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Abstract 	15	

Magnetoreception, the perception of the geomagnetic field, is a sensory modality well-16	
established across all major groups of vertebrates and some invertebrates, but its presence in 17	
humans has been tested rarely, yielding inconclusive results.  We report here a strong, specific 18	
human brain response to ecologically-relevant rotations of Earth-strength magnetic fields. 19	
Following geomagnetic stimulation, a drop in amplitude of EEG alpha oscillations (8-13 Hz) 20	
occurred in a repeatable manner. Termed alpha event-related desynchronization (alpha-ERD), 21	
such a response is associated with sensory and cognitive processing of external stimuli. 22	
Biophysical tests showed that the neural response was sensitive to the dynamic components and 23	
axial alignment of the field but also to the static components and polarity of the field. This 24	
pattern of results implicates ferromagnetism as the biophysical basis for the sensory transduction 25	
and provides a basis to start the behavioral exploration of human magnetoreception.	26	
 27	

Introduction 28	

Magnetoreception is a well-known sensory modality in bacteria (Frankel & Blakemore, 29	

1980), protozoans (Bazylinski, Schlezinger, Howes, Frankel, & Epstein, 2000) and a variety of 30	

animals (Johnsen & Lohmann, 2008; Walker, Dennis, & Kirschvink, 2002; R. Wiltschko & W. 31	

Wiltschko, 1995), but whether humans have this ancient sensory system has never been  32	

conclusively established.  Behavioral results suggesting that geomagnetic fields influence human 33	

orientation during displacement experiments (Baker, 1980, 1982, 1987) were not replicated 34	

(Able & Gergits, 1985; Gould & Able, 1981; Westby & Partridge, 1986). Attempts to detect 35	

human brain responses using electroencephalography (EEG) were limited by computational 36	
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methods of the time (Sastre, Graham, Cook, Gerkovich, & Gailey, 2002). Twenty to thirty years 37	

after these previous flurries of research, the question of human magnetoreception remains 38	

unanswered. 39	

In the meantime, there have been major advances in our understanding of animal 40	

geomagnetic sensory systems.  An ever-expanding list of experiments on magnetically-sensitive 41	

organisms has revealed physiologically-relevant stimuli as well as environmental factors that 42	

may interfere with magnetosensory processing (Lohmann, Cain, Dodge, & Lohmann, 2001; 43	

Walker et al., 2002; R. Wiltschko & W. Wiltschko, 1995).  Animal findings provide a potential 44	

feature space for exploring human magnetoreception – the physical parameters and coordinate 45	

frames to be manipulated in human testing (J. Kirschvink, Padmanabha, Boyce, & Oglesby, 46	

1997; W. Wiltschko, 1972).  In animals, geomagnetic navigation is thought to involve both a 47	

compass and map response (Kramer, 1953).  The compass response simply uses the geomagnetic 48	

field as an indicator to orient the animal relative to the local magnetic north/south direction 49	

(Lohmann et al., 2001; R. Wiltschko & W. Wiltschko, 1995).  The magnetic map is a more 50	

complex response involving various components of field intensity and direction; direction is 51	

further subdivided into inclination (vertical angle from the horizontal plane; the North-seeking 52	

vector of the geomagnetic field dips downwards in the Northern Hemisphere) and declination 53	

(clockwise angle of the horizontal component from Geographic North, as in a man-made 54	

compass).  Notably, magnetosensory responses tend to shut down altogether in the presence of 55	

anomalies (e.g. sunspot activity or local geomagnetic irregularities) that cause the local magnetic 56	

field to deviate significantly from typical ambient values (Martin & Lindauer, 1977; W. 57	

Wiltschko, 1972), an adaptation that is thought to guard against navigational errors.  These 58	

results indicate that geomagnetic cues are subject to complex neural processing, as in most other 59	

sensory systems.  60	

 Physiological studies have flagged the ophthalmic branch of the trigeminal system (and 61	

equivalents) in fish (Walker et al., 1997), birds (Beason & Semm, 1996; Elbers, Bulte, Bairlein, 62	

Mouritsen, & Heyers, 2017; Mora, Davison, Wild, & Walker, 2004; Semm & Beason, 1990) and 63	

rodents (Wegner, Begall, & Burda, 2006) as a conduit of magnetic sensory information to the 64	

brain. In humans, the trigeminal system includes many autonomic, visceral and proprioceptive 65	

functions that lie outside conscious awareness (Fillmore & Seifert, 2015; Saper, 2002).  For 66	
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example, the ophthalmic branch contains parasympathetic nerve fibers and carries signals of 67	

extraocular proprioception, which do not reach conscious awareness (Liu, 2005). 68	

 If the physiological components of a magnetosensory system have been passed from 69	

animals to humans, then their function may be either subconscious or only weakly available to 70	

conscious perception. Behavioral experiments could be easily confounded by cognitive factors 71	

such as attention, memory and volition, making the results weak or difficult to replicate at the 72	

group or individual levels. Since brain activity underlies all behavior, we chose a more direct 73	

electrophysiological approach to test for the transduction of geomagnetic fields in humans. 74	

	75	

Materials and Methods 76	

We constructed an isolated, radiofrequency-shielded chamber wrapped with three nested 77	

sets of orthogonal square coils, using the four-coil design of Merritt et al. (Merritt, Purcell, & 78	

Stroink, 1983) for high central field uniformity (Fig. 1, and in the section on Extended Materials 79	

and Methods below).  Each coil contained two matched sets of windings to allow operation in 80	

Active or Sham mode.  Current ran in series through the two windings to ensure matched 81	

amplitudes.  In Active mode, currents in paired windings were parallel, leading to summation of 82	

generated magnetic fields.  In Sham mode, currents ran antiparallel, yielding no measurable 83	

external field, but with similar ohmic heating and magnetomechanical effects as in Active mode 84	

(J.L Kirschvink, 1992).  Active and Sham modes were toggled by manual switches in the distant 85	

control room, leaving computer and amplifier settings unchanged.  Coils were housed within an 86	

acoustically-attenuated, grounded Faraday cage with aluminum panels forming the walls, floor 87	

and ceiling.  Participants sat upright in a wooden chair on a platform electrically isolated from 88	

the coil system with their heads positioned near the center of the uniform field region and their 89	

eyes closed in total darkness.  (Light levels within the experimental chamber during experimental 90	

runs were measured using a Konica-Minolta CS-100A luminance meter, which gave readings of 91	

zero, e.g. below 0.01 ± 2% cd/m2.)  The magnetic field inside the experimental chamber was 92	

monitored by a three-axis Applied Physics SystemsTM 520A fluxgate magnetometer.  EEG was 93	

continuously recorded from 64 electrodes using a BioSemiTM ActiveTwo system with electrode 94	

positions coded in the International 10-20 System (e.g. Fz, CPz, etc.).  Inside the cage, the 95	

battery-powered digital conversion unit relayed data over a non-conductive, optical fiber cable to 96	
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a remote control room, ~20 meters away, where all power supplies, computers and monitoring 97	

equipment were located. 98	

99	
Fig. 1. Schematic illustration of the experimental setup. The ~1 mm thick aluminum panels of 100	
the electrically-grounded Faraday shielding provides an electromagnetically “quiet” 101	
environment. Three orthogonal sets of square coils ~2 m on edge, following the design of Merritt 102	
et al. (Merritt et al., 1983), allow the ambient geomagnetic field to be altered around the 103	
participant’s head with high spatial uniformity; double-wrapping provides an active-sham for 104	
blinding of experimental conditions (J.L Kirschvink, 1992). Acoustic panels on the wall help 105	
reduce external noise from the building air ventilation system as well as internal noise due to 106	
echoing. A non-magnetic chair is supported on an elevated wooden base isolated from direct 107	
contact with the magnetic coils. The battery-powered EEG is located on a stool behind the 108	
participant and communicates with the recording computer via an optical fiber cable to a control 109	
room ~20 m away. Additional details are available in the Extended Materials and Methods 110	
section, and Fig. 5 below. This diagram was modified from the figure “Center of attraction”, by 111	
C. Bickel (Hand, 2016), with permission. 112	
 113	
  114	
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 A ~1 hour EEG session consisted of multiple ~7 minute experimental runs.  In each run 115	

of 100+ trials, magnetic field direction rotated repeatedly between two preset orientations with 116	

field intensity held nearly constant at the ambient lab value (~35 µT).  In SWEEP trials, the 117	

magnetic field started in one orientation then rotated smoothly over 100 milliseconds to the other 118	

orientation.  As a control condition, FIXED trials with no magnetic field rotation were 119	

interspersed amongst SWEEP trials according to pseudorandom sequences generated by 120	

software.  Trials were separated in time by 2-3 seconds.  The experimental chamber was dark, 121	

quiet and isolated from the control room during runs.  Participants were blind to Active vs. Sham 122	

mode, trial sequence and trial timing.  During sessions, auditory tones signaled the beginning and 123	

end of experiment runs, and experimenters only communicated with participants once or twice 124	

per session between active runs to update the participant on the number of runs remaining.  125	

When time allowed, Sham runs were matched to Active runs using the same software settings.  126	

Active and Sham runs were programmatically identical, differing only in the position of 127	

hardware switches that directed current to run parallel or antiparallel through paired loops.  Sham 128	

runs served as an additional control for non-magnetic sensory confounds, such as sub-aural 129	

stimuli or mechanical oscillations from the coil system. (Note that experimental variables 130	

differing between runs are denoted in camel case as in DecDn, DecUp, Active, Sham, etc., 131	

whereas variables that change within runs are designated in all capitals like FIXED, SWEEP, 132	

CCW, CW, UP, DN, etc.). In Active runs, an electromagnetic induction artifact occurred as a 10-133	

20 microvolt fluctuation in the EEG signal during the 100 ms magnetic field rotation. This 134	

induction artifact is similar to that observed in electrophysiological recordings from trout 135	

whenever magnetic field direction or intensity was suddenly changed in a square wave pattern 136	

(Walker et al., 1997). Strong induced artifacts also occur in EEG recordings during transcranial 137	

magnetic stimulation (TMS) (Veniero, Bortoletto, & Miniussi, 2009).  In all cases, the artifact 138	

can only be induced in the presence of time-varying magnetic fields and disappears once the 139	

magnetic field stabilizes (∂B/∂t=0). In our experiments, EEG data following the 100 ms field 140	

rotation interval were not subject to effects from the induction artifact. Furthermore, the 141	

induction artifact is phase-locked like an event-related potential and does not appear in analyses 142	

of non-phase-locked power, which we used in all subsequent statistical tests.  Further discussion 143	

of electrical induction is in section 4 of Extended Materials and Methods, below. 144	
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Fig. 2 shows the magnetic field rotations used.  In inclination (Inc) experiments (Fig. 145	

2A), declination direction was fixed to North (0˚ declination in our coordinate system), and 146	

participants sat facing North.  Rotation of the field vector from downwards to upwards was 147	

designated as an ‘Inc.UP.N’ trial and the return sweep as ‘Inc.DN.N’, with UP/DN indicating the 148	

direction of field rotation.  In declination (Dec) experiments (Fig 2B, 2C), we held inclination 149	

(and hence the vertical component of the field vector) constant, while rotating the horizontal 150	

component clockwise or counterclockwise to vary the declination.  For trials with downwards 151	

inclination (as in the Northern Hemisphere), field rotations swept the horizontal component 90˚ 152	

