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Abstract

Polygenic risk scores (PRS) is one of the most popular prediction methods for
complex traits and diseases with high-dimensional genome-wide association (GWAS)
data where sample size n is typically much smaller than the number of SNPs p. PRS
is a weighted sum of candidate SNPs in a testing data where each SNP is weighted by
its estimated marginal effect from a training data. The motivations behind PRS are
that 1) only summary statistics are needed for constructing PRS rather than raw data
which may not be readily available due to privacy concerns; 2) most complex traits are
affected by many genes with small effects, or follow a polygenic (or newly emerging
omnigenic) model. PRS aggregates information from all potential causal SNPs and
thus as its name suggested, is expected to be powerful for ploygenic and omnigenic
traits. However, disappointing to many researchers, the prediction accuracy of PRS in
practice is low, even for traits with known high heritability. To solve this perplex, in
this paper we investigate PRS both empirically and theoretically. We show in addition
to heritability, how the performance of PRS is influenced by the triplet (n, p, m), where
m is the number of true causal SNPs. Our major findings are that 1) when PRS is
constructed with all p SNPs (referred as GWAS-PRS), its prediction accuracy is solely
determined by the p/n ratio; 2) when PRS is built with a list of top-ranked SNPs that
pass a pre-specified P-value threshold (referred as threshold-PRS), its accuracy can
vary dramatically depending on how sparse true genetic signals are. Only when m is
magnitude smaller than n, or genetic signals are sparse, can threshold-PRS perform
well. In contrast, if m is much larger than n, or genetic signals are not sparse, which
is often the case for complex polygenic traits, threshold-PRS is expected to fail. Our
results demystify the poor performance of PRS and demonstrate that the original
purpose of PRS to aggregate effects from a large number of causal SNPs for polygenic
traits is wishful and can lead us to a practical paradox for polygenic/omnigenic traits.
Our results, as turned out, are closely related to the “spurious correlation” problem
of [Fan et al. [2012], which has been gaining more and more attention in the statistics
community.
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1 Introduction

With the rapid development in biomedical technologies, various types of large-scale ge-
netics and genomics data, including genome-wide association studies (GWAS) data
have been collected for better understanding of genetic etiologies underlying com-
plex human diseases and traits. GWAS study association between complex traits and
genome-wide single-nucleotide polymorphisms (SNPs), one of the most common types
of genetic variants. To detect SNPs that are associated with a given phenotype, single
SNP analysis is commonly performed to estimate and test an association between the
phenotype and each candidate SNP one at a time, while effects of non-genetic factors
and population substructures are adjusted for [Price et al., 2006]. Tens of thousands of
statistically significant SNPs have been detected for hundreds of human diseases/traits
through GWAS [MacArthur et al., [2016, |Visscher et all 2017]. However, most of the
identified SNPs have very low marginal genetic effects, explaining only a very small
portion of the phenotypic variation even for traits with known high heritability [Viss-
cher et al.l 2012], resulting in a so called “missing heritability” phenomenon [Manolio
et al., 2009, Zuk et al., 2012]. One explanation for the missing heritability is that most
complex traits are polygenic, affecting by many genes whose individual effect is small
[Timpson et al., 2018]. The polygenicity has long been hypothesized [Fisher, (1919,
Gottesman and Shields, 1967, Penrose| 1953] and supported by increasing empirical
evidence |Dudbridge, 2016, Ge et al. 2017, |Kemp et al. 2017, |Lee et al., [2012, Shi
et al., 2016, Wray et al.l 2018, [Yang et al., 2015} 2010].

One of the ultimate goals of GWAS is to build a genetic risk model for accurate
phenotype prediction. For polygenic traits, |[Purcell et al.| [2009] propose a polygenic
risk score (PRS), which is a weighted sum of top ranked candidate SNPs in a testing
data where each SNP is weighted by its estimated marginal effect from a training data.
As its name suggested, PRS aims to aggregate genetic effects of polygenes, and is thus
expected to be powerful for polygenic traits, and more true for omnigenic traits. The
omnigenic model is a newly emerging model Boyle et al.|[2017] assuming that a trait
is affected by majority (if not all) of candidate SNPs.

Though PRS has been widely used in neuropsychiatric diseases/disorders, such
as bipolar and schizophrenia [Bogdan et al., 2018, Ripke et al.l [2014], the prediction
power of PRS remains disappointedly low with little clinical utility, even for traits with
known high heritability [Marquez-Luna et all 2017, Torkamani et al., [2018} |Zheutlin
and Ross, 2018]. Two legitimate reasons for the poor performance of PRS include 1)
poor SNP arrays with low coverage of causal SNPs; and 2) low quality top-ranked
SNPs in tagging causal SNPs [Chatterjee et al., 2016, [Wray et al., 2013]. However, as
will be shown by the paper, even in the absence of the above two reasons, PRS can still
perform poorly. Thus far, except some experimental studies |Chatterjee et al.l [2013]
Daetwyler et al., 2008], [Dudbridge, [2013], |[Pasaniuc and Price, [2017], [Vilhjalmsson et al.|
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Fig. 1: Impact of artificial correlation on the marginal SNP effect estimate
of SNPi(i=1,-,p).

2015, few research has been seriously done to study the asymptotic properties of PRS
for polygenic and omnigenic traits.

We aim to fill the gap by empirically and theoretically studying PRS in hoping to
clear some misperceptions on PRS and to provide some practical guidelines on PRS.
Since PRS is built upon marginal SNP effects, we start our investigation on the statis-
tical properties of marginal SNP effect estimates. Note for polygenic traits, the single
SNP analysis is always misspecified since the effects of many other SNPs are ignored.
When all causal SNPs are independent of each other, such model misspecification is
in general fine for traits with sparse genetic signals, but can fail badly for traits with
dense genetic signals. For a given SNP, the omitted SNPs can greatly influence the
uncertainty in its marginal effect estimate, and make the estimate unreliable. As will
be illustrated later, even for a fully heritable phenotype with genetic heritability of
one, the estimated genetic effects of causal and non causal SNPs can be totally mixed
and nonseparable from each other, and the prediction power of PRS can go as low as
Zero.

It turns out, our theoretical investigation on the marginal genetic effect estimates is
highly relevant to the spurious correlation problem of Fan et al.|[2012], which provides
another perspective on PRS. Under high-dimensional settings, the negative influences
of (maximum) artificial/spurious correlation have been characterized in the context
of variable selection, covariance structure testing, and variance estimation [Cai et al.,
2013}, 2011}, |Chen et al., 2018| Fan et al., 2012, 2018, |Fan and Zhou, 2016, Su, 2018], but
is mainly out of the genetics field. For complex polygenic traits, spurious correlation
makes the estimation of marginal effects unreliable and the separation of causal and
null SNPs difficult, leading to a doomed failure of PRS which contradicts the original
motive of PRS (Figure [1)) completely.

In recognition of the relationship between the GWAS marginal screening and PRS,
we prove that the asymptotic prediction accuracy of PRS is largely affected by the
triplet of (n,p, m). Our investigation on PRS starts with GWAS-PRS, and ends with
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the threshold-PRS. Extensive simulation will be performed to evaluate PRS empirically
and to evaluate our theoretic results under finite sample settings.

