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Abstract

Polygenic risk scores (PRS) is one of the most popular prediction methods for

complex traits and diseases with high-dimensional genome-wide association (GWAS)

data where sample size n is typically much smaller than the number of SNPs p. PRS

is a weighted sum of candidate SNPs in a testing data where each SNP is weighted by

its estimated marginal effect from a training data. The motivations behind PRS are

that 1) only summary statistics are needed for constructing PRS rather than raw data

which may not be readily available due to privacy concerns; 2) most complex traits are

affected by many genes with small effects, or follow a polygenic (or newly emerging

omnigenic) model. PRS aggregates information from all potential causal SNPs and

thus as its name suggested, is expected to be powerful for ploygenic and omnigenic

traits. However, disappointing to many researchers, the prediction accuracy of PRS in

practice is low, even for traits with known high heritability. To solve this perplex, in

this paper we investigate PRS both empirically and theoretically. We show in addition

to heritability, how the performance of PRS is influenced by the triplet (n, p, m), where

m is the number of true causal SNPs. Our major findings are that 1) when PRS is

constructed with all p SNPs (referred as GWAS-PRS), its prediction accuracy is solely

determined by the p/n ratio; 2) when PRS is built with a list of top-ranked SNPs that

pass a pre-specified P -value threshold (referred as threshold-PRS), its accuracy can

vary dramatically depending on how sparse true genetic signals are. Only when m is

magnitude smaller than n, or genetic signals are sparse, can threshold-PRS perform

well. In contrast, if m is much larger than n, or genetic signals are not sparse, which

is often the case for complex polygenic traits, threshold-PRS is expected to fail. Our

results demystify the poor performance of PRS and demonstrate that the original

purpose of PRS to aggregate effects from a large number of causal SNPs for polygenic

traits is wishful and can lead us to a practical paradox for polygenic/omnigenic traits.

Our results, as turned out, are closely related to the “spurious correlation” problem

of Fan et al. [2012], which has been gaining more and more attention in the statistics

community.
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1 Introduction

With the rapid development in biomedical technologies, various types of large-scale ge-

netics and genomics data, including genome-wide association studies (GWAS) data

have been collected for better understanding of genetic etiologies underlying com-

plex human diseases and traits. GWAS study association between complex traits and

genome-wide single-nucleotide polymorphisms (SNPs), one of the most common types

of genetic variants. To detect SNPs that are associated with a given phenotype, single

SNP analysis is commonly performed to estimate and test an association between the

phenotype and each candidate SNP one at a time, while effects of non-genetic factors

and population substructures are adjusted for [Price et al., 2006]. Tens of thousands of

statistically significant SNPs have been detected for hundreds of human diseases/traits

through GWAS [MacArthur et al., 2016, Visscher et al., 2017]. However, most of the

identified SNPs have very low marginal genetic effects, explaining only a very small

portion of the phenotypic variation even for traits with known high heritability [Viss-

cher et al., 2012], resulting in a so called “missing heritability” phenomenon [Manolio

et al., 2009, Zuk et al., 2012]. One explanation for the missing heritability is that most

complex traits are polygenic, affecting by many genes whose individual effect is small

[Timpson et al., 2018]. The polygenicity has long been hypothesized [Fisher, 1919,

Gottesman and Shields, 1967, Penrose, 1953] and supported by increasing empirical

evidence [Dudbridge, 2016, Ge et al., 2017, Kemp et al., 2017, Lee et al., 2012, Shi

et al., 2016, Wray et al., 2018, Yang et al., 2015, 2010].

One of the ultimate goals of GWAS is to build a genetic risk model for accurate

phenotype prediction. For polygenic traits, Purcell et al. [2009] propose a polygenic

risk score (PRS), which is a weighted sum of top ranked candidate SNPs in a testing

data where each SNP is weighted by its estimated marginal effect from a training data.

As its name suggested, PRS aims to aggregate genetic effects of polygenes, and is thus

expected to be powerful for polygenic traits, and more true for omnigenic traits. The

omnigenic model is a newly emerging model Boyle et al. [2017] assuming that a trait

is affected by majority (if not all) of candidate SNPs.

Though PRS has been widely used in neuropsychiatric diseases/disorders, such

as bipolar and schizophrenia [Bogdan et al., 2018, Ripke et al., 2014], the prediction

power of PRS remains disappointedly low with little clinical utility, even for traits with

known high heritability [Márquez-Luna et al., 2017, Torkamani et al., 2018, Zheutlin

and Ross, 2018]. Two legitimate reasons for the poor performance of PRS include 1)

poor SNP arrays with low coverage of causal SNPs; and 2) low quality top-ranked

SNPs in tagging causal SNPs [Chatterjee et al., 2016, Wray et al., 2013]. However, as

will be shown by the paper, even in the absence of the above two reasons, PRS can still

perform poorly. Thus far, except some experimental studies [Chatterjee et al., 2013,

Daetwyler et al., 2008, Dudbridge, 2013, Pasaniuc and Price, 2017, Vilhjálmsson et al.,
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a) Causal SNP i

Phenotype Y Null SNP i

(m) Causal SNPs

aggregated artificial correlationsaggregated artificial correlations

non-zero effectsnon-zero effects

b) Null SNP i

Fig. 1: Impact of artificial correlation on the marginal SNP effect estimate
of SNP i (i = 1, · · · , p).

2015], few research has been seriously done to study the asymptotic properties of PRS

for polygenic and omnigenic traits.

We aim to fill the gap by empirically and theoretically studying PRS in hoping to

clear some misperceptions on PRS and to provide some practical guidelines on PRS.

Since PRS is built upon marginal SNP effects, we start our investigation on the statis-

tical properties of marginal SNP effect estimates. Note for polygenic traits, the single

SNP analysis is always misspecified since the effects of many other SNPs are ignored.

When all causal SNPs are independent of each other, such model misspecification is

in general fine for traits with sparse genetic signals, but can fail badly for traits with

dense genetic signals. For a given SNP, the omitted SNPs can greatly influence the

uncertainty in its marginal effect estimate, and make the estimate unreliable. As will

be illustrated later, even for a fully heritable phenotype with genetic heritability of

one, the estimated genetic effects of causal and non causal SNPs can be totally mixed

and nonseparable from each other, and the prediction power of PRS can go as low as

zero.

It turns out, our theoretical investigation on the marginal genetic effect estimates is

highly relevant to the spurious correlation problem of Fan et al. [2012], which provides

another perspective on PRS. Under high-dimensional settings, the negative influences

of (maximum) artificial/spurious correlation have been characterized in the context

of variable selection, covariance structure testing, and variance estimation [Cai et al.,

2013, 2011, Chen et al., 2018, Fan et al., 2012, 2018, Fan and Zhou, 2016, Su, 2018], but

is mainly out of the genetics field. For complex polygenic traits, spurious correlation

makes the estimation of marginal effects unreliable and the separation of causal and

null SNPs difficult, leading to a doomed failure of PRS which contradicts the original

motive of PRS (Figure 1) completely.

In recognition of the relationship between the GWAS marginal screening and PRS,

we prove that the asymptotic prediction accuracy of PRS is largely affected by the

triplet of (n, p,m). Our investigation on PRS starts with GWAS-PRS, and ends with
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the threshold-PRS. Extensive simulation will be performed to evaluate PRS empirically

and to evaluate our theoretic results under finite sample settings.

Single SNP Analysis

For a training data, let y be an n × 1 phenotypic vector. Let X(1) denote an n ×m
matrix of the causal SNPs, X(2) donate an n× (p−m) matrix of the null SNPs which

results in the n× p matrix of all SNPs, X = [X(1), X(2)] = [x1, · · · , xm, xm+1, · · · , xp].
Columns of X are assumed to be independent for simplification. Further, column-wise

normalization on X is often performed such that each SNP has sample mean zero and

sample variance one. Define the following condition:

Condition 1. Entries of X = [X(1), X(2)] are real-value independent random variables

with mean zero, variance one and a finite eighth order moment.