CW or CCW between Northeast and Northwest, designated as ‘DecDn.CW.N’ or 153	

‘DecDn.CCW.N’, respectively, with ‘.N’ indicating a Northerly direction.  To test biophysical 154	

hypotheses of magnetoreception as discussed below, we conducted additional declination 155	

rotation experiments with static, upwards inclination.  As shown in Fig. 2B, rotating an upwards-156	

directed field vector between SE and SW (‘DecUp.CW.S’ and ‘DecUp.CCW.S’) antiparallel to 157	

the downwards-directed rotations provides tests of the quantum compass biophysical model, 158	

while sweeping an upwards vector between NE and NW (‘DecUp.CW.N’ and ‘DecUp.CCW.N’) 159	

provides a general test for electrical induction (Fig. 2C). 160	
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Fig. 2. Magnetic field rotations used in these 161	
experiments. In the first ~100 ms of each 162	
experimental trial, the magnetic field vector 163	
was either: 1) rotated from the first preset 164	
orientation to the second (SWEEP), 2) rotated 165	
from the second preset orientation to the first 166	
(also SWEEP), or 3) left unchanged 167	
(FIXED).   In all experimental trials, the field 168	
intensity was held constant at the ambient lab 169	
value (~35 uT).  For declination rotations, the 170	
horizontal rotation angle was +90 degrees or -171	
90 degrees.  For inclination rotations, the 172	
vertical rotation angle was either +120 173	
degrees / -120 degrees, or +150 degrees / -150 174	
degrees, depending on the particular 175	
inclination rotation experiment. (A) 176	
Inclination rotations between ±60˚ or ±75˚. 177	
The magnetic field vector rotates from 178	
downwards to upwards (Inc.UP.N, red) and 179	
vice versa (Inc.DN.N, green), with declination 180	
steady at North (0˚).  (B) Declination 181	
rotations used in main assay (solid arrows) 182	
and vector opposite rotations used to test the 183	
quantum compass hypothesis (dashed 184	
arrows).  In the main assay, the magnetic field 185	
rotated between NE (45˚) and NW (315˚) with 186	
inclination held downwards (+60˚ or +75˚) as 187	
in the Northern Hemisphere (DecDn.CW.N 188	
and DecDn.CCW.N); vector opposites with 189	
upwards inclination (−60˚ or −75˚) and 190	
declination rotations between SE (135˚) and 191	
SW (225˚) are shown with dashed arrows 192	
(DecUp.CW.S and DecUp.CCW.S).  (C) 193	
Identical declination rotations, with static but 194	
opposite vertical components, used to test the 195	
electrical induction hypothesis.  The magnetic 196	
field was shifted in the Northerly direction 197	
between NE (45˚) and NW (315˚) with 198	
inclination held downwards (+75˚, 199	
DecDn.CW.N and DecDn.CCW.N) or 200	
upwards (−75˚, DecUp.CW.S and 201	
DecUp.CCW.S).  The two dotted vertical 202	
lines indicate that the rotations started at the 203	
same declination values.  In both (B) and (C), 204	
counterclockwise rotations (viewed from 205	
above) are shown in red, clockwise in green.  206	
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 During magnetic field rotations, EEG was recorded from participants in the eyes-closed 207	

resting state.  Auditory cues marked the beginning and end of each ~7 minute run, but 208	

participants were not informed of run mode, trial sequence or stimulus timing.  EEG was 209	

sampled at 512 Hz from 64 electrodes arrayed in the standard International 10-20 positions using 210	

a Biosemi™ ActiveTwo system.  The experimental protocol was approved by the Caltech 211	

Institutional Review Board (IRB), and all participants gave written informed consent.  212	

 We used conventional methods of time/frequency decomposition (Morlet wavelet 213	

convolution) to compute post-stimulus power changes relative to a pre-stimulus baseline interval 214	

(−500 to −250 ms) over a 1-100 Hz frequency range. We focused on non-phase-locked power by 215	

subtracting the event-related potential in each condition from each trial of that condition prior to 216	

time/frequency decomposition. This is a well-known procedure for isolating non-phase-locked 217	

power and is useful for excluding the artifact from subsequent analyses (Cohen, 2014). 218	

Following the identification of alpha band activity as a point of interest (detailed in Results), the 219	

following procedure was adopted to isolate alpha activity in individuals.  To compensate for 220	

known individual differences in peak resting alpha frequency (8 to 12 Hz in our participant pool) 221	

and in the timing of alpha wave responses following sensory stimulation, we identified 222	

individualized power change profiles using an automated search over an extended alpha band of 223	

6-14 Hz, 0-2 s post-stimulus.  For each participant, power changes at electrode Fz were averaged 224	

over all trials, regardless of condition, to produce a single time/frequency map.  In this cross-225	

conditional average, the most negative time-frequency point was set as the location of the 226	

participant’s characteristic alpha-ERD.  A window of 250 ms and 5 Hz bandwidth was 227	

automatically centered as nearly as possible on that point within the constraints of the overall 228	

search range. These time/frequency parameters were chosen based on typical alpha-ERD 229	

durations and bandwidths. Alpha power activity in each individualized window was used to test 230	

for significant differences between conditions.  For each condition, power changes were 231	

averaged separately within the window, with trials subsampled and bootstrapped to equalize trial 232	

numbers across conditions.  Outlier trials with extreme values of alpha power (typically caused 233	

by movement artifacts or brief bursts of alpha activity in an otherwise low-amplitude signal) in 234	

either the pre- or post-stimulus intervals were removed by an automated algorithm prior to 235	

averaging, according to a threshold of 1.5X the interquartile range of log alpha power across all 236	

trials.  Further details are provided in sections 1-5 of Extended Materials and Methods, below.   237	
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Results  238	

 In initial observations, several participants (residing in the Northern Hemisphere) 239	

displayed striking patterns of neural activity following magnetic stimulation, with strong 240	

decreases in EEG alpha power in response to two particular field rotations: (1) Inclination 241	

SWEEP trials (Inc.UP.N and Inc.DN.N), in which the magnetic vector rotated either down or up 242	

(e.g. rotating a downwards pointed field vector up to an upwards pointed vector, or vice versa; 243	

Fig. 2A red and green arrows), and (2) DecDn.CCW.N trials, in which magnetic field declination 244	

rotated counterclockwise while inclination was held downwards (as in the Northern Hemisphere; 245	

Fig 2B, solid red arrow).  Alpha power began to drop from pre-stimulus baseline levels as early 246	

as ~100 ms after magnetic stimulation, decreasing by as much as ~50% over several hundred 247	

milliseconds, then recovering to baseline by ~1 s post-stimulus; this is visualized by the deep 248	

blue color on the time-frequency power maps (Fig. 3).  Scalp topography was bilateral and 249	

widespread, centered over frontal/central electrodes, including midline frontal electrode Fz when 250	

referenced to CPz.  Fig. 3A shows the whole-brain response pattern to inclination sweeps and 251	

control trials (Inc.SWEEP.N and Inc.FIXED.N) of one of the responsive participants, with the 252	

alpha-ERD exhibited in the SWEEP but not FIXED trials. Similarly, Fig. 3B and 3C show the 253	

declination responses of a different participant on two separate runs (labeled Runs #1 and #2) six 254	

months apart.  Response timing, bandwidth and topography of the alpha-ERD in the CCW 255	

sweeps, with negative FIXED controls, were replicated across runs, indicating a repeatable 256	

signature of magnetosensory processing in humans. After experimental sessions, participants 257	

reported that they could not discern when or if any magnetic field changes had occurred.  258	

 259	

 260	

 261	

 262	

 263	

 264	

 265	

 266	

 267	
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Fig. 3. Alpha-ERD as a neural response to 268	
magnetic field rotation.  Post-stimulus power 269	
changes (dB) from a pre-stimulus baseline (−500 270	
to −250 ms) plotted according to the ±4 dB color 271	
bar at bottom.  (A) Scalp topography of the 272	
alpha-ERD response in an inclination 273	
experiment, showing alpha power at select time 274	
points before and after field rotation at 0 s.  275	
Alpha-ERD (deep blue) was observed in 276	
SWEEP (top row), but not FIXED (bottom row), 277	
trials.  (B) Scalp topography of the alpha-ERD 278	
response for two runs of the declination 279	
experiment, tested 6 months apart in a different 280	
strongly-responding participant. DecDn.CCW.N 281	
condition is shown.  In both runs, the response 282	
peaked around +500 ms post-stimulus and was 283	
widespread over frontal/central electrodes, 284	
demonstrating a stable and reproducible 285	
response pattern.  (C) Time-frequency maps at 286	
electrode Fz for the same runs shown in (B).  287	
Pink vertical lines indicate the 0-100 ms field 288	
rotation interval.  Pink/white outlines indicate 289	
significant alpha-ERD at the p<0.05 and p<0.01 290	
statistical thresholds, respectively.  Separate runs 291	
shown side by side.  Significant alpha-ERD was 292	
observed following downwards-directed 293	
counterclockwise rotations (outlines in top row), 294	
with no other power changes reaching 295	
significance.  Significant power changes appear 296	
with similar timing and bandwidth, while 297	
activity outside the alpha-ERD response, and 298	
activity in other conditions is inconsistent across 299	
runs. 300	
 301	

 302	

 303	

 304	

  305	

  306	
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The alpha rhythm is the dominant human brain oscillation in the resting state when a 307	

person is not processing any specific stimulus or performing any specific task (Klimesch, 1999).  308	

Neurons engaged in this internal rhythm produce 8-13 Hz alpha waves that are measurable by 309	

EEG.  Individuals vary widely in the amplitude of the resting alpha rhythm.  When an external 310	

stimulus is suddenly introduced and processed by the brain, the alpha rhythm generally decreases 311	

in amplitude compared with a pre-stimulus baseline. (Hartmann, Schlee, & Weisz, 2012; 312	

Klimesch, 1999; Pfurtscheller, Neuper, & Mohl, 1994).  This EEG phenomenon, termed alpha 313	

event-related desynchronization (alpha-ERD), has been widely observed during perceptual and 314	

cognitive processing across visual, auditory and somatosensory modalities (Peng, Hu, Zhang, & 315	

Hu, 2012). Alpha-ERD may reflect the recruitment of neurons for processing incoming sensory 316	

information and is thus a generalized signature for a shift of neuronal activity from the internal 317	

resting rhythm to external engagement with sensory or task-related processing (Pfurtscheller & 318	

Lopes da Silva, 1999). Individuals also vary in the strength of alpha-ERD; those with high 319	

resting-state or pre-stimulus alpha power tend to show strong alpha-ERDs following sensory 320	

stimulation, while those with low alpha power have little or no response in the alpha band 321	

(Klimesch, 1999).   322	

Based on early observations, we formed the hypothesis that sensory transduction of 323	

geomagnetic stimuli could be detectable as alpha–ERD in response to field rotations – e.g. the 324	

magnetic field rotation would be the external stimulus, and the alpha-ERD would be the 325	

signature of the brain beginning to process sensory data from this stimulus.  This hypothesis was 326	

tested at the group level in data collected from 29 participants in the inclination rotation 327	

conditions (Fig 2A) and 26 participants in the declination rotation conditions (Fig. 2B, solid 328	

arrows).  329	

 For inclination experiments, we collected data from matched Active and Sham runs 330	

(N=29 of 34; 5 participants were excluded due to time limits that prevented the collection of 331	

sham data). We tested for the effects of inclination rotation (SWEEP vs. FIXED) and magnetic 332	

stimulation (Active vs. Sham) using a two-way repeated-measures ANOVA.  We found a 333	

significant interaction of inclination rotation and magnetic stimulation (p<0.05).  Post-hoc 334	

comparison of the four experimental conditions (Active-SWEEP, Active-FIXED, Sham-SWEEP, 335	

Sham-FIXED) revealed significant differences between Active-SWEEP and all other conditions 336	