Single SNP Analysis

For a training data, let y be an n x 1 phenotypic vector. Let X(;) denote an n x m
matrix of the causal SNPs, X () donate an n x (p —m) matrix of the null SNPs which
results in the n x p matrix of all SNPs, X = [Xy, X(2)] = [21," ", Tm, Tms1, -+, Tp)-
Columns of X are assumed to be independent for simplification. Further, column-wise
normalization on X is often performed such that each SNP has sample mean zero and
sample variance one. Define the following condition:

Condition 1. Entries of X = [X(y), X(2)] are real-value independent random variables
with mean zero, variance one and a finite eighth order moment.

The polygenic model assumes the following relationship between y and X:

P
y=> zfite=XB+e (1)

i=1
where 8 = (81, , Bm, Bm+1, -+ , Bp) is the vector of SNP effects such that the ;s are
i.i.d and follow N(O,ag) fori=1,--- ,mand 3; =0 fori >m. Let By = (81, -, Bm)
and () be an (p —m) x 1 vector with all elements being zero, and e represents the
random error vector. For simplicity and without loss of generality, we assume that
there exists no other fixed covariate effects. According to the above model, the overall

genetic heritability k2 of y is therefore

2 VarlXpbw] _ Var[XqB)]

Var(y) N Var[XyBa)l + Var(e) (2)

For the rest of the paper, we set h? = 1, reducing the above model to the following

deterministic model
p m
y= Z%ﬂi = szﬂz’ = X1)Ba); 3)
i=1 i=1

the most optimistic situation in predicting phenotypes.

Note for a typical large-scale GWAS, the sample size n is often not small (e.g.,
n ~ 1000 or 10000), but the number of candidate SNPs p is usually even larger (e.g.,
p ~ 500000). On the other hand, depending on their underlying genetic architectures,
the number of causal SNPs, m can vary dramatically from one trait to another. We
therefore assume n,p — oo and that

B:fy—>70, Ezw—ﬂuo, where 0 <y <oo, 0<wy<1 (4)
n p

to cover the most of modern GWAS data.
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For continuous traits, a typical single SNP analysis employs the following linear
regression model

y=1lop+zB+ € (5)
for a given SNP 4, where §; is its effect (z =1

-,p). When both y and z; are

normalized and n — oo, under Condition and polygenic model . the maximum
likelihood estimate (MLE) of u, [

=0, and the MLE of the genetic effect 8; equals

o~

_ 1 -
Bi = (a] w;) taly = szTy = Zrijﬁj (6)
]:

where r;; = %xZTx] = %Zkzl Tk T is the sample correlation between w; and zj,
j=1,---,p. Specifically, for SNP i, i =1,--

-, p, we have
B\‘ 6@ + Zﬁgl le/Bja it i€ [17 TTL] (7)
‘ > i1 Tig By if ie[m+1,p.

Given that SNPs in X are independent of each other, or correlation p;;=0 for all SNP
pairs (i & 7)(i # j), it is easy to show that asymptotically, 5; is an unbiased estimator
of 53

SN Bi, if iE[l,m]
E(ﬁi)_{o, it ie[m+1,p) (8)

given n — oco. The associated variance of BAl grows linearly with m since for any causal
SNP i (1<i<m)

m n n
Var(z ri;05) = 262 Var(rij) 3 Zﬂz Z Z Tiky T jky Tiko Tjky)
J#i JFi

: (9)
j#l klfl kg*l

1 Q- 42 Zﬁfz 62 m
= EZ@‘ : Z T, T jkl O(g) =0(y-w).
J#i k1=ko=1

Similarly, for any null SNP i (m < i < p)

m m 2
Var(y_rijf;) = 2l _ o

i) = =L = 0(0) = 0y w). =
JFi
It follows that
m 2
VarGy = 4 2R =0 =00 @), i ichm (12)
T EEE _omy=0(y W), if

€[m+1,p.
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Therefore, the (other) causal SNPs can significantly impact the effect estimate of SNP
i by inflating its variance. That is, when m/n = v -w — v - wq is large, BZ is no longer
a reliable estimate of ;. Also the associated variances of the Bis (i=1,---,p) are all
in the same scale regardless whether their corresponding SNPs are causal or not. Thus
the Bis corresponding to the causal SNP set and the null set become well mixed and
cannot be separated easily when m/n is large, raising two important concerns that we
address in Section [2f 1) how will this affect the SNP selection; and 2) how will this
affect the weights in PRS which ultimately affect the performance of PRS?

2 PRS

For a testing data with n, samples, define its n, x p SNP matrix as Z = [Z(l), Z(z)]
with Zq) = [21,- -+, 2m] and Z(9) = [zm41, -+, 2p]. The polygenic model assumes the
following relationship between y, and Z

/4

Y. = Z zifi = Z1)B)- (13)

i=1
Then PRS is defined as

p
gp =Y zid; = Zd = Zyd) + Zzyda (14)
=1

where d = (d1,-++ ,d,dms1,- 1 dp) = [daydia)], di = Bi - I(1Bil > ), I(-) is the
indicator function and c¢ is a given threshold for screening SNPs. When ¢ = 0, all

candidate SNPs are used, leading to GWAS-PRS. The prediction accuracy of PRS is
measured by

T/\
Yy yp
Ap =———— 15
lly:[l[[yel] "
_ @y ﬂa))T(Zu)d(n + Z(9yd(2)) 5(1)2 Z( y + 80,2} Z(2)d( 2 (16)
1 ZayByllllZayday + Z2ydoll 1Z) |!||Z(1 d(1)+Z @l

2.1 GWAS-PRS
For GWAS-PRS, c/l\(l) = 5(1), and (/1\(2) = 3(2). For simplification, for rest of the paper,

we set n, = n and our general conclusions remain the same when the two are different.

Let B = (B\la Tt 7Bm7§m+la T ’Bp) [5 5(2)] then

~ 1 ~ 1
By = -XHXwBuy  Be = —X{pXwBn), and (17)
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Fig. 2: Prediction accuracy (Ap) of GWAS-PRS across different m/p
ratios when ¢ = 0 (i.e., all SNPs are selected). We set p=100000, n=100,
1000 and 10000, respectively.

5(1) [Z(l)ﬁ(l) + Z )5( I o)) a8)
1ZwyBwllZayBay + Z@)Bayll  {VARF2{VARy /2
where
C1= 5(T1>Z<T1>Z< XwyBay + B2y ZeyX o Xmbay (19)
VAR = B2 <1>5(1> (20)
VARy = [Bly X)X 20y + B0 X[h X2 ZR) 120X X0 B + Z@ X X0 Bw)-
(21)

Theorem 1. Under the polygenic model and Condition (1)), if m — oo, p — 0
and p/n? — 0 as n — oo, then

1
1+~

Ab/ () = Ab/ (1) = L+ ap(1) (22)

If further we assume that p = ¢ - n® for some constant ¢ € (0,00), a € (0, 00|, then

14 0p(1), if 0<axl
AL ={ 1/(1+¢c)+op(1), if a=1 (23)
op(1), it 1<a

as n — oo.

Remark 1. A%D has nonzero asymptotic limit provided that « € (0,1]. As illustrated
in Figure 2 Ap converges to zero if a € [2, o], indicating the null prediction power of
GWAS-PRS even for traits that are fully heritable.

