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 14 
Many difficult decisions are made by accumulating ambiguous evidence over time. The brain’s 15 
arousal systems are rapidly activated during such decisions. How do these rapid (“phasic”) boosts 16 
in arousal affect the decision process? Here, we have unveiled a general principle of the function 17 
of phasic arousal: suppressing suboptimal biases in evidence accumulation. We quantified phasic 18 
arousal as rapid dilations of the pupil. Pupil dilations predicted reduced biases in a range of 19 
decision-making tasks and different species. In a challenging sound-detection task, both mice and 20 
humans were less biased under high arousal. Similar bias suppression occurred when optimal 21 
biases were neutral, conservative or liberal, when evidence was accumulated from memory, and 22 
for risk-seeking biases in decisions entailing the accumulation of numerical values. In all cases, 23 
the smaller behavioral biases were explained by specific changes in evidence accumulation. Thus, 24 
phasic arousal calibrates a key computation during decision-making.  25 

INTRODUCTION 26 

The global arousal state of the brain changes from moment to moment (Aston-Jones & Cohen, 2005; 27 
McGinley, Vinck, et al., 2015). These global state changes are controlled in large part by modulatory 28 
neurotransmitters released from subcortical nuclei such as the noradrenergic locus coeruleus and the 29 
cholinergic basal forebrain. Release of these neuromodulators can profoundly change the operating mode 30 
of target cortical circuits (Aston-Jones & Cohen, 2005; Froemke, 2015; Harris & Thiele, 2011; S.-H. Lee 31 
& Dan, 2012; Pfeffer et al., 2018). These same arousal systems are phasically recruited during elementary 32 
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decisions, in relation to key computational variables such as uncertainty and surprise (Aston-Jones & 1 
Cohen, 2005; Bouret & Sara, 2005; Colizoli, de Gee, Urai, & Donner, 2018; Dayan & Yu, 2006; 2 
Krishnamurthy, Nassar, Sarode, & Gold, 2017; Lak, Nomoto, Keramati, Sakagami, & Kepecs, 2017; 3 
Nassar et al., 2012; Parikh, Kozak, Martinez, & Sarter, 2007; Urai, Braun, & Donner, 2017). 4 

Phasic arousal during decision-making might play a key role in calibrating the biases that shape 5 
behavior and bound the rationality of judgment and decision-making in (Kahneman, 2011). Influential 6 
theoretical accounts propose that phasic arousal has an adaptive function that serves to optimize inference 7 
and choice behavior (Aston-Jones & Cohen, 2005; Dayan & Yu, 2006). Yet, the precise functional 8 
consequences of phasic arousal remain elusive, largely due to technical limitations in monitoring activity 9 
in these deep-brain structures during behavior. Here, we set out to resolve four outstanding issues 10 
pertaining to the adaptive function of phasic arousal.  11 

First, little is known about the specific impact of phasic arousal on the transformation of decision-12 
relevant evidence into a behavioral choice.  Most decisions – including judgments about weak sensory 13 
patterns embedded in time-varying noise – are based on a protracted deliberation process (Shadlen & 14 
Kiani, 2013). This process seems to be implemented by a distributed brain network: association cortex 15 
accumulates input signals (“evidence samples”) over time, into a decision variable, and motor regions 16 
translate the decision into a behavioral act (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Shadlen 17 
& Kiani, 2013; Siegel, Engel, & Donner, 2011; Wang, 2008). Since arousal shapes the state of all these 18 
brain regions, phasic arousal might alter the encoding of the evidence, the accumulation of the evidence, 19 
the implementation of the motor act, or all of the above. One influential account proposes that phasic 20 
arousal specifically speeds up the translation of a choice into the resulting motor act (Aston-Jones & 21 
Cohen, 2005). We asked whether and how phasic arousal might also shape the preceding evidence 22 
accumulation. 23 

Second, while brainstem arousal systems are homologously organized across mammals (Amaral & 24 
Sinnamon, 1977; Berridge & Waterhouse, 2003), it is not clear whether arousal systems are recruited in 25 
the same circumstances across species. More specifically, it is not clear whether the computations 26 
underlying decision formation under uncertainty are affected by arousal signals in a manner that is 27 
consistent across species. Rodents (rats) and humans seem to accumulate perceptual evidence in a similar 28 
fashion (Brunton, Botvinick, & Brody, 2013). But is the shaping of this computation by phasic arousal 29 
also governed by a general principle? 30 

Third, elementary perceptual decisions provide an established laboratory model of evidence 31 
accumulation (Shadlen & Kiani, 2013), but many important real-life decisions (e.g. which stock to buy, 32 
or which career to pursue) are based on the accumulation of non-sensory signals, such as those gathered 33 
from memory (Shadlen & Shohamy, 2016), or from abstract (e.g. numerical) quantities (Tsetsos, Chater, 34 
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& Usher, 2012). Does phasic arousal have the same impact on decisions requiring the accumulation of 1 
perceptual versus higher-level evidence?  2 

Fourth, biases in choice behavior can either be adaptive or maladaptive, depending on the statistics 3 
of the environment (Green & Swets, 1966). For example, in many laboratory perceptual choice tasks, 4 
stimuli are equally likely to occur, so any bias needs to be suppressed to optimize behavior. But when a 5 
certain target is more (or less) likely to occur, choice should be biased towards (or away) from that target 6 
choice. It is not known whether phasic arousal flexibly affects choice biases based on stimulus statistics, 7 
or, for example, if phasic arousal makes animals and humans uniformly more liberal in their decisions. 8 

We approached these issues by means of a cross-species, integrated behavioral and computational 9 
approach. We combined pupillometry, behavioral experiments and modeling, in both humans and mice, 10 
and studied humans in a variety of behavioral contexts. Pupil dilation is a reliable peripheral proxy of 11 
several established markers of cortical arousal state (McGinley, David, & McCormick, 2015; Reimer et 12 
al., 2014; Vinck, Batista-Brito, Knoblich, & Cardin, 2015). Our results have revealed a general principle 13 
regarding the function of phasic arousal in decision-making: suppressing biases in evidence 14 
accumulation. Thus, the protracted deliberation underlying decisions (Shadlen & Kiani, 2013) is shaped 15 
by task-evoked neuromodulatory responses. 16 

RESULTS 17 

Humans and mice performed the same simple perceptual decision (auditory go/no-go detection). In 18 
addition, humans performed a forced-choice decision task based on the same auditory evidence under 19 
systematic manipulations of target probabilities, a memory-based decision task, and a basic laboratory 20 
task model of value-based stock market decisions.  21 

 22 

Phasic arousal predicts reduction of perceptual choice bias in mice and humans 23 

We first trained mice (N = 5) and humans (N = 20) to report detection of a near-threshold auditory 24 
signal (Fig. 1A; Materials and Methods). Subjects searched for a signal (pure tone) embedded in a 25 
sequence of discrete, but dynamic, noise tokens. Because signals were embedded in fluctuating noise, 26 
detection performance could be maximized by accumulating the sensory evidence over time. To indicate 27 
a yes-choice, mice licked for sugar water reward and human subjects pressed a button. The loudness was 28 
manipulated by varying the sound level (volume) of the tone, while keeping the noise level constant. As 29 
expected, in both species, reaction times (RT) parametrically decreased with loudness (Fig. 1B) and 30 
signal detection-theoretic sensitivity (d’; Materials and Methods) parametrically increased (Fig. 1C). 31 
Humans responded overall a little slower than mice (Fig. 1B).  32 
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Figure 1. High phasic arousal is associated with reduced 

perceptual choice bias. (A) Auditory go/no-go tone-in-

noise detection task. Schematic sequence of stimuli during 

a trial. Subjects were trained to respond to a weak signal 

(pure tone) in noise and withheld a response for noise-only 

sound tokens. Each sound was treated as a separate decision 

(Materials and Methods). (B) Relationship between 

reaction time and loudness in mice (left) and humans 

(right). ‘X’ symbols are predictions from best fitting variant 

of drift diffusion model (Materials and Methods); stats are 

from mixed linear modeling (Materials and Methods). (C) 

As panel B, but for sensitivity (quantified by signal 

detection d’; Materials and Methods). (D) Task-evoked 

pupil response (solid line) and response derivative (dashed 

line) in mice (left) and humans (right). Grey, interval for 

task-evoked pupil response measures (Materials and 

Methods); black bar, significant pupil derivative; stats, 

cluster-corrected one-sample t-test. (E) Relationship 

between overall perceptual choice bias (Materials and 

Methods) and task-evoked pupil response in mice (left) and 

humans (right). Linear fits were plotted if first-order fit was 

superior to constant fit; quadratic fits were not superior to 

first-order fits (Materials and Methods). ‘X’ symbols are 

predictions from best fitting variant of drift diffusion model 

(Materials and Methods); green line, optimal bias (see Fig. 

S1C,D,J); stats, mixed linear modeling. Panels B-E: group 

average (N = 5; N = 20); shading or error bars, s.e.m.  
 

 1 

To track phasic arousal, we measured the rising slope of the pupil, immediately after each sound 2 
onset. We choose this measure for three reasons: (i) for its temporal precision in tracking arousal during 3 
fast-paced tasks (Fig. 1D), (ii) to eliminate contamination by movements (licks and button-presses) (de 4 
Gee, Knapen, & Donner, 2014; Hupé, Lamirel, & Lorenceau, 2009) (Materials and Methods), and (iii) 5 
to most specifically track noradrenergic activity (Reimer et al., 2016). The timing of stimuli was 6 
predictable, so subjects could tightly align a phasic arousal response to the next sound onset. Indeed, 7 
pupil responses occurred from 40 ms after sound onset in mice (Fig. 1D), and from 240 ms after sound 8 
onset in humans (Fig. 1D). The shorter pupil response latencies in mice compared to humans might be 9 
due to their smaller eye and brain size. Pupil responses occurred also on trials without a behavioral 10 
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response (Fig. S1F,L), consistent with other observations (C. R. Lee & Margolis, 2016; Schriver, 1 
Bagdasarov, & Wang, 2018).  2 

In both mice and humans, we found a consistent relationship between the early, task-evoked pupil 3 
response and decision outcome. Because loudness was drawn pseudo-randomly on each trial, subjects 4 
had different d’ values for each loudness (Fig. 1C) but could set only one decision criterion (or bias set 5 
point) against which to compare sensory evidence. Therefore, using signal detection theory, we 6 
computed an overall perceptual choice bias across loudness (Fig. S1C; Materials and Methods). We 7 
found that both mice and humans had an overall conservative perceptual choice bias, preferably failing 8 
to respond that they perceived the tone (Fig. 1E). This conservative bias was maladaptive, reducing the 9 
fraction of correct/rewarded choices below what could be achieved at a given perceptual sensitivity (Fig. 10 
S1D,J). In both species this maladaptive bias was suppressed on trials with large pupil responses (Fig. 11 
1E). The same was true when computing overall bias as the average signal detection theoretic criterion 12 
across loudness (Fig. S1I,O). Phasic pupil responses exhibited a less consistent relationship to perceptual 13 
sensitivity and RT (Fig. S1H,N). 14 

Previous work has associated baseline, pre-stimulus arousal state with non-monotonic (inverted U-15 
shape) effects on decision performance (Aston-Jones & Cohen, 2005; Yerkes & Dodson, 1908), even in 16 
the same mice dataset analyzed here (McGinley, David, et al., 2015). By contrast, we here found that the 17 
dominant predictive effect of pupil-linked phasic arousal was a monotonic (linear) reduction of bias (Fig. 18 
1E, solid lines; Materials and Methods), pointing to distinct functional roles of tonic and phasic arousal 19 
(Discussion).   20 

 21 

Phasic arousal predicts a reduction of evidence accumulation bias 22 

Our analyses of overt behavior revealed that pupil-linked phasic arousal was associated with a largely 23 
monotonic reduction of maladaptive choice bias in mice and humans. Fitting decision-making models 24 
enabled us to gain deeper insight into how the decision process was affected by phasic pupil-linked 25 
arousal. We fitted the drift diffusion model (Fig. S2A), which belongs to a class of bounded accumulation 26 
models of decision-making (Bogacz et al., 2006; Brody & Hanks, 2016; Gold & Shadlen, 2007; Ratcliff 27 
& McKoon, 2008) that describe the accumulation of noisy sensory evidence in a decision variable that 28 
drifts to one of two bounds. The diffusion model accounts well for behavioral data from a wide range of 29 
two-choice and go/no-go tasks (Ratcliff, Huang-Pollock, & McKoon, 2016; Ratcliff & McKoon, 2008). 30 
We used the diffusion model to quantify effects of pupil-linked arousal the following components of the 31 
decision process: the starting point of evidence accumulation, the evidence accumulation itself (the mean 32 
drift rate and an evidence-dependent bias in the drift, henceforth called “drift bias”), boundary separation 33 
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(implementing speed-accuracy tradeoff) and the so-called non-decision time (the speed of pre-decisional 1 
evidence encoding and post-decisional translation of choice into motor response). 2 