The polygenic model assumes the following relationship between y and X:

y =

p∑
i=1

xiβi + ε = Xβ + ε (1)

where β = (β1, · · · , βm, βm+1, · · · , βp) is the vector of SNP effects such that the βis are

i.i.d and follow N(0, σ2β) for i = 1, · · · ,m and βi = 0 for i > m. Let β(1) = (β1, · · · , βm)

and β(2) be an (p −m) × 1 vector with all elements being zero, and ε represents the

random error vector. For simplicity and without loss of generality, we assume that

there exists no other fixed covariate effects. According to the above model, the overall

genetic heritability h2 of y is therefore

h2 =
V ar[X(1)β(1)]

V ar(y)
=

V ar[X(1)β(1)]

V ar[X(1)β(1)] + V ar(ε)
. (2)

For the rest of the paper, we set h2 = 1, reducing the above model to the following

deterministic model

y =

p∑
i=1

xiβi =
m∑
i=1

xiβi = X(1)β(1), (3)

the most optimistic situation in predicting phenotypes.

Note for a typical large-scale GWAS, the sample size n is often not small (e.g.,

n ∼ 1000 or 10000), but the number of candidate SNPs p is usually even larger (e.g.,

p ∼ 500000). On the other hand, depending on their underlying genetic architectures,

the number of causal SNPs, m can vary dramatically from one trait to another. We

therefore assume n, p→∞ and that

p

n
= γ → γ0,

m

p
= ω → ω0, where 0 < γ0 ≤ ∞, 0 ≤ ω0 ≤ 1 (4)

to cover the most of modern GWAS data.
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For continuous traits, a typical single SNP analysis employs the following linear

regression model

y = 1nµ+ xiβi + ε∗ (5)

for a given SNP i, where βi is its effect (i = 1, · · · , p). When both y and xi are

normalized and n → ∞, under Condition (1) and polygenic model (3), the maximum

likelihood estimate (MLE) of µ, µ̂ ≡ 0, and the MLE of the genetic effect βi equals

β̂i = (xTi xi)
−1xTi y =

1

n
xTi y =

m∑
j=1

rijβj (6)

where rij = 1
nx

T
i xj = 1

n

∑n
k=1 xikxjk is the sample correlation between xi and xj ,

j = 1, · · · , p. Specifically, for SNP i, i = 1, · · · , p, we have

β̂i =

{
βi +

∑m
j 6=i rijβj , if i ∈ [1,m]∑m

j=1 rijβj , if i ∈ [m+ 1, p].
(7)

Given that SNPs in X are independent of each other, or correlation ρij=0 for all SNP

pairs (i & j)(i 6= j), it is easy to show that asymptotically, β̂i is an unbiased estimator

of βi

E(β̂i) =

{
βi, if i ∈ [1,m]

0, if i ∈ [m+ 1, p]
(8)

given n→∞. The associated variance of β̂i grows linearly with m since for any causal

SNP i (1 ≤ i ≤ m)

V ar(
m∑
j 6=i

rijβj) =
m∑
j 6=i

β2j · V ar(rij) =
1

n2

m∑
j 6=i

β2j · E(
n∑

k1=1

n∑
k2=1

xik1xjk1xik2xjk2) (9)

=
1

n2

m∑
j 6=i

β2j · E(

n∑
k1=k2=1

x2ik1x
2
jk1) =

∑m
j 6=i β

2
j

n
= O(

m

n
) = O(γ · ω).

(10)

Similarly, for any null SNP i (m < i ≤ p)

V ar(
m∑
j 6=i

rijβj) =

∑m
j=1 β

2
j

n
= O(

m

n
) = O(γ · ω). (11)

It follows that

V ar(β̂i) =


∑m
j 6=i β

2
j

n = O(mn ) = O(γ · ω), if i ∈ [1,m]∑m
j=1 β

2
j

n = O(mn ) = O(γ · ω), if i ∈ [m+ 1, p].
(12)
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Therefore, the (other) causal SNPs can significantly impact the effect estimate of SNP

i by inflating its variance. That is, when m/n = γ ·ω → γ0 ·ω0 is large, β̂i is no longer

a reliable estimate of βi. Also the associated variances of the β̂is (i = 1, · · · , p) are all

in the same scale regardless whether their corresponding SNPs are causal or not. Thus

the β̂is corresponding to the causal SNP set and the null set become well mixed and

cannot be separated easily when m/n is large, raising two important concerns that we

address in Section 2: 1) how will this affect the SNP selection; and 2) how will this

affect the weights in PRS which ultimately affect the performance of PRS?

2 PRS

For a testing data with nz samples, define its nz × p SNP matrix as Z = [Z(1), Z(2)]

with Z(1) = [z1, · · · , zm] and Z(2) = [zm+1, · · · , zp]. The polygenic model assumes the

following relationship between yz and Z

yz =

p∑
i=1

ziβi = Z(1)β(1). (13)

Then PRS is defined as

ŷP =

p∑
i=1

zid̂i = Zd̂ = Z(1)d̂(1) + Z(2)d̂(2) (14)

where d̂ = (d̂1, · · · , d̂m, d̂m+1, · · · , d̂p) = [d̂(1), d̂(2)], d̂i = β̂i · I(|β̂i| > c), I(·) is the

indicator function and c is a given threshold for screening SNPs. When c = 0, all

candidate SNPs are used, leading to GWAS-PRS. The prediction accuracy of PRS is

measured by

AP =
yTz ŷP

||yz||||ŷP ||
(15)

=
(Z(1)β(1))

T (Z(1)d̂(1) + Z(2)d̂(2))

||Z(1)β(1)||||Z(1)d̂(1) + Z(2)d̂(2)||
=
βT(1)Z

T
(1)Z(1)d̂(1) + βT(1)Z

T
(1)Z(2)d̂(2)

||Z(1)β(1)||||Z(1)d̂(1) + Z(2)d̂(2)||
. (16)

2.1 GWAS-PRS

For GWAS-PRS, d̂(1) = β̂(1), and d̂(2) = β̂(2). For simplification, for rest of the paper,

we set nz = n and our general conclusions remain the same when the two are different.

Let β̂ = (β̂1, · · · , β̂m, β̂m+1, · · · , β̂p) = [β̂(1), β̂(2)], then

β̂(1) =
1

n
XT

(1)X(1)β(1), β̂(2) =
1

n
XT

(2)X(1)β(1), and (17)
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Fig. 2: Prediction accuracy (AP ) of GWAS-PRS across different m/p
ratios when c = 0 (i.e., all SNPs are selected). We set p=100000, n=100,
1000 and 10000, respectively.

AP =
βT(1)Z

T
(1)[Z(1)β̂(1) + Z(2)β̂(2)]

||Z(1)β(1)||||Z(1)β̂(1) + Z(2)β̂(2)||
=

C1

{V AR1}1/2{V AR2}1/2
(18)

where

C1 = βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1) (19)

V AR1 = βT(1)Z
T
(1)Z(1)β(1) (20)

V AR2 = [βT(1)X
T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)].

(21)

Theorem 1. Under the polygenic model (3) and Condition (1), if m → ∞, p → ∞
and p/n2 → 0 as n→∞, then

A2
P /(

n

n+ p
) = A2

P /(
1

1 + γ
) = 1 + op(1). (22)

If further we assume that p = c · nα for some constant c ∈ (0,∞), α ∈ (0,∞], then

A2
P =


1 + op(1), if 0 < α < 1

1/(1 + c) + op(1), if α = 1

op(1), if 1 < α

(23)

as n→∞.

Remark 1. A2
P has nonzero asymptotic limit provided that α ∈ (0, 1]. As illustrated

in Figure 2, AP converges to zero if α ∈ [2,∞], indicating the null prediction power of

GWAS-PRS even for traits that are fully heritable.

Remark 2. Since causal SNPs are not known as a prior but estimated, poorly selected

SNPs are often used to explain the poor performance of PRS. However, our theorem
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suggests that when m is large, even in the oracle situation where the selected SNP list

contains all and only all of the causal SNPs, PRS performance is limited by the ratio

of m/n. For complex traits underlying the omnigenic model [Boyle et al., 2017], the

expected prediction power of PRS is essentially zero regardless.

Remark 3. In our investigation, we set h2 = 1 to reflect the most optimistic situation

for phenotype prediction. If h2 < 1, as demonstrated by the simulation study, the

prediction power of GWAS-PRS gets further decreased.

2.2 Illustration of asymptotic limits

We numerically evaluate the analytical results above and the performance of A2
P with

p = 100000, and n = nz = 100, 1000 and 10000, respectively. Each entry of X and Z

is independently generated from N(0, 1). We also vary the ratio of causal SNPs m/p

from 0.01 to 1 to reflect a wide range of SNP signals, from very sparse to very dense

situations, respectively. The non-zero SNP effects of β(1) are independently generated

from N(0, 1). The phenotypes y and yz are generated from Model (3) and Model (13),

respectively. A total of 100 replications are conducted for each simulation set up.

