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Abstract 

Motivation: In the past few years many novel prediction approaches have been 

proposed and widely employed in high dimensional genetic data for disease risk 

evaluation. However, those approaches typically ignore in model fitting the important 

group structures or functional classifications that naturally exists in genetic data. 

Methods: In the present study, we applied a novel model averaging approach, called 

Jackknife Model Averaging Prediction (JMAP), for high dimensional genetic risk 

prediction while incorporating KEGG pathway information into the model 

specification. JMAP selects the optimal weights across candidate models by 

minimizing a cross-validation criterion in a jackknife way. Compared with previous 

approaches, one of the primary features of JMAP is to allow model weights to vary 

from 0 to 1 but without the limitation that the summation of weights is equal to one. 

We evaluated the performance of JMAP using extensive simulation studies and 

compared it with existing methods. We finally applied JMAP to five real cancer 

datasets that are publicly available from TCGA. 

Results: The simulations showed that, compared with other existing approaches, 

JMAP performed best or are among the best methods across a range of scenarios. For 

example, among 14 out of 16 simulation settings with PVE=0.3, JMAP has an 

average of 0.075 higher prediction accuracy compared with gsslasso. We further 

found that in the simulation the model weights for the true candidate models have 

much smaller chances to be zero compared with those for the null candidate models 

and are substantially greater in magnitude. In the real data application, JMAP also 

behaves comparably or better compared with the other methods for both continuous 

and binary phenotypes. For example, for the COAD, CRC and PAAD data sets, the 

average gains of predictive accuracy of JMAP are 0.019, 0.064 and 0.052 compared 

with gsslasso. 

Conclusion: The proposed method JMAP is a novel method that can provide more 

accurate phenotypic prediction while incorporating external useful group information. 

Keywords: Genetic prediction, Model averaging methods, Jackknife, Pathway 

information, Group structure 
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Introduction 

Due to the rapid development of biotechnology [1-4], a large number of 

high-throughput and low-cost gene sequencing data have been generated and provide 

a broad space to investigate the association between genetic factors and complex 

diseases/disorders[5-14]. The great succeed of association studies further promotes 

the genetic risk prediction and evaluation for complex phenotypes by incorporating 

into omics information [15-18]. Due to the high dimensional problem that the number 

of genetic markers is much larger than the sample size, one of the greatest challenges 

for genetic risk prediction is that it is difficult to apply traditional statistical methods 

for classification and prediction in large scale molecular omics data. In the past few 

years, developing prediction methods that can efficiently model high dimensional 

genetic data has been an active area and attached much research attention; and a series 

of novel prediction approaches have been proposed and widely employed for disease 

risk evaluation or gene expression imputation [19-25]. However, those approaches 

typically ignore in model fitting the important group structures or functional 

classifications that naturally exist in genetic data. For example, it is well known that 

single nucleotide polymorphisms (SNPs) can be divided into groups in terms of 

functional annotations or genes, and genes in turn can be grouped into pathways due 

to the shared biological function. It has been shown that incorporating such useful 

group/functional information into model fitting can substantially boost statistical 

power in genetic association studies and can facilitate our understanding of the 

genetic architecture of disease variation by heritability partition [25-33]. One 

widely-used group source is the pathway information in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [34, 35], which integrates information on genomic, 

chemical and system functions and groups genes with highly related sequences by 

analyzing the sequence similarity of genes. 

Besides in genetic association studies and heritability estimation, it has been also 

shown that the prediction accuracy can be improved by leveraging grouped functional 

information in genetic risk evaluation with large scale omics data [36-38]. For 

example, Tang et al [38] recently designed a group spike-and-slab Lasso generalized 

linear model (gsslasso) that combined KEGG pathway information into model fitting 

and demonstrated that, compared with Lasso [39], the average gains of prediction 

accuracy [measured by area under the curve (AUC)] of gsslasso were about 4.5% for 
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sarcoma, 4.6% for ovarian cancer and about 1.6% for breast cancer by leveraging 

gene expression data available from The Cancer Genome Atlas (TCGA) [40]. 