In order to assess phasic arousal-dependent changes in all of these parameters, we fit a model in which 3 
all parameters (except for starting point) were free to vary with pupil response amplitude. The absence 4 
of RTs for no-responses in the go/no-go datasets forced us to fix either starting point or drift bias as 5 
function of pupil. We chose to fix starting point because formal model comparison favored this over 6 
fixing drift bias in all subjects of both species (Materials and Methods). Indeed, in all other datasets 7 
analyzed in this study, presented below, we found that the pupil-linked bias suppression in overt behavior 8 
was specifically due to a shift in drift bias, not starting point. 9 

The model accounted well for the overall behavior in the go/no-go task. First, as expected, drift rate 10 
increased with loudness, reflecting the subjects’ ability to accumulate strong sensory evidence more 11 
efficiently (Fig. S2F,I). Second, the fitted parameters accurately predicted overall RT and sensitivity 12 
(Fig. 1B,C). 13 

  In both species, we found a positive linear relationship between pupil responses and drift bias (Fig. 14 
2C). The fitted parameters accurately predicted overall perceptual choice bias, and its pupil response 15 
predicted shift (blue ‘X’ markers in Fig. 1E). Specifically, in both species, the starting point was biased 16 
towards no-go irrespective of pupil response (Fig. S2E,H). Thus, overcoming this conservative choice 17 
bias required increasing their drift bias. Such an increase in drift bias occurred on trials with large pupil 18 
responses (Fig. 2C).  19 

Phasic arousal had no, or less consistent, effects on the other model parameters. There was no 20 
consistent monotonic effect of pupil response on boundary separation, drift rate or non-decision time in 21 
either species (mice: p = 0.722,  p = 0.073 and p = 0.269, respectively; humans: p = 0.484, p = 0.15 and 22 
p = 0.132, respectively; Fig. 2). Without collapsing across loudness we observed a positive (negative) 23 
relationship between drift rate pupil response in mice (humans) (Fig. S2D,G), and a negative relationship 24 
between pupil response and non-decision time in both mice and humans (Fig. S2D,G). These effects on 25 
drift rate and non-decision time were however not consistent across the variety of behavioral contexts 26 
considered here. These results suggest that the dominant impact of phasic arousal in this task was 27 
remarkably specific: optimizing the evidence accumulation process by suppressing a bias in the drift. 28 

 Perceptual choice variability has been attributed to evidence accumulation noise, rather 29 
systematic accumulation biases, under the assumption that biases will remain constant across trials 30 
(Drugowitsch, Wyart, Devauchelle, & Koechlin, 2016).  Instead, our results show that accumulation 31 
biases vary dynamically across trials as a function of phasic arousal. This indicates the resulting choice 32 
variations should appear as random trial-by-trial variability in evidence accumulation when ignoring 33 
phasic arousal. We found that this was the case in our data (Fig. 2E). We simulated RT distributions from 34 
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 7 

two conditions that differed according to the fitted drift bias estimates in the lowest and highest pupil-1 
defined bin of each individual (Materials and Methods). The diffusion model accounts for trial-to-trial 2 
accumulation “noise”  with the drift rate variability parameter (Bogacz et al., 2006; Ratcliff & McKoon, 3 
2008). Indeed, when fitting the model to these simulated RT distributions, drift rate variability was 4 
accurately recovered when drift bias could vary with condition but was significantly overestimated when 5 
drift bias was fixed (Fig. 2E). This analysis is agnostic about the source of trial-by-trial variations in 6 
phasic arousal, which was not under experimental control in the present study (but see (Colizoli et al., 7 
2018; Nassar et al., 2012; Urai et al., 2017). But the results clearly show that a significant fraction of 8 
choice variability does not originate from noise within the evidence accumulation machinery, but rather 9 
from the neural systems that govern arousal.  10 

 11 

 12 
Figure 2. Phasic arousal accounts for substantial variability in sensory evidence accumulation. (A) 13 
Relationship between boundary separation estimates and task-evoked pupil response in mice (top) and humans 14 
(bottom), collapsed across loudness. See Fig. S2 for parameter estimates separately per loudness. Linear fits are 15 
plotted wherever the first-order fit was superior to the constant fit; quadratic fits were plotted (dashed lines) 16 
wherever the second-order fit was superior to first-order fit. Stats, mixed linear modeling. (B-D) As A, but for 17 
drift rate, drift bias and non-decision time estimates, respectively. (E) Recovered drift rate variability for models 18 
with and without pupil predicted shift in drift bias. The model was fit to simulated RT distributions from two 19 
conditions that differed according to the fitted drift bias estimates in the lowest and highest pupil-defined bin of 20 
each individual (Materials and Methods). Black line, true drift rate variability. Stats, paired-samples t-test. All 21 
panels: group average (N = 5; N = 20); error bars, s.e.m. 22 
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 8 

Phasic arousal predicts accumulation bias suppression in forced choice version of the detection task 1 

Are the above results specific to the go/no-go protocol used to study the auditory detection decision? 2 
The central input to the pupil contains a sustained component during evidence accumulation, followed 3 
by a transient at the motor response (de Gee et al., 2017, 2014; Hupé et al., 2009; Murphy, Boonstra, & 4 
Nieuwenhuis, 2016). The sustained component might entail motor preparatory activity (Donner et al, 5 
2009). Thus, a concern about the go/no-go task might be that these components (motor preparatory 6 
activity and transient activity at lick / button-press) could have contributed to the pupil response 7 
amplitudes on go-trials but not (or less so) on no-go-trials, which in turn could explain the relationship 8 
between pupil responses and choice bias. We reduced contamination by the transient motor-related 9 
component by focusing on the initial (early) pupil dilation (Materials and Methods). However, it is 10 
possible that this did not fully correct for the asymmetry between go- and no-go trials in motor 11 
preparatory activity.  12 

We asked human participants (N = 24, 18 from the above go no-go experiment) to perform a forced-13 
choice (yes/no) version of the above auditory detection task, based on the same type of auditory evidence. 14 
In this task, motor responses (and associated preparatory activity) were balanced across yes- and no-15 
choices (Fig. 3A). Consistent with our go/no-go results in mice and humans, we observed that the pupil 16 
response predicted a monotonic suppression of maladaptive perceptual choice bias (Fig. 3B) again, 17 
pushing behavior to a more optimal regime (Fig. S3A). Pupil response amplitudes in the go/no-go and 18 
yes/no tasks were correlated across eighteen human subjects who participated in both experiments (Fig. 19 
S3D). This was true for yes-choices and no-choices. Therefore, the suppression of choice bias in our 20 
results does not reflect motor preparation.  21 

Diffusion modeling again revealed a performance-optimizing effect of pupil response on evidence 22 
accumulation: a reduction in drift bias, here accompanied by an increase in mean drift rate (Fig. 3C). 23 
With respect to pre- or post-decisional parameters, there was a non-monotonic effect on starting point (p 24 
= 0.013) and again no effect on boundary separation and non-decision time (p = 0.327 and p = 0.722, 25 
respectively). Critically, the pupil-linked changes in drift bias, but not the changes in starting point, 26 
strongly correlated with the individual reductions in decision bias as measured by SDT in Fig. 3B 27 
(squared multiple correlation R2 = 0.952; drift bias: beta = -1.01, p < 0.001; starting point: beta = -0.10, 28 
p = 0.219). Thus, only the changes of drift bias explained the performance-optimizing reductions in 29 
decision bias.  30 
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 9 

 

Figure 3. High phasic arousal associates with reduced 

perceptual evidence accumulation bias during yes/no 

decisions. (A) Auditory yes/no (forced choice) tone-in-noise 

detection task. Schematic sequence of events during a trial. 

Subjects reported the presence or absence of a faint signal 

(pure sine wave) embedded in noise (Materials and Methods). 

(B) Relationship between perceptual choice bias (quantified 

by signal detection criterion) and task-evoked pupil response. 

Linear fits were plotted if first-order fit was superior to 

constant fit; quadratic fits were plotted (dashed lines) 

wherever the second-order fit was superior to first-order fit. 

Green line, optimal criterion (see Fig S3A); ‘X’ symbols are 

predictions from the drift diffusion model; stats, mixed linear 

modeling; group average (N = 24); error bars, s.e.m. (C) As 

B, but for relationship between drift diffusion model 

parameters and task-evoked pupil response.  
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 10 

Phasic arousal predicts a reduction of conservative and liberal perceptual accumulation biases  1 

The majority of mice and humans in the above go/no-go and yes/no tasks exhibited a conservative 2 
tendency towards choosing “no.” This conservative bias was suboptimal in these tasks, and so the pupil-3 
linked increase in liberal decision-making (accumulation towards “yes”) improved performance (see 4 
Figs. 1 and 3). However, when targets are rare (or false alarms heavily penalized), a conservative bias 5 
is optimal, and conversely for frequent targets (Green & Swets, 1966). Thus, for phasic arousal to be 6 
adaptive, its effects on accumulation biases should be flexibly adjustable to stimulus statistics; 7 
promoting liberal decision-making in a stereotypical fashion would not be adaptive.  8 

To assess whether pupil-linked modulation of accumulation biases adapts to the stimulus statistics, 9 
we asked a new group of observers to perform the same auditory yes/no task, but with rare 10 
(P(Signal)=0.3) or frequent (P(Signal)=0.7) occurrence of targets (Material and Methods). As expected, 11 
subjects developed a conservative bias in the rare target condition and a liberal bias in the frequent 12 
target condition (Fig. 4A). We used three pupil-defined bins because there were fewer critical trials per 13 
individual (less than 500) than in the previous data sets (more than 500; Materials and Methods). 14 
Critically, pupil response now predicted changes in choice biases of opposite sign in the two conditions 15 
(Fig. 4B). In both conditions, increased pupil response was associated with a tendency towards neutral 16 
bias. Again, the effect of pupil-linked arousal on choice biases was mediated by shifts in accumulation 17 
biases (Fig. 4C). There was an effect of pupil-linked arousal on starting point too, but in the opposite 18 
direction as the choice bias shift (Fig. 4C). Again the pupil-linked changes in drift bias, but less so the 19 
changes in starting point, correlated with the individual reductions in decision bias as measured by SDT 20 
in the rare condition (squared multiple correlation R2 = 0.959; drift bias: beta = -0.97, p < 0.001; starting 21 
point: beta = -0.07, p = 0.039) as well as in the frequent condition (squared multiple correlation R2 = 22 
0.997; drift bias: beta = -1.08, p < 0.001; starting point: beta = 0.29, p = 0.024). Thus, again only the 23 
changes of drift bias explained the reductions in decision bias. 24 

 25 

 26 

 27 
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Figure 4. Phasic arousal flexibly reduces both 

conservative and liberal accumulation biases. (A) Overall 

sensitivity and choice bias (quantified by signal detection d’ 

and criterion, respectively) in the rare signal condition 

(P(Signal) = 0.3; left) and frequent condition (P(Signal) = 0.7; 

right). Green line, optimal bias. See Fig. S4A,B for task-

evoked pupil response time course. (B) Relationship between 

choice bias and task-evoked pupil response in the rare 

condition (left) and frequent condition (right). Linear fits 

were plotted if first-order fit was superior to constant fit; 

quadratic fits were not superior to first-order fits. ‘X’ symbols 

are predictions from the drift diffusion model; stats, mixed 

linear modeling. (C) As B, for relationship between drift 

diffusion model parameters and task-evoked pupil response. 