Figure 2 shows the distributions of the 100 AP values across different simulation

set ups. As expected, the mean of AP remains nearly constant regardless of m, and is

close to
√
n/(n+ p). For small n, AP is close to zero with a large variance.

2.3 Threshold-PRS

As shown in Theorem 1, the asymptotic limit of A2
P associated with GWAS-PRS does

not depend on m, the number of causal SNPs, but n, the sample size of the training

data. For polygenic and omnigenic traits where sample size is surely smaller than

the number of candidate SNPs, GWAS-PRS is doomed to fail and therefore should

be avoided. It is thus natural to turn our attention to threshold-PRS and investigate

whether with a properly selected threshold c, the performance of PRS can be rescued.

2.3.1 General Setup

For a given threshold c > 0, let’s define q = pa (a ∈ (0, 1]) where q is the number of

selected SNPs, among which q1 is the number of true causal SNPs and the remaining

q2 is the number of null SNPs. Therefore, q = q1 + q2. Let Z(1) = [Z(11), Z(12)],

Z(2) = [Z(21), Z(22)]; X(1) = [X(11), X(12)], X(2) = [X(21), X(22)]; β̂(1) = [β̂(11), β̂(12)],

and β̂(2) = [β̂(21), β̂(22)], where Z(11), X(11), β̂(11) correspond to the selected q1 causal

SNPs, and Z(21), X(21), β̂(21) correspond to the selected q2 null SNPs. The prediction

accuracy of threshold-PRS is measured by

AP =
βT(1)Z

T
(1)[Z(11)β̂(11) + Z(21)β̂(21)]

||Z(1)β(1)||||Z(11)β̂(11) + Z(21)β̂(21)||
=

C1

{V AR1}1/2{V AR2}1/2
(24)

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447797doi: bioRxiv preprint 

https://doi.org/10.1101/447797
http://creativecommons.org/licenses/by-nd/4.0/


where

C1 = βT(1)Z
T
(1)Z(11)X

T
(11)X(1)β(1) + βT(1)Z

T
(1)Z(21)X

T
(21)X(1)β(1) (25)

V AR1 = βT(1)Z
T
(1)Z(1)β(1) (26)

V AR2 = [βT(1)X
T
(1)X(11)Z

T
(11) + βT(1)X

T
(1)X(21)Z

T
(21)][Z(11)X

T
(11)X(1)β(1) + Z(21)X

T
(21)X(1)β(1)].

(27)

Theorem 2. Under the polygenic model (3) and Condition (1), if m, q1, q2 →∞ when

n, p→∞, and further if [m2(q1 + q2)]/(n
2q21)→ 0, we have

A2
P /
[ nq21
nmq1 + qm2

]
= 1 + op(1). (28)

However, if [m2(q1 + q2)]/(n
2q21) 6→ 0, then

A2
P = Op(

1

n
) = op(1). (29)

Theorem 2 shows that given n and m, AP is determined by q1, the number of

selected causal SNPs, and q, the number of selected SNPs. Expressing q1 as a function

of q such that q1 = φ(q), we have AP expressed as a function of q:

A2
P (q) =

nφ(q)2

nmφ(q) + qm2
. (30)

2.3.2 Role of φ(q)

Function φ is non-decreasing with q and plays an important role in determining the

asymptotic distribution of AP . The exact form of φ is trait dependent and not easy to

obtain. But in the following two special examples, we can demonstrate the impact of φ

on AP straightforwardly. To begin with, we first study the marginal distribution of the

β̂is, which is a mixture of two distributions, one corresponding to the causal SNP set

and one to the null SNP set. Let β̂ = (β̂1, · · · , β̂m, β̂m+1, · · · , β̂p) = [β̂(1), β̂(2)]. Given

that β(1) ∼MNVm(0m, σ
2
β · Im), and the remaining ones in β(2) are all 0, according to

the central limit theorem, we have asymptotically

β̂c ∼
{
N(0, σ2β · n+mn ), if c ∈ [1,m]

N(0, σ2β · mn ), if c ∈ [m+ 1, p].
(31)

When m/n = γ · ω → γ0 · ω0 = 0, the spread of the marginal distribution of the

causal SNPs is much wider than that of the marginal distribution of the null SNPs,

making the two distributions separable and single SNP analysis powerful. However,

as the genetic signal gets denser and denser (or m increases), the difference between

the two distributions gets smaller and smaller, leading to two well mixed distributions

and poorly performed single SNP analysis. To see how the ratio of m/n impacts single
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Fig. 3: Prediction accuracy (AP ) of threshold-PRS across different m/p
ratios. We set p=100000, n = 10000 in training data and n=1000 in
testing data.

SNP analysis, we first approximate the density of β̂c by

f(b) ≈ m

p
·N(0, σ2β ·

n+m

n
) +

p−m
p
·N(0, σ2β ·

m

n
) (32)

=
m

p
· 1√

2πσ21
exp(− b2

2σ21
) +

p−m
p
· 1√

2πσ22
exp(− b2

2σ22
) (33)

with CDF

F (b) ≈ m

p
· Φ(

b

σ1
) +

p−m
p
· Φ(

b

σ2
) (34)

where σ21 = σ2β · n+mn , σ22 = σ2β · mn , and Φ(x) = 1√
2π

∫ x
−∞ exp(−t2/2)dt is the CDF of the

standard normal random variable. Since the mixture distribution is symmetric about

zero, without loss of generality, in the following we consider one-sided test and SNPs

with the largest (100× a)% estimated genetic effects (0 < a < 1/2) are selected. For a

causal SNP, its selection probability κ1 equals

Pr[b > F−1(1− a)|b ∼ N(0, σ21)] = 1− Pr[b ≤ F−1(1− a)|b ∼ N(0, σ21)] (35)

= 1− Φ
[F−1(1− a)

σ1

]
= 1− Φ

[F−1(1− a)

σβ

√
n

n+m

]
. (36)
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Similarly for a given null SNP, its selection probability κ2 is

Pr[b > F−1(1− a)|b ∼ N(0, σ22)] = 1− Pr[b ≤ F−1(1− a)|b ∼ N(0, σ22)] (37)

= 1− Φ
[F−1(1− a)

σ2

]
= 1− Φ

[F−1(1− a)

σβ

√
n

m

]
. (38)

Therefore, among q = pa = q1 + q2 selected SNPs, we expect

m · κ1 = m ·
[
1− Φ(

F−1(1− a)

σβ

√
n

n+m
)
]

and (39)

(p−m) · κ2 = (p−m) ·
[
1− Φ(

F−1(1− a)

σβ

√
n

m
)
]
, (40)

causal and null SNPs, respectively. For a given a or equivalently c, F−1(1−a)
σβ

is the

same for both causal and null SNPs. Therefore the quality of top-ranked SNP list is

largely determined by m/n. The next Remark discusses the upper bounds of Ap under

two extreme cases.

Remark 4. When n/m = o(1), it is easy to see κ1 = κ2 · (1 + o(1)). Thus when q1, q2
are large, q1/q ≈ m/p, and thus q1 = φ(q) ≈ m

p · q. It follows that

A2
P (q) =

nφ(q)2

nmφ(q) + qm2
≈ n

np+ p2
· q. (41)

Therefore AP reaches its upper bound
√
n/(n+ p) at q = p, suggesting that the best

performing PRS is the one that constructed without SNP selection or GWAS-PRS

when the genetic signals are dense. On the other hand, when m/n = o(1), κ1 becomes

much larger than κ2. Thus causal SNPs can be relatively easy to detect by single SNP

analysis. As a increases, q1 eventually gets saturated at m, and threshold-PRS reaches

its upper performance limit
√
n/(n+m) with q = q1 = φ(q) = m, which is the oracle

case described in Remark 2.

In conclusion, the above analysis provides guidelines on constructing PRS: 1) SNP

screening should be avoided for highly polygenic/omnigenic traits with a large m/n

ratio. 2) For monogenic and oligogenic traits [Timpson et al., 2018] with a small m/n

ratio, threshold-PRS is preferred.

