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Abstract

Increase in influenza A virus host range throughout its evolution has given rise to major 
concerns worldwide. Although the increasing host range mechanism of the virus is largely 
unknown; persistent genetic mutations have been blamed as a key factor in the re-organization 
of the host response and the host range. To uncover the underlying core bases of the two 
important antigenic proteins of influenza virus (HA and NA), functional data mining and image 
processing analysis of over 8000 protein sequences of different HA and NA subtypes were 
performed. Each amino acid sequence in HA or NA proteins sat as a feature or variable and 
two polynomial datasets were created and subjected into conventional prediction models. 
The average accuracies of these predictive models for HA subtype classifications ranged from 
38.9% for SVM to 87.2% for Decision Tree models. NA subtype classification with 
conventional prediction models varied from 81.3% to 99.87% for SVM and KNN models, 
respectively. Then amino acid sequence datasets were converted to binary images; subtypes 
feature sat as target variable, and target label determined by image processing convolution 
neural network. The performances of Image processing models (convolutional neural network) 
on binary images for both HA and NA datasets reached to 100%; and the application of Gabor2 
filter decreased the time for the predicting model to reach the best performance for HA subtype; 
while it increased the epochs time for NA subtype classification.
For the first time ever, converting influenza virus’ HA and NA amino acid sequences into the 
binary image datasets and their classifications by convolution neural network increased the 
prediction accuracies and performances to the highest possible point. The finding of this paper 
paves new avenues for virus classification based on antigenic HA and NA amino acid profiles, 
and easily classifying and predicting the possible future emerging strains of pandemic 
influenza.

Introduction:

The ability of influenza virus to increase its host range is a major concern worldwide; resulting 

in human infection with high mortality rate and widespread pandemic fear with higher 

morbidity and mortality rates [1]. The last influenza outbreak with a novel avian origin 

influenza A (H7N9), caused up to 400 000 deaths globally in the first year, and has increased 

concerns over its pandemic potentials in near future [2].  The emergence of new broad host 

range of influenza strain with lack of previous host immunity and human to human 
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transmission ability may result in the real pandemic outbreak with millions of fatalities. High 

frequency of genetic reassortment and antigenic drift, availability of hosting environments and 

circulating different subtypes of influenza virus for genetic alteration provide the virus suitable 

setting to generate new highly infectious strains [3]. 

Based on two surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA), 16 HA 

subtypes and 9 NA subtypes of influenza virus have been identified. Less than thirty percent 

of HA and NA amino acids are conserved among all virus subtypes and HA and NA segments 

are extremely variable in genetic sequences [4]. Its surface HA proteins are the key part in the 

specificity of influenza virus infection, while during viral releases from host cells, the cleavage 

of linkage between terminal sialic acid and adjacent galactose is done by NA. Influenza virus 

A strategy to increase its host range goes through alteration of viral surface proteins. it has been 

shown that a few amino acid substitutions enabled the virus to transmit via respiratory droplet 

between ferret. Or single amino acid substitution converted nonlethal strain of influenza to a 

lethal virus in human; showing the importance of amino acid profiling of surface influenza 

proteins to monitor the host specificity [5]. 

Development of algorithms that allow computers to extract the patterns among the data 

variables is a subfield of artificial intelligence. Machine learning goes through a process of 

inference and fitting the best model or learning algorithm from examples.  The approaches have 

been widely used in many applications (i.e. pattern recognition, stock market prediction, text 

and language processing and development of search engines) [6-10]. Multiple sequence 

alignment, protein structure prediction, gene expression analysis, gene ontology prediction, and 

molecular classification are other areas of prediction models. Machine learning techniques 

have achieved great success in biological classifications and evolutionary pattern recognition, 

including influenza virus host and subtype identification [11, 12]. 

Deep learning is a branch of machine learning discussion and a set of algorithms that try to 

model high-level abstract concepts using learning at different levels and layers [13, 14].  The 

depth, the number of node layers process data to recognize the pattern, is the most distinguished 

feature of deep learning from conventional neural networks. Training nodes on a distinct set of 

features based on the output of the previous are the most important characteristic of deep neural 

networks [15, 16].  