All panels: group average (N = 15); error bars, s.e.m. 
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Phasic arousal predicts a reduction of conservative and liberal memory accumulation biases 1 

In many important real-life decisions, the evidence feeding into the decision process cannot be 2 
sampled from the current sensory environment, but rather needs to be drawn from memory. It has been 3 
proposed that memory-based decisions follow the same sequential sample principle established for 4 
perceptual decisions, whereby the “samples” accumulated into the decision variable are drawn from 5 
memory (Ratcliff, 1978; Shadlen & Shohamy, 2016). We next assessed whether the suppression of 6 
accumulation biases identified for perceptual decisions above generalized to memory-based decisions.  7 

To this end, we modeled the impact of pupil-linked phasic arousal on choice behavior in a yes/no 8 
recognition memory task (Fig. 5A; Materials and Methods). Subjects were instructed to memorize 150 9 
pictures (intentional encoding) and to evaluate how emotional each picture was on a 4-point scale from 10 
0 (“neutral”) to 3 (“very negative”). Twenty-four hours post encoding, subjects saw all pictures that 11 
were presented on the first day and an equal number of novel pictures in randomized order, and indicated 12 
for each item whether it had been presented before (“yes – old”) or not (“no – new”). Data from an 13 
analogous task have been successfully fitted with the diffusion model (Bowen, Spaniol, Patel, & Voss, 14 
2016), indicating that the arousal component of the images specifically alters accumulation bias (called 15 
“memory bias”). Here, we show the impact of trial-to-trial variations in phasic arousal, as measured by 16 
pupil responses, factoring out variations in the stimulus material (Materials and Methods). 17 

The large sample size (N=54) in this data set afforded another critical test of the adaptive nature 18 
of the pupil-linked arousal effect. We observed a robust relationship between subjects’ overall choice 19 
bias, and the pupil predicted shift in that bias: those subjects with the strongest biases, liberal or 20 
conservative, exhibited the strongest pupil-predicted shift towards a neutral (optimal) bias (Fig. 5B). 21 
Indeed, the group-average choice bias (signal detection theoretic criterion; sign-flipped for overall 22 
liberal subjects) was significantly reduced towards 0 (optimal) on large pupil response trials (Fig. 5C). 23 
Again, this effect of pupil-linked arousal on choice bias was mimicked by corresponding changes in 24 
accumulation bias (Fig. 5D, Fig. S5E,F) and not by changes in starting point (Fig. S5E,F) (difference 25 
in correlation: Δr = -0.599, p < 0.001). Note that lower criterion values indicate more liberal behavior, 26 
and lower drift bias values more conservative behavior, which explains the correlations of opposite sign 27 
in Fig. 5 panels B and D. The pupil response further predicted an increase in drift rate (p = 0.01, an 28 
increase (i.e. lengthening) on non-decision time, and no changes in starting point (p = 161) or boundary 29 
separation (p = 0.089) (Fig. S5E). Taken together, we conclude that phasic arousal reduces choice 30 
biases, irrespective of sign, and thus can shift both conservative and liberal biases towards optimality. 31 

 32 
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 1 
Figure 5. Phasic arousal predicts a reduction of memory accumulation biases. (A) A Picture yes/no (forced-2 
choice) recognition task. Schematic sequence of events during a trial. Subjects judged whether they had seen 3 
pictures twenty-four hours previously during an encoding task (Materials and Methods). See Fig. S5A,B for task-4 
evoked pupil response time course. (B) Individual pupil predicted shift in choice bias (quantified by signal detection 5 
criterion), plotted against individual’s overall choice bias. Data points, individual subjects. Stats, Pearson’s 6 
correlation. Error bars, 60% confidence intervals (bootstrap) (C) Choice bias (sign-flipped for overall liberal 7 
subjects) for low and high pupil response bins. Green line, optimal bias; ‘X’ symbols are predictions from the drift 8 
diffusion model; stats, paired-samples t-test; group average (N = 54); error bars, s.e.m. (D) As B, but pupil predicted 9 
shift in drift bias, plotted against individual’s overall choice bias. 10 

 11 

Arousal-linked bias reduction generalizes to high-level decisions 12 

Does the arousal-related suppression of accumulation bias generalize to more high-level forms of 13 
biases identified in behavioral economics? Systematic deviations of human decision-making from 14 
rational choice are ubiquitous in value-based decision-making and higher-level reasoning (Tsetsos et al., 15 
2012, 2016; Tversky & Kahneman, 1974). One form of such biases is risk-seeking, the tendency to 16 
choose options with large uncertainty about their outcome.   17 

To study the impact of phasic arousal on risk-seeking, we used a task that probes decisions based on 18 
varying numerical information, akin to deciding which of two fluctuating stock options had the higher 19 
returns in the past year (Tsetsos et al., 2012, 2016). Participants (N = 37) were instructed to average two 20 
sequences of payoff values (5–8 pairs) and, after the appearance of a response cue, choose the most 21 
“profitable” sequence (Fig. 6A; Materials and Methods). Because the decision is based on the 22 
accumulation of fluctuating samples (in this case numbers), it is amenable to the sequential sampling 23 
modeling approach we applied to perceptual decision-making above. We designed two trial types to 24 
quantify subjects’ attitudes towards risk. On “narrow-correct” trials, the standard deviation of the more 25 
profitable sequence was lower than that of the losing sequence; on “narrow-error”, trials this was reversed 26 
(Fig. 6B and Materials and Methods). Risk preference was quantified as a “pro-variance bias”: the 27 
fraction of high-variance choices pooled across both trial types (Materials and Methods). As in previous 28 
work (Tsetsos et al., 2012, 2016), subjects exhibited a systematic pro-variance bias, indicating risk 29 
seeking (fraction of high-variance choices larger than 0.5; Fig. 6C). Indeed, the pro-variance bias was 30 
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suppressed as a function of pupil response (Fig. 6C). This bias was most reduced on intervals 1 
characterized by relatively strong pupil-linked phasic arousal responses. Pupil responses did not predict 2 
changes in RT or accuracy (Fig. S6C). We used three pupil-defined bins because of the relatively few 3 
critical trials per individual (less than 500; Materials and Methods). 4 

We again used sequential sampling modeling to pinpoint the source of the pupil-linked pro-variance 5 
bias suppression. Previous work on this task has uncovered specific deviations in the evidence 6 
accumulation process from the one at play in standard perceptual choice tasks (Tsetsos et al., 2012). We 7 
thus first compared the ability of four established decision-making models to account for behavior in the 8 
task (see Materials and Methods for mathematical descriptions): the drift diffusion model (DDM) that 9 
well accounted for all the previous data sets; the leaky accumulator model (LAM; (Bogacz et al., 2006)); 10 
the leaky competing accumulator model (LCAM; (Usher & McClelland, 2001)); and the leaky selective 11 
accumulator model (LSAM; (Tsetsos et al., 2016)). All models entail the perfect (DDM) or leaky (all 12 
other models) accumulation of the presented pairs of numbers across the trial. In the LSAM, 13 
accumulation is biased by a so-called selective gain parameter that prioritizes (i.e. assigns larger weight 14 
to) to the number that is higher on a given pair, giving rise to the pro-variance bias observed in choice 15 
behavior (Tsetsos et al., 2016). 16 

Two separate criteria both favored the LSAM. First, group average BICs were lowest for the LSAM 17 
(242.30) compared to the DDM (248.48), LAM (243.64) and LCAM (248.73). BIC compares models 18 
based on their maximized log-likelihood value, while penalizing for the number of parameters (Schwarz, 19 
1978). Lower BIC values indicate a model that better explained the data, whereby BIC differences of 10 20 
indicate a decisively better fit (Schwarz, 1978).  Second, and more importantly, only the LSAM was able 21 
to jointly account for two diagnostic behavioral signatures: (i) recency bias, a tendency to rely more on 22 
recent than on early samples of evidence (Fig. 6E; Fig. S6D; Materials and Methods); and (ii) the pro-23 
variance bias (Fig. 6C).  The DDM, by assuming perfect accumulation, could not account for recency or 24 
pro-variance biases (Fig. 6E,F). The LAM and the LCAM included leak terms and could therefore 25 
account for the recency bias; however, both models failed to capture the pro-variance bias (but see Fig. 26 
S6E). Only LSAM could account for both features of behavior (Fig. 6D–F).  27 

Having established the LSAM as the best-fitting model for this task, we then used the LSAM fits to 28 
evaluate the effects of phasic arousal on evidence accumulation. Consistent with previous studies, the 29 
selective gain parameter was larger than 0 (Fig. 6G), indicating an overall tendency towards down-30 
weighting samples that were momentarily lower in value. But, critically, selective gain was pushed closer 31 
towards zero on trials characterized by large pupil responses (Fig. 6G), mediating a reduction in the pro-32 
variance bias. We did not find robust evidence for pupil-predicted changes in other model parameters 33 
such as leak (controlling the time-constant of accumulation) or noise. In other words, also in this high-34 
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level task did phasic pupil-linked arousal predict a selective change in evidence accumulation process, 1 
here reducing a risk-seeking bias. 2 

In this task, a pro-variance bias can in fact be adaptive (i.e. improve reward rate) if noise corrupts 3 
the accumulation process downstream the of representation of the incoming numbers: for a given level 4 
of accumulation noise the selective gain parameter maximizing accuracy is generally non-zero (Tsetsos 5 
et al., 2016). We used the best-fitting accumulation noise for each participant to obtain the selective gain 6 
parameter that maximized accuracy and calculated the pro-variance bias predicted by this selective gain 7 
parameter (green line in Fig. 6C for a group average). The stronger the pupil responses, the closer to 8 
optimal was the measured pro-variance bias, with the optimal pro-variance bias obtained for the largest 9 
pupil response bin. Therefore, consistent with the perceptual tasks, stronger phasic pupil arousal in a 10 
high-level task was associated with more optimal decision-making. 11 

 12 

 13 

 14 
 15 
Figure 6. Phasic arousal predicts reduced risk seeking bias in a value-based choice task. (A) Value-based 16 
choice task. Schematic sequence of events during a trial. Subjects integrated two value sequences (5–8 pairs) and 17 
judged which sequence had on average the higher value. (B) On “narrow-correct” trials, the standard deviation of 18 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 17, 2019. ; https://doi.org/10.1101/447656doi: bioRxiv preprint 

https://doi.org/10.1101/447656
http://creativecommons.org/licenses/by/4.0/


 16 

the more profitable sequence was lower than that of the losing sequence; on “narrow-error”, trials this was 1 
reversed. (C) Relationship between pro-variance bias (Materials and Methods) and pupil response. Linear fits are 2 
plotted wherever the first-order fit was superior to the constant fit (Materials and Methods); quadratic fits were 3 
not superior to first-order fits. Green line, optimal fraction of high-variance choices; ‘X’ symbols are predictions 4 
from the drift diffusion model; stats, mixed linear modelling. (D) Schematic of the leaky selective accumulator 5 
model (LSAM; Materials and Methods). At the end of the accumulation period (after 5–8 number pairs) the 6 
accumulator with the higher total integrated value determines choice. The momentarily higher values pass onto 7 
the accumulation layer unaffected, but the momentarily lower ones are truncated according to the “selective gain”. 8 
(E) Psychophysical kernels, indicating the effect of each pair of numbers on observers’ choice (plotted only for 9 
trials with 8 pairs; see Fig. S6D for all trial durations). Lines, exponential fits to data (grey) or model predictions 10 
(colors). (F) Time constant from exponential fit in E (top) and pro-variance bias (bottom) for the data (grey) and 11 
model predictions (colors). (G) As C, but for the LSAM parameters noise (left) and leak (middle) and selective 12 
gain (right). All panels: group average (N = 32); error bars, s.e.m. 13 

 14 

The phasic arousal-related bias suppression is distinct from ongoing, arousal state fluctuations 15 

One concern might be that the bias suppression effects under large pupil responses reported here 16 
were due to associations between the preceding baseline pupil diameter and behavior. Such baseline 17 
effects might be “inherited” by the phasic pupil response through its commonly negative correlation with 18 
baseline pupil diameter (de Gee et al., 2014; Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010), which 19 
likely causes floor and ceiling effects on pupil size due to eye muscle geometry and light conditions. 20 
Inherited correlation with baseline pupil could not account for the results reported here, for a number of 21 
reasons. First, in the go/no-go data sets, pupil responses were quantified as the rising slopes (see above), 22 
and those exhibited a negligible correlation to the preceding baseline diameter (mice: r = 0.014, ±0.028 23 
s.e.m.; humans: r = -0.037, ±0.017 s.e.m.). Second, there was a non-monotonic association between 24 
baseline pupil diameter and decision bias in mice (McGinley, David, et al., 2015), in contrast to the 25 
monotonic pattern we observed here for phasic arousal in the same dataset (Fig. 1F). Third, while the 26 
pupil responses were negatively related to baseline pupil diameter in the basic yes/no (r = -0.159, ±0.017 27 
s.e.m.), the yes/no rare condition (r = -0.163, ±0.041 s.e.m.),  the yes/no frequent condition (r = -0.109, 28 
±0.047 s.e.m.), and numbers (r = -0.482, ±0.010 s.e.m.) data sets, there was either no or a weak systematic 29 
(linear or non-monotonic) association between baseline pupil diameter and decision bias (go/no-go: p = 30 
0.975; yes/no: p = 0.557; yes/no rare: p = 0.043; yes/no frequent: p = 0.556; numbers: p = 0.289). Fourth, 31 
in the yes/no recognition task, there was again a negligible correlation between pupil response and 32 
preceding baseline diameter (r = -0.010, ±0.010 s.e.m.). Thus, the behavioral correlates of pupil responses 33 
reported in this paper reflect genuine effects of phasic arousal, which are largely uncontaminated by the 34 
baseline arousal state. 35 