3 More simulation studies

To illustrate the finite sample performance of threshold-PRS, we simulate p = 100000

uncorrelated SNPs. Again as in Figure 2, we (naively) generate each entry of the SNPs

from N(0, 1). To study effect of m/p, we vary the number of causal SNPs m and

set it to 100, 1000, 10000 and 50000. The nonzero SNP effects βis are independently

generated from N(0, 1). The linear polygenic model in Model (1) is used to generate
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phenotype y. The sample size is set to 1000 and 10000 for training data, and 1000

for testing data. For threshold-PRS, as in Márquez-Luna et al. [2017], we consider

a series of P -value thresholds {1, 0.8, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 10−3,

10−4, 10−5, 10−6, 10−7, 10−8}. We name this simulation setting Case 1. A total of 100

replications are conducted for each simulation condition.

Figure 3 and Supplementary Figure 1 display the performance of threshold-PRS

across a series of m/p ratios in Case 1. As expected, the performance of GWAS-PRS

(i.e. at P -value threshold of 1) is nearly constant around
√
n/(n+ p) regardless of

the m/p ratios, which is about 0.3 (as shown in Figure 3) for n = 10000 and 0.1

(shown in Supplementary Figure 1) for n = 1000. The performance of threshold-PRS

varies with the m/p (or m/n) ratio. When m is small compared to n, threshold-PRS

performs significantly better than GWAS-PRS provided a reasonable c is chosen which

in general is small as shown by Supplementary Figure 1. In this figure, when m = 100

and n = 1000, threshold-PRS achieves its best performance at c = 10−5, with AP
of 0.75, in contrast to its oracle performance which is about 0.95. Figure 3 shows

that when m gets close to n or larger than n, the performance of threshold-PRS drops

significantly regardless of c. When m is close to n, its performance remains similar for a

wide range of c values; and when m gets much larger than n, its performance improves

as c increases, and eventually reaches the same performance level of GWAS-PRS.

In addition, we vary Case 1 settings to check the sensitivity of our results. In Case

2, we generate actual SNP genotype data where the minor allele frequency (MAF) of

each SNP, f , is independently generated from Uniform [0.05, 0.45] and SNP genotypes

are independently sampled from {0, 1, 2} with probabilities {(1 − f)2, 2f(1 − f), f2},
respectively according to the Hardy-Weinberg equilibrium principle. In Case 3, we

simulate mixed samples from five subpopulations. The overall MAF of each SNP in

mixed samples is independently generated from Uniform [0.05, 0.45], and the Fst values

are independently generated from Uniform [0.01, 0.04] [Lee et al., 2011] based on which

the MAF of each sub-population is generated according to the Balding-Nichols model

[Balding and Nichols, 1995]. We set the sample size of each sub-population the same

at 200 and 2000. The population substructures are estimated with the PCA analysis

of Price et al. [2006] and the top 4 PCs are included as covariates in the single SNP

analysis. Case 4 allows larger variability in the causal SNP effects such that βis are

independently generated from N(0, σ2i ), where σ−2i follows a gamma distribution with

α = 10 and β = 9.

The results of Case 2 are displayed in Supplementary Figures 2 - 3, which are similar

to those of Case 1. Supplementary Figures 4 - 5 display the oracle performance of PRS

under varying m/p ratios in Case 2. Clearly Ap is around
√
n/(n+m), confirming the

poor performance of PRS even in the oracle case when genetic signals are dense. The

results of Case 3 are displayed in Supplementary Figures 6 - 7. In the presence of sub-

population structures, if they are properly adjusted, the main pattern of threshold-PRS

remains unchanged and the performance of GWAS-PRS agrees well with the theoretical

results. The results of Case 4 are displayed in Supplementary Figures 8 - 9, which are

also similar to those of Case 1, indicating that our asymptotic results are not sensitive
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to the distribution of nonzero SNP effects βis.

4 Discussion

PRS is one of the most popular prediction methods for GWAS data and has been

widely used for predicting a phenotype of the same type as the training GWAS or other

pleiotropy phenotypes [Choi et al., 2018]. Motivated by the poor practice performance

of PRS, we empirically and theoretically study the properties of PRS for complex poly-

genic traits generated from modern GWAS. For GWAS-PRS, our asymptotic results

align well with those of Daetwyler et al. [2008] and Chatterjee et al. [2013], Dudbridge

[2013], but more statistically rigorous. In addition, for threshold-PRS, we illustrate

how genetic sparseness affects its prediction performance and recognize its distinct be-

haviors under dense and sparse genetic signal scenarios. It turns out, the performance

of PRS is closely related to the increasingly recognized spurious correlation problem

[Fan et al., 2012] associated with marginal screenings such as single SNP analysis. For

polygenic traits, models used by single SNP analysis are always misspecified where

effects of a large number of causal SNPs are absorbed into the error term, leading to

spurious correlation, which can profoundly affect the performances of GWAS-PRS and

threshold-PRS, an issue that can be safely ignored for non-polygenic traits. In our

study, we set h2=1 and assume all causal SNPs are observed, which is the most opti-

mistic situation for phenotypic prediction. We can easily extend our results to h2 < 1

cases. For example, the asymptotic prediction accuracy of GWAS-PRS becomes to√
nh2/(n+ p/h2). The performance of PRS under Case 2 but for traits with h2=0.5 is

presented in Supplementary Figures 10 - 11. Compared to Supplementary Figures 2 - 3

where h2=1, though the prediction accuracy of PRS is reduced, the general conclusions

remain the same. Besides phenotypic prediction, our research also illustrates for the

first time how and why commonly used marginal screening approaches for GWAS data

may fail in preserving the rank of genetic signals.

In summary, our investigation clears up some misconceptions on PRS, and demon-

strates that PRS is not as useful as its name suggested, and also not as powerful as the

genetics community expected for polygenic trait prediction. We hope this research will

serve as a wake up call to the genetics community in recognizing the real challenges

in analyzing and predicting complex polygenic traits. As such, for complex polygenic

traits, more devoted efforts are needed for developing better experiments and statistical

methods.

Appendix A: Proofs

In this appendix, we highlight the key steps and important intermediate results to prove

our main results in Section 2. More technical details can be found in the supplementary

file.
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Proposition A 1. Under the polygenic model (3) and Condition (1), if m→∞ when

n, p→∞, then

βT(1)Z
T
(1)Z(1)β(1)

nm · σ2β
= 1 + op(1) (42)

[βT(1)X
T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)]

[n2m(p−m) + n2m(m+ n)] · σ2β
= 1 + op(1).

(43)

Further if p/n2 → 0, then

βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)

n2m · σ2β
= 1 + op(1). (44)

By continuous mapping theorem, we have

A2
P /(

n

n+ p
) = A2

P /(
1

1 + γ
) = 1 + op(1). (45)

It follows that Theorem 1 is proved for α ∈ (0, 2). Now consider the case that p/n2 6→
o(1), i.e., α ∈ [2,∞]. Note that

βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1) (46)

=
βT(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)β(1) − n2m · σ2β√

(n2m2p+ 4n3m2) · σ4β + n4m · (b4 − σ4β)
(47)

·
√

(n2m2p+ 4n3m2) · σ4β + n4m · (b4 − σ4β) + n2m · σ2β (48)

= Op(
√

(n2m2p+ 4n3m2) · σ4β + n4m · (b4 − σ4β)) + n2m · σ2β. (49)

It follows that

A2
P =

Op[(n
2m2p+ n4m2) · σ4β]

[nm · σ2β · (1 + o(1))] · [n2m(n+ p) · σ2β · (1 + o(1))]
(50)

= Op(
n2m2p+ n4m2

n3m2p+ n4m2
) = Op(

n2 + c · nα
n2 + c · n1+α ) = Op(

1

n
) (51)

when α ∈ [2,∞]. Thus Theorem 1 is proved for α ∈ (0,∞].

Proposition A 2. Under the polygenic model (3) and Condition (1), if m, q1, q2 →∞
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when n, p→∞, then

βT(1)Z
T
(1)Z(1)β(1)

nm · σ2β
= 1 + op(1) (52)

[βT(1)X
T
(1)X(11)Z

T
(11) + βT(1)X

T
(1)X(21)Z

T
(21)][Z(11)X

T
(11)X(1)β(1) + Z(21)X

T
(21)X(1)β(1)]

[n2mq2 + n2q1(m+ n)] · σ2β
= 1 + op(1).