(p<0.05).  Downwards/upwards rotations of magnetic field inclination produced an alpha-ERD 337	
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~2X greater than background fluctuations in the FIXED control condition and all the Sham 338	

conditions.  Results are summarized in Table 1 and Fig. 4A.  339	

 In declination experiments (Fig. 4B), we observed a strikingly asymmetric response to 340	

the clockwise (DecDn.CW.N) and counterclockwise (DecDn.CCW.N) rotations of a downwards-341	

directed field sweeping between Northeast and Northwest.  Alpha-ERD was ~3X greater after 342	

counterclockwise than after clockwise rotations, the latter producing alpha power changes 343	

indistinguishable from background fluctuations in the FIXED control condition.  Over the 344	

participant pool (N=26 of 26 who were run in this experiment), we ran a one-way repeated-345	

measures ANOVA with three conditions (DecDn.CCW.N, DecDn.CW.N, and DecDn.FIXED.N) 346	

to find a highly significant effect of declination rotation (p<0.001) (Table 1).  As indicated in 347	

Fig. 4B, the counterclockwise rotation elicited a significantly different response from both the 348	

clockwise rotation (p<0.001) and FIXED control (p<0.001).  Fig. 4D shows the stimulus-locked 349	

grand average across all participants for each condition; an alpha-ERD is observed only for 350	

counterclockwise rotations of a downwards-directed field (left panel).  Sham data were available 351	

for 18 of 26 participants in the declination experiments; no major changes in post-stimulus power 352	

were observed in any of the sham conditions (Fig. 4E). 353	

 354	

 355	

 356	

 357	

 358	

 359	

 360	

 361	

 362	

 363	

 364	

 365	

 366	

 367	

 368	
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 369	

Fig. 4.  Group results from repeated-measures ANOVA for the effects of geomagnetic 370	
stimulation on post-stimulus alpha power.  (A) Average alpha-ERD (dB) at electrode Fz in the 371	
SWEEP and FIXED conditions of inclination experiments run in Active or Sham mode.  Two-372	
way ANOVA showed an interaction (p<0.05, N=29) of inclination rotation (SWEEP vs. FIXED) 373	
and magnetic stimulation (Active vs. Sham).  According to post-hoc testing, only inclination 374	
sweeps in Active mode produced alpha-ERD above background fluctuations in FIXED trials 375	
(p<0.01) or Sham mode (p<0.05).  (B) Average alpha-ERD (dB) at electrode Fz in the 376	
declination experiment with inclination held downwards (DecDn). One-way ANOVA showed a 377	
significant main effect of declination rotation (p<0.001, N=26). The downwards-directed 378	
counterclockwise rotation (DecDn.CCW.N) produced significantly different effects from both 379	
the corresponding clockwise rotation (DecDn.CW.N, p<0.001) and the FIXED control condition 380	
(DecDn.FIXED.N, p<0.001).  (C) Comparison of the declination rotations with inclination held 381	
downwards (DecDn) or upwards (DecUp) in a subset (N=16 of 26) of participants run in both 382	
experiments.  Two-way ANOVA showed a significant interaction (p<0.01) of declination 383	
rotation (CCW vs. CW vs. FIXED) and inclination direction (Dn vs. Up). Post-hoc testing 384	
showed significant differences (p<0.01) between the DecDn.CCW.N condition and every other 385	
condition, none of which were distinct from any other.  This is a direct test and rejection of the 386	
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quantum compass hypothesis.  (D) Grand average of time-frequency power changes across the 387	
26 participants in the DecDn experiment from (B). Pink vertical lines indicate the 0-100 ms field 388	
rotation interval.  A post-stimulus drop in alpha power was observed only following the 389	
downwards-directed counterclockwise rotation (left panel). Wider spread of desychronization 390	
reflects inter-individual variation.  Convolution involved in time/frequency analyses causes the 391	
early responses of a few participants to appear spread into the pre-stimulus interval.  (E) Grand 392	
average of time-frequency power changes across the 18 participants with sham data in the 393	
declination experiments; no significant power changes were observed. 394	
 395	
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Group	Results	for	Effects	of	Magnetic	Field	Rotation	on	Post-Stimulus	Alpha	Power	

ANOVA	#1:	Inclination	Rotation	x	Magnetic	Stimulation	(N=29)	

Two-Way	Repeated	Measures	ANOVA	 F	 p	 ηp
2	

Main	Effect	of	Inclination	Rotation	

(SWEEP	vs.	FIXED)	

3.26	 0.08	 0.19	

Main	Effect	of	Magnetic	Stimulation	

(Active	vs.	Sham)	

2.47	 0.13	 0.09	

Inclination	Rotation	x	Magnetic	Stimulation	

(Interaction)	

5.67	 0.02*	 0.17	

	

ANOVA	#2:	Declination	Rotation	(N=26)	

One-Way	Repeated	Measures	ANOVA	 F	 p	 ηp
2	

Main	Effect	of	Declination	Rotation	

(CCW	vs.	CW	vs.	FIXED)	

13.09	 0.00003***	 0.34	

	

ANOVA	#3:	Declination	Rotation	x	Inclination	Direction	(N=16)	

Two-Way	Repeated	Measures	ANOVA	 F	 p	 ηp
2	

Main	Effect	of	Declination	Rotation	

(CCW	vs.	CW	vs.	FIXED)	

3.77	 0.03*	 0.24	

Main	Effect	of	Inclination	Direction	

(Dn	vs.	Up)	

0.89	 0.36	 0.06	

Declination	Rotation	x	Inclination	Direction	

(Interaction)	

6.49	 0.004***	 0.30	

 433	
Table 1. Group results from repeated-measures ANOVA for the effects of magnetic field 434	
rotation on post-stimulus alpha power. ANOVA #1 shows a significant interaction of 435	
inclination rotation (SWEEP vs. FIXED) and magnetic stimulation (Active vs. Sham) in the 436	
inclination experiments. Based on post-hoc testing, alpha-ERD was significantly greater in 437	
SWEEP trials in Active mode, compared with all other conditions (p<0.05). ANOVA #2 shows a 438	
significant main effect of declination rotation when inclination is static and downwards as in the 439	
Northern Hemisphere. Alpha-ERD was significantly greater following counterclockwise 440	
rotations (p<0.001). ANOVA #3 shows a significant interaction of declination rotation and 441	
inclination direction in declination experiments designed to test the “Quantum Compass” 442	
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mechanism of magnetoreception. A significant alpha-ERD difference (p<0.01) between 443	
counterclockwise down (DecDn.CCW.N) and counterclockwise up (DecUp.CCW.S) argues 444	
against this hypothesis in humans.  	445	
 446	
  447	

 The asymmetric declination response provided a starting point for evaluating potential 448	

mechanisms of magnetosensory transduction, particularly the quantum compass hypothesis, 449	

which has received much attention in recent years (Hore & Mouritsen, 2016; Ritz, Adem, & 450	

Schulten, 2000).  Because the quantum compass cannot distinguish polarity, we conducted 451	

additional declination rotation experiments in which the fields were axially identical to those in 452	

the preceding DecDn experiments, except with reversed polarity (Fig. 2B; reversed polarity 453	

rotations shown as dashed arrows).  In the additional DecUp conditions, Magnetic North pointed 454	

to Geographic South and up rather than Geographic North and down, and the upwards-directed 455	

field rotated clockwise (DecUp.CW.S) or counterclockwise (DecUp.CCW.S) between SE and 456	

SW.  In later testing, we ran 16 participants in both the DecDn and DecUp experiments to 457	

determine the effects of declination rotation and inclination direction in a two-way repeated 458	

measures ANOVA with six conditions (DecDn.CCW.N, DecDn.CW.N, DecDn.FIXED.N, 459	

DecUp.CCW.S, DecUp.CW.S, and DecUp.FIXED.S).  A significant interaction of declination 460	

rotation and inclination direction (p<0.01) was found (Fig. 4C and Table 1).  DecDn.CCW.N 461	

was significantly different from all other conditions (p<0.01), none of which differed from any 462	

other.  Thus, counterclockwise rotations of a downwards-directed field were processed 463	

differently in the human brain from the same rotations of a field of opposite polarity.  These 464	

results contradict the quantum compass hypothesis, as explained below in Biophysical 465	

Mechanisms.  466	

From previous EEG studies of alpha oscillations in human cognition, the strength of 467	

alpha-ERD is known to vary substantially across individuals (Klimesch, 1999; Klimesch, 468	

Doppelmayr, Russegger, Pachinger, & Schwaiger, 1998; Pfurtscheller et al., 1994).  In 469	

agreement with this, we observed a wide range of alpha-ERD responses in our participants as 470	

well.  Some participants showed large drops in alpha power up to ~60% from pre-stimulus 471	

baseline, while others were unresponsive with little change in post-stimulus power at any 472	

frequency. Histograms of these responses are provided in Fig. 6-8 of Extended Materials and 473	

Methods below. 474	
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To confirm that the variability across the dataset was due to characteristic differences 475	

between individuals rather than general variability in the measurement or the phenomenon, we 476	

retested the strongly-responding participants to see if their responses were stable across sessions.  477	

Using permutation testing with false discovery rate (FDR) correction at the p<0.05 and p<0.01 478	

statistical thresholds, we identified participants who exhibited alpha-ERD that reached 479	

significance at the individual level and tested them (N=4) again weeks or months later.  An 480	

example of separate runs on the same participant is shown in Figs. 3B and 3C, and further data 481	

series are shown in the Fig 9 of Extended Materials and Methods.  Each participant replicated 482	

their results with similar response tuning, timing and topography, providing greater confidence 483	

that the observed effect was specific for the magnetic stimulus in the brain of that individual.  484	

While the functional significance of these inter-individual differences is unclear, the 485	

identification of strongly responding individuals gives us the opportunity to conduct more 486	

focused tests directed at deriving the biophysical characteristics of the transduction mechanism. 487	

 488	

Biophysical Mechanisms  489	

 Three major biophysical transduction hypotheses have been considered extensively for 490	

magnetoreception in animals: (1) various forms of electrical induction (Kalmijn, 1981; 491	

Rosenblum, Jungerman, & Longfellow, 1985; Yeagley, 1947), (2) a chemical/quantum compass 492	

involving hyperfine interactions with a photoactive pigment (Schulten, 1982) like cryptochrome 493	

(Hore & Mouritsen, 2016; Ritz et al., 2000), and (3) specialized organelles based on biologically-494	

precipitated magnetite similar to those in magnetotactic microorganisms (J.L. Kirschvink & 495	

Gould, 1981).  We designed the declination experiments described above to test these 496	

hypotheses.  497	

Electrical Induction. According to the Maxwell-Faraday law (∇ × E = -∂B/∂t), electrical 498	

induction depends only on the component of the magnetic field that is changing with time 499	

(∂B/∂t).  In our declination experiments, this corresponds to the horizontal component that is 500	

being rotated. The vertical component is held constant and therefore does not contribute to 501	

electrical induction.  Thus, we compared brain responses to two matched conditions, where the 502	

declination rotations were identical, but the static vertical components were opposite (Fig 2C).  A 503	

transduction mechanism based in electrical induction would respond identically to these two 504	

conditions.  Video 1 shows the alpha-ERD magnetosensory response of one strongly-responding 505	
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individual to these two stimulus types. In the top row, the static component was pointing 506	

upwards, and in the bottom row, the static field was pointing downwards.  In the DecDn.CCW.N 507	

condition (lower left panel), the alpha-ERD (deep blue patch) starts in the right parietal region 508	

almost immediately after magnetic stimulation and spreads over the scalp to most recording sites.  509	