 36 
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DISCUSSION 1 

Arousal is traditionally thought to globally up-regulate the efficiency of information processing (e.g., the 2 
quality of evidence encoding or the efficiency of accumulation (Aston-Jones & Cohen, 2005; McGinley, 3 
Vinck, et al., 2015)). However, recent work indicates that phasic arousal signals might have more specific 4 
effects, such as reducing the impact of prior expectations and biases on decision formation (de Gee et 5 
al., 2017, 2014; Krishnamurthy et al., 2017; Nassar et al., 2012; Urai et al., 2017). We here established 6 
a principle of the function of phasic arousal in decision-making, which generalizes across species 7 
(humans and mice) and behavioral tasks (from perceptual to memory-based and numerical decisions): 8 
suppressing maladaptive biases in the accumulation of evidence leading up to a choice.  9 

We identified this principle in human and mouse choice behavior in the same auditory decision task. 10 
Task-evoked pupil responses occurred early during decision formation, even on trials without any motor 11 
response, and predicted a suppression of conservative choice bias. Behavioral modeling revealed that the 12 
bias reduction was due to a selective interaction with the accumulation of the fluctuating sensory input 13 
(evidence). We furthermore showed that phasic arousal flexibly reduces accumulation biases, 14 
irrespective of sign, in the presence of different stimulus statistics. Finally, we established the pupil-15 
linked suppression of evidence accumulation bias also for memory-based decision, and for higher-level 16 
form of human bias widely known in behavioral economics: risk-seeking. We conclude that the ongoing 17 
deliberation culminating in a choice (Shadlen & Kiani, 2013) is shaped by transient boosts in the global 18 
arousal state of the brain, in a stereotyped fashion: suppression of evidence accumulation bias. 19 

We here used pupil responses as a peripheral readout of changes in cortical arousal state (Larsen & 20 
Waters, 2018; McGinley, Vinck, et al., 2015). Indeed, recent work has shown that pupil diameter closely 21 
tracks several established measures of cortical arousal state (Larsen & Waters, 2018; McGinley, Vinck, 22 
et al., 2015). Changes in pupil diameter are also associated with locus coeruleus (LC) responses in 23 
humans (de Gee et al., 2017; Murphy, O’Connell, O’Sullivan, Robertson, & Balsters, 2014), monkeys 24 
(Joshi, Li, Kalwani, & Gold, 2016; Varazzani, San-Galli, Gilardeau, & Bouret, 2015), and mice (Breton-25 
Provencher & Sur, 2019; Liu, Rodenkirch, Moskowitz, Schriver, & Wang, 2017; Reimer et al., 2016). 26 
But some of these studies also found unique contributions to pupil size in other subcortical regions like 27 
the superior and inferior colliculi, the cholinergic basal forebrain and dopaminergic midbrain (de Gee et 28 
al., 2017; Joshi et al., 2016; Reimer et al., 2016). Thus, we remain agnostic about the exact 29 
neuroanatomical source(s) of the reported effects of phasic arousal. 30 

We chose the drift diffusion model to capture the behavioral data from the go/no-go and yes/no 31 
tasks because the model: (i) is sufficiently low-dimensional so that its parameter estimates are well 32 
constrained by the choices and shape of RT distributions, (ii) has been shown to successfully account for 33 
behavioral data from a wide range of decision-making tasks, including go/no-go (Ratcliff et al., 2016; 34 
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Ratcliff & McKoon, 2008), and (iii) is, under certain parameter regimens, equivalent to a reduction of 1 
biophysically detailed neural circuit models of decision-making (Bogacz et al., 2006; Wong & Wang, 2 
2006). The drift diffusion model required us to make three main assumptions. First, in the go/no-go task, 3 
participants accumulated the auditory evidence within each discrete noise sound during a trial, resetting 4 
this accumulation process before each next discrete sound. Second, in both the go/no-go and yes/no tasks, 5 
that subjects actively accumulated evidence towards both yes- and no-choices, which is supported by 6 
neurophysiological data from yes/no tasks (Deco, Pérez-Sanagustín, de Lafuente, & Romo, 2007; 7 
Donner, Siegel, Fries, & Engel, 2009). Third, in the go/no-go task, that subjects set an implicit boundary 8 
for no-choices (Ratcliff et al., 2016). The quality of our model fits suggest that the model successfully 9 
accounted for the measured behavior, lending support to the conclusions drawn from the parameter 10 
estimates. 11 

The behavioral models for the perceptual and value-based task included a somewhat different 12 
mechanism to account for the pupil-predicted bias suppression. First, the drift diffusion model accounted 13 
for the suppression of perceptual and memory choice by assuming an additive mechanism: arousal 14 
shaped the evidence-independent constant (towards “yes” or “no”) that was added to the mean evidence 15 
(i.e., drift). Second, the selective integration model accounted for the reduction of a pro-variance (risk-16 
seeking) bias by assuming a multiplicative mechanism: arousal shaped the multiplicative gain 17 
(weighting) of the momentary evidence. Could a single additive or multiplicative mechanism capture the 18 
bias shifts in both tasks? We think this is unlikely, as the overt bias was different in nature: the perceptual 19 
and memory choice biases were an overall tendency to responding “yes” more often than “no” (or the 20 
other way around) regardless of the objective evidence. By contrast, the pro-variance bias did not map 21 
onto the choice boundaries (for “left” and “right”) but was an overall tendency to choose the more volatile 22 
sequence of values, and thus depends on the interaction with the evidence. Although the suppression of 23 
perceptual and memory choice biases was well accounted for by an additive effect, we cannot, at present, 24 
rule out a multiplicative effect on momentary evidence accumulation. From the analyses presented here, 25 
we can conclude that phasic arousal affects the evidence accumulation process, resulting in a monotonic 26 
suppression of a wide range of biases. 27 

The monotonic effects of phasic arousal on decision biases that we report here contrast with recent 28 
observations that tonic (pre-stimulus) arousal levels have a non-monotonic (inverted U) effects on 29 
behavior (perceptual sensitivity and bias) and neural activity (the signal-to-noise ratio of thalamic and 30 
cortical sensory responses; (Gelbard-Sagiv, Magidov, Sharon, Hendler, & Nir, 2018; McGinley, David, 31 
et al., 2015). Importantly, our current work enables a direct comparison of these functional correlates of 32 
tonic and phasic arousal within the exact same data set in mice. A previous report on that data set showed 33 
that the mice’s behavioral performance was most rapid, accurate, and the least biased at intermediate 34 
arousal (medium baseline pupil size) (McGinley, David, et al., 2015). In contrast, we here show that their 35 
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behavioral performance was linearly related to phasic arousal, with the most rapid, accurate and least 1 
biased choices for the largest phasic arousal transients. It is tempting to speculate that these differences 2 
reflect different neuromodulatory systems governing tonic and phasic arousal. Indeed, rapid dilations of 3 
the pupil (phasic arousal) are more tightly associated with phasic activity in noradrenergic axons, 4 
whereas slow changes in pupil (tonic arousal) are accompanied by sustained activity in cholinergic axons 5 
(Reimer et al., 2016). 6 

Recent findings indicate that intrinsic behavioral variability is increased during sustained (“tonic") 7 
elevation of NA levels, in line with the “adaptive gain theory” (Aston-Jones & Cohen, 2005). First, 8 
optical stimulation of LC inputs to anterior cingulate cortex caused rats to abandon strategic counter 9 
prediction  in favor of stochastic choice in a competitive game (Tervo et al., 2014). Second, chemogenetic 10 
stimulation of the LC in rats performing a patch leaving task increased decision noise and subsequent 11 
exploration (Kane et al., 2017). Third, pharmacologically reducing central noradrenaline levels in 12 
monkeys performing an operant effort exertion task parametrically increased choice consistency (Jahn 13 
et al., 2018). Finally, pharmacologically increasing central tonic noradrenaline levels in human subjects 14 
boosted the rate of alternations in a bistable visual input and long-range correlations in brain activity 15 
(Pfeffer et al., 2018). Here, we tested for the effect of phasic arousal on a range of behavioral parameters, 16 
including decision noise. In the drift diffusion model, increased decision noise would manifest as a 17 
decrease of the mean drift rate, which scales inversely with (within-trial) decision noise. We found no 18 
such effect that was consistent across data sets. This is another indication, together with the baseline 19 
pupil effects reported by (McGinley, David, et al., 2015), that the effects of phasic and tonic 20 
neuromodulation are distinct. 21 

 One influential account holds that phasic LC responses during decision-making are triggered by 22 
the threshold crossing in some circuit accumulating evidence, and that the resulting noradrenaline release 23 
then facilitates the translation of the choice into a motor act (Aston-Jones & Cohen, 2005). Within the 24 
drift diffusion model, this predicts a reduction in non-decision time and no effect on evidence 25 
accumulation. In contrast to this prediction, we found that in all our datasets that phasic arousal affected 26 
evidence accumulation (suppressing biased therein), but not non-decision time. Our approach does not 27 
enable us to rule out an effect of phasic arousal on movement execution (i.e., kinematics). Yet, our results 28 
clearly establish an important role of phasic arousal in evidence accumulation, ruling out any purely post-29 
decisional account. This implies that phasic LC responses driving pupil dilation are already recruited 30 
during evidence accumulation, or that the effect of pupil-linked arousal on evidence accumulation are 31 
governed by systems other than the LC. Future experiments characterizing phasic activity in the LC or 32 
other brainstem nuclei involved in arousal during protracted evidence accumulation tasks could shed 33 
light on this issue.  34 
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It is tempting to speculate that task-evoked neuromodulatory responses and cortical decision circuits 1 
interact in a recurrent fashion. One possibility is that neuromodulatory responses alter the balance 2 
between “bottom-up” and “top-down” signaling across the cortical hierarchy (Friston, 2010; Hasselmo, 3 
2006; Hsieh, Cruikshank, & Metherate, 2000; Kimura, Fukuda, & Tsumoto, 1999; Kobayashi et al., 4 
2000). Sensory cortical regions encode likelihood signals and sent these (bottom-up) to association 5 
cortex; participants’ prior beliefs (about for example target probability) are sent back (top-down) to the 6 
lower levels of the hierarchy (Beck, Ma, Pitkow, Latham, & Pouget, 2012; Pouget, Beck, Ma, & Latham, 7 
2013). Neuromodulators might reduce the weight of this prior in the inference process (Friston, 2010; 8 
Moran et al., 2013), thereby reducing choice biases. Another possibility is neuromodulator release might 9 
scale with uncertainty about the incoming sensory data (Friston, 2010; Moran et al., 2013). Such a 10 
process could be implemented by top-down control of the cortical systems decision-making over 11 
neuromodulatory brainstem centers. This line of reasoning is consistent with anatomical connectivity 12 
(Aston-Jones & Cohen, 2005; Sara, 2009). Finally, a related conceptual model that has been proposed 13 
for phasic LC responses is that cortical regions driving the LC (e.g. ACC) continuously compute the ratio 14 
of the posterior probability of the state of the world, divided by its (estimated) prior probability (Dayan 15 
& Yu, 2006). LC is then activated when neural activity ramps towards the non-default choice (against 16 
ones’ bias). The resulting LC activity might reset its cortical target circuits (Bouret & Sara, 2005) and 17 
override the default state (Dayan & Yu, 2006), facilitating the transition of the cortical decision circuitry 18 
towards the non-default state.  19 

The finding that phasic arousal also optimizes choice behavior in the value-based choice task 20 
complements recent insights into the impact of tonic arousal and stress on value-based decision-making 21 
(Porcelli & Delgado, 2017). For example, acute stress reduces risk-seeking when making decisions 22 
involving financial gains (Porcelli & Delgado, 2009), it increases overexploitation in sequential foraging 23 
decisions (Lenow, Constantino, Daw, & Phelps, 2017), and it impairs “model-based” goal-directed 24 
choice behavior (Otto, Raio, Chiang, Phelps, & Daw, 2013; Schwabe, Hoffken, Tegenthoff, & Wolf, 25 
2011). A direct comparison between these studies and ours is complicated by the different tasks used as 26 
well as the different behavioral states assessed (stress vs. phasic arousal). But the effects of acute stress 27 
on cognition and decision-making are mediated, at least in part, by tonic noradrenaline and dopamine 28 
release (Arnsten, 2015). It is tempting to interpret the current findings as a flip-side of the impairment in 29 
choice optimality found in the previous stress work: catecholaminergic modulation not only hampers, 30 
but can also boost, choice optimality when its duration is more confined.  31 