Motivated by those results, in this study we employ a novel model averaging 

approach [41, 42] for genetic risk prediction while incorporating KEGG pathway 

information into the model specification. The proposed model averaging approach 

selects the optimal weights across candidate models by minimizing a cross-validation 

criterion in a jackknife way. We thus refer to the present method as Jackknife Model 

Averaging Prediction (JMAP). We use extensive simulation studies to evaluate the 

performance of JMAP and compare it with existing methods. Finally, we apply JMAP 

to five real cancer datasets that are publicly available from TCGA. To construct 

candidate prediction models, we divide genes in terms of the KEGG pathway 

information [34, 35]. 
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Methods and Materials 

Overview of the JMAP Method 

We first present an overview of JMAP here; the detailed description of JMAP is 

shown in the Supplementary Text. Briefly, JMAP consists of two-step model fitting 

procedures: (i) in the first step, we group the predictors (e.g. genome-wide gene 

expression levels) and build a series of candidate linear prediction models with the 

gene expression measurements available for various groups; (ii) in the second step, 

we look for a suitable model weight vector for averaging across the candidate models 

to perform a pooled model prediction. One of the primary features of JMAP is to 

allow model weights to vary from 0 to 1 but without the limitation that the summation 

of weights is necessarily equal to one [41, 42]. As we will see, this weight relaxation 

is important and critical, resulting in an effective improvement of the prediction 

accuracy. JMAP has been implemented within an R function freely available at 

https://github.com/biostatpzeng. 

Simulations and real data applications 

Simulation settings 

We next carried out extensive simulations to evaluate the prediction performance of 

JMAP. To make the simulation settings as real as possible, we used gene expression 

levels obtained from an existing TCGA data set of breast cancer (see below for further 

information about this data). For simplicity, we extracted the expression levels for 

6,000 randomly selected genes and 500 breast cancer patients and simulated 

phenotypes using the following model 
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where K is the total number of groups (or pathways); Gj is an nmj genetic matrix for 

mj genes in group j with n the sample size, βj is an mj-dimensional vector of effects 

sizes (here n=500); In is an nn identity matrix; and e is an n-dimensional vector of 

independently and normally distributed residuals with variance 2
e . We considered 

four scenarios with different group partitions. In scenarios 1-3, genes were 

sequentially divided into 50, 200 or 300 groups with approximately equal genes per 

each group; no overlapping of genes existed among groups. In scenario 4, we 
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classified genes into 328 groups in terms of the KEGG pathway information (see 

below for details); note that, under this case the number of genes included in each 

group was not equal and ~21% genes belonged to multiple pathways. Then, following 

[38], in each scenario we randomly selected five out of all K groups (K=50, 200, 300 

or 328 as defined above) and generated: (I) the effect sizes βl (l=1, 2, 3, 4 and 5) in 

each of the selected groups followed a normal distribution with mean zero and the 

same variance (say 2
l ). Under this case, all the genes in the five groups had 

non-zero effect sizes; (II) unlike the case I, here we assumed that only the genes in 

the first two groups had non-zero effect sizes and half of the genes in the last three 

group had non-zero effect sizes; (III) instead of assuming equal proportion of 

non-zero effect sizes in the last three groups, we set the proportion of non-zero effect 

sizes to be 80%, 50% and 20%, respectively; (IV) in this case, we set the proportion 

of non-zero effect sizes to be 90%, 70%, 50%, 30% and 10% for the five groups, 

respectively. The variance parameters 2
l  and 2

e  were carefully chosen to ensure 

that y had unit variance asymptotically and the phenotypic variance explained (PVE) 

by genetic component was 0.3, 0.5 or 0.8 in each case, respectively. The effect sizes 

for the unselected gene groups were set to zero. 

Real data applications 

We now applied JMAP to five cancer data sets publicly available from TCGA [40], 

including the breast cancer (BRCA), the colon and rectal cancer (CRC), the colon 

cancer (COAD), the lower grade glioma (LGG) and the pancreatic cancer (PAAD). 

We downloaded both the clinical data and RNAseq gene expression levels for those 

cancers from UCSC Xena (https://xenabrowser.net/). For each cancer, we first merged 

the clinical data and gene expression levels measured from primary cancer tissue; then 

we removed genes with more than 50% zero expressions and standardized the 

remaining gene expression levels. The used data sets in this study were summarized in 

Table 1. Following previous studies [12, 43, 44], for the five cancers we first used the 

age at initial pathologic diagnosis (i.e. onset age) as phenotypes because the age of 

onset is an important indicator that the cancer is likely more commonly genetic in 

origin. Besides the age of onset, we also applied our method to the count of positive 

lymph nodes identified through hematoxylin and eosin staining light microscopy for 

BRCA (LYM of BRCA). The number of lymph node metastases and whether there is 
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lymphatic metastasis have a strong adverse effect on the prognosis of tumor patients 

[45]. For this variable, we first regressed out the influence of pathologic stage and 

radiation therapy using a Poisson model, and kept the resulting residual as the 

phenotype. Both the age of onset and the residual of LYM were continuous and were 

quantile-normalized to a standard normal distribution before prediction analysis. 