This large, prolonged and significant bilateral desynchronization (p<0.01 at Fz) occurs only in 510	

this condition with only shorter, weaker and more localized background fluctuations in the other 511	

conditions (n.s. at Fz).  No alpha-ERD was observed following any upwards-directed field 512	

rotation (DecUp.CCW.N and DecUp.CW.N, top left and middle panels), in contrast to the strong 513	

response in the DecDn.CCW.N condition.  Looking across all of our data, none of our 514	

experiments (on participants from the Northern Hemisphere) produced alpha-ERD responses to 515	

rotations with a static vertical-upwards magnetic field (found naturally in the Southern 516	

Hemisphere). 517	

These tests indicate that electrical induction mechanisms cannot account for the neural 518	

response.  This analysis also rules out an electrical artifact of induced current loops from the 519	

scalp electrodes, as any current induced in the loops would also be identical across the matched 520	

runs.  Our results are also consistent with many previous biophysical analyses, which argue that 521	

electrical induction would be a poor transduction mechanism for terrestrial animals, as the 522	

induced fields are too low to work reliably without large, specialized anatomical structures that 523	

would have been identified long ago (Rosenblum et al., 1985; Yeagley, 1947).  Other potential 524	

confounding artifacts are discussed in sections 6 and 7 of the Extended Materials and Methods, 525	

below.  526	

 Quantum Compass.  From basic physical principles, a transduction mechanism based on 527	

quantum effects can be sensitive to the axis of the geomagnetic field but not the polarity (Ritz et 528	

al., 2000; Schulten, 1982).  In the most popular version of this theory, a photosensitive molecule 529	

like cryptochrome absorbs a blue photon, producing a pair of free radicals that can transition 530	

between a singlet and triplet state, with the transition frequency depending on the local magnetic 531	

field.  The axis of the magnetic field – but not the polarity – could then be monitored by 532	

differential reaction rates from the singlet vs. triplet products. This polarity insensitivity, shared 533	

by all quantum-based magnetotransduction theories, is inconsistent with the group level test of 534	

the quantum compass presented above. The data (Table 1 and Figure 4C, dark blue bars) showed 535	

clearly distinct responses depending on polarity.  We additionally verified this pattern of results 536	
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at the individual level.  Video 2 shows the alpha-ERD magnetosensory response in another 537	

strongly-responding individual.  Only the DecDn.CCW.N rotation (lower left panel) yields a 538	

significant alpha-ERD (p<0.01 at Fz).  Lack of a significant response in the axially identical 539	

DecUp.CCW.S condition indicates that the human magnetosensory response is sensitive to 540	

polarity.  This means that a quantum compass-based mechanism cannot account for the alpha-541	

ERD response we observe in humans. 542	

 543	

Response	Selectivity	544	

 The selectivity of brain responses for specific magnetic field directions and rotations may 545	

be explained by tuning of neural activity to ecologically relevant values.  Such tuning is well 546	

known in marine turtles in the central Atlantic Ocean, where small increases in the local 547	

geomagnetic inclination or intensity (that indicate the animals are drifting too far North and are 548	

approaching the Gulf Stream currents) trigger abrupt shifts in swimming direction, thereby 549	

preventing them from being washed away from their home in the Sargasso Sea (Light, Salmon, 550	

& Lohmann, 1993; Lohmann et al., 2001; Lohmann & Lohmann, 1996).  Some migratory birds 551	

are also known to stop responding to the magnetic direction if the ambient field intensity is 552	

shifted more than ~ 25% away from local ambient values (W. Wiltschko, 1972), which would 553	

stop them from using this compass over geomagnetic anomalies.  From our human experiments 554	

to date, we suspect that alpha-ERD occurs in our participants mainly in response to geomagnetic 555	

fields that reflect something close to "normal" in the Northern Hemisphere where the North-556	

seeking field vector tilts downwards.  This would explain why field rotations with a static 557	

upwards component produced little response in Northern Hemisphere participants.  Conducting 558	

similar experiments on participants born and raised in other geographic regions (such as in the 559	

Southern Hemisphere or on the Geomagnetic Equator) could test this hypothesis.  560	

 Another question vis-à-vis response selectivity is why downwards-directed CCW 561	

(DecDn.CCW.N), but not CW (DecDn.CW.N), rotations elicited alpha-ERD.  The bias could 562	

arise either at the receptor level or at higher processing levels.  The structure and function of the 563	

magnetoreceptor cells are unknown, but biological structures exhibit chirality (right- or left-564	

handedness) at many spatial scales – from individual amino acids to folded protein assemblies to 565	

multicellular structures.  If such mirror asymmetries exist in the macromolecular complex 566	

interfacing with magnetite, they could favor the transduction of one stimulus over its opposite.  567	
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Alternatively, higher-level cognitive processes could tune the neural response towards 568	

counterclockwise rotations without any bias at the receptor level.  As of this writing, we cannot 569	

rule out the possibility that some fraction of humans may have a CW response under this or other 570	

experimental paradigms, just as some humans are left- instead of right-handed.  We also cannot 571	

rule out the existence of a separate neural response to CW rotations that is not reflected in the 572	

alpha-ERD signature that we assay here. 573	

 The functional significance of the divergent responses to CW and CCW is also unclear. It 574	

may simply arise as a byproduct during the evolution and development of other mirror 575	

asymmetries (such as north-up vs. north-down), which serve a clearer functional, ecologically 576	

relevant purpose with a lower biological cost.  It may also be that the alpha-ERD response 577	

reflects non-directional information, such as a warning of geomagnetic anomalies, which can 578	

expose a navigating animal to sudden shifts of the magnetic field comparable to those used in our 579	

experiments.  For example, volcanic or igneous terranes are prone to remagnetization by 580	

lightning strikes, which produce magnetic fields powerful enough to leave local, 1-10 m scale 581	

remnant (permanent) magnetizations strong enough to warp the otherwise uniform local 582	

geomagnetic field.  A large-scale example is the Vredefort Dome area in South Africa 583	

(Carporzen, Weiss, Gilder, Pommier, & Hart, 2012) where lightning remagnetization has been 584	

studied extensively.  Such anomalies are common in areas with volcanic or igneous basement 585	

rock and can be located by simply wandering around with a hand compass held level at waist 586	

height and observing abnormal swings of the compass needle from magnetic north.  An animal 587	

moving through isolated features of this sort would experience paired shifts; the magnetic field 588	

direction and intensity would change as the anomaly is entered and then return to normal upon 589	

exiting.  If the magnetosensory system evolved in the brain as a warning signal against using the 590	

magnetic field for long-range navigation while passing through local field anomalies, sensitivity 591	

to only one directional excursion is needed.  Future experiments could test this speculation by 592	

sweeping field intensity through values matching those of lightning-strike and other anomalies to 593	

check for asymmetric patterns of alpha desynchronization.  594	

 A further question is whether the response asymmetry occurs only in passive experiments 595	

when participants experience magnetic stimulation without making use of the information or also 596	

in active experiments with a behavioral task, such as judging the direction or rotation of the 597	

magnetic field.  Behavioral tasks with EEG recording could be used to explore the 598	
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magnetosensory system in more detail and may uncover the unknown function of the observed 599	

response and its asymmetry.  600	

	601	

General Discussion  602	

As noted above, many past attempts have been made to test for the presence of human 603	

magnetoreception using behavioral assays, but the results were inconclusive.  To avoid the 604	

cognitive and behavioral artifacts inherent in testing weak or subliminal sensory responses, we 605	

decided to use EEG techniques to see directly whether or not the human brain has passive 606	

responses to magnetic field changes.  Our results indicate that human brains are indeed collecting 607	

and selectively processing directional input from magnetic field receptors. These give rise to a 608	

brain response that is selective for field direction and rotation with a pattern of neural activity 609	

that is measurable at the group level and repeatable in strongly-responding individuals.  Such 610	

neural activity is a necessary prerequisite for any subsequent behavioral expression of 611	

magnetoreception, but such magnetically-triggered neural activity does not demand that the 612	

magnetic sense be expressed behaviorally or enter an individual’s conscious awareness.  613	

The fact that alpha-ERD is elicited in a specific and sharply delineated pattern allows us 614	

to make inferences regarding the biophysical mechanisms of signal transduction.  Notably, the 615	

alpha-ERD response differentiated clearly between sets of stimuli differing only by their static or 616	

polar components.  Electrical induction, electrical artifacts and quantum compass mechanisms 617	

are totally insensitive to these components and cannot account for the selectivity of brain 618	

responses.  Indeed, while birds have evolved a method of navigation that would allow them to 619	

navigate by combining a non-polar magnetic sense with gravity, that strategy would not be able 620	

to distinguish our test stimuli (see section 8 of the Extended Materials and Methods).  In 621	

contrast, ferromagnetic mechanisms can be highly sensitive to both static and polar field 622	

components, and could distinguish our test stimuli with differing responses.  Finally, magnetite-623	

based mechanisms for navigation have been characterized in animals through neurophysiological 624	

(Walker et al., 1997), histological (Diebel, Proksch, Green, Neilson, & Walker, 2000) and pulse-625	

remagnetization studies (Beason, Wiltschko, & Wiltschko, 1997; Ernst & Lohmann, 2016; R. A. 626	

Holland, 2010; R.A.  Holland & Helm, 2013; R. A. Holland, Kirschvink, Doak, & Wikelski, 627	

2008; Irwin & Lohmann, 2005; J.L.  Kirschvink & Kobayashi-Kirschvink, 1991; Munro, Munro, 628	

Phillips, Wiltschko, & Wiltschko, 1997; Munro, Munro, Phillips, & Wiltschko, 1997; W. 629	
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Wiltschko, Ford, Munro, Winklhofer, & Wiltschko, 2007; W. Wiltschko, Munro, Beason, Ford, 630	

& Wiltschko, 1994; W. Wiltschko, Munro, Ford, & Wiltschko, 1998, 2009; W. Wiltschko, 631	

Munro, Wiltschko, & Kirschvink, 2002; W. Wiltschko & R. Wiltschko, 1995), and biogenic 632	

magnetite has been found in human tissues (Dunn et al., 1995; Gilder et al., 2018; J. L. 633	

Kirschvink, Kobayashi-Kirschvink, & Woodford, 1992; Kobayashi & Kirschvink, 1995; Maher 634	

et al., 2016; Schultheiss-Grassi, Wessiken, & Dobson, 1999). 635	

These data argue strongly for the presence of geomagnetic transduction in humans, 636	

similar to those in numerous migratory and homing animals.  Single-domain ferromagnetic 637	

particles such as magnetite are directly responsive to both time-varying and static magnetic fields 638	

and are sensitive to field polarity.  At the cellular level, the magnetomechanical interaction 639	

between ferromagnetic particles and the geomagnetic field is well above thermal noise (J.L. 640	

Kirschvink & Gould, 1981; J. L. Kirschvink, Winklhofer, & Walker, 2010), stronger by several 641	

orders of magnitude in some cases (Eder et al., 2012).  In many animals, magnetite-based 642	

transduction mechanisms have been found and shown to be necessary for navigational behaviors, 643	

through neurophysiological and histological studies (Diebel et al., 2000; Walker et al., 1997).  A 644	

natural extension of this study would be to apply the pulse-remagnetization methods used in 645	

animals to directly test for a ferromagnetic transduction element in humans.  In these 646	

experiments, a brief magnetic pulse causes the magnetic polarity of the single-domain magnetite 647	

crystals to flip.  Following this treatment, the physiological and behavioral responses to the 648	

geomagnetic field are expected to switch polarity.  These experiments could provide 649	

measurements of the microscopic coercivity of the magnetite crystals involved and hence make 650	

predictions about the physical size and shape of the crystals involved (Diaz Ricci & Kirschvink, 651	

1992 203), and perhaps their physiological location. 652	

Previous attempts to detect human magnetoreception may have been confounded by a 653	

number of factors.  Response specificity and neural tuning to the local environment (Block, 654	