Historically, image processing and face recognition tasks have been done successfully by deep 

neural networks algorithms [17]. These models can be trained to detect objects in pictures far 

more better than human do [18]. The most common used deep learning network architecture 

for image analysis is the convolutional neural network (CNN). Pattern matching (convolution) 

and aggregation (pooling) operations are the basic cores of CNN. Scanning the image by a 

given pattern and calculating of a match for every position is done at the pixel level. The 

presence of the pattern in a region determines by pooling (max-pooling), and the region 
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information aggregates into a single number [19, 20]. Most network architectures used in image 

processing and image analysis have been done by convolution and pooling operations [21].

In this research, for the first time, two important influenza virus A subtypes’ protein sequences 

(HA and NA) converted into binary images and their subtypes were predicted by developing, 

training and validating image processing convolution neural network algorithms; and finally 

their performances compared with the conventional predictive models.  

Material and Methods

The following steps were undertaken as shown in Figure 1.: 

(i) constructing polynomial datasets of HA & NA amino acids’ sequences; 

(ii) constructing a binary image datasets of HA & NA amino acids’ sequences;

(iii) training and testing conventional predictive models on polynomial datasets;

(iv) developing, training and validating the convolution neural network (CNN) to 

predict the virus subtypes based on images of protein sequences

(v) comparing the predictive performances of CNN with conventional predictive 

models 

Data architecture and datasets

Sequences of five hemagglutinin (HA) proteins (H1, H3, H4, H5, H9) and four neuraminidase 

(NA) proteins (N1, N2, N6, and N8) with at least 500 samples in each group extracted from 

UniProt Protein database (https://www.uniprot.org). The total number of protein sequences for 

each influenza virus A subtype was 4000 examples. The following datasets generated for each 

virus subtype:

1. HA Polynomial Dataset (HAPD): Each amino acid position converted to one feature 

or variable; as the longest HA protein sequence made of 576 amino acids, therefore, 

576 features (or column) for each sample created. This dataset contained a matrix of 

4000 protein samples and 576 amino acid position as variables.

2. NA Polynomial Dataset (NAPD): The longest NA protein sequence made of 475 

amino acids, a polynomial dataset of 4000 rows of NA protein sequences and 475 

column of each amino acid variables or features created.

3. HA Binary Image Dataset (HABID): Regarding the total numbers of amino acids of 

20, to each amino acid letter a digit from 1 to 20 assigned (See Table 1.). The 

assignment based on SeqInt = aa2int(SeqChar) function which converts sequence 

character of single-letter codes of an amino acid to an integer; based on Table 1 values.

Then numeric data of HA sequences converted to the binary image; composed of 

nineteen 0 and 1. For example, we assigned number 2 to amino acid Arginine (R); 

therefore its binary numbers would be 01000000000000000000. The final created 

image made of 20 * 576 binary matrix. 
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4. NA Binary Image Dataset (NABID): Again, to each amino acid sequence of NA 

protein a digit between 1 and 20 assigned (as explained above). Each digit converted to 

a binary image; 1 assigned at the position with a number and for the rest of 19 more 

spaces, nineteen 0 assigned. The final image dataset made of 20 * 475 binary matrix.

Conventional Machine Learning Predictive Models 

The polynomial datasets (HAPD and NAPD) imported into MATLAB (R2018b, 9.4.0.813654, 

MathWorks, 1 Apple Hill Drive Natick, MA, USA); the type of HA (H1, H3, H4, H5 and H9 

classes) or NA (N1, N2, N6 and N8 classes) sat as target or label variable. The following 

conventional classification learner models applied on both datasets: Decision Tree (Fine Tree, 

Medium Tree, Coarse Tree), Discriminant Linear analysis, Support Vector Machine (SVM: 

Linear, Quadratic, Cubic, Cubic, Fine Gaussian, Medium Gaussian, Coarse Gaussian), Nearest 

Neighborhood (KNN: Fine KNN, Medium KNN, Coarse KNN, Weighted KNN) and Ensemble 

(Boosted Tree, Bagged Trees, Subspace KNN, RUSBoosted Trees) classifiers. 

To make the results comparable, no cross-validation approach selected; data divided into 90% 

and 10% parts and each model trained on nine parts and validated (tested) on the tenth part. 

The performance or the accuracy of each model in predicting the right class of HA or NA 

subtypes computed.