Additionally, we also considered two binary phenotypes (assumed to be labeled as 0 

and 1): the occurrence of new tumor event after initial treatment for LGG (Recurrence 

of LGG) and the lymphatic metastasis for BRCA (Metastasis of BRCA). Rather than 

fitting logistic candidate regressions for the binary phenotypes [46], we instead treated 

them as continuous outcomes and directly fitted linear candidate models. We will 

further discuss this issue later. 

Model comparison and implementation 

For the simulated data the genes were divided into 50, 200, 300 or 328 groups under 

various scenarios as mentioned before. For the real data sets, we mapped the genes to 

KEGG pathways by R package clusterProfiler (version 3.8.1) after matching gene 

symbols to Entriz ids [47], and divided the genes into 328 pathway groups. For both 

simulated and real data sets, following [22] we performed 100 Monte Carlo cross 

validation (MCCV) data splits by randomly selecting 80% samples as training data 

and the remaining 20% as test data. We fitted the prediction models in the training 

data and evaluated the performance in the test data with correlation coefficient (R) for 

the continuous phenotypes (i.e. onset age of BRCA, COAD, CRC, LGG and PAAD, 

and LYM of BRCA) or AUC for the binary phenotypes (i.e. Tumor of LGG and 

Metastasis of BRCA). 

The competing methods included Lasso [39], Elastic Net (ENET) [48] and gsslasso 

[38]. For both Lasso and ENET, we implemented them via the R package glmnet 

(version 2.0-16), selected the optimal penalty parameters in Lasso and ENET using 

100-fold cross validation, and set α=0.50 in ENET as done in [49]. For gsslasso, we 

implemented it via the R package BhGLM (version 1.1.0). Following [38] we selected 

the optimal penalty parameter of gsslasso by setting the slab scale (denoted by s1) to 1, 

calculated the accuracy of prediction for a series values for the spike scale (denoted 

by s0) (i.e. s0=0.01×m, m=0.1, 1, 2, …, 9) and chose the optimal value for s0 that 
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resulted in a highest prediction. We solved the quadratic problem in JMAP as shown 

in Equations (7)-(8) (see Supplementary Text) by using the optim function in R 

software. We further contrasted the prediction performance of all other methods with 

that of JMAP by taking the difference of R or AUC between the other methods and 

JMAP. Therefore, an R or AUC difference below zero suggests worse performance 

than JMAP.
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Results 

Results of the simulation studies 

The simulation results for the difference of R with PVE=0.3 are shown in Figure 1 

with the original R values shown in Figure S1. There are 16 combinations presented 

in Figure 1. Compared with other existing approaches (i.e. Lasso, ENET and gsslasso), 

we find that, except two situations, JMAP performed best or are among the best 

methods in most of the combinations (14 out of 16). For example, among those 14 

settings, JMAP has an average of 0.075 higher prediction accuracy compared with 

gsslasso, with the difference of R ranging from 0.023 to 0.116. In the setting with 200 

groups in scenario I (where all the genes in the five groups had non-zero effect sizes), 

JMAP behaves slightly worse than Lasso (0.012 lower) and ENET (0.013 lower), but 

is better than gsslasso (0.056 higher). In the setting with 300 group in scenario III 

(where the genes among the first two groups had non-zero effect sizes, but some of 

the genes in the rest three groups are null with various null proportions), all the three 

competitive methods (i.e. Lasso, ENET and gsslasso) have a higher prediction 

accuracy relative to JMAP. The simulation results for PVE=0.5 and 0.8 are displayed 

in Figure S2-S5 in the Supplementary Text; we observe the similar pattern that JMAP 

performs better or is as good as other competing methods in most of the simulated 

settings. We further check the estimated weights for the candidate models in all the 

scenarios and find that the weights for the true candidate models (i.e. those with 

non-zero effect sizes) have much smaller chances to be zero compared with those for 

the null candidate models and are substantially greater in magnitude (Table S1). 