Remark 2. Since causal SNPs are not known as a prior but estimated, poorly selected
SNPs are often used to explain the poor performance of PRS. However, our theorem
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suggests that when m is large, even in the oracle situation where the selected SNP list
contains all and only all of the causal SNPs, PRS performance is limited by the ratio
of m/n. For complex traits underlying the omnigenic model [Boyle et al., 2017|, the
expected prediction power of PRS is essentially zero regardless.

Remark 3. In our investigation, we set h2 = 1 to reflect the most optimistic situation
for phenotype prediction. If h? < 1, as demonstrated by the simulation study, the
prediction power of GWAS-PRS gets further decreased.

2.2 Illustration of asymptotic limits

We numerically evaluate the analytical results above and the performance of A% with
p = 100000, and n = n, = 100, 1000 and 10000, respectively. Each entry of X and Z
is independently generated from N(0,1). We also vary the ratio of causal SNPs m/p
from 0.01 to 1 to reflect a wide range of SNP signals, from very sparse to very dense
situations, respectively. The non-zero SNP effects of 5y are independently generated
from N(0,1). The phenotypes y and y, are generated from Model and Model ,
respectively. A total of 100 replications are conducted for each simulation set up.

Figure [2| shows the distributions of the 100 Ap values across different simulation
set ups. As expected, the mean of Ap remains nearly constant regardless of m, and is
close to y/n/(n+ p). For small n, Ap is close to zero with a large variance.

2.3 Threshold-PRS

As shown in Theorem [l the asymptotic limit of A% associated with GWAS-PRS does
not depend on m, the number of causal SNPs, but n, the sample size of the training
data. For polygenic and omnigenic traits where sample size is surely smaller than
the number of candidate SNPs, GWAS-PRS is doomed to fail and therefore should
be avoided. It is thus natural to turn our attention to threshold-PRS and investigate
whether with a properly selected threshold ¢, the performance of PRS can be rescued.

2.3.1 General Setup

For a given threshold ¢ > 0, let’s define ¢ = pa (a € (0,1]) where ¢ is the number of
selected SNPs, among which ¢; is the number of true causal SNPs and the remaining
q2 is the number of null SNPs. Therefore, ¢ = q1 + q2. Let Zyy = [Z1), Za)l;

Zo) = 2@y Zea)l Xy = Xay: Xayl X@ = KXew, Xels Ba) = By Baz);
and By = [B(21); B22)], where Z(11), X(11), B11) correspond to the selected g causal
SNPs, and Z(91), X(21), 3(21) correspond to the selected g null SNPs. The prediction

accuracy of threshold-PRS is measured by

5(71)26)[411)3(11) + Z(Ql)g(Ql)] C1

P = = =
HZ(l)ﬁ(l)HHZ(n)ﬁ(n) + Z(21)5(21)H {VARJV2{V ARy }/?

(24)
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where

Cr = By 24y Zan XX Bay + By Z(y Zen X ey X By (25)
VAR, = 5(71)2(7;)2(1)5(1) (26)
VAR, = [5(T1)X(T1)X( mZ 11) + 5 X(21) (21)”Z(11) 11)X nBay + 2 21)X(21)X(1)5(1)]'

(27)

Theorem 2. Under the polygenic model and Condition , if m, g1, g2 — oo when
n,p — 0o, and further if [m?(q1 + ¢2)]/(n%¢?) — 0, we have

A2 /["7‘1%] =1+ 0,(1). (28)
Prlnmgr + gm? b

However, if [m?(q1 + q2)]/(n*q}) # 0, then

A3 = 0,(-) = 0,(1). (20)

1
n

Theorem [2] shows that given n and m, Ap is determined by ¢1, the number of
selected causal SNPs, and ¢, the number of selected SNPs. Expressing ¢ as a function
of g such that ¢ = ¢(q), we have Ap expressed as a function of ¢:

no(a)2
Ap(q) = m (30)

2.3.2 Role of ¢(q)

Function ¢ is non-decreasing with ¢ and plays an important role in determining the
asymptotic distribution of Ap. The exact form of ¢ is trait dependent and not easy to
obtain. But in the following two special examples, we can demonstrate the impact of ¢
on Ap straightforwardly. To begin with, we first study the marginal distribution of the
Bis, which is a mixture of two distributions, one corresponding to the causal SNP set
and one to the null SNP set. Let E = (Bl, e ,B\m,ﬁmﬂ, e ,Bp) = [3(1), 5(2)]. Given
that B1) ~ M NV, (0, O'% - Im), and the remaining ones in () are all 0, according to
the central limit theorem, we have asymptotically

. {N(O ,ok . mEmy it e [1,m] (31)

Be~ N(0,0%-1), if celm+1,p.

When m/n = v-w — 7 -wp = 0, the spread of the marginal distribution of the
causal SNPs is much wider than that of the marginal distribution of the null SNPs,
making the two distributions separable and single SNP analysis powerful. However,
as the genetic signal gets denser and denser (or m increases), the difference between
the two distributions gets smaller and smaller, leading to two well mixed distributions
and poorly performed single SNP analysis. To see how the ratio of m/n impacts single
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Fig. 3: Prediction accuracy (Ap) of threshold-PRS across different m/p
ratios. We set p=100000, n = 10000 in training data and n=1000 in
testing data.

SNP analysis, we first approximate the density of EC by

m n+m p—m 9 m
b)~ — - N(0,0%- -N(0,0% - — 32
£y~ N3 T 4 P N (0,03 (32)
m 1 b2 p—m 1 b2
= — . ———exp . exp 33
p 2mo? ( 2 %) p \/2mo3 ( 2%) (33)

with CDF
O(—) () (34)

where o} = 03 - "% g5 = 03 - and ®(x) \ﬁ [* . exp(—t*/2)dt is the CDF of the
standard normal random variable. Since the mixture distribution is symmetric about
zero, without loss of generality, in the following we consider one-sided test and SNPs
with the largest (100 x a)% estimated genetic effects (0 < a < 1/2) are selected. For a

causal SNP, its selection probability k1 equals

Prlb>F'(1—a)lb~ N(0,0?)]=1— Pr[b < F'(1—a)|b~ N(0,0%)] (35)

—1—<I>[F_15711_a)]—1—<I>[F_lfjlﬂ_a),/njm]. (36)

10


https://doi.org/10.1101/447797
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/447797; this version posted October 19, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Similarly for a given null SNP, its selection probability ko is

Prlb>F Y1 —-a)lb~ N(0,03)]=1— Pr[b < F1(1—a)|b~ N(0,03)] (37)
F_l(l—a)] :1_@[5’_1(1—@) ﬁ]

o 0B m*

=1-9|

Therefore, among g = pa = ¢q1 + g2 selected SNPs, we expect

B F~Y1—a) n
m-ky =m- [1—®( p ”n—km)] and (39)

-1 —a n
M 7)], (40)

ap m

(p—m) -y =(p—m)-[1— &

causal and null SNPs, respectively. For a given a or equivalently c, is the
same for both causal and null SNPs. Therefore the quality of top-ranked SNP list is
largely determined by m/n. The next Remark discusses the upper bounds of A, under

F~'(1-a) .

two extreme cases.