(53)

Further if [m2(q1 + q2)]/(n
2q21)→ 0, then

βT(1)Z
T
(1)Z(11)X

T
(11)X(1)β(1) + βT(1)Z

T
(1)Z(21)X

T
(21)X(1)β(1)

n2q1 · σ2β
= 1 + op(1). (54)

By continuous mapping theorem, we have

A2
P /[

nq21
nmq1 + qm2

] = 1 + op(1). (55)

Note that

βT(1)Z
T
(1)Z(11)X

T
(11)X(1)β(1) + βT(1)Z

T
(1)Z(21)X

T
(21)X(1)β(1) (56)

= Op[
√
n2q31 + 2n2q21(m− q1) + 2n3q1(m− q1) + n2(m− q1)2q1 + n2m2q2] + n2q1.

(57)

Then if [m2(q1 + q2)]/(n
2q21) 6→ 0, we have

A2
P =

Op(n
2q31 + 2n2q21(m− q1) + 2n3q1(m− q1) + n2(m− q1)2q1 + n2m2q2 + n4q21)

[nm · (1 + op(1))] · [(n3q1 + n2mq1 + n2mq2) · (1 + op(1))
]

(58)

= Op[
m2(q1 + q2) + 2n(m− q1)q1 + n2q21

nm2(q1 + q2) + n2mq1
] = Op[

m2(q1 + q2) + n2q21
nm2(q1 + q2) + n2mq1

] (59)

= Op(
1

n
) = op(1). (60)

Thus Theorem 2 is proved.
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5 Supplementary Material

5.1 Intermediate results

Proposition S 1. Under Condition (1), if m→∞ when n, p→∞, then

E(βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)) = n2m · σ2β (61)

V ar(βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)) (62)

= [(n2m3 + 4n3m2 + n2m2(p−m)) · σ4β + n4m · (b4 − σ4β)] · (1 + o(1)) (63)

(64)

E(βT(1)Z
T
(1)Z(1)β(1)) = nm · σ2β (65)

V ar(βT(1)Z
T
(1)Z(1)β(1)) = o(n2m2 · σ4β) (66)

(67)

E([βT(1)X
T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)]) (68)

= n2m(n+m) · σ2β · (1 + o(1)) + n2m(p−m) · σ2β (69)

V ar([βT(1)X
T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)])

(70)

= o[n4m2(n+ p)2 · σ4β] (71)

where b4 is the forth moment of β.

Proposition S 1 quantifies the scale of the three terms in AP . Particularly, for the

two variance terms βT(1)Z
T
(1)Z(1)β(1) and

[βT(1)X
T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)],

the expected values can respectively dominate the corresponding standard error for

any ratios among p,m, n. However, for the covariance term

βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1),

its standard error may or may be dominated by its expected value depending on p/n.

Following Proposition S 1, by Markov’s inequality, for any constant k > 0, we have

Pr(|
βT(1)Z

T
(1)Z(1)β(1)

nm · σ2β
− 1| ≥ k) ≤

V ar(
βT
(1)
ZT
(1)
Z(1)β(1)

nm·σ2
β

)

k2
=
V ar(βT(1)Z

T
(1)Z(1)β(1))

n2m2 · σ4βk2
= o(1),

(72)
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and

Pr(|
[βT(1)X

T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)]

n2m(n+ p) · σ2β
− 1| ≥ k)

(73)

≤
V ar(

[βT
(1)
XT

(1)
X(1)Z

T
(1)

+βT
(1)
XT

(1)
X(2)Z

T
(2)

][Z(1)X
T
(1)
X(1)β(1)+Z(2)X

T
(2)
X(1)β(1)]

n2m(n+p)·σ2
β

)

k2
(74)

=
V ar([βT(1)X

T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)])

n4m2(n+ p)2 · σ4βk2
(75)

= o(1), (76)

and

Pr(|
βT(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)

n2m · σ2β
− 1| ≥ k) (77)

≤
V ar(

βT
(1)
ZT
(1)
Z(1)X

T
(1)
X(1)β(1)+β

T
(1)
ZT
(1)
Z(2)X

T
(2)
X(1)β(1)

n2m·σ2
β

)

k2
(78)

=
(n2m3 + n2m2(p−m)) · (1 + o(1))

n4m2 · σ4βk2
=

p

n2k2
· (1 + o(1)). (79)

Thus Proposition A 1 is proved. More generally, if training and testing data have

different sample sizes, we have

Proposition S 2. Under Condition (1), if m→∞ when n, nz, p→∞, then

E(βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)) = nnzm · σ2β (80)

V ar(βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)) = (81)

[(nnzm
2p+ 2n2nzm

2 + 2nn2zm
2) · σ4β + n2n2zm · (b4 − σ4β)] · (1 + o(1)) (82)

(83)

E(βT(1)Z
T
(1)Z(1)β(1)) = nzm · σ2β (84)

V ar(βT(1)Z
T
(1)Z(1)β(1)) = o(n2zm

2 · σ4β) (85)

(86)

E([βT(1)X
T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)]) (87)

= nnzm(n+m) · σ2β · (1 + o(1)) + nnzm(p−m) · σ2β (88)

V ar([βT(1)X
T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)])

(89)

= o[n2n2zm
2(n+ p)2 · σ4β]. (90)

By Markov’s inequality and continuous mapping theorem again,
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Proposition S 3. Under Condition (1), if m→∞ when n, nz, p→∞, then

βT(1)Z
T
(1)Z(1)β(1)

nzm · σ2β
= 1 + op(1) (91)

[βT(1)X
T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)]

[nnzm(p−m) + nnzm(n+m)] · σ2β
= 1 + op(1).

(92)

If we further have p/(nnz)→ 0, then

βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)

nnzm · σ2β
= 1 + op(1) (93)

and thus

A2
P /(

n

n+ p
) = 1 + op(1). (94)

When p/(nnz) 6→ 0, i.e., α ∈ [1,∞], note that

βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1) (95)

= Op(
√
nnzm2p+ 2n2nzm2 + 2nn2zm

2 + n2n2zm(b4 − σ4β)) + nnzm · σ2β (96)

= Op[(n
1/2n1/2z mp1/2 + nnzm) · σ2β]. (97)

It follows that

A2
P =

Op(nnzm
2p+ n2n2zm

2)

[nzm · (1 + o(1))] · [nnzm(n+ p) · (1 + o(1))]
= Op(

p+ nnz
nzp+ nnz

) = Op(
1

nz
).

(98)

The results of threshold-PRS can also be derived in a similar way. Without loss of

generality, we set σ2β = 1 below.

Proposition S 4. Under Conditions (1), if m → ∞, p−m → ∞ when n increase to

∞, for any q1, q2 ≥ 0, then

E(βT(1)Z
T
(1)Z(11)X

T
(11)X(1)β(1) + βT(1)Z

T
(1)Z(21)X

T
(21)X(1)β(1)) = n2q1 (99)

V ar[βT(1)Z
T
(1)Z(11)X

T
(11)X(1)β(1) + βT(1)Z

T
(1)Z(21)X

T
(21)X(1)β(1)] = [n2q31 + 4n3q21 (100)

+ n4q1(b4 − 1) + 2n2q21(m− q1) + 2n3q1(m− q1) + n2(m− q1)2q1 + n2m2q2] · (1 + o(1))

(101)

E(V AR2) = [n2q1(n+m) + n2q2m] · (1 + o(1)) (102)

V ar(V AR2) = o([n2q1(n+m) + n2q2m]2). (103)

By Markov’s inequality and continuous mapping theorem again, Proposition A 2 is

proved.
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5.2 Technical details

The following technical details are useful to prove our theoretical results. Most of

them involve in calculating the asymptotic expectation of the trace of the product of

multiple large random matrices. To our knowledge, there is no easy way to calculate

the asymptotic trace of the product of multiple general random matrices. Instead, we

use the definition of matrix trace and apply the combination theory to calculate the

total variations. The results provided below may also benefit other research questions

involving the similar calculations.