Results of the real data applications 

Now, we turn to the real application of the TCGA data (Table 1). The results of R 

difference for continuous phenotypes and AUC difference for binary phenotypes are 

presented in Figure 2. Figure 2A shows the predictive performance of other three 

methods compared with JMAP for five continuous phenotypes. It can be seen that 

totally JMAP performs comparably or better compared with the other methods. For 

example, for the age onset in the COAD, CRC and PAAD data sets, JMAP has the 

highest predictive power, followed by gsslasso. Compared with gsslasso, in these 

three data sets the gains of predictive accuracy of JMAP are 0.019, 0.064 and 0.052, 
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respectively. However, Lasso, gsslasso and ENET have higher prediction accuracy for 

the initial age of onset of breast cancer patients. For LYM of BRCA, the four methods 

behave very consistently, while JMAP has a slightly small advantage over the rest 

ones. With regard to the two binary phenotypes (Figure 2B), JMAP still maintains 

stable and robust predictive performance. For metastasis of BRCA, gsslasso performs 

the best, following by Lasso and ENET. For recurrence of LGG, JMAP performs best 

and has a 0.087 higher predictive accuracy compared with gsslasso.
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Discussion 

In the present study we have employed a novel statistical method, JMAP, for genetic 

prediction and evaluation of complex phenotypes from the publicly available TCGA 

data sets. Traditionally, the classical model averaging methods first build a series of 

candidate models with various degrees of model complexity; then combine all the 

candidate models together to boost the prediction performance by specifying greater 

weights onto better models; and require the summation of the model weights is equal 

to one [41, 50, 51]. However, unlike those previous methods, MAP relaxes the 

constraint of summing the weights of candidate models up to one. By removing this 

restriction and including genetic pathway information, as we have demonstrated in the 

simulations and real data applications, JMAP has shown higher prediction accuracy 

compared existing approaches. Furthermore, it is natural to examine whether the 

weight restriction can be further relaxed to allow them to vary between -1 and 1 [46]. 

However, we found that this further relaxing may be not beneficial for improving the 

prediction performance, leading to low accuracy of genetic prediction (Figure S7). 

Additionally, because each candidate model is fitted with ordinary lease squares 

method which leads to an analytical solution for the effect sizes, and because the 

weight estimation is optimized through a constrained quadratic manner, JMAP is thus 

computationally efficient and can be easily scalable to the high dimensional genetic 

risk prediction problem. For example, in our real data applications, it takes only about 

18, 21 and 200 seconds on average for the COAD, PAAD and BRCA data sets, 

respectively. 

In practice, the candidate models for model averaging are typically established in 

terms of prior knowledge or expert viewpoints and the number of the candidate 

models (i.e. K in our study) is assumed to be uncertain. To address this problem, Ando 

and Li [42] recently proposed first to partition predictors (equivalent to genes in our 

study) based on the marginal correlation magnitude between each predictor and the 

response; and then adaptively prepared for candidate model for each partition. This 

strategy is a flexible way and avoids the requirement of external information; while it 

may be suboptimal if there is informative prior information that can be utilized. In 

contrast, in our study we explicitly preassigned the number of candidate models for 

JMAP. Indeed, using simulations we have discovered that JMAP possessed 

consistently good prediction performance across various candidate model partitions 
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(Figure S8). In our real data applications, we also directly built the candidate models 

for JMAP based on useful KEGG pathway information which characterizes the 

biological functions for various sets of genes [34, 35] and can result in each candidate 

model having unique strength in capturing certain aspects of prediction ability. 

Applying external informative pathways to establish candidate models in JAMP can 

lead to at least three benefits: (i) it does not need to search for the appropriate number 

of candidate models by partitioning all the genes; thus, it is computationally faster; (ii) 

because relying on previously well-validated pathway information, the established 

candidate models is more biologically meaningful; (iii) finally, the marginal 

correlation way typically groups a given gene into only one candidate model [42]; 

while in practice a gene often can be involved in multiple pathways and will be thus 

included into several candidate models; e.g. in our analysis about 21% genes can be 

grouped into at least two pathways. More generally, under the context of model 

averaging JAMP can naturally handle the overlapping group structures — a 

phenomenon that is frequently encountered in pathway-based data analyses [52]. It 

has been shown that efficiently incorporating the overlapping group structures into 

model fitting can raise the prediction performance [38]. Hence, JAMP has the 

potential for further enhancing prediction accuracy. 

It is worth noting that in the candidate model of JMAP the least squares estimate in 

Equation (2) (Supplementary Text) is ill-conditional when the number of genetic 

markers is larger than the sample size for some genes. For example, in our analysis 

there are 5.5% and 5.2% pathways with the number of genes greater than the sample 

sizes for the PAAD and COAD data sets, respectively. Under this situation, by 

borrowing the idea of ridge regression [53, 54], we have attempted to add a 

non-negative constant δ into the estimates; i.e. replacing T
j jG G  with δ

j

T
j j mG G + I  

(see Equation 2 in the Supplementary Text). In the present study we primarily set δ to 

be one and found that JMAP is robust against with regard to various values of δ with 

simulations (Figure S9). We emphasize that this is an ad hoc modification which has 

no clear theoretical foundation. Further investigation of JMAP under the context that 

the dimension of candidate model is larger than the sample size is an important and 

interesting topic and is our next research direction. 