Remark 4. When n/m = o(1), it is easy to see k1 = k2 - (1 4+ 0(1)). Thus when ¢, g2
are large, q1/q =~ m/p, and thus ¢; = ¢(q) = % -q. It follows that

2 _ n¢(q)2 ~ n
Apla) = nmé(q) + qm®  np+p2 " (41)

Therefore Ap reaches its upper bound /n/(n + p) at ¢ = p, suggesting that the best
performing PRS is the one that constructed without SNP selection or GWAS-PRS
when the genetic signals are dense. On the other hand, when m/n = o(1), x; becomes
much larger than k5. Thus causal SNPs can be relatively easy to detect by single SNP
analysis. As a increases, g1 eventually gets saturated at m, and threshold-PRS reaches
its upper performance limit y/n/(n + m) with ¢ = ¢1 = ¢(q) = m, which is the oracle
case described in Remark 21

In conclusion, the above analysis provides guidelines on constructing PRS: 1) SNP
screening should be avoided for highly polygenic/omnigenic traits with a large m/n
ratio. 2) For monogenic and oligogenic traits [Timpson et al., 2018] with a small m/n
ratio, threshold-PRS is preferred.

3 More simulation studies

To illustrate the finite sample performance of threshold-PRS, we simulate p = 100000
uncorrelated SNPs. Again as in Figure we (naively) generate each entry of the SNPs
from N(0,1). To study effect of m/p, we vary the number of causal SNPs m and
set it to 100, 1000, 10000 and 50000. The nonzero SNP effects ;s are independently
generated from N(0,1). The linear polygenic model in Model is used to generate
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phenotype y. The sample size is set to 1000 and 10000 for training data, and 1000
for testing data. For threshold-PRS, as in Marquez-Luna et al.| [2017], we consider
a series of P-value thresholds {1,0.8,0.5, 0.4,0.3,0.2, 0.1,0.08,0.05, 0.02,0.01,1073,
1074,1075,107%,1077,10®}. We name this simulation setting Case 1. A total of 100
replications are conducted for each simulation condition.

Figure [3| and Supplementary Figure [1] display the performance of threshold-PRS
across a series of m/p ratios in Case 1. As expected, the performance of GWAS-PRS
(i.e. at P-value threshold of 1) is nearly constant around \/n/(n + p) regardless of
the m/p ratios, which is about 0.3 (as shown in Figure |3) for n = 10000 and 0.1
(shown in Supplementary Figure |1) for n = 1000. The performance of threshold-PRS
varies with the m/p (or m/n) ratio. When m is small compared to n, threshold-PRS
performs significantly better than GWAS-PRS provided a reasonable ¢ is chosen which
in general is small as shown by Supplementary Figure [1} In this figure, when m = 100
and n = 1000, threshold-PRS achieves its best performance at ¢ = 107°, with Ap
of 0.75, in contrast to its oracle performance which is about 0.95. Figure [3| shows
that when m gets close to n or larger than n, the performance of threshold-PRS drops
significantly regardless of c. When m is close to n, its performance remains similar for a
wide range of ¢ values; and when m gets much larger than n, its performance improves
as c¢ increases, and eventually reaches the same performance level of GWAS-PRS.

In addition, we vary Case 1 settings to check the sensitivity of our results. In Case
2, we generate actual SNP genotype data where the minor allele frequency (MAF) of
each SNP, f, is independently generated from Uniform [0.05,0.45] and SNP genotypes
are independently sampled from {0, 1,2} with probabilities {(1 — f)2,2f(1 — f), f?},
respectively according to the Hardy-Weinberg equilibrium principle. In Case 3, we
simulate mixed samples from five subpopulations. The overall MAF of each SNP in
mixed samples is independently generated from Uniform [0.05,0.45], and the Fy; values
are independently generated from Uniform [0.01,0.04] [Lee et al.,2011] based on which
the MAF of each sub-population is generated according to the Balding-Nichols model
[Balding and Nichols, [1995]. We set the sample size of each sub-population the same
at 200 and 2000. The population substructures are estimated with the PCA analysis
of Price et al.| [2006] and the top 4 PCs are included as covariates in the single SNP
analysis. Case 4 allows larger variability in the causal SNP effects such that §;s are
independently generated from N(0,0?), where o; 2 follows a gamma distribution with
a=10and g =9.

The results of Case 2 are displayed in Supplementary Figures[2]-[3| which are similar
to those of Case 1. Supplementary Figures [4] - |5 display the oracle performance of PRS
under varying m/p ratios in Case 2. Clearly A, is around /n/(n + m), confirming the
poor performance of PRS even in the oracle case when genetic signals are dense. The
results of Case 3 are displayed in Supplementary Figures|[6]-[7} In the presence of sub-
population structures, if they are properly adjusted, the main pattern of threshold-PRS
remains unchanged and the performance of GWAS-PRS agrees well with the theoretical
results. The results of Case 4 are displayed in Supplementary Figures [§]- [9] which are
also similar to those of Case 1, indicating that our asymptotic results are not sensitive
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to the distribution of nonzero SNP effects (;s.

4 Discussion

PRS is one of the most popular prediction methods for GWAS data and has been
widely used for predicting a phenotype of the same type as the training GWAS or other
pleiotropy phenotypes [Choi et al., 2018]. Motivated by the poor practice performance
of PRS, we empirically and theoretically study the properties of PRS for complex poly-
genic traits generated from modern GWAS. For GWAS-PRS, our asymptotic results
align well with those of Daetwyler et al.| [2008] and Chatterjee et al.| [2013], Dudbridge
[2013], but more statistically rigorous. In addition, for threshold-PRS, we illustrate
how genetic sparseness affects its prediction performance and recognize its distinct be-
haviors under dense and sparse genetic signal scenarios. It turns out, the performance
of PRS is closely related to the increasingly recognized spurious correlation problem
[Fan et al| 2012] associated with marginal screenings such as single SNP analysis. For
polygenic traits, models used by single SNP analysis are always misspecified where
effects of a large number of causal SNPs are absorbed into the error term, leading to
spurious correlation, which can profoundly affect the performances of GWAS-PRS and
threshold-PRS, an issue that can be safely ignored for non-polygenic traits. In our
study, we set h?=1 and assume all causal SNPs are observed, which is the most opti-
mistic situation for phenotypic prediction. We can easily extend our results to h? < 1
cases. For example, the asymptotic prediction accuracy of GWAS-PRS becomes to
\/nh2/(n + p/h?). The performance of PRS under Case 2 but for traits with h2=0.5 is
presented in Supplementary Figures[10]- Compared to Supplementary Figures[2]-
where h?=1, though the prediction accuracy of PRS is reduced, the general conclusions

remain the same. Besides phenotypic prediction, our research also illustrates for the
first time how and why commonly used marginal screening approaches for GWAS data
may fail in preserving the rank of genetic signals.

In summary, our investigation clears up some misconceptions on PRS, and demon-
strates that PRS is not as useful as its name suggested, and also not as powerful as the
genetics community expected for polygenic trait prediction. We hope this research will
serve as a wake up call to the genetics community in recognizing the real challenges
in analyzing and predicting complex polygenic traits. As such, for complex polygenic
traits, more devoted efforts are needed for developing better experiments and statistical
methods.