If, as we show, phasic arousal monotonically optimizes evidence accumulation, why is not always 32 
engaged as strongly as possible? There are several possible reasons. First, phasic LC responses depend 33 
in a non-monotonic fashion on baseline LC activity (Aston-Jones & Cohen, 2005). The baseline activity 34 
of neuromodulatory brainstem centers, in turn, is shaped by the many inputs that they receive. Most 35 
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inputs inform about general bodily state, and the top-down inputs conveying the cognitive signals related 1 
to decision-making make up only a modest fraction of these inputs. Thus, even if the top-down signals 2 
driving phasic arousal were perfectly calibrated to continuously optimize task performance, the phasic 3 
arousal responses per se might not be. In other words, arousal systems might well act close to optimally 4 
in juggling all a plethora of tradeoffs between different tasks in real life; our optimality analysis only 5 
focuses on a small subset. Related, neuromodulatory baseline activity likely mediates shifts between rest, 6 
exploitation (performing the task in order to obtain the rewards) and exploration (looking for more 7 
rewarding alternatives) (Aston-Jones & Cohen, 2005; McGinley, Vinck, et al., 2015). Thus, through the 8 
same baseline dependence, phasic arousal might not always be perfectly calibrated to optimize task 9 
performance. Finally, phasic arousal might not always be engaged as strongly as possible because of its 10 
energetic costs: in the brain, neuromodulatory activation of G-protein coupled cascades are metabolically 11 
costly, and taxing on cells due to for example free radicals, and calcium load; in the rest of the body, LC-12 
NA signaling triggers the release of glucose from energy stores.    13 

Our study showcases the value of comparative experiments in humans and non-human species. One 14 
would expect the basic functions of arousal systems (e.g. the LC-NA system) to be analogous in humans 15 
and rodents. Yet, it has been unclear whether these systems are recruited by the same computational 16 
variables entailed in decision-making. Computational variables like decision uncertainty or surprise are 17 
encoded in prefrontal cortical regions (e.g. anterior cingulate or orbitofrontal cortex (Kepecs, Uchida, 18 
Zariwala, & Mainen, 2008; Ma & Jazayeri, 2014; Pouget, Drugowitsch, & Kepecs, 2016) and conveyed 19 
to brainstem arousal systems via top-down projections (Aston-Jones & Cohen, 2005; Breton-Provencher 20 
& Sur, 2019). Both the cortical representations of computational variables and top-down projections to 21 
brainstem may differ between species. More importantly, it has been unknown whether key components 22 
of the decision formation process, in particular evidence accumulation, would be affected by arousal 23 
signals in the same way between species. Only recently has it been established that rodents (rats) and 24 
humans accumulate perceptual evidence in an analogous fashion (Brunton et al., 2013). Here, we 25 
established that the shaping of evidence accumulation by phasic arousal is also governed by a conserved 26 
principle. 27 

MATERIALS AND METHODS 28 

Subjects 29 

All procedures concerning the animal experiments were carried out in accordance with Yale 30 
University Institutional Animal Care and Use Committee, and are described in detail elsewhere 31 
(McGinley, David, et al., 2015). Human subjects were recruited and participated in the experiment in 32 
accordance with the ethics committee of the Department of Psychology at the University of Amsterdam 33 
(go/no-go and yes/no task), the ethics committee of Baylor College of Medicine (yes/no task with biased 34 
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signal probabilities), the ethics committee of the University of Hamburg (recognition task) or the ethics 1 
committee of the University Medical Center Hamburg-Eppendorf (value-based choice task). Human 2 
subjects gave written informed consent and received credit points (go/no-go and yes/no tasks) or a 3 
performance-dependent monetary remuneration (yes/no task with biased signal probabilities, recognition 4 
task and value-based choice task) for their participation. We analyzed three previously unpublished 5 
human data sets, and re-analyzed a previously published mice data set (McGinley, David, et al., 2015) 6 
and two human data sets (Bergt, Urai, Donner, & Schwabe, 2018; de Gee et al., 2017). Bergt et al. (2018) 7 
have analyzed pupil responses only during the encoding phase of the recognition memory experiment – 8 
we here present the first analyses of pupil responses during the recognition phase. 9 

Five mice (all males; age range, 2–4 months) and twenty human subjects (15 females; age range, 19–10 
28 y) performed the go/no-go task. Twenty-four human subjects (of which 18 had already participated 11 
in the go/no-go task; 20 females; age range, 19–28 y) performed an additional yes/no task. Fifteen human 12 
subjects (8 females; age range, 20–28 y) performed the yes/no task with biased signal probabilities. Fifty-13 
four human subjects (27 females; age range, 18–35 y) performed a picture recognition task, of which two 14 
were excluded from the analyses due to eye-tracking failure. Thirty-seven human subjects (18 females; 15 
age range, 20–36 y) performed a value-based choice task, of which five were excluded from the analyses 16 
due to bad eye tracking data quality and/or excessive blinking.  17 

For the go/no-go task, mice performed between five and seven sessions (described in (McGinley, 18 
David, et al., 2015)), yielding a total of 2469–3479 trials per subject. For the go/no-go task, human 19 
participants performed 11 blocks of 60 trials each (distributed over two measurement sessions), yielding 20 
a total of 660 trials per participant. For the yes/no task, human participants performed between 11 and 21 
13 blocks of 120 trials each (distributed over two measurement sessions), yielding a total of 1320–1560 22 
trials per participant. For the yes/no task with biased signal probabilities, human subjects performed 8 23 
blocks of 120 trials each (distributed over two measurement sessions), yielding a total of 960 trials per 24 
participant. For the picture recognition task, human subjects performed 300 trials. For the value-based 25 
choice task, we only analyzed data from one of the experimental conditions (“pro-variance” condition, 26 
recorded during the placebo and nocebo sessions, see below) yielding a total of 288 trials per participant.  27 

 28 

Behavioral tasks 29 

Auditory go/no-go tone-in-noise detection task 30 
Each trial consisted of two to seven consecutive distinct auditory noise stimuli (stimulus duration, 31 

1 s; inter-stimulus-interval, 0.5 s). A weak signal tone (pure sine wave) was superimposed onto the last 32 
noise stimulus (Fig. 1A). The number of noise stimuli, and thus the signal position in the sequence, was 33 
randomly drawn beforehand. The probability of a target signal decreased linearly with sound position in 34 
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the sequence (Fig. 1B), so as to keep hazard rate of signal onset approximately flat across the trial. Each 1 
trial was terminated by the subject’s go-response (hit or false alarm) or after a no-go error (miss). Each 2 
interval consisted of only an auditory noise stimulus (McGinley, David, et al., 2015), or a pure sine wave 3 
(2 KHz) superimposed onto one of the noise stimuli. In the mice experiment, auditory stimuli were 4 
presented at an intensity of 55dB. In the human experiment, auditory stimuli were presented at an 5 
intensity of 65dB using an IMG Stageline MD-5000DR over-ear headphone, suppressing ambient noise. 6 
Otherwise, it was the same behavioral set-up as in (de Gee et al., 2014). 7 

Mice learned to respond during the signal-plus-noise intervals and to withhold responses during 8 
noise intervals through training. Human participants were instructed to do the same. Mice responded by 9 
licking for sugar water reward. Humans responded by pressing a button with their right index finger. 10 
Correct yes-choices (hits) were followed by positive feedback: 4 μL of sugar water in the mice 11 
experiment, and a green fixation dot in the human experiment. False alarms were followed by an 8 s 12 
timeout. Humans received an 8 s timeout after misses too. 13 

Target signal loudness was randomly selected on each trial, under the constraint that each of six 14 
(mice) or five (humans) levels would occur equally often within each session (mice) or block of 60 trials 15 
(humans). The corresponding loudness exhibited a robust effect on mean accuracy, with highest accuracy 16 
for the loudest signal level: F(5,20) = 23.95, p < 0.001) and F(4,76) = 340.9, p < 0.001), for mouse and 17 
human subjects respectively. Human hit-rates were almost at ceiling level for the loudest signal: 94.7% 18 
(±0.69% s.e.m.). Because so few errors are not enough to sufficiently constrain the drift diffusion model, 19 
we merged the two conditions with the loudest signals. 20 

Auditory yes/no (forced choice) tone-in-noise detection task  21 
Each trial consisted of two consecutive intervals (Fig. 3A): (i) the baseline interval (3-4 s uniformly 22 

distributed); (ii) the decision interval, the start of which was signaled by the onset of the auditory stimulus 23 
and which was terminated by the subject’s response (or after a maximum duration of 2.5 s). The decision 24 
interval consisted of only an auditory noise stimulus (McGinley, David, et al., 2015), or a pure sine wave 25 
(2 KHz) superimposed onto the noise. In the first experiment, the signal was presented on 50% of trials 26 
(Fig. 3A). Auditory stimuli were presented at the same intensity of 65dB using the same over-ear 27 
headphone as in the go/no-go task. In the second experiment, in order to experimentally manipulate 28 
perceptual choice bias, the signal was presented on either 30% of 70% of trials. Auditory stimuli were 29 
presented at approximately the same loudness (65dB) using a Sennheiser HD 660 S over-ear headphone, 30 
suppressing ambient noise. 31 

Participants were instructed to report the presence or absence of the signal by pressing one of two 32 
response buttons with their left or right index finger, once they felt sufficiently certain (free response 33 
paradigm). The mapping between perceptual choice and button press (e.g., “yes” –> right key; “no” –> 34 
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left key) was counterbalanced across participants. After every 40 trials subjects were informed about 1 
their performance. In the second experiment, subjects were explicitly informed about signal probability. 2 
The order of signal probability (e.g., first 480 trials –> 30%; last 480 trials –> 70%) was counterbalanced 3 
across subjects.  4 

Throughout the experiment, the target signal loudness was fixed at a level that yielded about 75% 5 
correct choices in the 50% signal probability condition. Each participant’s individual loudness was 6 
determined before the main experiment using an adaptive staircase procedure (Quest). For this, we used 7 
a two-interval forced choice variant of the tone-in-noise detection yes/no task (one interval, signal-plus-8 
noise; the other, noise), in order to minimize contamination of the staircase by individual bias (generally 9 
smaller in two-interval forced choice than yes/no tasks). In the first experiment, the resulting threshold 10 
loudness produced a mean accuracy of 74.14% correct (±0.75 % s.e.m.). In the second experiment, the 11 
resulting threshold loudness produced a mean accuracy of 84.40% correct (±1.75% s.e.m.) and 83.37% 12 
correct (±1.36% s.e.m.) in the P(Signal)=0.3 and P(Signal)=0.7 conditions, respectively. This increased 13 
accuracy was expected given the subjects’ ability to incorporate prior knowledge about signal probability 14 
into their decision-making. 15 

Picture yes/no (forced-choice) recognition  16 

The full experiment consisted of a picture and word encoding task, and a 24 hours-delayed free 17 
recall and recognition tests (Fig. 5A) previously described in (Bergt et al., 2018). Here we did not analyze 18 
data from the word recognition task because of a modality mismatch: auditory during encoding, visual 19 
during recognition. During encoding, 75 neutral and 75 negative greyscale pictures (modified to have 20 
the same average luminance) were randomly chosen from the picture pool (Bergt et al., 2018) and 21 
presented in randomized order for 3 seconds at the center of the screen, against a grey background that 22 
was equiluminant to the pictures. Subjects were instructed to memorize the pictures (intentional 23 
encoding) and to evaluate how emotional each picture was on a 4-point scale from 0 (“neutral”) to 3 24 
(“very negative”). During recognition, 24-hours post encoding, subjects saw all pictures that were 25 
presented on the first day and an equal number of novel neutral and negative items in randomized order. 26 
Subjects were instructed to indicate for each item whether it had been presented the previous day (“yes 27 
– old”) or not (“no – new”). For items that were identified as “old”, participants were further asked to 28 
rate on a scale from 1 (“not certain”) to 4 (“very certain”) how confident they were that the item was 29 
indeed “old”. 30 

Value-based choice task  31 
Each trial consisted of four consecutive intervals (Fig. 6A): (i) a pre-stimulus baseline interval (3.0 32 

s); (ii) a stimulus interval consisting of 5–8 pairs of numbers; (iii) a response interval which was prompted 33 
by the fixation dot turning white and which was terminated by the participant’s response or after a 34 
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maximum of 2 s. Immediately after the response the fixation dot turned green or red, for correct and 1 
incorrect responses respectively, and stayed on screen for an additional 0.5 s (iv). 2 