1992) make it likely that tests using stimuli outside the environmental range would likely fail, 655	

and past computational methods were not as good at isolating the neural activity studied here 656	

(Boorman et al., 1999; Sastre et al., 2002), further discussed in section 9 of the Extended 657	

Materials and Methods, below. Other experiments were conducted in unshielded conditions and 658	

may have been subject to radio-frequency noise which has been shown to shut down 659	
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magnetoreceptivity in birds and other animals (Engels et al., 2014; Landler, Painter, Youmans, 660	

Hopkins, & Phillips, 2015; Tomanova & Vacha, 2016; R. Wiltschko et al., 2015). 661	

 At this point, our observed reduction in alpha-band power is a clear neural signature for 662	

cortical processing of the geomagnetic stimulus, but its functional significance is unknown.  In 663	

form, the activity is an alpha-ERD response resembling those found in other EEG investigations 664	

of sensory and cognitive processing.  However, the alpha-ERD responses found in literature take 665	

on a range of different spatiotemporal forms and are associated with a variety of functions.  It is 666	

likely that the alpha-ERD seen here reflects the sudden recruitment of neural processing 667	

resources, as this is a finding common across studies.  But more research will be needed to see if 668	

and how it relates more specifically to previously studied processes such as memory access or 669	

recruitment of attentional resources. 670	

 Further, alpha-ERD probably represents only the most obvious signature of neural 671	

processing arising from geomagnetic input.  A host of upstream and downstream processes need 672	

to be investigated to reveal the network of responses and the information they encode.  673	

Responses independent from the alpha-ERD signature will likely emerge, and those might show 674	

different selectivity patterns and reflect stimulus features not revealed in this study.  Does human 675	

magnetoreceptive processing reflect a full representation of navigational space?  Does it contain 676	

certain warning signals regarding magnetic abnormalities?  Or have some aspects degenerated 677	

from the ancestral system?  For now, alpha-ERD remains a blank signature for a wider, 678	

unexplored range of magnetoreceptive processing. 679	

Future experiments should examine how magnetoreceptive processing interacts with 680	

other sensory modalities in order to determine field orientation.  Our experimental results suggest 681	

the combination of a magnetic and a positional cue (e.g. reacting differently to North-up and 682	

North-down fields).  However, we cannot tell if this positional cue uses a reference frame set by 683	

gravity sensation or is aligned with respect to the human body.  In birds, orientation behavior 684	

reflects a magnetic inclination compass that identifies the steepest angle of magnetic field dip 685	

with respect to gravity (R. Wiltschko & W. Wiltschko, 1995; W. Wiltschko, 1972), and this 686	

compass can operate at dips as shallow as 5˚ from horizontal (Schwarze et al., 2016).  Because 687	

magnetism and gravity are distinct, non-interacting forces of nature, the observed behavior must 688	

arise from processing of neural information from separate sensory systems (J. L. Kirschvink et 689	

al., 2010).  Evolution has driven many of the known sensory systems down to their physical 690	
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detection limits with astounding specificity (Block, 1992).  Gravitational information is known to 691	

arise in the utricle and saccule of the vertebrate vestibular system due to the motions of dense 692	

biominerals activating hair cells (Lopez & Blanke, 2011), and a magnetite-based 693	

magnetosensory organ has been localized at the cellular level in fish (Diebel et al., 2000; Eder et 694	

al., 2012; Walker et al., 1997).  The neural processing of magnetic with gravitational sensory 695	

cues could perhaps be addressed by modifying the test chamber to allow the participant to rest in 696	

different orientations with respect to gravity or by running the experiment in the zero-gravity 697	

environment of the international space station.  698	

In the participant pool, we found several highly responsive individuals whose alpha-ERD 699	

proved to be stable across time: 4 participants responded strongly at the p<0.01 level in repeated 700	

testing over weeks or months. Repeatability in individual participants suggests that the alpha-701	

ERD did not arise due to chance fluctuations in a single run, but instead reflects a consistent 702	

individual characteristic, measurable across multiple runs.  A wider survey of individuals could 703	

reveal genetic/developmental or other systematic differences underlying these individual 704	

differences.   705	

The range of individual responses may be partially attributed to variation in basic alpha-706	

ERD mechanisms, rather than to underlying magnetoreceptive processing.  However, some 707	

participants with high resting alpha power showed very little alpha-ERD to the magnetic field 708	

rotations, suggesting that the extent of magnetoreceptive processing itself varies across 709	

individuals.  If so, distinct human populations may be good targets for future investigation.  For 710	

example, studies of comparative linguistics have identified a surprising number of human 711	

languages that rely on a cardinal system of environmental reference cues (e.g. North, South, 712	

East, West) and lack egocentric terms like front, back, left, and right (Haviland, 1998; Levinson, 713	

2003; Meakins, 2011; Meakins & Algy, 2016; Meakins, Jones, & Algy, 2016). Native speakers 714	

of such languages would (e.g.) refer to a nearby tree as being to their North rather than being in 715	

front of them; they would refer to their own body parts in the same way.  Individuals who have 716	

been raised from an early age within a linguistic, social and spatial framework using cardinal 717	

reference cues might have made associative links with geomagnetic sensory cues to aid in daily 718	

life; indeed, linguists have suggested a human magnetic compass might be involved (Levinson, 719	

2003).  It would be interesting to test such individuals using our newly-developed methods to see 720	

if such geomagnetic cues might already be within their conscious awareness, aiding their use of 721	
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the cardinal reference system.  In turn, such experiments might guide the development of training 722	

procedures to enhance geomagnetic sensitivity in individuals raised in other language and 723	

cultural groups, advancing more rapidly studies on the nature of a human magnetic sense. 724	

 In the 198 years since Danish physicist Hans Christian Ørsted discovered 725	

electromagnetism (March 1820), human technology has made ever-increasing use of it.  Most 726	

humans no longer need to rely on an internal navigational sense for survival.  To the extent that 727	

we employ a sense of absolute heading in our daily lives, external cues such as landmarks and 728	

street grids can provide guidance.  Even if an individual possesses an implicit magnetoreceptive 729	

response, it is likely to be confounded by disuse and interference from our modern environment.  730	

A particularly pointed example is the use of strong permanent magnets in both consumer and 731	

aviation headsets, most of which produce static fields through the head several times stronger 732	

than the ambient geomagnetic field.  If there is a functional significance to the magnetoreceptive 733	

response, it would have the most influence in situations where other cues are impoverished, such 734	

as marine and aerial navigation, where spatial disorientation is a surprisingly persistent event 735	

(Poisson & Miller, 2014). The current alpha-ERD evidence provides a starting point to explore 736	

functional aspects of magnetoreception, by employing various behavioral tasks in variety of 737	

sensory settings. 738	

 739	

Conclusion 740	

 741	

We conclude that at least some modern humans transduce changes in Earth-strength 742	

magnetic fields into an active neural response.  Given the known presence of highly-evolved 743	

geomagnetic navigation systems in species across the animal kingdom, it is perhaps not 744	

surprising that we might retain at least some functioning neural components, especially given the 745	

nomadic hunter/gatherer lifestyle of our not-too-distant ancestors.  The full extent of this 746	

inheritance remains to be discovered. 747	

 748	

 749	

 750	

 751	

 752	
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Extended Materials and Methods. 753	

Detailed additional instructions concerning the custom-built equipment and instrumentation are 754	

provided below. All experiments were performed in accordance with relevant guidelines and 755	

regulations following NIH protocols for human experimentation, as reviewed and approved 756	

periodically by the Caltech Administrative Committee for the Protection of Human Subjects 757	

(Caltech IRB, protocols 13-0420, 17-0706, and 17-0734).  All methods were carried out in 758	

accordance with relevant guidelines and regulations. Informed consent using forms approved by 759	

the Institutional Review Board was obtained from all subjects. No subjects under the age of 18 760	

were used in these experiments. 761	

 762	

1. Magnetic Exposure Facility.  We constructed a six-sided Faraday cage shown in Figs. 1 and 763	

5 out of aluminum, chosen because of: (1) its high electrical conductivity, (2) low cost and (3) 764	

lack of ferromagnetism.  The basic structure of the cage is a rectangular 2.44 m x 2.44 m x 2.03 765	

m frame made of aluminum rods, 1.3 cm by 1.3 cm square in cross-section, shown in Fig. 5A. 766	

Each of the cage surfaces (walls, floor and ceiling) have four rods (two vertical and two 767	

horizontal) bounding the perimeter of each sheet.  On the cage walls three vertical rods are 768	

spaced equally along the inside back of each surface, and on the floor and ceiling three 769	

horizontal rods are similarly spaced, forming an inwards-facing support frame. This frame 770	

provides a conductive chassis on which overlapping, 1 mm thick aluminum sheets (2.44 m long 771	

and 0.91 m wide) were attached using self-threading aluminum screws at ~0.60 m intervals with 772	

large overlaps between each sheet.  In addition, we sealed the seams between separate aluminum 773	

panels with conductive aluminum tape.  The access door for the cage is a sheet of aluminum that 774	

is fastened with a 2.4 m long aluminum hinge on the East-facing wall such that it can swing 775	

away from the cage and provide an entrance/exit. Aluminum wool has been affixed around the 776	

perimeter of this entrance flap to provide a conductive seal when the flap is lowered (e.g. the 777	

cage is closed).  Ventilation is provided via a ~3 m long, 15 cm diameter flexible aluminum tube 778	

(Fig. 5E) that enters an upper corner of the room and is connected to a variable-speed ceiling-779	

mounted fan set for a comfortable but quiet level of airflow.  The end of the tube in contact with 780	

the Faraday cage is packed loosely with aluminum wool that allows air to pass and provides 781	

electrical screening.  LED light strips (Fig. 5H) provide illumination for entrance and exit. These 782	

lights are powered by a contained lithium ion battery housed in an aluminum container attached 783	
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at the top end of the Faraday cage, adjacent to the entrance of the ventilation air duct (seen as the 784	

red battery in Fig. 5E).   785	

In all experiment sessions, power to the lights was switched off.  A small USB-powered 786	

infrared camera and microphone assembly (Fig. 5G) mounted just inside the cage on the North 787	

wall allows audiovisual monitoring of participants inside the room.  Instructions to the 788	

participants are given from a pair of speakers mounted outside the Faraday cage (Fig. 5F), 789	

controlled remotely by experimenters and electrically shorted by a computer-controlled TTL 790	

relay when not in use.  Acoustic foam panels are attached to the vertical walls to dampen echoes 791	

within the chamber as well as to reduce the amplitude of external sound entering the chamber.  792	

To complete the Faraday shielding, we grounded the cage permanently at one corner with a 2.6 793	

mm diameter (10 AWG) copper wire connected to the copper plumbing in the sub-basement of 794	

the building.  RMS noise measurements from the cage interior using a Schwarzbeck Mess™ 795	

Elektronik FMZB 1513 B-component active loop Rf antenna, a RIGOL™ DSA815/E-TG 796	

spectrum analyzer, and a Tektronix™ RSA503A signal analyzer indicated residual noise 797	

interference below 0.01 nT, in the frequency range from 9 kHz to 10 MHz. 798	

Electrical cables entering the Faraday cage pass through a side gap in the aluminum 799	

ventilation duct and then through the aluminum wool.  Rf interference is blocked further on all 800	

electrical cables entering the room using pairs of clip-on ferrite chokes (Fair-Rite™ material #75, 801	

composed of MnZn ferrite, designed for low-frequency EMI suppression, referred from here-on 802	

as ferrite chokes) and configured where possible using the paired, multiple-loop “pretty-good 803	

choke” configuration described by Counselman (Counselman, 2013) (Fig. 5I).  Inside the 804	

shielded space are located a three-axis set of square coils approximately 2 m on edge following 805	

the Merritt et al. four-coil design (Merritt et al., 1983) (using the 59/25/25/59 coil winding ratio) 806	

that provides remarkably good spatial uniformity in the applied magnetic field (12 coils total, 807	

four each in the North/South, East/West, and Up/Down orientations as seen in Fig. 5A).  The 808	

coils are double-wrapped inside grounded aluminum U-channels following a design protocol that 809	

allows for full active-field and sham exposures (J.L Kirschvink, 1992); they were constructed by 810	