Appendix A: Proofs

In this appendix, we highlight the key steps and important intermediate results to prove
our main results in Section[2] More technical details can be found in the supplementary
file.
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Proposition A 1. Under the polygenic model and Condition , if m — oo when
n,p — oo, then

er¥ 1B
DA%l _y o) (42)
nm-og
[Bo XX Zhy + Bl X)X Z5)[20) X)Xy Bay + Z) Xy X1)Buyl 1+ op(1)
2 - p :
[n?m(p —m) + n*m(m +n)] - o}
(43)
Further if p/n? — 0, then
8L\ ZH 2oy X X1y Ba) 5 ZZoy X 5 X1y Ba
OZMm2MO2) 2 &) 2@ ()_1+0p(1)_ (44)
n*m - aﬂ
By continuous mapping theorem, we have
Ay = AR/ (o) = 1+ 0,(1) (45)
Pl +p Pl 44 P

It follows that Theorem [1]is proved for a € (0,2). Now consider the case that p/n? /4
o(1), i.e., a € [2,00]. Note that

BnZn 2o X XwBu +BhZh Ze X Xmba) (46)

_ 5(71)2(7;)2( )X XyBay + 5 Z Z(Q)X( W XyBwBay — n’m-op )
\/(n2m2p + 4n3m2) . aﬁ +nim - (by — 02’;)

. \/(n2m2p + 4n3m?2) - ag +n*m - (by — aé) +n’m- o (48)

= Op(\/(nzme + 4n3m?2) - aé +n*m - (by — Ug,)) + n’m - O'%. (49)

It follows that

2 Opl(n*m?p 4 n*m?) - o] (50)

P Inm- 0% - (1+0(1))] - [n2m(n+p) - 03 - (1+ o(1))]
n?m?p + n*m? n?+c-n® 1
= Oy i) = Ol prra) = 05) (51)

when « € [2,00]. Thus Theorem |[1|is proved for a € (0, oc].

Proposition A 2. Under the polygenic model and Condition , if m,q1,q2 — 00
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when n,p — oo, then

BnZnZmPo
B X XanZay + P Xty Xen ZanllZoy Xan X wbw + ZenXenXobol _ )
[anqg +n2q(m+n)]-of PRz
(53)
Further if [m?(q1 + ¢2)]/(n?q}) — 0, then
BIZh Zan X X 1)Bay + ﬁ XL X1\B
(1)“(1)~ 1)< (11) 2 2 (1) @) eEnTMPM) 14 0,(1). (54)
n<q1 - og
By continuous mapping theorem, we have
A2 /[”7(’%] = 14 0,(1) (55)
Prlmgy + qm? P
Note that
By 2y ZanX iy X Bay + By Z{y Zen X 2y X)) (56)
= Op[\/n2q§’ +2n%¢t(m — q1) + 20°qi(m — q1) + n2(m — q1)2q1 + n*mq] + n’q1.
(57)

Then if [m?(q1 + q2)]/(n?¢?) # 0, we have

A2 _ 00} +20%¢E (m — 1) + 2n°qa(m — 1) + n?(m — 1)’ q1 + n°mqs + ng})
v [nm - (14 0p(1))] - [(RPq1 + n*maqr + n*maz) - (14 0p(1))

]

(58)
0 [mQ(‘h +a2) +2n(m —q)g +nat, o o ma+ @) + 0l (59)
? nm?(q1 + g2) + n?*maq Plnm2(q1 + ¢2) + n?maqy
1
= Op(-) = 0p(1). (60)

Thus Theorem [2] is proved.
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5 Supplementary Material

5.1 Intermediate results

Proposition S 1. Under Condition , if m — oo when n,p — oo, then

E(3)20ZmX X m B + By 2 Ze X Xa)ba) =n'm -} (61)
Var(8(yZnZm X mX B + 8020 Zo X Xm 8) (62)
= [(n®m3 + 4n®m? 4+ n’*m?(p — m)) - ag +ntm - (by — Ué)] “(1+0(1)) (63)

(64)
E(BlyZ})Zw)Bu) = nm - o} (65)
Var(ﬁa)Za)Z(l)B(l)) = 0(n2m2 . ag) (66)

(67)
E([Bh XXy Zh) + By X)X 2020 X Xwba + Zo X X)) (68)
=n’m(n+m) - 0’% (1 +0(1)) +n*m(p—m) - 0% (69)
Var([80) Xy X020y + By X)X @ 20|20y X h X1)Ba) + Z@y Xy X Bw))

(70)
= o[n*m?(n 4 p)?- Jé] (71)

where by is the forth moment of 5.

Proposition S [I] quantifies the scale of the three terms in Ap. Particularly, for the
two variance terms ﬂa)Za)Z(l),B(l) and

B0 X X 2y + By X)X 220Xy X Ba) + Ze XX )b,

the expected values can respectively dominate the corresponding standard error for
any ratios among p, m,n. However, for the covariance term

By ZhyZao Xy Xwbay + Bl Zhy Ze X Xwba),

its standard error may or may be dominated by its expected value depending on p/n.
Following Proposition S [1} by Markov’s inequality, for any constant k& > 0, we have

T 7T Var(w) T T
p (‘5(1)2(1)Z(1)5(1) sk < nm-o? _ Var(8h) 26 Z0B) "
' nm - og - k? n?m? - ogk? ’
(72)
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and
pPof X% o XoXe Zolllo X0 Xwby + 2o XpXodol
r Qm(n —i—p) 5 B
(73)
Var([ﬁfl)X X<1>Z<1)+/3T1>X(T1>X<2)Z<T2ﬂ[Zu)X<T1>X<1>5<1>+Z<2>X(T2>X<1>5<1>])
n2m(n+p)-o2
B . B (74)

Var([B(I)XT X( ZT + 5T X X(2)Z(2)}[Z(l)X(j;)X(l)B(l) + Z(2)X(€)X(1)5(1)])
n4m2(n +p)?-ogk?

(75)
0, (76)
and
. (|/3(7;)Z£)Z<1>X(T1>X<1)5<1> By A Za X Xwby 1 > k) (77)
T an . J% o
Var (ﬁ<1 Z 1>Z(1>X<1)X<1>ﬁ<1>+5<1)z<1)Z<2>X(2>X(1)’3(1))
n?m-o

. - 5 (78)

(n2md + n?m2(p—m)) - (L 0(1)) _ p
- Wim? - o ik? = e (o) )

Thus Proposition A [I] is proved. More generally, if training and testing data have
different sample sizes, we have

Proposition S 2. Under Condition , if m — oo when n,n,,p — oo, then

E(Bh)Z0)Za X Xmba +5E‘F1>Z<T1>Z<2>X<T2>X<1>5<1>) = nn.m- o} (80)
VGT(ﬁa)Za) (1) X(1 LB 5T T T XnBay) = (81)
[(nn.m?p + 2n*n.m?* 4 2nn*m?) - 05 + ngngm (by — Jé)] (14 0(1)) (82)

(83)
E(Bl)20Z0)B)) = nam - o5 (84)
Var(BlyZ{yZw)By) = o(nim? - o3) (85)

(86)
E(I80 X)X )2l + B X X2 25120 X hX0Bo + Zoy Xy Xwbw))  (87)
=nn,m(n+m)- o 5 (1+ 0( )) +nn.m(p—m) - cr% (88)
Var([80) X1 X 20y + B0y X1 X@ 2120 X[ X Ba) + 2oy X5 XwBw))