5.2.1 GWAS-PRS

First moment of covariance term

E(βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1)) (104)

= σ2β · E[tr(ZT(1)Z(1)X
T
(1)X(1))] (105)

= σ2β · E(
n∑
i=1

n∑
j=1

m∑
k1=1

m∑
k2=1

Zik1Xjk1Zik2Xjk2) (106)

= σ2β · E(
n∑
i=1

n∑
j=1

m∑
k1=k2=1

Z2
ik1X

2
jk1) = σ2β · n2m (107)

E(βT(1)Z
T
(1)Z(2)X

T
(2)X(1)β(1)) (108)

= σ2β · E[tr(ZT(1)Z(2)X
T
(2)X(1))] (109)

= σ2β · E(

n∑
i=1

n∑
j=1

m∑
k2=1

m∑
k1=1

Z(2)ik2X(2)jk2X(1)jk1Z(1)ik1) = 0 (110)

Thus

E(βT(1)Z
T
(1)ZX

TX(1)β(1)) = σ2β · n2m (111)

First moment of variance term I

E(βT(1)Z
T
(1)Z(1)β(1)) (112)

= E[E(βT(1)Z
T
(1)Z(1)β(1)|Z)] = E[tr(ZT(1)Z(1) · Im · σ2β) + 0] (113)

= σ2β · E[tr(Z(1)Z
T
(1))] = σ2β · E(

n∑
i=1

m∑
j=1

Z2
ij) = σ2β · nm (114)
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First moment of variance term II

E(βT(1)X
T
(1)X(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1)) (115)

= σ2β · E[tr(XT
(1)X(1)Z

T
(1)Z(1)X

T
(1)X(1))] (116)

= σ2β · E(
n∑
i=1

m∑
j=1

m∑
k1=1

n∑
l1=1

m∑
k2=1

n∑
l2=1

Zik1Zik2Xl1k1Xl1jXl2k2Xl2j) (117)

= σ2β · E(
n∑
i=1

m∑
k1=k2=j

n(n−1)∑
l1 6=l2

Z2
ikX

2
l1kX

2
l2k +

n∑
i=1

m(m−1)∑
k1=k2 6=j

n∑
l1=l2

Z2
ikX

2
lkX

2
lj (118)

+

n∑
i=1

m∑
k1=k2=j

n∑
l1=l2

Z2
ikX

4
lk) (119)

= σ2β · n2m(n+m+ c4 − 2) = σ2β · n2m(n+m) · (1 + o(1)) (120)

where c4 = E(X4
11) <∞.

E(βT(1)X
T
(1)X(2)Z

T
(2)Z(2)X

T
(2)X(1)β(1)) (121)

= σ2β · E[tr(XT
(1)X(2)Z

T
(2)Z(2)X

T
(2)X(1))] (122)

= σ2β · E(
n∑
c=1

m∑
i=1

p−m∑
k=1

n∑
l=1

p−m∑
q=1

n∑
r=1

Z(2)ckZ(2)cqX(2)lkX(2)rqX(1)liX(1)ri) (123)

= σ2β · n2m(p−m) (124)

E(βT(1)X
T
(1)X(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)) = 0 (125)

Thus

E(βT(1)X
T
(1)XZ

TZXTX(1)β(1)) = σ2β · n2m(n+m) · (1 + o(1)) + σ2β · n2m(p−m)

(126)

Second moment of covariance term

E(βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1)β

T
(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1)) (127)

= E[tr(βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1)β

T
(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1))] (128)

= E(
n∑
c=1

n∑
d=1

m∑
i=1

m∑
j=1

m∑
k=1

n∑
l=1

m∑
q=1

m∑
r=1

n∑
s=1

m∑
t=1

ZckZdqZdrZctXlkXliXsrXsjβqβiβtβj)

(129)

= [(n4m2 + 4n3m2 + n2m3) · σ4β +mn4 · (b4 − σ4β)] · (1 + o(1)) (130)
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E(βT(1)Z
T
(1)Z(2)X

T
(2)X(1)β(1)β

T
(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)) (131)

= E[tr(βT(1)Z
T
(1)Z(2)X

T
(2)X(1)β(1)β

T
(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1))] (132)

= E(
n∑
c=1

n∑
d=1

m∑
i=1

m∑
j=1

p−m∑
k=1

n∑
l=1

m∑
q=1

p−m∑
r=1

n∑
s=1

m∑
t=1

(133)

Z(2)ckZ(2)drZ(1)dqZ(1)ctX(2)lkX(2)srX(1)liX(1)sjβqβiβtβj) (134)

= n2(p−m)[m2 + (σ4β − 1) ·m] · σ4β = n2m2(p−m) · σ4β · (1 + o(1)) (135)

and

E(βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1)β

T
(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)) = 0 (136)

It follows that

V ar(βT(1)Z
T
(1)Z(1)X

T
(1)X(1)β(1) + βT(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)) (137)

= [(n2m3 + 4n3m2 + n2m2(p−m)) · σ4β + n4m · (b4 − σ4β)] · (1 + o(1)) (138)

Second moment of variance term I

E(βT(1)Z
T
(1)Z(1)β(1)β

T
(1)Z

T
(1)Z(1)β(1)) = E[tr(βT(1)Z

T
(1)Z(1)β(1)β

T
(1)Z

T
(1)Z(1)β(1))] (139)

= E(
n∑
c=1

n∑
d=1

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

XciXdjXdkXclβiβjβkβl) (140)

= E[
n∑
c=d

(

m(m−1)∑
i=j 6=k=l

X2
ciX

2
ckβ

2
i β

2
k +

m(m−1)∑
i=k 6=j=l

X2
ciX

2
cjβ

2
i β

2
j +

m(m−1)∑
i=l 6=j=k

X2
ciX

2
cjβ

2
i β

2
j (141)

+

m∑
i=l=j=k

X4
ciβ

4
i ) +

n(n−1)∑
c 6=d

(

m(m−1)∑
i=l 6=k=j

X2
ciX

2
djβ

2
i β

2
j +

m∑
i=l=k=j

X2
ciX

2
djβ

4
i )] (142)

= σ4β · n2m2 + nm · [2mσ4β + n(b4 − σ4β) + c4b4 − 2σ4β − b4] (143)

where b4 = E(β41) <∞. It follows that

V ar(βT(1)Z
T
(1)Z(1)β(1)) = nm · [2mσ4β + n(b4 − σ4β) + c4b4 − 2σ4β − b4] = o(n2m2 · σ4β)

(144)

Second moment of variance term II

E(βT(1)X
T
(1)X(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1)β

T
(1)X

T
(1)X(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1)) (145)

= E[tr(βT(1)X
T
(1)X(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1)β

T
(1)X

T
(1)X(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1))] (146)

= E(
n∑
c=1

n∑
d=1

m∑
h=1

m∑
k=1

n∑
l=1

m∑
i=1

m∑
q=1

n∑
r=1

m∑
s=1

m∑
t=1

n∑
u=1

m∑
w=1

m∑
a=1

n∑
b=1

(147)

ZckZdqZdtZcaXlkXlhXrqXriXutXusXbaXbwβhβiβsβw) (148)
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To have non-zero means, we need the possible combinations of the following:

• either Z2
··Z

2
·· or Z4

··

• one of X2
··X

2
··X

2
··X

2
··, X

2
··X

2
··X

4
··, X

4
··X

4
··, X

6
··X

2
··, and X8

··

• either β2· β
2
· or β4· .

After tedious calculations, we have

E(βT(1)X
T
(1)X(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1)β

T
(1)X

T
(1)X(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1)) (149)

= σ4β · [n4m2(n+m)2] · (1 + o(1)) (150)

Next

E(βT(1)X
T
(1)X(2)Z

T
(2)Z(2)X

T
(2)X(1)β(1)β

T
(1)X

T
(1)X(2)Z

T
(2)Z(2)X

T
(2)X(1)β(1)) (151)

= E[tr(βT(1)X
T
(1)X(2)Z

T
(2)Z(2)X

T
(2)X(1)β(1)β

T
(1)X

T
(1)X(2)Z

T
(2)Z(2)X

T
(2)X(1)β(1))] (152)

= E(
n∑
c=1

n∑
d=1

m∑
h=1

p−m∑
k=1

n∑
l=1

m∑
i=1

p−m∑
q=1

n∑
r=1

m∑
s=1

p−m∑
t=1

n∑
u=1

m∑
w=1

p−m∑
a=1

n∑
b=1

(153)

Z(2)ckZ(2)dqZ(2)dtZ(2)caX(2)lkX(2)rqX(2)utX(2)baX(1)lhX(1)riX(1)usX(1)bwβhβiβsβw)

(154)

= σ4β · [n4m2(p−m)2] · (1 + o(1)) (155)

and

E(βT(1)X
T
(1)X(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)β

T
(1)X

T
(1)X(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)) (156)

= E[tr(βT(1)X
T
(1)X(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)β

T
(1)X

T
(1)X(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1))] (157)

= E(
n∑
c=1

n∑
d=1

m∑
h=1

p−m∑
k=1

n∑
l=1

m∑
i=1

m∑
q=1

n∑
r=1

m∑
s=1

p−m∑
t=1

n∑
u=1

m∑
w=1

m∑
a=1

n∑
b=1

(158)