Magnetic Measurements, Ltd., of Lancashire, U.K. (http://www.magnetic-measurements.com). 811	

This double-wrapped design gives a total coil winding count of 118/50/50/118 for all three-axes 812	

coil sets. 813	
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To provide a working floor isolated from direct contact with the coils, we suspended a 814	

layer of ~2 cm thick plywood sheets on a grid work of ~ 10 x 10 cm thick wooden beams that 815	

rested on the basal aluminum plate of the Faraday shield that are held together with brass screws.  816	

We covered this with a layer of polyester carpeting on top of which we placed a wooden 817	

platform chair for the participants (Fig. 5B).  Non-magnetic bolts and screws were used to fasten 818	

the chair together, and a padded foam cushion was added for comfort.  The chair is situated such 819	

that the head and upper torso of most participants fit well within the ~1 m3 volume of highly 820	

uniform magnetic fields produced by the coil system (J.L Kirschvink, 1992) while keeping the 821	

participants a comfortable distance away from direct contact with the Merritt coils. 822	

We suspended the three-axis probe of a fluxgate magnetometer (Applied Physics 823	

Systems™ model 520A) on a non-magnetic, carbon-fiber, telescoping camera rod suspended 824	

from the ceiling of the Faraday cage (Fig. 5D).  This was lowered into the center of the coil 825	

system for initial calibration of field settings prior to experiments and then raised to the edge of 826	

the uniform field region to provide continuous recording of the magnetic field during 827	

experiments.  Power cables for the coils and a data cable for the fluxgate sensor pass out of the 828	

Faraday cage through the ventilation shaft, through a series of large Rf chokes (Counselman, 829	

2013), a ceiling utility chase in the adjacent hallway, along the wall of the control room, and 830	

finally down to the control hardware.  The control hardware and computer are located ~20 m 831	

away from the Faraday cage through two heavy wooden doors and across a hallway that serve as 832	

effective sound dampeners such that participants are unable to directly hear the experimenters or 833	

control equipment and the experimenters are unable to directly hear the participant. 834	

In the remote-control room, three bipolar power amplifiers (Kepco™ model BOP-100-835	

1MD) control the electric power to the coil systems (Fig. 5J) and operate in a mode where the 836	

output current is regulated proportional to the control voltage, thereby avoiding a drop in current 837	

(and magnetic field) should the coil resistance increase due to heating.  Voltage levels for these 838	

are generated using a 10k samples per channel per second, 16-bit resolution, USB-controlled, 839	

analog output DAQ device (Measurement Computing™ Model USB-3101FS), controlled by the 840	

desktop PC.  This same PC controls the DC power supply output levels, monitors and records the 841	

Cartesian orthogonal components from the fluxgate magnetometer, displays video of the 842	

participant (recordings of which are not preserved per IRB requirements), and is activated or 843	

shorted, via TTL lines, to the microphone/speaker communication system from the control room 844	
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to the experimental chamber.  As the experimenters cannot directly hear the participant and the 845	

participant cannot directly hear the experimenters, the microphone and speaker system are 846	

required (as per Caltech Institute Review Board guidelines) to ensure the safety and comfort of 847	

the participant as well as to pass instructions to the participant and answer participants’ questions 848	

before the start of a block of experiments. The three-axis magnet coil system can produce a 849	

magnetic vector of up to 100 µT intensity (roughly 2-3X the background strength in the lab) in 850	

any desired direction with a characteristic RL relaxation constant of 79-84 ms (inductance and 851	

resistance of the four coils in each axis vary slightly depending on the different coil-diameters 852	

for each of the three nested, double-wrapped coil-set axes).  Active/Sham mode was selected 853	

prior to each run via a set of double-pole-double-throw (DPDT) switches located near the DC 854	

power supplies. These DPDT switches are configured to swap the current direction flowing in 855	

one strand of the bifilar wire with respect to the other strand in each of the coil sets (J.L 856	

Kirschvink, 1992) (Fig. 5C).  Fluxgate magnetometer analog voltage levels were digitized and 857	

streamed to file via either a Measurement Computing™ USB 1608GX 8-channel (differential 858	

mode) analog input DAQ device, or a Measurement Computing™ USB 1616HS-2 multifunction 859	

A/D, D/A, DIO DAQ device connected to the controller desktop PC.  Fluxgate analog voltage 860	

signal levels were sampled at 1024 or 512 Hz.  Although the experimenter monitors the 861	

audio/video webcam stream of the participants continuously, as per Caltech IRB safety 862	

requirements, while they are in the shielded room the control software disconnects the external 863	

speakers (in the room that houses the experimental Faraday cage and coils) and shorts them to 864	

electrical ground during all runs to prevent extraneous auditory cues from reaching the 865	

participants. Light levels within the experimental chamber during experimental runs were 866	

measured using a Konica-Minolta CS-100A luminance meter, which gave readings of zero 867	

(below 0.01 ± 2% cd/m2). 868	

 869	

 870	

 871	

 872	

 873	

 874	

 875	
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 876	

Fig. 5.  Additional images of critical aspects of the human magnetic exposure facility at 877	
Caltech.  A. Partially complete assembly of the Faraday cage (summer of 2014) showing the 878	
nested set of orthogonal, Merritt square four-coils (Merritt et al., 1983) with all but two 879	
aluminum walls of the Faraday cage complete.  B. Image of a participant in the facility seated in 880	
a comfortable, non-magnetic wooden chair and wearing the 64-lead BioSimTM EEG head cap.  881	
The EEG sensor leads are carefully braided together to minimize electrical artifacts.  The chair is 882	
on a raised wooden platform that is isolated mechanically from the magnet coils and covered 883	
with a layer of synthetic carpeting; the height is such that the participant’s head is in the central 884	
area of highest magnetic field uniformity.  C. Schematic of the double-wrapped control circuits 885	
that allow active-sham experiments (J.L Kirschvink, 1992).  In each axis of the coils, the four 886	
square frames are wrapped in series with two discrete strands of insulated copper magnet wire 887	
and with the number of turns and coil spacing chosen to produce a high-volume, uniform applied 888	
magnetic field (Merritt et al., 1983).  Reversing the current flow in one of the wire strands via a 889	
double-pole-double-throw (DPDT) switch results in cancellation of the external field with 890	
virtually all other parameters being the same. This scheme is implemented on all three 891	
independently controlled coil axes (Up/Down, East/West and North/South).  D.  Fluxgate 892	
magnetometer (Applied Physics Systems 520A) three-axis magnetic field sensor attached to a 893	
collapsing carbon-fiber camera stand mount.  At the start of each session the fluxgate is lowered 894	
to the center of the chamber for an initial current / control calibration of the ambient geomagnetic 895	
field.  It is then raised to a position about 30 cm above the participant’s head during the 896	
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following experimental trials, and the three-axis magnetic field readings are recorded 897	
continuously in the same fashion as the EEG voltage signals.  E. Air duct.  A 15 cm diameter 898	
aluminum air duct ~2 meters long connects a variable-speed (100 W) electric fan to the upper SE 899	
corner of the experimental chamber; this is also the conduit used for the major electrical cables 900	
(power for the magnetic coils, sensor leads for the fluxgate, etc.).  F. & G.  An intercom / video 901	
monitoring system was devised by mounting a computer-controlled loudspeaker (F) outside the 902	
Faraday shield on the ceiling North of the chamber coupled with (G) a USB-linked IR video 903	
camera / microphone system mounted just inside the shield.  Note the conductive aluminum tape 904	
shielding around the camera to reduce Rf interference. During all experimental trials a small 905	
DPDT relay located in the control room disconnects the speaker from computer and directly 906	
shorts the speaker connections.  A second microphone in the control room can be switched on to 907	
communicate with the participant in the experimental chamber, as needed. An experimenter 908	
monitors the audio and video of participants at all times, as per Caltech IRB safety requirements. 909	
H.  LED lights, 12 VDC array, arranged to illuminate from the top surface of the magnetic coils 910	
near the ceiling of the chamber.  These are powered by rechargeable 11.1 V lithium battery packs 911	
(visible in E) and controlled by an external switch.  I. Ferrite chokes. Whenever possible, these 912	
are mounted in a multiple-turn figure-eight fashion (Counselman, 2013) on all conductive wires 913	
and cables entering the shielded area and supplemented with grounded aluminum wool when 914	
needed.  J. Image of the remote control area including (from left to right): the PC for controlling 915	
the coils, the DPDT switches for changing between active and sham modes, the fluxgate control 916	
unit, the three power amplifiers that control the current in the remote coil room, and the separate 917	
PC that records the EEG data.  Participants seated in the experimental chamber do not report 918	
being able to hear sounds from the control room and vice versa. 919	
 920	

 921	

 922	

 923	

 924	

 925	

 926	

 927	

 928	

 929	

 930	

 931	

 932	

 933	

 934	

 935	
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2. Participants.  Participants were 34 adult volunteers (24 male, 12 female) recruited from the 936	

Caltech population. This participant pool included persons of European, Asian, African and 937	

Native American descent.  Ages ranged from 18 to 68 years. Each participant gave written 938	

informed consent of study procedures approved by the Caltech Institutional Review Board 939	

(Protocols 13-0420, 17-0706, and 17-0734). 940	

 941	

3. Experimental Protocol.  In the experiment, participants sat upright in the chair with their 942	

eyes closed and faced North (defined as 0° declination in our magnetic field coordinate reference 943	

frame).  The experimental chamber was dark, quiet and isolated from the control room during 944	

runs.  Each run was ~7 minutes long with up to eight runs in a ~1 hour session.  The magnetic 945	

field was rotated over 100 milliseconds every 2-3 seconds, with constant 2 or 3 s inter-trial 946	

intervals in early experiments and pseudo-randomly varying 2-3 s intervals in later experiments.  947	

Participants were blind to Active vs. Sham mode, trial sequence and trial timing.  During 948	

sessions, auditory tones signaled the beginning and end of experiments and experimenters only 949	

communicated with participants once or twice per session to update the number of runs 950	

remaining.  When time allowed, Sham runs were matched to Active runs using the same 951	

software settings. Sham runs are identical to Active runs but are executed with the current 952	

direction switches set to anti-parallel. This resulted in no observable magnetic field changes 953	

throughout the duration of a Sham run with the local, uniform, static field produced by the 954	

double-wrapped coil system in cancellation mode (J.L Kirschvink, 1992). 955	

Two types of trial sequences were used: (1) a 127-trial Gold Sequence with 63 FIXED 956	

trials and 64 SWEEP trials evenly split between two rotations (32 each), and (2) various 150-trial 957	

pseudorandom sequences with 50 trials of each rotation interspersed with 50 FIXED trials to 958	

balance the number of trials in each of three conditions.  All magnetic field parameters were held 959	

constant during FIXED trials, while magnetic field intensity was held constant during inclination 960	

or declination rotations.  In inclination experiments (Fig. 2A of the main text), the vertical 961	

component of the magnetic field was rotated upwards and downwards between ±55°, ±60°, or 962	