(89)
= o[n*n’*m?(n +p)?- Ug]. (90)

By Markov’s inequality and continuous mapping theorem again,
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Proposition S 3. Under Condition , if m — oo when n,n,,p — oo, then

BlyZhyZwba)
=1 1 91
= 1) (o)
B XX + uXi X ZpllZnXo X b + ZoXeXobol
[nnz (p m) 4 nnm(n +m)] - o3 PRz
(92)
If we further have p/(nn,) — 0, then
Bl 2w X (inXwPbw + A2t ZoX e Xwbo
5 =14 0p(1) (93)
nn.m- o
and thus
A% )(——) =1+ 0p(1). 4
P/(n—i—p) +0p(1) (94)
When p/(nn,) 4 0, i.e., a € [1, 00|, note that
BiyZinZayX () XmBay + By 2y Ze X Xwba) (95)
= Op(\/nnzm% + 2n2n,m? 4 2nn2m? + n*n2m(by — o)) + nnym - o3 (96)
= Op[(n**nY*mp"? + nn.m) - o3]. (97)
It follows that
Op(nn.m?p + n’n2m?) p+nn, 1
A2 — p = O —_— ) = O - ).
P Inam - (14 0(1))] - [nnam(n +p) - (14 o(1))] p(nzp + nnz) p(nz)
(98)

The results of threshold-PRS can also be derived in a similar way. Without loss of
generality, we set a% =1 below.

Proposition S 4. Under Conditions , if m — oo, p —m — oo when n increase to
0o, for any q1,¢2 > 0, then

E(5lyZ{yZa >X(TH>X< Bay + Bly24yZ (21>X3;1)X< By) =na (99)
Var(8l 20 Zan X1y X By + B0y 20 Zen Xy X Bu) = D¢l +4n’q  (100)
+n'q(bs — 1) + 20’7 (m — q1) + 2n® cn( —q1) +n*(m — q1)’q + n*mPea] - (14 0(1))
(101)
E(VARy) = [n*qi(n +m) + n’gm] - (1 + o(1)) (102)
Var(VARy) = o([n?qi(n +m) + n’gem]?). (103)

By Markov’s inequality and continuous mapping theorem again, Proposition A [2]is
proved.
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5.2 Technical details

The following technical details are useful to prove our theoretical results. Most of
them involve in calculating the asymptotic expectation of the trace of the product of
multiple large random matrices. To our knowledge, there is no easy way to calculate
the asymptotic trace of the product of multiple general random matrices. Instead, we
use the definition of matrix trace and apply the combination theory to calculate the
total variations. The results provided below may also benefit other research questions
involving the similar calculations.

5.2.1 GWAS-PRS
First moment of covariance term

E(BlyZ 20X X Bw) (104)
= of - E[tr(Z{)Z0y X{1)X (1)) (105)

n n m m
=05 - EQO D D> Zit, Xk, Zika Xk, (106)

i=1 j—l kl—l ko=1

= O‘% Z Z Z Z5 X5) = ag -n’m (107)

i=1 j=1 k1=ko=1

(5<> 202X X 1B (108)
= o4 - Bltr(Z}, Z(Q)X(E)X( )] (109)
Z Z Z(Q)zlm ]kzX(l)]kl (l)ikl) =0 (110)
1= 1] 1k2 1k1 1
Thus
E(By 22X  Xw)B)) = of - n’m (111)

First moment of variance term I

E(/B(T ZhZmBa ) (112)

BlE(8l1Z{)Z0)Bw)|2)] = Eltr( (1)Z(1) m - 03) +0] (113)

= 0’% . E[tr(Z(l)Z Z Z = Uﬁ nm (114)
=1 j=1
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First moment of variance term I1

E(B()X (1) X <1>Z<T>Z< )XT XwyBa)) (115)
2 T
= o - Bltr(X(y X 20y ZyX ()X )] (116)
= O-% Z Z Z Z Z Z Zi/ﬂZikzXl1k1Xl1legk2Xl2j) (117)
i=1 j=1 k1=111=1ko—1la—1
n m n(n—1) n m(m—1)
=05 E Z Z Z ZaXE e X + Z Z Z Zo X Xi; (118)
i=1 ki=ko=j lLi#l2 1=1 k1=ko#j l1=l2
+ Z Z Z Xk (119)
i=1 k1=ko=j l1=l2
where ¢4 = E(X{}) < o0
T T T T
EBLXh X2 22X 2Xnbw) (121)
=05 Bltr (X<T1>X<2>Z<2> 2 Xy X)) (122)
n m p—m n p—m n
=03 B( Z Z Z @)k Z(2)cq X @)1k X 2)rq X (1)1 X (1)ri) (123)
c=1 =1 k=1 =1 g=1 r=1
= O'% -n?m(p —m) (124)
T +T T T
BB XX w2 ZeXgXwba) =0 (125)

Thus

E(ﬁa)Xa)XZTZXTX(1)5(1)) = 0?3 -n?m(n+m) - (14 0(1)) + U% -n?m(p —m)

(126)
Second moment of covariance term
BBy 2 ZayX by Xy BBy 2y Zoy X (X 1)Bay) (127)
= Bltr(8() 20y Z0yX () X )8y B <1>Z(1>X<1>X<1>5< )] (128)
= E(Z Z Z Z Z Z Z Z chquZdrthXlleiXsrijﬂqﬁiBtﬁj)

c=1d=1 i=1 j=1 k=1 =1 q=1 r=1 s=1 t=1

(129)

= [(n*m? 4+ 4n®m? 4+ n’m3) - aé +mnt - (by — 05)] (14 0(1)) (130)
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E(BlyZ{ 2@ X X0 BB 20 2@ X (X w)Bw) (131)
= Bltr(8y Z{) 2oy X X1 BBy 20y Z X (o X () By)] (132)

m p—m n m p—m n
c—ldlzlglkl

zzzi (133)

=1

Z2)ekZ(2)drZ(1)dgZ (1 )ctX(Z)lkX(Z)srX(l 1iX(1)sj B4 BiBtB5) (134)
=n*(p—m)[m® + (05 — 1) -m] - 05 = n’m*(p—m) - 05 - (1 +0(1)) (135)
and

E(B() 202X 5 X BB 20y Z2 X (X 1) By) =0 (136)

It follows that

Var(Bly 2y ZmXyXwBay + By Z{y Ze) X & X 1)Bay) (137)
= [(n*m® + 4n®*m? + n*m?*(p — m)) - Ufé +nim - (by — 05)] (14 0(1)) (138)

Second moment of variance term I

E(/B(T ZT ZwBw B2y ZwBu) = Eltr(8y 2 ZwBw By 2 ZwBw)] (139)
ZZZZXchdedecl/Bz/BJ/Bk/Bl) (140)

c—ld 1i=1 j5=1k=11=1
n m(m—1) m(m—1) m(m—1)
ED (Y XZXABBi+ Y. XaXLBIBi+ Y. XoXZpBi57 (141)
c=d i=j#k=l i=k#j=l i=l#j=k
m n(n—1) m(m-—1)

POy XA+ S (Y XAXERE > XAXEY) (142)

i=l=j=k cEd  i=l#k=j i=l=k=j
:Jé-anZ—}—nm- [2moé+n(b4—aé)+64b4—202§—b4] (143)

where by = E(}) < co. Tt follows that

Var(ﬁ(Tl)Z(TI)Z(l)ﬁ(l)) =nm- [Zmaé +n(by — oé) + caby — 20% — by] = o(n*m? - ag)
(144)
Second moment of variance term II
BBy X)Xy 2y Zoy X X0 Bu By X)Xy 2y Zoy Xy X)) (145)
Eltr(80) Xy X 1) 2y >Z<1>X< OXWBmBL XX 2 ZmXHXwBw)l (146)

:E(zn: i;ii;ii i; (147)

c=1d=1h=1k=1I= 1 t=1 u=1w=1a=1 b=

ch:quZdtanXlk:th,quXriXutXustawa/Bhﬁi/Bs/Bw (148)
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To have non-zero means, we need the possible combinations of the following:
e cither Z2Z2 or Z1
e one of X2X2X2X? X2X2X! X'1X! XOX?, and X3
e cither 52432 or B2.