Z(2)ckZ(1)dqZ(2)dtZ(1)caX(2)lkX(2)utX(1)lhX(1)rqX(1)riX(1)usX(1)baX(1)bwβhβiβsβw)

(159)

= σ4β · n(p−m)[(m3 − 3m2 + 2m)(n2 + 2n) + (m2 −m)(n3 − n2 + 2(c4 − 1)n+

(160)

4n2 + 4(c4 − 1)n+ b4n
2) + b4mn

3] (161)

= σ4β · [n3m2(p−m)(m+ n)] · (1 + o(1)) (162)

Similarly,

E(βT(1)X
T
(1)X(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1)β

T
(1)X

T
(1)X(2)Z

T
(2)Z(2)X

T
(2)X(1)β(1)) (163)

= o[σ4β · n4m2(n+ p)2] (164)
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Also

E(βT(1)X
T
(1)X(1)Z

T
(1)Z(1)X

T
(1)X(1)β(1)β

T
(1)X

T
(1)X(1)Z

T
(1)Z(2)X

T
(2)X(1)β(1)) (165)

= E(βT(1)X
T
(1)X(2)Z

T
(2)Z(1)X

T
(1)X(1)β(1)β

T
(1)X

T
(1)X(2)Z

T
(2)Z(2)X

T
(2)X(1)β(1)) (166)

= 0 (167)

It follows that

V ar([βT(1)X
T
(1)X(1)Z

T
(1) + βT(1)X

T
(1)X(2)Z

T
(2)][Z(1)X

T
(1)X(1)β(1) + Z(2)X

T
(2)X(1)β(1)])

(168)

= o[σ4β · n4m2(n+ p)2] (169)

The results of different sample sizes can be similarly derived and are ignored. Without

loss of generality, we set σ2β = 1 for simplicity in later steps.

5.2.2 Threshold-PRS

First moment of covariance term

C1 = βT(1)Z
T
(1)[Z(11)X

T
(11)X(1)β(1) + Z(21)X

T
(21)X(1)β(1)] (170)

= βT(1)Z
T
(1)Z(11)X

T
(11)X(1)β(1) + βT(1)Z

T
(1)Z(21)X

T
(21)X(1)β(1) (171)

= βT(1)Z
T
(1)[Z(11)X

T
(11)X(11)β(11) + Z(11)X

T
(11)X(12)β(12) + Z(21)X

T
(21)X(1)β(1)]

(172)

= βT(11)Z
T
(11)Z(11)X

T
(11)X(11)β(11) + βT(11)Z

T
(11)Z(11)X

T
(11)X(12)β(12) (173)

+ βT(12)Z
T
(12)Z(11)X

T
(11)X(11)β(11) + βT(12)Z

T
(12)Z(11)X

T
(11)X(12)β(12) (174)

+ βT(1)Z
T
(1)Z(21)X

T
(21)X(1)β(1) (175)

= C11 + C12 + C13 + C14 + C15 (176)

Thus E(C1) = E(C11) = E(βT(11)Z
T
(11)Z(11)X

T
(11)X(11)β(11)) = n2q1 (177)
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First moment of variance term II

V AR2 = (178)

[βT(11)X
T
(11)X(11)Z

T
(11) + βT(12)X

T
(12)X(11)Z

T
(11) + βT(11)X

T
(11)X(21)Z

T
(21) + βT(12)X

T
(12)X(21)Z

T
(21)]·

(179)

[Z(11)X
T
(11)X(11)β(11) + Z(11)X

T
(11)X(12)β(12) + Z(21)X

T
(21)X(11)β(11) + Z(21)X

T
(21)X(12)β(12)]

(180)

= βT(11)X
T
(11)X(11)Z

T
(11)Z(11)X

T
(11)X(11)β(11) + βT(11)X

T
(11)X(11)Z

T
(11)Z(11)X

T
(11)X(12)β(12)

(181)

+ βT(11)X
T
(11)X(11)Z

T
(11)Z(21)X

T
(21)X(11)β(11) + βT(11)X

T
(11)X(11)Z

T
(11)Z(21)X

T
(21)X(12)β(12)

(182)

+ βT(12)X
T
(12)X(11)Z

T
(11)Z(11)X

T
(11)X(11)β(11) + βT(12)X

T
(12)X(11)Z

T
(11)Z(11)X

T
(11)X(12)β(12)

(183)

+ βT(12)X
T
(12)X(11)Z

T
(11)Z(21)X

T
(21)X(11)β(11) + βT(12)X

T
(12)X(11)Z

T
(11)Z(21)X

T
(21)X(12)β(12)

(184)

+ βT(11)X
T
(11)X(21)Z

T
(21)Z(11)X

T
(11)X(11)β(11) + βT(11)X

T
(11)X(21)Z

T
(21)Z(11)X

T
(11)X(12)β(12)

(185)

+ βT(11)X
T
(11)X(21)Z

T
(21)Z(21)X

T
(21)X(11)β(11) + βT(11)X

T
(11)X(21)Z

T
(21)Z(21)X

T
(21)X(12)β(12)

(186)

+ βT(12)X
T
(12)X(21)Z

T
(21)Z(11)X

T
(11)X(11)β(11) + βT(12)X

T
(12)X(21)Z

T
(21)Z(11)X

T
(11)X(12)β(12)

(187)

+ βT(12)X
T
(12)X(21)Z

T
(21)Z(21)X

T
(21)X(11)β(11) + βT(12)X

T
(12)X(21)Z

T
(21)Z(21)X

T
(21)X(12)β(12)

(188)

= a2 + ab+ ac+ ad+ ba+ b2 + bc+ bd+ ca+ cb+ c2 + cd+ da+ db+ dc+ d2

(189)

E(V AR2) (190)

= E(a2 + ab+ ac+ ad+ ba+ b2 + bc+ bd+ ca+ cb+ c2 + cd+ da+ db+ dc+ d2)

(191)

= E(a2 + b2 + c2 + d2) (192)

= [n2q1(n+ q1)] · (1 + o(1)) + n2(m− q1)q1 + n2q1q2 + n2(m− q1)q2 (193)

= [n2q1(n+m+ q2) + n2q2(m− q1)] · (1 + o(1)) (194)

= [n2q1(n+m) + n2q2m] · (1 + o(1)) (195)
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Second moment of covariance term

E(C1C1) = E[(C11 + C12 + C13 + C14 + C15)(C11 + C12 + C13 + C14 + C15)] (196)

= E[C2
11 + C2

12 + C2
13 + C2

14 + C2
15] (197)

E(C2
11) = E(βT(11)Z

T
(11)Z(11)X

T
(11)X(11)β(11)β

T
(11)Z

T
(11)Z(11)X

T
(11)X(11)β(11)) (198)

= n4q21 + [(n2q31 + 4n3q21) + n4q1(b4 − 1)] · (1 + o(1)) (199)

E(C2
12) = E(βT(11)Z

T
(11)Z(11)X

T
(11)X(12)β(12)β

T
(11)Z

T
(11)Z(11)X

T
(11)X(12)β(12)) (200)

= E(
n∑
c=1

n∑
d=1

m−q1∑
i=1

m−q1∑
j=1

q1∑
k=1

n∑
l=1

q1∑
q=1

q1∑
r=1

n∑
s=1

q1∑
t=1

(201)

Z(11)ckZ(11)dqZ(11)drZ(11)ctX(11)lkX(11)srX(12)liX(12)sjβ(11)qβ(11)tβ(12)iβ(12)j) (202)

= [n2q21(m− q1) + n3q1(m− q1)] · (1 + o(1)) (203)

Similarly

E(C2
13) = E(βT(12)Z

T
(12)Z(11)X

T
(11)X(11)β(11)β

T
(12)Z

T
(12)Z(11)X

T
(11)X(11)β(11)) (204)

= [n2q21(m− q1) + n3q1(m− q1)] · (1 + o(1)) = E(C2
12) (205)

E(C2
14) = E(βT(12)Z

T
(12)Z(11)X

T
(11)X(12)β(12)β

T
(12)Z

T
(12)Z(11)X

T
(11)X(12)β(12)) (206)

= n2(m− q1)2q1 (207)

E(C2
15) = E(βT(1)Z

T
(1)Z(21)X

T
(21)X(1)β(1)β

T
(1)Z

T
(1)Z(21)X

T
(21)X(1)β(1)) = n2m2q2 (208)

