press a lever, otherwise the trial was classified as an abandoned trial 
and excluded from analysis (this amounted to <2 % of trials for all mice). After the lever-press, 
an additional random 0-1 second delay (0.1 second intervals, uniform distribution) preceded 
either CS- with no reward delivery or CS+ with a 4µl reward of 10% sucrose in H20. Reward 
outcomes were accompanied by different auditory stimulus: 0.5 seconds of white noise for CS- 
and 0.5 seconds of 5 kHz pure tone for CS+. Every trial ended with a constant 3 seconds 
inter-trial delay. 
 
Data Post-processing 
 
All fiber photometry recordings were acquired at 15 Hz. 1-5 recording sessions were obtained 
per recording site (1 session/day), and these recordings were concatenated across session for 
all analyses. The signal from each recording site were post-processed with a high-pass FIR filter 
with a passband of 0.4 Hz, stopband of 0.1 Hz, and a stopband attenuation of 10 dB to remove 
baseline fluorescence and correct drift in baseline. We derived dF/F by dividing the high-pass 
filtered signal by the mean of the signal before high-pass filtering. We then z-scored dF/F for 
each recording site, with the the mean and standard error calculated for the entire recording 
from each site.  
 
The VTA/SN::DMS terminals data consisted of (10108 total trials across 12 recording sites) and 
VTA/SN::DMS cell-bodies (4938 total trials across 7 recording sites). 
 
Q Learning Mixed Effect Model 
 
We fit a trial-by-trial Q-learning mixed effect model to the behavioral data from each of the 12 
mice on all recording sites, and combined data across mice with a hierarchical model. The 
model was initialized with a Q value of 0 for each action and updated at each trial according to: 
 

(c ) (c ) (r (c ))Qt+1 t = Qt t + α t − Qt t  
 
where  is the value for both options,  is the option chosen on trial t (lever either contralateralQ ct  
or ipsilateral to recording site), and 0 <=  <= 1 is a free learning rate parameter. The subject's 
probability to choose choice c was then given by a softmax equation: 
 
(c ) xp(β (c) tay (c, ))P t = c ∝ e · Qt + s · I ct−1  

 
where  is a free inverse temperature parameter, stay is a free parameter encoding how likelyβ  
the animal will repeat its choice from the last trial, and I is a binary indicator function for choice 
repetition (1 if c was chosen on the previous trial; 0 otherwise). The three free parameters of the 
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model were estimated separately for each subject, but jointly (in a hierarchical random effects 
model) with group-level mean and variance parameters reflecting the distribution, over the 
population, of each subject-level parameter. 
 
The parameters were estimated using Hamiltonian Monte Carlo, as implemented in the Stan 
programming language (version 2.17.1.0; (Carpenter et al. 2017)). Samples from the posterior 
distribution over the parameters were extracted using the Python package PyStan (Carpenter et 
al. 2017). We ran the model with 4 chains of 1,000 iterations for each (of which the first 250 
were discarded for burn-in), and the parameter adapt_delta set to 0.99. We verified 
convergence by visual inspection and by verifying that the potential scale reduction statistic 
Rhat (Gelman and Rubin 1992) was close to 1.0 (<0.003 for all parameters). 
 
We used the sampled parameters to compute per-trial Q values for each action, trial, and 
mouse. We calculated the difference between the Q values of the chosen action and unchosen 
action for each trial. We binned the difference of these Q values for each trial and plotted the 
average GCaMP6f time-locked to lever presentation for each bin (Figure 2b). 
 
 
Regression Model 
 
In Figure 3c,f , we performed a linear mixed effect model regression to predict GCaMP6f signal 
at each time point based on Q-values, choice (contralateral vs ipsilateral), their interaction, and 
an intercept. We took the difference of Q values for the chosen vs unchosen levers, then we 
standardized the difference of Q values for each mice and each recording site. GCaMP6f was 
time-locked to lever presentation, regressing to data points 1 second before and 2 seconds after 
the time-locked event for 45 total regressions. The regression, as well as the calculation of p 
values, was performed with the MixedModels package in Julia (Bezanson et al. 2014).  
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Supplementary Figures  

 
Supplement Figure 1: Recording from VTA/SN::DMS cell bodies (n = 7) ( a) Surgical schematic for recording with 
optical fibers from the GCaMP6f  VTA/SN::DMS cell-bodies. Projections were determined using viral traces. (b) 
Sample GCaMP6f traces from VTA/SN::DMS cell bodies. (c, d) We also see contralateral choice selectivity in DMS 
DA cell bodies when the signals are time-locked to nose poke (c) and lever presentation (d).  

Supplement Figure 2: Mixed effect 
model regression on each datapoint 
from 3 seconds of GCaMP6f traces 
of VTA/SN::DMS terminals (n = 12). 
Explanatory variables include the 
action of the mice (blue), the difference 
in Q values for contralateral and 
ipsilateral choices (orange),  their 
interaction (green), and an intercept. 
Colored fringes represent 1 standard 

error from estimates. Dots at bottom mark timepoints where the corresponding effect is significantly different from 
zero at p<.05 (small dot), p<.01 (medium dot), p<.001(large dot).  
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