Image Processing Convolution Neural Network (CNN)

A CNN made of three major layers: convolution, pooling, and fully connected layers; each 

layer does a special task. There are two stages for training in CNN; feed-forward and back-

propagation. In the first stage, the image fed into the network; This action is nothing but a 

multiplication of the point between the input image matrix and the filter matrix in each 

convolution layer. The layer searches for high-level features extracted from raw data; looking 

for meaningful objects and; no decision is being made at this stage. Flatting these features at 

the end of the network and connecting them to two fully-connected layers is usually a cheap 

computational load method for learning the nonlinear components of these features. The 

dimensions of the weight matrix to produce the number of neurons required in the all-connected 

layer are equal to the product of multiplying the number of these neurons in the number of 

neurons in their previous layer. The RELU conversion function is used to zero the negative 

values of the resulting matrix. The integration layer is the layers that are placed after the 

convolutional layer and merely reduce the size of the data. There are various mechanisms for 

it, most notably Max Pooling. In this mechanism, the windows on the resulting matrix are 

applied to the previous step and moves with a certain step. Its task is to place the maximal 

numbers in the window instead of the numbers. The Softmax layer takes the output of the 

previous layer and converts it into the probability distribution of the classes. The output of the 

Softmax function is a number between 0 and 1, and the sum of these numbers is one. Then the 

network output is calculated. Here, for the purpose of setting network parameters, i.e., the 
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values of convolutional layer filters and weight matrices of fully connected layers, or in other 

words, the network training, the output is used to calculate the network error rate. To do this, 

the network compared output using an error function with the correct response, and the error 

rate is calculated. The next step is based on the calculated error rate of the backpropagation 

stage. In this step, the gradient of each parameter is calculated according to the law of the chain 

rule, and all parameters are changed according to the effect on the error generated in the 

network. After the parameters are updated, the next phase of the feed-forward starts. After 

completing the correct number of these steps, the network training ends.

Two binary image datasets of HA and NA imported into MATLAB (R2018b, 9.4.0.813654, 

MathWorks, 1 Apple Hill Drive Natick, MA, USA); 90% of data in each dataset sat as training 

set and the last 10% as testing or validation set. To find the best algorithm, various convolution 

neural networks’ architectures were examined. To extract the meaningful features, the first 

layer filter sat as  10 x 100. RELU function used to remove negative figures. To reduce image 

dimensions, 5 x 50 windowing filter applied just once. The second convolution layer sat as a 

smaller layer of 4 x 80. The first layer of the network had 100 neurons while the second fully 

connected layer made of just 5 neurons; based on 5 or 4 classes of HA or NA influenza viruses’ 

subtypes, respectively. For probability distribution and network output class presentation, 

Softmax and classification layers were used. Figure 1 shows the convolution network 

architecture and layers’ architecture. 

To enhance the classification accuracy for each class; GABOR2 filter is applied with 90-

degree angles on horizontal images at the preprocessing stage on the binary image.

Results
Prediction Model

Conventional machine based predictive models were trained and validated on polynomial 

protein sequences of influenza virus A subtypes (HA and NA) and compared with the same 

dataset when it converted into a binary image dataset and analyzed by the image processing 

predictive model (convolutional neural network - CNN). No cross-validation method selected 

for CNN, and to make the results comparable, no cross-validation methods were also chosen 

for the conventional predictive models (Decision Tree - Fine Tree, Medium Tree, Coarse Tree), 

Discriminant Linear analysis, Support Vector Machine (SVM: Linear, Quadratic, Cubic, Fine 

Gaussian, Medium Gaussian, Coarse Gaussian), Nearest Neighborhood (KNN: Fine KNN, 

Medium KNN, Coarse KNN, Weighted KNN) and Ensemble (Boosted Tree, Bagged Trees, 

Subspace KNN, RUSBoosted Trees classifiers). 

Conventional Predictive Models

1. HA Polynomial Dataset (HAPD): The best average accuracy in predicting the right 

class of HA subtype gained with Decision Tree (87%) prediction model; followed by 

Ensemble and KNN models. The lowest accuracy gained by SVM prediction models..
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2. NA Polynomial Dataset (NAPD): The lowest average performance gained by SVM 

(81.3%), while the performance of Ensemble models were around 90%. The best 

prediction of 99.8% gained by KNN models. 