Participants were instructed to report which sequence (left or right) had, on average, the higher 3 
value. They indicated this judgment by pressing one of two response buttons, with the index finger of 4 
the left or right hand. Subjects received feedback at the end of each trial (green fixation dot, correct; red 5 
fixation dot, error). Participants were informed about their accuracy so far at the end of each block. On 6 
each session, participants received a maximum of €10 bonus (calculated as (X-0.7) x 10, where X was 7 
their overall fraction of correct choices or accuracy; for X > 0.8 the bonus was capped at €10). 8 

The 5–8 pairs of 2-digit numerical values were black and presented sequentially, to the left and right 9 
of a central fixation point (0.34º diameter) against a grey background. Each number pair faded-in, 10 
changing linearly from grey to black for the first 300 ms, remained black for 200 ms, and then faded-out 11 
to grey for the last 300 ms. The viewing distance was 65 cm and each numerical character was 0.66º 12 
wide and 0.95º long. 13 

In all trials there was a correct answer, with the average difference between the higher and the lower 14 
sequence being sampled from d ~ U(1,12) with a mean of 6.5. This experiment contained three 15 
conditions, which were intermixed within a block of trials: a neutral condition, a condition designed to 16 
induce a “pro-variance” effect, and a condition designed to induce a “frequent winner” effect. In this 17 
report, we present analyses of the pro-variance condition; results of the neutral and frequent winner 18 
conditions will be the focus of another report. The pro-variance condition involved two types of trials, 19 
“narrow-correct” trials and “narrow-error” trials. In both types of trials the sequences were generated 20 
from Gaussian distributions, with the mean of the higher sequence (μH) sampled from μH ∼U(45,65). 21 
The mean of the lower sequence was μL = μH − d. In the narrow-correct trials, the standard deviation of 22 
the higher sequence was σH = 10 while the standard deviation of the lower sequence was σL = 20; in the 23 
narrow-error trials this was reversed (σH = 20 and σL = 10).  24 

This experiment was part of a larger study that also included MEG measurements of cortical activity 25 
combined with pharmacological intervention. Subjects performed the number integration task in three 26 
measurement sessions (nocebo, placebo, drug [lorazepam]); they received an additional fixed €25 in the 27 
nocebo session, and an additional €70 in the placebo and drug sessions.  28 

Pupil data acquisition 29 

The mouse pupil data acquisition is described elsewhere (McGinley, David, et al., 2015). The 30 
human experiments were conducted in a psychophysics laboratory (go/no-go and yes/no tasks) or in the 31 
MEG laboratory (value-based choice task). The left eye’s pupil was tracked at 1000 Hz with an average 32 
spatial resolution of 15 to 30 min arc, using an EyeLink 1000 Long Range Mount (SR Research, 33 
Osgoode, Ontario, Canada), and it was calibrated once at the start of each block. 34 
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Analysis of task-evoked pupil responses  1 

Preprocessing 2 
Periods of blinks and saccades were detected using the manufacturer’s standard algorithms with 3 

default settings. The remaining data analyses were performed using custom-made Python scripts. We 4 
applied to each pupil timeseries (i) linear interpolation of missing data due to blinks or other reasons 5 
(interpolation time window, from 150 ms before until 150 ms after missing data), (ii) low-pass filtering 6 
(third-order Butterworth, cut-off: 6 Hz), (iii) for human pupil data, removal of pupil responses to blinks 7 
and to saccades, by first estimating these responses by means of deconvolution and then removing them 8 
from the pupil time series by means of multiple linear regression (Knapen et al., 2016), and (iv) 9 
conversion to units of modulation (percent signal change) around the mean of the pupil time series from 10 
each measurement session. We computed the first time derivative of the pupil size, by subtracting the 11 
size from adjacent frames, and smoothened the resulting time series with a sliding boxcar window (width, 12 
50 ms).  13 

 14 
Quantification of task-evoked pupil responses 15 

The auditory yes/no tasks and the yes/no recognition task were analogous in structure to the tasks 16 
from our previous pupillometry and decision-making studies (de Gee et al., 2017, 2014). We here 17 
computed task-evoked pupil responses time-locked to the behavioral report (button press). We used 18 
motor response-locking because motor responses, which occurred in all trials, elicit a transient pupil 19 
dilation response (de Gee et al., 2014; Hupé et al., 2009). Thus, locking pupil responses to the motor 20 
response balanced those motor components in the pupil responses across trials, eliminating them as a 21 
confounding factor for estimates of phasic arousal amplitudes. Specifically, we computed pupil 22 
responses as the maximum of the pupil derivative time series (Reimer et al., 2016) in the 500 ms before 23 
button press (grey windows in Figs. S3B, S4A, S5A). The resulting pupil bins were associated with 24 
different overall pupil response amplitudes across the whole duration of the trial (Figs. S3C, S4B, S5B). 25 

The go/no-go and value-based choice task entailed several deviations from the above task structure 26 
that required different quantifications of task-evoked pupil responses. The go/no-task had, by design, an 27 
imbalance of motor responses between trials ending with different decisions, with no motor response for 28 
(implicit) no-choices. Thus, the above-described transient motor component to the pupil response would 29 
yield larger pupil responses for yes- than for no-choices, even without any link between phasic arousal 30 
and decision bias. We took two approaches to minimize contamination by this motor imbalance. First, 31 
we quantified the pupil responses as the maximum of the pupil derivative in an early window that ranged 32 
from the start of the pupil derivative time course being significantly different from zero up to the first 33 
peak (grey windows in Fig. 1D). For the mice, this window ranged from 40–190 after sound onset; for 34 
humans, this window ranged from 240–460 ms after sound onset. Second, we excluded decision intervals 35 
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with a motor response before the end of this window plus a 50 ms buffer (cutoff: 240 ms for mice, 510 1 
ms for humans; Fig. S1E,K). In both species, the resulting pupil derivate defined bins were associated 2 
with different overall pupil response amplitudes across the whole duration of the trial (Fig. S1G,M). 3 

In the value-based choice task, we computed pupil responses as the mean pupil size from 1.5 s to 4 
4.5 s after the onset of the first pair of samples (grey window in Fig. S6A), with the pre-trial baseline 5 
pupil size (mean pupil size in the 500 ms before the first pair of samples) subtracted out. We choose this 6 
window of interest for three reasons. First, to quantify the amplitude of phasic arousal across the full 7 
interval of evidence accumulation, which was substantially longer than in the go/no-go and yes/no tasks 8 
(4.0–6.4 s vs. ~1 s). Second, the first 1.5 s after stimulus onset were excluded because here we observed 9 
initial constriction of the pupil below pre-stimulus baseline level, likely elicited by the high-contrast 10 
numbers elicited (Fig. S6A). Third, as pupil diameter increased with each sample after the first (Fig. 11 
S6A), larger pupil responses were to be expected for 8-sample compared to 5-sample trials. Therefore, 12 
we computed pupil responses aligned to stimulus onset, while excluding motor and/or feedback-related 13 
components occurring post 4.5 s for the shortest trials (5 samples) (Fig. S6A, left). The resulting pupil-14 
response defined bins were associated with different overall pupil response amplitudes across the whole 15 
duration of the trial (Fig. S6B). 16 

For analyses of the go/no-go and yes/no tasks, we used five equally populated bins of task-evoked 17 
pupil response amplitudes. We used three bins for the yes/no task with biased environments and the 18 
value-based task, because subjects performed substantially fewer trials (see Subjects). We used two bins 19 
for the recognition task, so that we could perform the individual difference analysis reported in Fig. 5. In 20 
the recognition task, we ensured that each pupil bin contained an equal number of neutral and emotional 21 
stimuli. In all cases, the results are qualitatively the same when using five equally populated bins of task-22 
evoked pupil response amplitudes. 23 

Analysis and modeling of choice behavior  24 

In the go/no-go task, each stimulus in a given trial (i.e., sequence discrete signal-plus-noise or noise-25 
only sounds) was interpreted as a separate decision. The first stimulus of each trial (see Behavioral tasks) 26 
was excluded from the analyses, because this interval served as a reference and never included the target 27 
signal (pure sine wave). In the go/no-go and yes/no tasks, reaction time (RT) was defined as the time 28 
from stimulus onset until the lick or button press. In the value-based choice task, RT was defined as the 29 
time from the last sample offset until the button press. In the mice go/no-go data set, intervals with RTs 30 
shorter than 240 ms were excluded from the analyses (see Quantification of task-evoked pupillary 31 
responses and Fig. S1E); in the human go/no-go data set, intervals with RTs shorter than 510 ms were 32 
excluded from the analyses (Fig. S1K). 33 

 34 
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 1 
Signal-detection theoretic modeling (go/no-go and yes/no tasks) 2 

The signal detection metrics sensitivity (d’) and criterion (c) (Green & Swets, 1966) were computed 3 
separately for each of the bins of pupil response size. We estimated d’ as the difference between z-scores 4 
of hit-rates and false-alarm rates. We estimated criterion by averaging the z-scores of hit-rates and false-5 
alarm rates and multiplying the result by -1. 6 

In the go/no-go task, subjects could set only one decision criterion (or bias set point) against which 7 
to compare sensory evidence, because loudness was drawn pseudo-randomly on each trial. Therefore, 8 
using signal detection theory, per pupil bin we computed an overall perceptual choice bias across 9 
loudness as follows. We computed one false alarm rate (based on the noise sounds) and multiple hit-rates 10 
(one per loudness). Based on these we modelled one overall noise distribution (normally distributed with 11 
mean=0, sigma=1), and one “composite” signal distribution (Fig. S1A), which was computed as the 12 
average across a number of signal distributions separately modelled for each loudness (each normally 13 
distributed with mean=empirical d’ for that loudness, and sigma=1). Thus, the standard signal detection 14 
theory assumptions were applied for each stimulus. 15 

We defined the “zero-bias point” (Z) as the value for which the noise and composite signal 16 
distributions crossed: 17 

 18 

Eq.1: 19 

𝑆(𝑍) − 𝑁(𝑍) = 0 20 

 21 

 where S and N are the composite signal and noise distributions, respectively.  22 

 The subject’s empirical “choice point” (C) was computed as:  23 

 24 

Eq.2: 25 

𝐶 = (0.5	 ×	𝑑0) + 𝑐 26 

 27 

where d’ and c are a subject’s signal detection theoretic sensitivity and criterion for a given loudness. 28 
Note that, as C is a constant when d’ and criterion are computed for each loudness based on the same 29 
false alarm rate, it does not matter which loudness is used to compute the empirical choice point. 30 
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Finally, the overall bias measure was then taken as the distance between the subject’s choice point 1 
and the zero-bias point:  2 

 3 

Eq.3: 4 

Overall bias = C – Z. 5 

 6 

Determining optimal choice bias in the go/no-go task 7 

For both the go/no-go data sets, we calculated one group-average false alarm rate, and one group-8 
average hit-rate per loudness. As above, we computed d’ separately per loudness as the difference 9 
between z-scores of hit- and false-alarm rates, while using the same false alarm rate for each loudness. 10 
We then generated one noise distribution (normally distributed with mean=0, sigma=1) and separate 11 
signal distributions for each loudness (normally distributed with mean=empirical group-average d’ for 12 
that loudness). The noise distribution was three times larger than the signal-plus-noise distribution 13 
because subjects encountered more noise sounds (follows from the probabilities in Fig. S1A). We then 14 
simulated 1 million trials for a range of choice biases (SDT criterion). Criterion ranged from -3 to 3 in 15 
steps of 0.01. On each trial, signal position (#2-7 in the sequence) and loudness were drawn randomly as 16 
in the actual task. On every sound interval, depending on the randomly selected stimulus, the agent’s 17 
internal decision variable (DV) was randomly drawn from the noise or from one of the signal+noise 18 
distributions. Every encountered noise sound added 1.5 s (1 s sound + 0.5 s ISI; see Fig. 1A) to total 19 
time. A correct reject (DV drawn from noise distribution < criterion) was followed by the next sound in 20 
the same sequence. A hit (DV drawn from signal+noise distribution > criterion) resulted in a reward and 21 
the completion of the trial. A false alarm (DV drawn from noise distribution > criterion) resulted in a 22 
timeout (additional 8 s added to total time) and the abortion of the trial without obtaining a reward. A 23 
miss (DV drawn from signal+noise distribution < criterion) resulted the abortion of the trial without 24 
obtaining a reward. For the human version of the go/no-go task, an additional 8 s was added to total time 25 
after misses. For every criterion value we computed reward rate as the number of reward divided by the 26 
total time to complete the one million trials, and we recomputed our overall bias measure based on the 27 
observed false alarm rate and hit-rates (see Signal-detection theoretic modeling (go/no-go and yes/no 28 
tasks). Optimality was defined as the overall bias value that maximized reward rate (# rewards / total 29 
time) (Fig. S1D,J) . 30 