Finally, the current version of JMAP described in our study is constructed only for 
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continuous phenotypes. Extending model averaging from linear to nonlinear 

regression under the high dimensional situations was recently investigated [46]. 

However, although not mentioned, an explicit model assumption in their study is that 

the number of the predictors in each candidate generalized linear model should be 

much less than the sample size to ensure the estimates can be identifiable. Therefore, 

their methods cannot be applied to our case where the number of the genes for some 

candidate models is easy to be greater than the sample size as mentioned before. Thus, 

in our real data application we had to directly fit linear candidate models for binary 

phenotypes by treating them as continuous values following previous studies [19-21, 

23]. Theoretically, modeling binary data with linear models can be justified by the fact 

that the linear model can be viewed as a first order Taylor approximation to the 

generalized linear model; and this approximation is accurate when the effect size is 

weak and small [19] — a condition which generally satisfies because it has been 

shown that most complex phenotypes are polygenic and are influenced by many 

genetic variants with small effect sizes [55]. Nevertheless, extending the JMAP model 

for application to non-continuous phenotypes in high dimensional prediction 

problems warrants more explorations. 
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Abbreviations 

JMAP: Jackknife model averaging prediction; ENET: Elastic net; gsslasso: Group 

spike-and-slab lasso; AUC: Area under the curve; KEGG: Kyoto Encyclopedia of 

Genes and Genomes.  
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Figure 1. Comparison of predictive performance of three models with JMAP 

with PVE=0.3. Performance is measured by R difference with respect to JMAP; 

therefore, a negative value (i.e. values below the horizontal line) indicates worse 

performance than JMAP. In each setting, five groups with non-zero effect sizes were 

selected; I represents the settings where all the genes in the five groups had non-zero 

effect sizes; II represents the settings where only the genes in the first two groups had 

non-zero effect sizes and half of the genes in the last three group had non-zero effect 

sizes; III represents the settings where the effect sizes of the first two groups were 

non-zero and the proportion of non-zero effect sizes in the last three groups was 80%, 

50% or 20%; IV represents the settings where the proportion of non-zero effect sizes 

in the five groups was 90%, 70%, 50%, 30% or 10%. The predictive performance was 

assessed across 100 replicates in each scenario. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 19, 2018. ; https://doi.org/10.1101/447706doi: bioRxiv preprint 

https://doi.org/10.1101/447706


 21/22 

 

Figure 2. Comparison of predictive performance of three models with JMAP for 

seven phenotypes from the TCGA data sets. Performance is measured by R (or 

AUC) difference with respect to JMAP; therefore, a negative value (i.e. values below 

the horizontal line) indicates worse performance than JMAP. The predictive 

performance was assessed across 100 MCCV replicates. BRCA: the breast cancer; 

CRC: the colon and rectal cancer; COAD: the colon cancer; LGG: the lower grade 

glioma; PAAD: the pancreatic cancer.
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Table 1. Sample sizes and the number of genes for each cancer in the TCGA data 

set used in our analysis 

Phenotypes 

Initial gene 
expression data 

 Initial 
clinical data 

 Final data after  
quality control 

Sample 
sizes 

Number 
of genes 

Sample 
sizes 

 Sample 
sizes 

Number  
of genes 

Onset age       1,083 17,675 

 BRCA 1,218 20,531  1,247  275 17,493 

 COAD 329 20,531  551  367 17,510 

 CRC 434 20,531  736  178 18,009 

 PAAD 183 20,531  196  9,17 17,675 

LYM of BRCA 1,218 20,531  1,247  9,17 17,675 

Metastasis of BRCA 1,218 20,531  1,247  443 17,800 

Recurrence of LGG 530 20,531  530  1,083 17,675 

Note: The average number of genes incorporated in each pathway for the seven 

phenotypes was 65 (ranging from 1 to 1,139), and about 21% genes belonged to 

multiple pathways. BRCA: the breast cancer; CRC: the colon and rectal cancer; 

COAD: the colon cancer; LGG: the lower grade glioma; PAAD: the pancreatic cancer. 
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