3. HA Binary Image Dataset (HABID): As seen in Figure 2, the performances of CNN 

model in predicting the five classes of HA proteins based on their binary image dataset 

were outstanding (100%). All 10% validation test samples were exactly predicted in 

their right class and nothing left out. When Gabor2 filter added to the prediction 

procedure, the performance did not change but the model reached the highest possible 

accuracy in a shorter time (epoch 5 compared to epoch 12) (Figure 3).

4. NA Binary Image Dataset (NABID): The performance of image processing model in 

classifying NA protein classes of influenza virus A again reached the top possible figure 

of 100% in just 3 epochs. When Gabor2 filter applied, the model reached to the top 

accuracy in 7 epochs (Figure 4.)
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Discussion

Influenza A pandemics of the last century (H1N1, H2N2, and H3N2), avian H5N1 and recent 

H7N9 have been infecting the human with high mortality rates [22]. Multiple gene reassortant of 

viruses from various sources (such as swine, avian and even human populations) have been blamed 

for the H1N1 pandemic in 2009 and novel reassortant of H7N9 in 2013; expecting more pandemics 

to happen in near future due to high reassortment capacity of the virus [23]. Therefore 

understanding the biological bases of influenza virus A evolution and subtype differentiation is 

critical. The virus undergoes rapid evolution in the antigenic regions when subjected to host 

immune response and crosses the host species barrier. Altering rapid short amino acid patterns 

enable the virus to avoid time-consuming major changes in proteins, and so far, the strategy of 

rapid structural amino acid alteration has worked well for the virus [24, 25].

In line with our previous results [12, 26], to find the most important features which can be used to 

distinguish between the virus subtypes, attribute weighting models applied on the polynomial 

dataset. The results showed that, for HA subtypes, two positions (251 and 541) were the most 

important positions weighed the highest possible weight higher than 0.9 by nine models. Amino 

acids’ positions of 185, 248, 317 and 447 were the most important features in distinguishing 

between four classes of influenza virus A subtypes based on NA protein sequences. As each 

attribute weighting model uses a specific statistical pattern to find the most important features, 

when any features appointed by ninety percent of the models as important, it means that those 

features are highly distinctive among virus subtypes. 

As we previously showed, influenza virus can acquire additional host specificity of another 

subtype just by a small change in amino acid sequence; increasing the chance of host range and 

survival by less energy consumption and minimum change in protein sequences [22]. 

Recently, there has been a lot of interest in image processing techniques and they have been widely 

used in many different fields. Face recognition and license plate detection are two of the widest 

areas of research in the application of CNN [27, 28]. Medical image pattern recognition is another 

attractive field of research for image processing and machine-based prediction neural networks 

[29]. CNN architecture and image processing with texture feature parameters have been used in 

the classification of masses and normal tissue on mammograms with 90% accuracy [30, 31]. 

Detection of lung nodules, classification of radiograms and bone fractures has attracted many 

research attractions [32, 33]. 
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This is the first successful attempt in modeling and prediction of influenza virus A subtypes based 

on image processing algorithms. Highly accurate models developed, trained and validated by 

analyzing images made of amino acid sequences of antigenic proteins of the influenza virus. The 

models were able to convert the raw protein sequences into images in a few short seconds and then 

apply the image processing techniques to identify the prominent key differences between virus 

subtypes’ images. 

The performances or accuracies of conventional predictive models (as we named in this paper) 

have been compared with newly developed image processing CNN algorithms of protein 

sequences. For the first time, we created an image based on amino acids sequences, the binary 

image then fed into the CNN algorithms to compute the relationship between the image and the 

influenza A virus subtype. Instead of creating polynomial datasets, quickly each sequence 

converted into an image and the CNN model employed to process the images, learn the 

relationships, then tested and validated. The outcome was fascinating, a machine learning tool 

based on image processing capabilities whit nearly hundred percent precision in classifying 

influenza A virus subtypes. 

The performances of conventional predictive models varied, from 35% to 99% The findings are in 

line with previously published works. Although we were able to reach 99% accuracy with Naïve 

Bayes model in predicting the HA subtype [22], that dataset created based on thousands of physic-

o-chemical features of proteins, not protein sequence. But here, raw amino acid sequences fed into 

the model; now, the developed algorithm can be directly used to predict the type of HA or NA 

proteins with the highest possible accuracy. 