Thus

E(C1C1) = E[C2
11 + C2

12 + C2
13 + C2

14 + C2
15] (209)

= n4q21 + [(n2q31 + 4n3q21) + n4q1(b4 − 1)] · (1 + o(1)) (210)

+ 2 · [n2q21(m− q1) + n3q1(m− q1)] · (1 + o(1)) (211)

+ n2(m− q1)2q1 + n2m2q2 (212)

It follows that

V ar(C1) = [n2q31 + 4n3q21 + n4q1(b4 − 1) + 2n2q21(m− q1)+ (213)

2n3q1(m− q1) + n2(m− q1)2q1 + n2m2q2] · (1 + o(1)) (214)
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Second moment of variance term II

E(V AR2V AR2) (215)

= E[(a2 + ab+ ac+ ad+ ba+ b2 + bc+ bd+ ca+ cb+ c2 + cd+ da+ db+ dc+ d2)2]

(216)

= E[(a4 + b4 + c4 + d4 + 2a2b2 + 2a2c2 + 2a2d2 + 2b2c2 + 2b2d2 + 2c2d2] (217)

= E(a4) + E(b4) + E(c4) + E(d4) + E(2a2b2 + 2a2c2 + 2a2d2 + 2b2c2 + 2b2d2 + 2c2d2)

(218)

= [n2q1(n+ q1)]
2 + o(n4q41 + n5q31 + n6q21) + [n2(m− q1)q1]2 · (1 + o(1)) (219)

+ (n2q1q2)
2 · (1 + o(1)) + [n2(m− q1)q2]2 · (1 + o(1)) (220)

+ o[(n2q1(n+m) + n2q2m)2] (221)

It follows that

V ar(V AR2) = o([n2q1(n+m) + n2q2m]2) (222)

5.3 Supplementary figures

30

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447797doi: bioRxiv preprint 

https://doi.org/10.1101/447797
http://creativecommons.org/licenses/by-nd/4.0/


●●

●

●

1
0.

8
0.

5
0.

4
0.

3
0.

2
0.

1
0.

08
0.

05
0.

02
0.

01
0.

00
1

1e
−

04
1e

−
05

1e
−

06
1e

−
07

1e
−

08

0.0

0.2

0.4

0.6

0.8

1.0

A: m=100

Cutoffs

C
or

re
la

tio
n

Thresholding−PRS

● ● ● ● ● ● ●
●

1
0.

8
0.

5
0.

4
0.

3
0.

2
0.

1
0.

08
0.

05
0.

02
0.

01
0.

00
1

1e
−

04
1e

−
05

1e
−

06
1e

−
07

1e
−

08

0.0

0.2

0.4

0.6

0.8

1.0

B: m=1000

Cutoffs

C
or

re
la

tio
n

Thresholding−PRS

●● ●● ●● ●● ●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

1
0.

8
0.

5
0.

4
0.

3
0.

2
0.

1
0.

08
0.

05
0.

02
0.

01
0.

00
1

1e
−

04
1e

−
05

1e
−

06
1e

−
07

1e
−

08

0.0

0.2

0.4

0.6

0.8

1.0

C: m=10000

Cutoffs

C
or

re
la

tio
n

Thresholding−PRS

● ● ●

● ●

●

●

●

●

●
● ●

1
0.

8
0.

5
0.

4
0.

3
0.

2
0.

1
0.

08
0.

05
0.

02
0.

01
0.

00
1

1e
−

04
1e

−
05

1e
−

06
1e

−
07

1e
−

08

0.0

0.2

0.4

0.6

0.8

1.0

D: m=50000

Cutoffs

C
or

re
la

tio
n

Thresholding−PRS

Supplementary Fig. 1: Prediction accuracy (AP ) of threshold-PRS
across different m/p ratios. We set p=100000, n=1000 in both training
and testing data.
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Supplementary Fig. 2: Prediction accuracy (AP ) of threshold-PRS
across different m/p ratios. SNP data are independently sampled from
{0, 1, 2}. We set p=100000, n=1000 in both training and testing data.
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Supplementary Fig. 3: Prediction accuracy (AP ) of threshold-PRS
across different m/p ratios. SNP data are independently sampled from
{0, 1, 2}. We set p=100000, n=10000 in training data and n = 1000 in
testing data.
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Supplementary Fig. 4: Prediction accuracy (AP ) of threshold-PRS
across different m/p ratios when the m causal SNPs are known and are
only considered as candidates in constructing PRS. SNP data are indepen-
dently sampled from {0, 1, 2}. We set p=100000, n=1000 in both training
and testing data.
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Supplementary Fig. 5: Prediction accuracy (AP ) of threshold-PRS
across different m/p ratios when the m causal SNPs are known and are
only considered as candidates in constructing PRS. SNP data are inde-
pendently sampled from {0, 1, 2}. We set p=100000, n=10000 in training
data and n = 1000 in testing data.
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Supplementary Fig. 6: Prediction accuracy (AP ) of threshold-PRS
across different m/p ratios when population substructure exists in the
SNP data. SNP data are independently sampled from {0, 1, 2}. We set
p=100000, n=1000 in both training and testing data.
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Supplementary Fig. 7: Prediction accuracy (AP ) of threshold-PRS
across different m/p ratios when population substructure exists in the
SNP data. SNP data are independently sampled from {0, 1, 2}. We set
p=100000, n=10000 in training data, and n = 1000 in testing data.
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Supplementary Fig. 8: Prediction accuracy (AP ) of threshold-PRS
across different m/p ratios when the effects of causal SNPs are not i.i.d.
Normal. SNP data are independently sampled from {0, 1, 2}. We set
p=100000, n=1000 in both training and testing data.
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Supplementary Fig. 9: Prediction accuracy (AP ) of threshold-PRS
across different m/p ratios when the effects of causal SNPs are not i.i.d.
Normal. SNP data are independently sampled from {0, 1, 2}. We set
p=100000, n=10000 in training data, and n = 1000 in testing data.

39

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/447797doi: bioRxiv preprint 

https://doi.org/10.1101/447797
http://creativecommons.org/licenses/by-nd/4.0/


●

●●

● ●

●
●●

● ●●

●●●

● ●

●●●

● ●●●

●●

●

●

●

●

●

●●

●
●

●

●

1
0.

8
0.

5
0.

4
0.

3
0.

2
0.

1
0.

08
0.

05
0.

02
0.

01
0.

00
1

1e
−

04
1e

−
05

1e
−

06
1e

−
07

1e
−

08

0.0

0.2

0.4

0.6

0.8

1.0

A: m=100

Cutoffs

C
or

re
la

tio
n

Thresholding−PRS

●

● ● ● ● ●●

●

●
●

●

1
0.

8
0.

5
0.

4
0.

3
0.

2
0.

1
0.

08
0.

05
0.

02
0.

01
0.

00
1

1e
−

04
1e

−
05

1e
−

06
1e

−
07

1e
−

08

0.0

0.2

0.4

0.6

0.8

1.0

B: m=1000

Cutoffs

C
or

re
la

tio
n

Thresholding−PRS

●

●

●

●●

●

●

●

●

●

●

●

1
0.

8
0.

5
0.

4
0.

3
0.

2
0.

1
0.

08
0.

05
0.

02
0.

01
0.

00
1

1e
−

04
1e

−
05

1e
−

06
1e

−
07

1e
−

08

0.0

0.2

0.4

0.6

0.8

1.0

C: m=10000

Cutoffs

C
or

re
la

tio
n

Thresholding−PRS

● ●

●

●

1
0.

8
0.

5
0.

4
0.

3
0.

2
0.

1
0.

08
0.

05
0.

02
0.

01
0.

00
1

1e
−

04
1e

−
05

1e
−

06
1e

−
07

1e
−

08

0.0

0.2

0.4

0.6

0.8

1.0

D: m=50000

Cutoffs

C
or

re
la

tio
n

Thresholding−PRS

Supplementary Fig. 10: Prediction accuracy (AP ) of threshold-PRS
across different m/p ratios when the heritability h2=0.5. SNP data are
independently sampled from {0, 1, 2}. We set p=100000, n=1000 in both
training and testing data.
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Supplementary Fig. 11: Prediction accuracy (AP ) of threshold-PRS
across different m/p when the heritability h2=0.5. SNP data are inde-
pendently sampled from {0, 1, 2}. We set p=100000, n=10000 in training
data, and n = 1000 in testing data.
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