After tedious calculations, we have

T T T T T T T T
EBuH)X X2 ZmXnXmBn by Xy XnZnZnXnXaba) (149)
= 0’% ntm2(n +m)?] - (1 +o(1)) (150)
Next

T T T T T
E(B{)X (yX@) 2 2@ Xy X0)Bun By Xy X2 Zo) X X 1)B)) (151)

T T
= E[tr(By X (1) X2 Z{5 22X X0)Bm B XX @) 2

/—\

2)Z(2) (E)X(l)ﬁ(l))] (152)

353535353 3535 SIS IH DS (153)

c=1d=1h=1 k=1 [=1 i=1 g=1 r=1 s=1 t=1 u=1w=1 a=1 b=1

m n

Z2)ekZ(2)dgZ (2)dt 2 (2)caX 2k X (2)rg X (2)ut X (2)ba X (1)1h X (1)ri X (1)us X (1)bw BnBi Bs Bw)

(154)
=0} - [n*'m*(p — m)*] - (1 + o(1)) (155)
and

T T T T T T T T
EB1LX1HX1) 212X 2X0bn B8 XnXn) 21 ZeX2X b)) (156)
= Eltr(80) X)X 1) Z2{1 2@ X o X0 B By XX W 20 Zoy X5y X 1)Bm)] (157)

YYYY (158)

Z) ek Z(1)dgZ(2)dt Z (1)eaX 21k X 2)ut X (1)1h X (1)rg X (1)ri X (1)us X (1)baX (1)bw BrBiBs Buw)

(159)
= Ué -n(p —m)[(m3 = 3m? + 2m)(n% 4+ 2n) + (m? — m)(n> — n? + 2(cy — 1)n+

(160)
An? + 4(cy — 1)n + byn?) + bymn? (161)
= aé . [n3m2(p —m)(m+n)]-(14+0(1)) (162)
Similarly,

T T T T T T T T

EBnXnmXmZmZmXmXmbubuXnXe e ZeXaXnbu) (163)
= o[aé -n*m?(n + p)?] (164)
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Also

BBy X)X 20 20X hXwBwBLX X1 Zh) 2@ X5 X1)Ba) (165)
= BB X)X 20 Z0)X )X wBm B XX 2oy Ze X X 1)B) (166)
~0 (167)

It follows that

Var([80) X0 X 20 + B0 X0 X 20120 X5 X0 Ba) + 2oy X (X 1)Bw))
(168)

= o[aé -n*m?(n + p)?] (169)

The results of different sample sizes can be similarly derived and are ignored. Without
loss of generality, we set O'% = 1 for simplicity in later steps.

5.2.2 Threshold-PRS

First moment of covariance term

Cr = 5<Tl>Z<T1>[Z<n>X<Tn>X< By + Z<21>XT21 XwBw) (170)
- BT T 11) al)X( Bay + 5(1 (21)X(21) @B (171)
= 5 [ 11)X(11 XanBay + Z(11)X(11) 12)B2) + Z(21)X(T21)X(1)5(1)]

(172)
= B Zan Zan Xy XanBan + B Zin Zan Xy X a2)faz (173)
+ 5(12) (12)Z(11) (11)X(11)5(11) + 52[12)Z(7;2)Z(11)X(7£1)X(12)ﬁ(12) (174)
+ 8020 Zen X oy XmBa) (175)
=C11+Ci2+Ci3+Cuu+Cis (176)
Thus E(Ch) = E(Cn1) = E(8(1,) 2}y Zan X1y XanBan) = n’a (177)
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First moment of variance term I1

VAR, = (178)
By X (X anZh) + Bl Xl Xan 2l + Bl Xy XenZin + Bl X2 X e 2]
(179)
[Z(n)X(TH)X(n)B(n) + Z(11)X(7£1)X(12)5(12) + Z(21)X(T21)X(11)5(11) + Z(21)X(€1)X(12)5(12)]
(180)
= Bt Xl Xan Z{n Zan Xy Xan San + Bl Xy Xan 2y Zan X Xa2) faz)
(181)
+ Bhn X Xan 2l Zen X anXanBay + Bal)Xal)X(H)Zal)Z(21)X(T21)X(12) Bz)
(182)
+ 5(712)X(T12)X(11)Z(TH)Z(H)X&)X(H)B(H) + 5(112)X(7£2)X(11)Z(7i1)Z(n)X(:ql)X(n)ﬂ(u)
(183)
+ BSQ)X(I;Q)X(H)Z(jil)Z(Ql)X(gl)X(ll)ﬁ(ll) + ﬁaQ)XEQ)X(H)Z(YiI)Z(QI)X(EI)X(H)ﬁ(lQ)
(184)
+ 5(711)X(7£1)X(21)Z(T21)Z(11)X(:€1)X(11)5(11) + 5(711)X(7£1)X(21)Z(€1)Z(n)X(Tn)X(n)ﬂ(u)
(185)
T 5(711)X(7£1)X(21)Z(gl)Z(m)X(:gl)X(ll)ﬁ(ll) + 5(711)X(7£1)X(21)Z(T21)Z(21)X(€1)X(12)5(12)
(186)
+ 552)X(7£2)X(21)Z(gl)Z(n)X(:ql)X(n)ﬂ(n) + ﬂag)X(jig)X(m)Z(Tgl)Z(11)X(T11)X(12)5(12)
(187)
+ 5(712)X(7£2)X(21)Z(gl)Z(m)X(gUX(n)ﬂ(n) + Bag)X(jiz)X(m)Z(Tgl)Z(21)X(T21)X(12)5(12)
(188)
=a’ 4 ab + ac+ ad + ba + b* + be + bd + ca + cb + ¢ + cd + da + db + de + d?
(189)
E(VARy) (190)
= E(a® + ab+ ac + ad + ba + b* 4 be + bd + ca + ¢b + ¢ + ¢d + da + db + de + d?)
(191)
=B+ + 2+ d?) (192)
=n*a(n+q)]- (1+01) +n*(m —q)q +n’qige + n*(m — q1)ge (193)
= [P’ (n+m+ q) +n’ga(m — q1)] - (1 + o(1)) (194)
= [P*qi(n+m) + n’qem] - (1+ o(1)) (195)
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Second moment of covariance term