Drift diffusion modeling 31 
Data from all tasks except the value-based choice task were exclusively fit with the drift diffusion 32 

model, which well captured all features of behavior we assessed. The value-based choice task was also 33 
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fit with more complex evidence accumulation models described below, because the standard drift 1 
diffusion model failed to capture the specific set of behavioral signatures of biased evidence 2 
accumulation in this task (Fig. 6F). 3 

We used the HDDM 0.6.1 package (Wiecki, Sofer, & Frank, 2013) to fit behavioral data from the 4 
yes/no and go/no-go tasks. In all datasets, we allowed the following parameters to vary with pupil 5 
response-bins: (i) the separation between both bounds (i.e. response caution); (ii) the mean drift rate 6 
across trials; (iii) drift bias (an evidence independent constant added to the drift); (iv) the non-decision 7 
time (sum of the latencies for sensory encoding and motor execution of the choice). In the datasets using 8 
yes/no protocols, we additionally allowed starting point to vary with pupil response bin. In the go/no-go 9 
datasets, we allowed non-decision time, drift rate, and drift bias to vary with signal strength (i.e., 10 
loudness). The specifics of the fitting procedures for the yes/no and go/no-go protocols are described 11 
below. 12 

To verify that best-fitting models indeed accounted for the pupil response-dependent changes in 13 
behavior, we generated a simulated data set using the fitted drift diffusion model parameters. Separately 14 
per subject, we simulated 100000 trials for each pupil bin (and, for the go/no-go data, for each loudness), 15 
while ensuring that the fraction of signal+noise vs. noise trials matched that of the empirical data; we 16 
then computed RT, and signal detection d’ and overall bias (for the go/no-go data sets) or criterion (for 17 
the rest) for every bin (as described above).  18 

We used a similar approach to test if, without monitoring task-evoked pupil responses, systematic 19 
variations in accumulation bias (drift bias) would appear as random trial-to-trial variability in the 20 
accumulation process (drift rate variability) (Fig. 2E,H). For simplicity, we then pooled across loudness 21 
and simulated 100000 trials from two conditions that differed according to the fitted drift bias 22 
(accumulation bias) estimates in the lowest and highest pupil-defined bin of each individual; drift rate, 23 
boundary separation and non-decision time were fixed to the mean across pupil bins of each individual; 24 
drift rate variability was fixed to 0.5. We then fitted the drift bias model as described above to the 25 
simulated data, and another version of the model in which we fixed drift bias across the two conditions.  26 

Yes-no task. We fitted all yes/no datasets using Markov-chain Monte Carlo sampling as 27 
implemented in the HDDM toolbox (Wiecki et al., 2013). Fitting the model to RT distributions for the 28 
separate responses (termed “stimulus coding” in (Wiecki et al., 2013)) enabled estimating parameters 29 
that could have induced biases towards specific choices. Bayesian MCMC generates full posterior 30 
distributions over parameter estimates, quantifying not only the most likely parameter value but also the 31 
uncertainty associated with that estimate. The hierarchical nature of the model assumes that all observers 32 
in a dataset are drawn from a group, with specific group-level prior distributions that are informed by the 33 
literature. In practice, this results in more stable parameter estimates for individual subjects, who are 34 
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constrained by the group-level inference. The hierarchical nature of the model also minimizes risks to 1 
overfit the data (Katahira, 2016; Vandekerckhove, Tuerlinckx, & Lee, 2011; Wiecki et al., 2013). 2 
Together, this allowed us to simultaneously vary all main parameters with pupil bin: starting point, 3 
boundary separation, drift rate, drift bias and non-decision time. We fixed drift rate variability across the 4 
pupil-defined bins. We ran 3 separate Markov chains with 12500 samples each. Of those, 2500 were 5 
discarded as burn-in. Individual parameter estimates were then estimated from the posterior distributions 6 
across the resulting 10000 samples. All group-level chains were visually inspected to ensure 7 
convergence. Additionally, we computed the Gelman-Rubin R4 statistic (which compares within-chain 8 

and between-chain variance) and checked that all group-level parameters had an R4 between 0.99-1.01. 9 

Go/no-go task. The above described hierarchical Bayesian fitting procedure was not used for the 10 
go/no-go tasks because a modified likelihood function was not yet successfully implemented in HDDM. 11 
Instead, we fitted the go/no-go data based on RT quantiles, using the so-called G square method (code 12 
contributed to the master HDDM repository on Github; https://github.com/hddm-13 
devs/hddm/blob/master/hddm/examples/gonogo_demo.ipynb). The RT distributions for yes-choices 14 
were represented by the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles, and, along with the associated response 15 
proportions, contributed to G square; a single bin containing the number of no-go-choices contributed to 16 
G square (Ratcliff et al., 2016). Starting point and drift rate variability were fitted but fixed across the 17 
pupil-defined bins. Additionally, drift rate, drift bias and non-decision time varied with loudness. The 18 
same noise only intervals were re-used when fitting the model to each loudness. 19 

The absence of no-responses in the go/no-go protocol required fixing one of the two bias parameters 20 
(starting point or drift bias) as function of pupil response. We fixed starting point based on formal model 21 
comparison between a model with pupil-dependent variation of drift bias and starting point: BIC 22 
differences ranged from -279.5 to -137.9 (mean, -235.3: median, -246.6), and from -197.5 to -146.0 23 
(mean, -164.0; median, -162.0) in favor of the model with fixed starting point, for mice and humans 24 
respectively. The same was true when ignoring loudness: delta BICs ranged from -38.5 to -25.9 (mean, 25 
-30.9; median, -29.7), and from -39.8 to -26.7 (mean, -30.9; median, -30.7), for mice and humans 26 
respectively. 27 

Modeling behavior from the value-based choice task 28 
In the value-based task we modeled choice behavior using discrete-time accumulator models, 29 

complying with the fact pairs of numerical were presented at discrete time points. In all models described 30 
below two accumulators (𝑌6,8 , one per choice alternative) integrate numerical information over time (𝑡). 31 

The two accumulators were initialized at 0: YA(0) = YB(0) = 0. At the end of the accumulation period (at 32 
t = T, with T as the total number of pairs of samples presented) a decision was made in favor of the 33 
accumulator with the higher total integrated value. If both accumulators ended up with the same total 34 
integrated value, a decision was made randomly.  35 
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We fitted the following four models: a diffusion model (which is the discrete-time analogue of the 1 
drift-diffusion model), a leaky accumulation model (LAM), a leaky competing accumulator model 2 
(LCAM) and a leaky selective accumulator model (LSAM).  3 

In the diffusion model the accumulators evolve over time according to the following difference 4 
equations:  5 

Eq.4: 6 

Y6(𝑡) = Y6(𝑡 − 1) +	S6(𝑡) + 𝜉 ∙ 𝜁6(𝑡) 7 

Y8(𝑡) = Y8(𝑡 − 1) +	S8(𝑡) + 𝜉 ∙ 𝜁8(𝑡) 8 

In the above, SA,B(t) are the inputs to the two accumulators on a given time-step, ξ is the standard deviation 9 
of the noise, and ζA,B(t) is the standard Gaussian samples (independent from each other and across time). 10 
The only free parameter of the model is the standard deviation of the noise ξ. 11 

In the leaky accumulation model (LAM) the accumulators evolve according to: 12 

Eq.5: 13 

Y6(𝑡) = (1 − λ) ∙ Y6(𝑡 − 1) +	S6(𝑡) + 𝜉 ∙ 𝜁6(𝑡) 14 

Y8(𝑡) = (1 − λ) ∙ Y8(𝑡 − 1) +	S8(𝑡) + 𝜉 ∙ 𝜁8(𝑡) 15 

Relative to the diffusion model, the LAM has one extra parameter, λ which is the leak of the accumulation 16 
process. For λ=1 the LAM reduces to the diffusion model, whereas for 𝜆 > 0 (𝜆 < 0) the model assigns 17 
larger weights to late (early) information, yielding thus a “recency” (“primacy”) effect. 18 

 In addition to leak, the leaky competing accumulator model (LCAM) has a third parameter, β, which 19 
implements lateral inhibition between the two accumulators. Furthermore, in the LCAM the state of the 20 
accumulators cannot take negative values:  21 

Eq.6: 22 

Y6(𝑡) = max	(0, (1 − λ) ∙ Y6(𝑡 − 1) − 𝛽 ∙ Y8(𝑡 − 1) +	S6(𝑡) + 𝜉 ∙ 𝜁6(𝑡)) 23 

Y8(𝑡) = max	(0, (1 − λ) ∙ Y8(𝑡 − 1) − 𝛽 ∙ Y6(𝑡 − 1) +	S8(𝑡) + 𝜉 ∙ 𝜁8(𝑡)) 24 

 25 

 Finally, the leaky selective accumulator model (LSAM) has also three free parameters: 26 

 27 

Eq.7a: 28 

Y6(𝑡) = (1 − λ) ∙ Y6(𝑡 − 1) +	I6(𝑡) + 𝜉 ∙ 𝜉6(𝑡) 29 
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Y8(𝑡) = (1 − λ) ∙ Y8(𝑡 − 1) +	I8(𝑡) + 𝜉 ∙ 𝜉8(𝑡) 1 

 2 

The inputs to the two accumulators, IA,B(t), reflected the modified sequence values after a selective 3 
integration filter is applied, referred to as “selective gain” and implemented as follows:  4 

 5 

Eq.7b: 6 

I6(𝑡) = θ(S6(𝑡), S8(𝑡)) ∙ S6(𝑡) 7 

I8(𝑡) = θ(S8(𝑡), S6(𝑡)) ∙ S8(𝑡) 8 

 9 

with function θ as follows: 10 

 11 

Eq.7c: 12 

θ(x, 𝑦) =
1

1 + 𝑒LM(NLO)
 13 

This logistic function returns a value of 0.5 when the inputs are equal (𝑥 = 𝑦) and a value larger 14 
than 0.5 when  𝑥 > 𝑦, which gets larger the larger the difference between  𝑥	𝑎𝑛𝑑	𝑦	is. Parameter 𝑤 is 15 
the selective gain parameter that controls the slope of the function. The larger the selective gain is the 16 
stronger the selective modulation will be, while for 𝑤 = 0 the LSAM reduces to the LAM (Glickman, 17 
Tsetsos, & Usher, 2018). 18 

  We fitted the four models above using a maximum likelihood approach together with Bayesian 19 
BIC comparisons (Tsetsos et al., 2016). The actual stochastic sequences that participants encountered in 20 
the experimental trials were fed as input to the models. Predictions from the diffusion, LAM and LSAM 21 
were derived numerically while the LCAM model was simulated (1000 times per trial). Finding the 22 
maximum likelihood parameters for each model was done via a two-stage procedure: (i) by an initial 23 
grid search in the parameter space, and (ii) by feeding the 20 best fitting parameter sets obtained from 24 
the grid search, as starting points in a SIMPLEX optimization routine. For LSAM, which was the best-25 
fitting model according to BIC comparisons, the model was also fitted to data from the pro-variance trials 26 
only and separately for each pupil bin. 27 

 Finally, in addition to quantitative model comparison, we pitted the models against two 28 
characteristic behavioral signatures obtained in the task (Fig. 6). First, the  pro-variance bias (Tsetsos et 29 
al., 2012, 2016), which was defined as the as the fraction of high-variance choices across both trial types 30 
(sequence A when σA > σB; or sequence B when σA < σB. Second, the recency bias which was defined 31 
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by (i) estimating via logistic regression the weight assigned to the evidence at each time-point, and (ii) 1 
fitting these logistic weights using an exponential function with the sign of the exponent determining the 2 
type of the temporal-order bias (primacy/ recency). 3 

 4 

Determining optimal choice bias in the value-based choice task 5 

To understand whether trends in behavior related to pupil improved or degraded overall 6 
performance, we used the LSAM and fitted the data to all trials, regardless of pupil response. For the 7 
per participant best-fitting noise (𝜉) and leak (𝜆) parameters we estimated the selective gain parameter 8 
(w) that achieved maximum accuracy (note that for 𝜉 > 0	the accuracy maximizing w will also be larger 9 
than 0, see (Tsetsos et al., 2016)). Using the optimal w level, we predicted the optimal pro-variance bias 10 
(i.e., the bias maximizing percentage correct) using the optimal selective gain and the best-fitting noise 11 
(𝜉) and leak (𝜆) parameters for each participant (Fig. 6C green line for an average). 12 