±75° (Inc.UP and Inc.DN, respectively); data collected from runs with each of these inclination 963	

values were collapsed into a single set representative of inclination rotations between steep 964	

angles.  In each case, the horizontal component was steady at 0° declination (North; Inc.UP.N 965	

and Inc.DN.N).  Two types of declination experiments were conducted, designed to test the 966	
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quantum compass and electrical induction hypotheses.  As the quantum compass can only 967	

determine the axis of the field and not polarity, we compared a pair of declination experiments in 968	

which the rotating vectors were swept down to the North (DecDn.N) and up to the South 969	

(DecUp.S), providing two symmetrical antiparallel data sets (Fig. 2B of the main text).  In the 970	

DecDn.N experiments, the vertical component was held constant and downwards at +60° or 971	

+75°, while the horizontal component was rotated between NE (45°) and NW (315°), along a 972	

Northerly arc (DecDn.CW.N and DecDn.CCW.N).  In DecUp.S experiments, the vertical 973	

component was held upwards at −60° or −75°, while the horizontal component was rotated 974	

between SW (225°) and SE (135°) along a Southerly arc (DecUp.CW.S and DecUp.CCW.S). 975	

Again, runs with differing inclination values were grouped together as datasets with steep 976	

downwards or steep upwards inclination.  To test the induction hypothesis, we paired the 977	

DecDn.N sweeps with a similar set, DecUp.N, as shown on Fig. 2C.  These two conditions only 978	

differ in the direction of the vertical field component; rotations were between NE and NW in 979	

both experiments (DecDn.CW.N, DecDn.CCW.N, DecUp.CW.N and DecUp.CCW.N). Hence, 980	

any significant difference in the magnetosensory response eliminates induction as a mechanism. 981	

 982	

4. EEG Recording.  EEG was recorded using a BioSemi™ ActiveTwo system with 64 983	

electrodes following the International 10-20 System (Nuwer et al., 1998).  Signals were sampled 984	

at 512 Hz with respect to CMS/DRL reference at low impedance <1 ohm and bandpass-filtered 985	

from 0.16-100 Hz.  To reduce electrical artifacts induced by the time-varying magnetic field, 986	

EEG cables were bundled and twisted 5 times before plugging into a battery-powered BioSemi™ 987	

analog/digital conversion box.  Digitized signals were transmitted over a 30 m, non-conductive, 988	

optical fiber cable to a BioSemi™ USB2 box located in the control room ~20 m away where a 989	

desktop PC (separate from the experiment control system) acquired continuous EEG data using 990	

commercial ActiViewTM software.  EEG triggers signaling the onset of magnetic stimulation 991	

were inserted by the experiment control system by connecting a voltage timing signal (0 to 5 V) 992	

from its USB-3101FS analog output DAQ device.  The timing signal was sent both to the 993	

Measurement Computing USB-1608GX (or USB-1616HS-2) analog input DAQ device, used to 994	

sample the magnetic field on the experiment control PC and a spare DIO voltage input channel 995	

on the EEG system’s USB2 DAQ input box, which synchronized the EEG data from the optical 996	

cable with the triggers cued by the controlling desktop PC.  This provided: (1) a precise 997	
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timestamp in continuous EEG whenever electric currents were altered (or in the case of FIXED 998	

trials, when the electric currents could have been altered to sweep the magnetic field direction, 999	

but were instead held constant) in the experimental chamber, and (2) a precise correlation (±2 1000	

ms, precision determined by the  512 samples per second digital input rate of the BioSemiTM 1001	

USB2 box) between fluxgate and EEG data. 1002	

 1003	

5. EEG Analysis.  Raw EEG data were extracted using EEGLAB™ toolbox for MATLAB™ 1004	

and analyzed using custom MATLAB™ scripts.  Trials were defined as 2- or 3-s epochs from 1005	

−0.75 s pre-stimulus to +1.25 or +2.25 s post-stimulus, with a baseline interval from −0.5 s to 1006	

−0.25 s pre-stimulus.  Time/frequency decomposition was performed for each trial using Fast 1007	

Fourier Transform (MATLAB™ function fft) and Morlet wavelet convolution on 100 linearly-1008	

spaced frequencies between 1 and 100 Hz.  Average power in an extended alpha band of 6-14 Hz 1009	

was computed for the pre-stimulus and post-stimulus intervals of all trials, and a threshold of 1010	

1.5X the interquartile range was applied to identify trials with extreme values of log alpha 1011	

power.  These trials were excluded from further analysis but retained in the data.  After 1012	

automated trial rejection, event-related potentials (ERPs) were computed for each condition and 1013	

then subtracted from each trial of that condition to reduce the electrical induction artifact that 1014	

appeared only during the 100 ms magnetic stimulation interval.  This is an established procedure 1015	

to remove phase-locked components such as sensory-evoked potentials from an EEG signal for 1016	

subsequent analysis of non-phase-locked, time/frequency power representations.  Non-phase-1017	

locked power was computed at midline frontal electrode Fz for each trial and then averaged and 1018	

baseline-normalized for each condition to generate a time/frequency map from −0.25 s pre-1019	

stimulus to +1 s or +2 s post-stimulus and 1-100 Hz.  To provide an estimate of overall alpha 1020	

power for each participant, power spectral density was computed using Welch’s method 1021	

(MATLAB™ function pwelch) at 0.5 Hz frequency resolution (Welch, 1967).  1022	

 From individual datasets, we extracted post-stimulus alpha power to test for statistically 1023	

significant differences amongst conditions at the group level.  Because alpha oscillations vary 1024	

substantially across individuals in amplitude, frequency and stimulus-induced changes, an 1025	

invariant time/frequency window would not capture stimulus-induced power changes in many 1026	

participants.  In our dataset, individual alpha oscillations ranged in frequency (8 to 12 Hz peak 1027	

frequency), and individual alpha-ERD responses started around +0.25 to +0.75 s post-stimulus.  1028	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2018. ; https://doi.org/10.1101/448449doi: bioRxiv preprint 

https://doi.org/10.1101/448449
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 35	

Thus, we quantified post-stimulus alpha power within an automatically-adjusted time/frequency 1029	

window for each dataset.  First, non-phase-locked alpha power between 6-14 Hz was averaged 1030	

over all trials regardless of condition.  Then, the most negative time/frequency point was 1031	

automatically selected from the post-stimulus interval between 0 s and +1 or +2 s in this cross-1032	

conditional average. The selected point represented the maximum alpha-ERD in the average over 1033	

all trials with no bias for any condition.  A time/frequency window of 0.25 s and 5 Hz was 1034	

centered (as nearly as possible given the limits of the search range) over this point to define an 1035	

individualized timing and frequency of alpha-ERD for each dataset.  Within the window, non-1036	

phase-locked alpha power was averaged across trials and baseline-normalized for each condition, 1037	

generating a value of alpha-ERD for each condition to be compared in statistical testing. 1038	

In early experiments, trial sequences were balanced with nearly equal numbers of FIXED 1039	

(63) and SWEEP (64) trials, with an equal number of trials for each rotation (e.g. 32 Inc.DN and 1040	

32 Inc.UP trials).  Later, trial sequences were designed to balance the number of FIXED trials 1041	

with the number of trials of each rotation (e.g. 50 DecDn.FIXED, 50 DecDn.CCW, and 50 1042	

DecDn.CW trials).  Alpha-ERD was computed over similar numbers of trials for each condition.  1043	

For example, when comparing alpha-ERD in the FIXED vs. CCW vs. CW conditions of a 1044	

declination experiment with 63 FIXED (32 CCW and 32 CW trials) 100 samplings of 32 trials 1045	

were drawn from the pool of FIXED trials, alpha-ERD was averaged over the subset of trials in 1046	

each sampling, and the average over all samplings was taken as the alpha-ERD of the FIXED 1047	

condition.  When comparing FIXED vs. SWEEP conditions of an inclination experiment with 50 1048	

FIXED, 50 DN, and 50 UP trials, 200 samplings of 25 trials were drawn from each of the DN 1049	

and UP conditions and the average alpha-ERD over all samplings taken as the alpha-ERD of the 1050	

SWEEP condition.  Using this method, differences in experimental design were reduced, 1051	

allowing statistical comparison of similar numbers of trials in each condition. The alpha-ERD 1052	

values for each participant in each condition are shown as histograms for the DecDn (Fig. 6), 1053	

DecUp (Fig. 7), and Sham declination (Fig. 8) experiments. These values were used in statistical 1054	

testing at the group level. 1055	

 1056	

 1057	

 1058	

 1059	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2018. ; https://doi.org/10.1101/448449doi: bioRxiv preprint 

https://doi.org/10.1101/448449
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 36	

 1060	

Fig. 6. Histogram of alpha-ERD responses over all participants (N=26) in the DecDn 1061	
experiment. The panels show the histogram of individual responses for each condition. 1062	
Frequency is given in number of participants. Because we looked for a drop in alpha power 1063	
following magnetic stimulation, the histograms are shifted towards negative values in all 1064	
conditions. The CCW condition shows the most negative average in a continuous distribution of 1065	
participant responses, with the most participants having a >2 dB response. 1066	
 1067	

 1068	
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 1069	

Fig. 7. Histogram of alpha-ERD responses over all participants (N=16) in the DecUp 1070	
experiment. The panels show the histogram of individual responses for each condition. No 1071	
significant magnetosensory response was observed in any condition, and no clear difference is 1072	
apparent between the three distributions. 1073	

 1074	

 1075	

 1076	
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 1077	

Fig. 8. Histogram of alpha-ERD responses over all participants (N=18) in the Sham Declination 1078	
experiment. The panels show the histogram of individual responses for each condition. No 1079	
significant magnetosensory response was observed in any condition, and no clear difference is 1080	
apparent between the three distributions. 1081	

 1082	

  1083	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2018. ; https://doi.org/10.1101/448449doi: bioRxiv preprint 

https://doi.org/10.1101/448449
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 39	

 Three statistical tests were performed using average alpha-ERD: (1) Inc ANOVA 1084	

(N=29), (2) DecDn ANOVA (N=26), (3) DecDn/DecUp ANOVA (N=16).  For the inclination 1085	

experiment, data were collected in Active and Sham modes for 29 of 34 participants.  Due to 1086	

time limitations within EEG sessions, sham data could not be collected for every participant, so 1087	

those participants without inclination sham data were excluded.  A two-way repeated-measures 1088	

ANOVA tested for the effects of inclination rotation (SWEEP vs. FIXED) and magnetic 1089	

stimulation (Active vs. Sham) on alpha-ERD.  Post-hoc testing using the Tukey-Kramer method 1090	

compared four conditions (Active-SWEEP, Active-FIXED, Sham-SWEEP and Sham-FIXED) 1091	

for significant differences (Tukey, 1949). 1092	

For the DecDn experiment, data were collected from 26 participants in Active mode.  A 1093	

one-way repeated-measures ANOVA tested for the effect of declination rotation (DecDn.CCW 1094	

vs. DecDn.CW vs. DecDn.FIXED) with post-hoc testing to compare these three conditions.  For 1095	

a subset of participants (N=16 of 26), data was collected from both DecDn and DecUp 1096	

experiments. The DecUp experiments were introduced in a later group to evaluate the quantum 1097	

compass mechanism of magnetosensory transduction, as well as in a strongly-responding 1098	

individual to test the less probable induction hypothesis, as shown in Video 1.  For tests of the 1099	

quantum compass hypothesis, we used the DecDn/DecUp dataset. A two-way repeated-measures 1100	

ANOVA tested for the effects of declination rotation (DecDn.CCW.N vs. DecDn.CW.N vs. 1101	

DecUp.CCW.S vs. DecUp.CW.S vs. DecDn.FIXED.N vs. DecUp.FIXED.S) and inclination 1102	

direction (Inc.DN.N vs Inc.UP.S) on alpha-ERD; data from another strongly-responding 1103	

individual is shown in Video 2.  Post-hoc testing compared six conditions (DecDn.CCW.N, 1104	