E(C1C1) = E[(C11 + Cia + Ci3+ C1a + C15)(C11 + Cr2 + Ci3 + Cra + Ch5)] (196)

= E[C}, + C}, + Cfs + C}y + CT] (197)
E(C}) = E(B0 2l Zan Xy X anBan By Zhn Zan X iy XanBay) (198)
=n'q} +[(n*q} + 4n’q}) + n'qu(bs — 1)] - (1 + o(1)) (199)
E(C},) = BBl 2l Zan Xy X a2 Ba2 80 20 Zan X 1y Xaz Baz) (200)

n n m-—qim—qi qi n q1 qi n qi

oI IS I (201)

c=1d=1 =1 j=1 k=11=1 qg=1r=1s=1t=1

ZanekZa1)dgZ 11)dr Z(11) et X (101X (11)sr X (12)1i X (12)s5 811)gB1)tB12)iB12)5) (202)
= [*qi(m —q1) + n’qi(m —q)] - (1+ o(1)) (203)
Similarly

E(C13) = E(Bli2 29 Zan Xy X anBan ey Zhy Zan X iy XanBay) (204)
= gt (m—q) +n’q(m—q)] - (1+0(1)) = E(C},) (205)
E(C}y) = E(B12) 2019 200X {11y X 12)B12) 812 Z(2 Zan X 1y X a2 Ba2) (206)
=n? (m — q1)2q1 (207)

B(C5) = E(B(h Z() Zen X an X BBy 2y Zen X en XnBa) = n'mPe - (208)
Thus

E(C1Cy) = E[C; + Cfy + Ci3 + C3y + CF] (209)
=nt@ + [(n?@ + 43¢ + ntqr(bs — 1] - (1 + 0(1)) (210)
+2- gt (m —q1) + n’q(m —q1)] - (1+ o(1)) (211)

(212)

+n*(m—q1)*q + n’mq
It follows that

Var(Cy) = [nzq% + 4n3q% + n4q1(b4 —-1)+ 2n2q%(m —q)+ (213)
2n°qi(m — q1) + n°(m — q1)’q + n*m?qe] - (14 0(1)) (214)
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Second moment of variance term II

E(VARyVAR,) (215)
= E[(a®> 4 ab + ac + ad + ba + b* + be + bd + ca + b + ¢ + cd + da + db + dc + d*)?]
(216)
= E[(a* + b* + ¢* + d* + 20?0 + 2a2¢% 4 2d2d* + 20°c2 + 20%d2 + 2¢2d?) (217)
= E(a*) + E(bY) + E(c*) + E(d*) + E(2ab? + 2a°¢? + 2a%d? + 262 + 20°d? + 26%d?)
(218)

= [P*q(n+ q)]” + o(n*qi + n°¢ +n°¢}) + n*(m — q))qu)” - (1 + o(1)) (219)
+ (n*qq2)? - (1+0(1) + [n*(m — q1)ga]” - (14 o(1)) (220)
+ 0[(n2q1 (n+m)+ n2q2m)2] (221)

It follows that

Var(VARy) = o([n?qi(n +m) + n’gem]?) (222)

5.3 Supplementary figures
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SNP data are independently sampled from

across different m/p ratios.

{0,1,2}. We set p

100000, n=1000 in both training and testing data.
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Supplementary Fig. 3: Prediction accuracy (Ap) of threshold-PRS
across different m/p ratios. SNP data are independently sampled from
{0,1,2}. We set p=100000, n=10000 in training data and n = 1000 in
testing data.

33


https://doi.org/10.1101/447797
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/447797; this version posted October 19, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

A: m=100 B: m=1000
Thresholding—PRS in oracle case Thresholding—PRS in oracle case
1.0 — 1.0 -
o i oo aiga T IR R
FEEEFEFFLL.
o-"'_l_
0.8 0%..,.2_ 0.8 *e .
C JI_“IT C ???-ﬁ“’-;} .................
8 0.6 H EE 8 0.6 | e ?-é +
C_U JI.I C_G J-J_--l
9_) OJI_ 9_) J."I'
O 04 8 O 04 J.m
o O ;ﬁ
0.2 0.2 J_'TT
|-!E
0.0 0.0 -
11T 17 17 1T 17T 17T 17T 17T 17T 17T 7T 17T 17T T 11T 17 17 1T 17T 17T 17T 17T 17T 17T 7T 17T 17T T
H O MmN W NA AT ON® O WY MmN O NG YW ON®
oooooogggggiiiii oooooogggggiiiii
Cutoffs & = = = < = Cutoffs © = = = < =
C: m=10000 D: m=50000
Thresholding—PRS in oracle case Thresholding—PRS in oracle case
1.0 — 1.0
0.8 0.8 -
5 5
EO.B— EO.B—
[¢)) [¢)]
S S
S 04 - fTeo g S 041
O EEEi-é+T ............... O .
0.2—&&**;‘;*524.,_ 0.2—...1-?,.?,.‘__‘3_20
1 4 g_-*_l_ EEE--E*é;T R
+ T Loy TT L
0.0 o*,?“ 00 7 &‘J’-‘J;'*T*“EE
11T 17 17 1T 17T 17T 17 17T 17 1T T 17T T T 1117 11 1T 17T 17T 17T T 17 17T 1T T T
oooooogggggiiiii oooooogggggiiiii
Cutoffs © = = = <= Cutoffs & = = = < =

Supplementary Fig. 4: Prediction accuracy (Ap) of threshold-PRS
across different m/p ratios when the m causal SNPs are known and are
only considered as candidates in constructing PRS. SNP data are indepen-
dently sampled from {0, 1,2}. We set p=100000, n=1000 in both training

and testing data.
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Supplementary Fig. 5: Prediction accuracy (Ap) of threshold-PRS
across different m/p ratios when the m causal SNPs are known and are
only considered as candidates in constructing PRS. SNP data are inde-
pendently sampled from {0, 1,2}. We set p=100000, n=10000 in training

data and n = 1000 in testing data.
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across different m/p ratios when population substructure exists in the

Supplementary Fig. 6

SNP data. SNP data are independently sampled from {0,1,2}. We set

p=100000, n=1000 in both training and testing data.
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Supplementary Fig. 7: Prediction accuracy (Ap) of threshold-PRS
across different m/p ratios when population substructure exists in the
SNP data. SNP data are independently sampled from {0,1,2}. We set
p=100000, n=10000 in training data, and n = 1000 in testing data.
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Supplementary Fig. 8: Prediction accuracy (Ap) of threshold-PRS
across different m/p ratios when the effects of causal SNPs are not i.i.d.
Normal. SNP data are independently sampled from {0,1,2}. We set
p=100000, n=1000 in both training and testing data.
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Supplementary Fig. 9: Prediction accuracy (Ap) of threshold-PRS
across different m/p ratios when the effects of causal SNPs are not i.i.d.
Normal. SNP data are independently sampled from {0,1,2}. We set
p=100000, n=10000 in training data, and n = 1000 in testing data.
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Supplementary Fig. 10: Prediction accuracy (Ap) of threshold-PRS
across different m/p ratios when the heritability h*=0.5. SNP data are
independently sampled from {0, 1,2}. We set p=100000, n=1000 in both
training and testing data.
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