 13 

Statistical comparisons 14 

We used a mixed linear modeling approach implemented in the R-package lme4 (Bates, Mächler, 15 
Bolker, & Walker, 2015) to quantify the dependence of several metrics of overt behavior, or of estimated 16 
model parameters (see above), on pupil response. For the go/no-go task, we simultaneously quantified 17 
the dependence on loudness. Our approach was analogous to sequential polynomial regression analysis 18 
(Draper & Smith, 1998), but now performed within a mixed linear modeling framework. In the first step, 19 
we fitted three mixed models to test whether pupil responses predominantly exhibited no effect (zero-20 
order polynomial), a monotonic effect (first-order), or a non-monotonic effect (second-order) on the 21 
behavioral metric of interest (y). The fixed effects were specified as: 22 

 23 

Eq.8: 24 

Model	1:		y	~	𝛽\1 + 𝛽]𝑆 25 

Model	2:		y	~	𝛽\1 + 𝛽]𝑆 + 𝛽_𝑇𝑃𝑅] 26 

Model	3:		y	~	𝛽\1 + 𝛽]𝑆 + 𝛽_𝑇𝑃𝑅] + 𝛽d𝑇𝑃𝑅_ 27 

 28 

with β as regression coefficients, S as the loudness (for go/no-go task), and TPR as the bin-wise 29 
task-evoked pupil response amplitudes. We included the maximal random effects structure justified by 30 
the design (Barr, Levy, Scheepers, & Tily, 2013). For data from the go/no-go task, the random effects 31 
were specified to accommodate loudness coefficient to vary with participant, and the intercept and TPR-32 
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coefficients to vary with loudness and participant. For data from the yes/no and value-based choice tasks, 1 
the random effects were specified to accommodate the intercept and TPR-coefficients to vary with 2 
participant. The mixed models were fitted through maximum likelihood estimation. Each model was 3 
then sequentially tested in a serial hierarchical analysis, based on chi-squared statistics. This analysis was 4 
performed for the complete sample at once, and it tested whether adding the next higher order model 5 
yielded a significantly better description of the response than the respective lower order model. We tested 6 
models from the zero-order (constant, no effect of pupil response) up to the second-order (quadratic, non-7 
monotonic). In the second step, we refitted the winning model through restricted maximum likelihood 8 
estimation, and computed p-values with Satterthwaite’s method implemented in the R-package lmerTest 9 
(Kuznetsova, Brockhoff, & Christensen, 2017). 10 

We used paired-sample t-tests to test for significant differences between the pupil derivative time 11 
course and 0, and between pupil response amplitudes for yes- versus no-choices.  12 

 13 

Data and code sharing 14 

The data are publicly available on [to be filled in upon publication]. Analysis scripts are publicly 15 
available on [to be filled in upon publication].  16 

 17 
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SUPPLEMENTARY FIGURES 1 
 2 

 3 
Figure S1. Quantifying pupil responses and behavior in mice and humans. (A) Probability of target 4 
signal across the sequence of 1–7 sounds. Hazard rate of signal occurrence was kept approximately flat. 5 
(B) The four combinations of stimulus category (signal+noise vs. noise) and behavioral choice (go vs. 6 
no-go) yielded the four standard signal detection theory categories. (C) Schematic of overall perceptual 7 
choice bias measure (Materials and Methods). Per pupil bin we modelled one overall noise distribution 8 
(green; normally distributed with mean=0, sigma=1), and one “composite” signal distribution. This 9 
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composite signal distribution was computed as the average across a number of signal distributions 1 
separately modelled for each loudness (orange; each normally distributed with mean=empirical d’ for 2 
that loudness, sigma=1). We defined the “zero-bias point” (Z) as the value for which the noise and 3 
composite signal distributions cross. The subject’s empirical “choice point” was computed based on the 4 
empirical d’ and criterion for any difficulty level (Materials and Methods). The overall bias measure was 5 
then taken as the distance between the subject’s choice point and the zero-bias point. (D) Results of 6 
simulation study of optimal bias in go/no-go task for mice (Materials and Methods). Optimality was 7 
defined as the level of overall choice bias (computed as in panel A; second from right) or average 8 
criterion (across loudness; right) that maximized reward rate (# rewards / total time). Red lines indicate 9 
range of group-average exhibited biased as a function of pupil response bin; arrows indicate direction 10 
from low to high pupil response bins. (E) RT distribution of example subject. Red line, group average 11 
latency of the first peak in pupil slope timeseries plus a 50 ms buffer, which was used as a cut-off for 12 
excluding decision intervals in order to control for a potential motor confound in our task-evoked pupil 13 
response measures (Materials and Methods). Range of omitted trials across all subjects: 29.9%–45.4% 14 
(mean, 35.3%; median, 33.5%). (F) Task-evoked pupil responses in mice sorted into go- and no-go 15 
choices (pooled across loudness). Stats, paired-samples t-test. (G) Overall pupil response time courses 16 
in mice for three pupil derivative defined bins (pooled across loudness). (G) Relationship between 17 
median RT (left), perceptual sensitivity (right; quantified by signal detection d’) and pupil response in 18 
mice, separately for each loudness. Linear fits are plotted wherever the first-order fit was superior to the 19 
constant fit (Materials and Methods). Quadratic fits were plotted (dashed lines) wherever the second-20 
order fit was superior to first-order fit. Stats, mixed linear modeling. (F) As F, but for average criterion 21 
collapsed across loudness. ‘X’ markers are predictions from best fitting variant of drift diffusion model 22 
(Materials and Methods). (J-O), as D-I, but for humans. Range of omitted trials in panel K: 0%–30.7% 23 
(mean, 7.0%; median, 4.4%). All panels: group average (N = 5; N = 20); error bars or shading, s.e.m. 24 

25 
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 1 

Figure S2. Pupil-dependent changes in computational model parameters during go/no-go task.  2 
(A) Schematic of drift diffusion model accounting for choices, and their associated RTs (for go-trials). 3 
Orange windows, RTs for which biased choices are expected under shifts in either “starting point” (z; 4 
left) or “drift bias” (dc; right). Solid (dashed) lines, (implicit) RT distributions. In the equation, v is the 5 
drift rate (estimated separately for each loudness). (B) Group average RT distributions, separately for 6 
yes- and no-choices. There were no RTs associated with no-choices (no-go); hence, a single bin 7 
containing the number of no-choices contributed to the model fit (Materials and Methods). Black lines, 8 
“vanilla model” fit (parameters boundary separation, drift rate, non-decision time, starting point and 9 
drift bias were fixed across loudness and pupil bins). (C) Starting point estimates of best fitting model 10 
(Materials and Methods) in mice expressed as a fraction of the boundary separation (a). (D) 11 
Relationship between drift rate estimates (left), drift bias estimates (right) of best fitting model 12 
(Materials and Methods) and pupil responses in mice, separately for each loudness. Linear fits are 13 
plotted wherever the first-order fit was superior to the constant fit. Quadratic fits were plotted (dashed 14 
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lines) wherever the second-order fit was superior to first-order fit. Stats, mixed linear modeling. (E-G) 1 
As B-D, but for humans. All panels: group average (N = 5; N = 20); error bars, s.e.m. 2 

3 
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 1 
 2 

Figure S3. Optimality analysis of yes/no task. (A) Simulation study of optimal bias in yes/no (forced-3 
choice) task (Materials and Methods). Optimality was defined as the level of choice bias (signal 4 
detection criterion) that maximized accuracy. Left: simulated internal sensory representations for 5 
signal+noise and noise trials. Signal detection theory assumes that internal sensory representations are 6 
normally distributed across trials (with the same standard deviation) and shifted between signal+noise 7 
and noise trials along the sensory continuum (in our case, loudness of the pure sine-wave). Subject will 8 
base their signal detection judgement according to some criterion along the sensory continuum 9 
(“criterion”). Middle: fraction of yes- and no-choices as a function of criterion (obtained after sliding 10 
the criterion along in the sensory continuum in the left panel). Right: as middle panel but for accuracy 11 
and perceptual sensitivity (d’). When signal+noise and noise trials are equally frequent, the optimal 12 
signal detection criterion is zero, because a neutral bias maximizes accuracy. (B) Task-evoked pupil 13 
response (solid line) and response derivative (dashed line). Grey, interval for task-evoked pupil response 14 
measures (Materials and Methods); black bar, significant pupil derivative. Stats, paired-samples t-test. 15 
(C) Overall pupil response time course for three pupil derivative defined bins. (D) Left: individual task-16 
evoked pupil response amplitude for yes-choices in the go/no-go task, plotted against individual pupil 17 
response amplitude for yes-choices in the yes/no (forced choice) task. Data points, individual subjects. 18 
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Right: as left, but for no-choices. Stats, Pearson’s correlation. A leverage analysis verified that the 1 
reported correlations are not driven by outliers. (E) Relationship between RT (left), perceptual 2 
sensitivity (right) and pupil response. Linear fits are plotted wherever the first-order fit was superior to 3 
the constant fit. Quadratic fits were not superior to first-order fits. Stats, mixed-linear modeling. (F) 4 
Group average RT distributions, separately for yes- and no-choices. Black lines, “vanilla model” fit 5 
(parameters boundary separation, drift rate, non-decision time, starting point and drift bias were fixed 6 
across pupil bins. 7 

 8 
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 1 
Figure S4. (A) Task-evoked pupil response (solid line) and response derivative (dashed line). Grey, 2 
interval for task-evoked pupil response measures (Materials and Methods); black bar, significant pupil 3 
derivative. Stats, paired-samples t-test. (B) Overall pupil response time course for three pupil derivative 4 
defined bins. (C) Relationship between RT, perceptual sensitivity (right) and pupil response in the rare 5 
condition (left) and frequent condition (right). Linear fits are plotted wherever the first-order fit was 6 
superior to the constant fit. Quadratic fits were not superior to first-order fits. Stats, mixed-linear 7 
modeling. (D) Group average RT distributions in the rare condition (left) and frequent condition (right). 8 
Black lines, “vanilla model” fit (parameters boundary separation, drift rate, non-decision time, starting 9 
point and drift bias were fixed across pupil bins). 10 

 11 
12 
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 1 
 2 
Figure S5. (A) Task-evoked pupil response (solid line) and response derivative (dashed line). Grey, 3 
interval for task-evoked pupil response measures (Materials and Methods); black bar, significant pupil 4 
derivative. Stats, paired-samples t-test. (B) Overall pupil response time course for three pupil derivative 5 
defined bins. Stats, paired-samples t-test. (C) RT (left), sensitivity (right), choice bias, (right) for low 6 
and high pupil response bins. (D) Group average RT distributions in the conservative condition, 7 
separately for yes- and no-choices. Black lines, “vanilla model” fit (parameters boundary separation, 8 
drift rate, non-decision time, starting point and drift bias were fixed across pupil bins). (E) As B, but 9 
for drift diffusion model parameters. (F) Individual pupil predicted shift in starting, plotted against 10 
individual’s overall choice bias. Data points, individual subjects. Stats, Pearson’s correlation. Error 11 
bars, 60% confidence intervals (bootstrap). 12 
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Figure S6. Pupil responses and pupil-dependent changes in behavior during value-based choice 4 
task. (A) Task-evoked pupil response time courses locked to the onset of the first pair of samples. Left: 5 
for the shortest trials (5 pairs of samples). Dashed vertical lines, onset of sample pairs 2-5. Right: for 6 
all trials (5–8 pairs of samples). Grey box, interval for computing single trial task-evoked pupil response 7 
measures (Materials and Methods). (B) Overall pupil response time course for three overall pupil 8 
defined bins. (C) Left: relationship between RT and task-evoked pupil responses (3 bins). Right: as left, 9 
but for accuracy. Linear fits are plotted wherever the first-order fit was superior to the constant fit 10 
(Materials and Methods). Quadratic fits were not superior to first-order fits. Stats, mixed linear 11 
modelling. (D) Psychophysical kernels, indicating the effect of each pair of numbers on observers’ 12 
choice, separately for each trial duration (5-8 samples). Lines, exponential fits to data. (E) Simulated 13 
pro-variance bias by the leaky competing accumulator model, for various levels of leak and mutual 14 
inhibition. The LCA can only produce pro-variance in an inhibition-dominant regime (mutual inhibition 15 
> leak). However, this produces a primacy bias (overweighing of early samples of evidence), which is 16 
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the opposite of what we found in the empirical data (see panel E). Therefore, the LCA does not provide 1 
a good fit to our behavioral data, while the selective integration model does (see main text). All panels: 2 
group average (N = 32); error bars or shading, s.e.m. 3 
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