Although the number of amino acid sequences in HA or NA subtype classes in the prepared 

datasets was not equal (the number of some HA or NA classes were twice the others), the model 

did a great job in predicting the right virus subtype class. Therefore, the developed algorithm can 

be used to predict influenza virus A subtypes with any number of protein sequences; making the 

model suitable for asymmetric datasets. 

This research approach will serve as a fundamental base for future studies on clustering influenza 

virus A based on raw protein or genetic sequences of other virus segments (such as M2E), or even 

the whole virus genome or proteome. Applying this approach to other viruses can facilitate 

classification based on genomic or proteomic sequences. The novel methods developed in this 

research can be embedded in software or even web-based applications to predict the type of newly 
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emerged influenza virus based on sequences. Combinations of this research results with future 

studies on antigen and antibody interaction measurements by ELISA or Western Blot can result in 

vaccine breakdown and developing new efficient vaccines based on genomic and proteomic 

sequences. In addition, developed models can be used in future investigations on other influenza 

virus amino acids compositions (such as M2E) and their possible roles in viral antigenicity. The 

findings clearly suggest the viral amino acid profiles of the influenza virus as potential features to 

monitor host specificity [34].

Study of the relationship between protein sequence profiles and disease states plays an important 

role in clinical and biological applications [35]. A deep learning algorithm can be the most suitable 

choice of predicting the disease status based on genomic or proteomic data. This method extracts 

the feature in a hierarchy of layers through nonlinear functions. The input of each layer is the 

output of the previous layer, and its training can be either observer or non-observer. In fact, the 

single layer of the hidden layer in the neural network is replaced with a large number (deep) of the 

layer. Convulsion neural networks are one of the most important learning methods in which several 

layers are trained in a powerful way. This method is very efficient and is one of the most commonly 

used methods in various computer vision applications [36].

Conclusion

Computer-based predictive models have opened new vistas in medical analyses and diagnostic 

tests and their implications in these fields are growing rapidly. In this research, we developed and 

applied image recognition convolution deep learning neural network algorithms to distinguish 

between five different HA and four NA subtypes of influenza virus A.

For the first time, we converted and transformed protein sequences into images and by optimizing 

the image processing filters, and we were able to classify the virus subtypes with 100% accuracies. 

Comparing the results of the developed method with the conventional predictive models showed 

this approach was more efficient, accurate and less time-consuming.

As this method can be used to quickly convert and compare whole genome and proteome 

sequences of healthy and unhealthy people into images, it really opens new analytical approaches. 

The method  can be used easily to compare any genome, transcriptome or proteome of organisms 

at the different situations,  
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Table 1. Conversion table used for assigning a digit to each amino acid letter.

Amino Acid Code Integer

Alanine A 1
Arginine R 2
Asparagine N 3
Aspartic acid 
(Aspartate)

D 4

Cysteine C 5
Glutamine Q 6
Glutamic acid E 7
Glycine G 8
Histidine H 9
Isoleucine I 10
Leucine L 11
Lysine K 12
Methionine M 13
Phenylalanine F 14
Proline P 15
Serine S 16
Threonine T 17
Tryptophan W 18
Tyrosine Y 19
Valine V 20
Unknown character ? 0
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C
Figure 1. Overview of CNN network topology (A) and various steps taken to convert 

protein sequences into a binary image and applying Gabor filter to find the right 
subtype classes (B); the arrangement of the layers in the CNN has been presented in 

part (C).
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Figure 2. Confusion Matrix of CNN predictive models ran on binary image dataset of HA 

subtype protein sequences without Gabor2 filter.
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Figure 3. The percentage of accuracies of various prediction models (conventional and CNN) in 

predicting the right class of HA (H1 - H4).
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Figure 4. The percentage of accuracies of various prediction models (conventional and CNN) in 

predicting the right class of NA (N1 - N4).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 19, 2018. ; https://doi.org/10.1101/448159doi: bioRxiv preprint 

https://doi.org/10.1101/448159
http://creativecommons.org/licenses/by/4.0/