DecDn.CW.N, DecDn.FIXED.N, DecUp.CCW.S, DecUp.CW.S and DecUp.FIXED.S).  1105	

Within each group, certain participants responded strongly with large alpha-ERD while 1106	

others lacked any response to the same rotations.  To establish whether a response was consistent 1107	

and repeatable, we tested individual datasets for significant post-stimulus power changes in 1108	

time/frequency maps between 0 to +2 or +3 s post-stimulus and 1-100 Hz.  For each dataset, 1109	

1000 permutations of condition labels over trials created a null distribution of post-stimulus 1110	

power changes at each time/frequency point.  The original time/frequency maps were compared 1111	

with the null distributions to compute a p-value at each point.  False discovery rate correction for 1112	

multiple comparisons was applied to highlight significant post-stimulus power changes at the 1113	

p<0.05 and p<0.01 statistical thresholds (Benjamini & Hochberg, 1995). Fig. 9 shows repeated 1114	
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runs (Run #1 and Run #2) of two different participants (A and B) in the DecDn experiment. The 1115	

outlined clusters indicate significant power changes following magnetic field rotation. In each 1116	

case, the significant clusters are similar in timing and bandwidth across runs up to six months 1117	

apart. 1118	

 1119	

 1120	

 1121	

 1122	

 1123	

 1124	

 1125	

 1126	

 1127	

 1128	

 1129	

 1130	

 1131	

 1132	

 1133	

 1134	

 1135	

 1136	

 1137	

 1138	

 1139	

 1140	

 1141	

 1142	

 1143	

 1144	
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 1145	
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Fig. 9. Repeated results from two strongly-responding participants. In both (A) and (B), 1146	

participants were tested weeks or months apart under the same conditions (Run #1 and Run #2). 1147	

Time/frequency maps show similar timing and bandwidth of significant alpha power changes 1148	

(blue clusters in outlines) after counterclockwise rotation, while activity outside the alpha-ERD 1149	

response, and activity in other conditions is inconsistent across runs. Black/white outlines 1150	

indicate significance at the p<0.05 and p<0.01 thresholds. The participant in (A) had an alpha 1151	

peak frequency at <9 Hz and a lower-frequency alpha-ERD response. The participant in (B) had 1152	

an alpha peak frequency >11 Hz and a higher-frequency alpha-ERD response. Minor power 1153	

fluctuations in the other conditions or in different frequency bands were not repeated across runs, 1154	

indicating that only the alpha-ERD was a repeatable signature of magnetosensory processing. 1155	

 1156	
Video 1.    Test of the electrical induction mechanism of magnetoreception using data from a 1157	
participant with a strong, repeatable alpha-ERD magnetosensory response. Bottom row shows 1158	
the DecDn.CCW.N, DecDn.CW.N and DecDn.FIXED.N conditions (64 trials per condition) of 1159	
the DecDn.N experiment; top row shows the corresponding conditions for the DecUp.N 1160	
experiment. Scalp topography changes from –0.25 s pre-stimulus to +1 s post-stimulus. The 1161	
CCW rotation of a downwards-directed field (DecDn.CCW.N) caused a strong, repeatable alpha-1162	
ERD (lower left panel, p<0.01 at Fz); weak alpha power fluctuations observed in other 1163	
conditions (DecDn.CW.N, DecDn.FIXED.N, DecUp.CW.N, DecUp.CCW.N and 1164	
DecUp.FIXED.N) were not consistent across multiple runs of the same experiment. If the 1165	
magnetoreception mechanism is based on electrical induction, the same response should occur in 1166	
conditions with identical ∂B/∂t (DecDn.CCW.N and DecUp.CCW.N), but the response was 1167	
observed only in one of these conditions: a result that contradicts the predictions of the electrical 1168	
induction hypothesis. 1169	
 1170	

Video 2.   Test of the quantum compass mechanism of magnetoreception using data from 1171	
another strongly-responding participant. Bottom vs. top rows compare the DecDn.N and 1172	
DecUp.S experiments in the CCW, CW and FIXED conditions (DecDn.CCW.N, DecDn.CW.N, 1173	
DecDn.FIXED.N, DecUp.CW.S, DecUp.CCW.S and DecUp.FIXED.S with 100 trials per 1174	
condition). The quantum compass is not sensitive to magnetic field polarity, so magnetosensory 1175	
responses should be identical for the DecDn.CCW.N and DecUp.CCW.S rotations sharing the 1176	
same axis. Our results contradict this prediction. A significant, repeatable alpha-ERD is only 1177	
observed in the DecDn.CCW.N condition (lower left panel, p<0.01 at Fz), with no strong, 1178	
consistent effects in the DecUp.CCW.S condition (top left panel) or any other condition. 1179	
 1180	

 1181	

 1182	

 1183	

Extended Discussion 1184	
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 1185	

6. Controlling for Magnetomechanical Artifacts.  A question that arises in all studies of 1186	

human perception is whether confounding artifacts in the experimental system produced the 1187	

observed effects.  The Sham experiments using double-wrapped, bonded coil systems controlled 1188	

by remote computers and power supplies indicate that obvious artifacts such as resistive 1189	

warming of the wires or magnetomechanical vibrations between adjacent wires are not 1190	

responsible.  In Active mode, however, magnetic fields produced by the coils interact with each 1191	

other with maximum torques occurring when the moment u of one coil set is orthogonal to the 1192	

field B of another (torque = u x B).  Hence, small torques on the coils might produce transient, 1193	

sub-aural motion cues.  Participants might detect these cues subconsciously even though the coils 1194	

are anchored to the Faraday cage at many points; the chair and floor assemblies are mechanically 1195	

isolated from the coils; the experiments are run in total darkness, and the effective frequencies of 1196	

change are all below 5 Hz and acting for only 0.1 second.  No experimenters or participants ever 1197	

claimed to perceive field rotations consciously even when the cage was illuminated and efforts 1198	

were made to consciously detect the field rotations.  Furthermore, the symmetry of the field 1199	

rotations and the asymmetric nature of the results both argue strongly against this type of artifact.  1200	

During the declination experiments, for example, the vertical component of the magnetic field is 1201	

held constant while a constant-magnitude horizontal component is rotated 90˚ via the N/S and 1202	

E/W coil axes.  Hence, the torque pattern produced by DecDn.CCW.N rotations should be 1203	

identical to that of the DecUp.CW.S rotations, yet these conditions yielded dramatically different 1204	

results.  We conclude that magnetomechanical artifacts are not responsible for the observed 1205	

responses. 1206	

 1207	

7. Testing for Artifacts or Perception from Electrical Induction.  Another source of artifacts 1208	

might be electrical eddy currents induced during field sweeps that might stimulate subsequent 1209	

EEG brain activity in the head or perhaps in the skin or scalp adjacent to EEG sensors.  Such 1210	

artifacts would be hard to distinguish from a magnetoreceptive structure based on electrical 1211	

induction. For example, the alpha-ERD effects might arise via some form of voltage-sensitive 1212	

receptor in the scalp subconsciously activating sensory neurons and transmitting information to 1213	

the brain for further processing.  However, for any such electrical induction mechanism the 1214	
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Maxwell-Faraday law holds that the induced electric field E is related to the magnetic field 1215	

vector, B(t), by: 1216	

 1217	

∇ × E = -∂B(t)/∂t (1). 1218	

 1219	

During a declination rotation, the field vector B(t) is given by:  B(t) = BV + BH(t), where BV is 1220	

the constant vertical field component, t is time, BH(t) is the rotating horizontal component, and 1221	

the quantities in bold are vectors.  Because the derivative of a constant is zero, the static vertical 1222	

vector BV has no effect, and the induced electrical effect depends only on the horizontally-1223	

rotating vector, BH(t): 1224	

 1225	

∇ × E = -∂BV/∂t - ∂BH(t)/∂t = - ∂BH(t)/∂t (2). 1226	

 1227	

As noted in the main text, Video 1 shows results for the induction test shown in Fig. 2C 1228	

for which the sweeps of the horizontal component are identical, going along a 90˚ arc between 1229	

NE and NW (DecDn.CCW.N and DecUp.CCW.N).  The two trials differ only by the direction of 1230	

the static vertical vector, BV, which is held in the downwards orientation for the bottom row of 1231	

Video 1 and upwards in the top row.  As only the DecDn.CCW.N sweep elicits alpha-ERD, and 1232	

the DecUp.CCW.N sweep does not elicit alpha-ERD, electrical induction cannot be the 1233	

mechanism for this effect either via some artifact of the EEG electrodes or an intrinsic 1234	

anatomical structure.   1235	

We also ran additional control experiments on “EEG phantoms,” which allow us to 1236	

isolate the contribution of environmental noise and equipment artifacts.  Typical setups range 1237	

from simple resistor circuits to fresh human cadavers.  We performed measurements on two 1238	

commonly-used EEG phantoms: a bucket of saline, and a cantaloupe.  From these controls, we 1239	

isolated the electrical effects induced by magnetic field rotations.  The induced effects were 1240	

similar to the artifact observed in human participants during the 100 ms magnetic stimulation 1241	

interval.  In cantaloupe and in the water-bucket controls, no alpha-ERD responses were observed 1242	

in Active or Sham modes suggesting that a brain is required to produce a magnetosensory 1243	

response downstream of any induction artifacts in the EEG signal. 1244	

 1245	
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8.  Non-polar magnetoreceptivity (attributed to birds) cannot explain the present data.   1246	

Birds and some other animals display a magnetic inclination compass that identifies the 1247	

steepest angle of magnetic field dip with respect to gravity (R. Wiltschko & W. Wiltschko, 1995; 1248	

W. Wiltschko, 1972), and as noted earlier this compass can operate at dips as shallow as 5˚ from 1249	

horizontal (Schwarze et al., 2016).  This allows a bird to identify the direction of the closest pole 1250	

(North or South) without knowing the polarity of the magnetic field.  If a bird knows it is in the 1251	

(e.g.) Northern Hemisphere, it can use this maximum dip to identify the direction of geographic 1252	

North.  However, this mechanism could not distinguish between the antipodal (vector opposite) 1253	

fields used in our biophysical test of polarity sensitivity.  If we create a field with magnetic north 1254	

down and to the front, the bird would correctly identify North as forward.  However, if we point 1255	

magnetic north up and to the back, the bird would still identify North as forward because that is 1256	

the direction of maximum dip. 1257	

Because magnetism and gravity are distinct, non-interacting forces of nature, the 1258	

observed behavior must arise from neural processing of sensory information from separate 1259	

transduction mechanisms (J. L. Kirschvink et al., 2010).  If polarity information is not present 1260	

initially from a magnetic transducer or lost in subsequent neural processing, it cannot be 1261	

recovered by adding information from other sensory modalities.  As an illustration, if we gave 1262	

our participants a compass with a needle that did not have its North tip marked, they could not 1263	

distinguish the polarity of an applied magnetic field even if we gave them a gravity pendulum or 1264	

any other non-magnetic sensor. 1265	

At present our experimental results in humans suggest the combination of a magnetic and 1266	

a positional cue.  However, we cannot tell if this positional cue is a reference frame using gravity 1267	

or one aligned with respect to the human body.  This could perhaps be addressed by modifying 1268	

the test chamber to allow the participant to rest in different orientations with respect to gravity. 1269	

 1270	

9. Sastre et al. EEG Study.  Our results perhaps shed light on a previous study attempting to 1271	

detect the presence of a low-frequency magnetic stimulus on human brainwaves, which found no 1272	

significant effects.  As part of a major initiative to investigate possible electromagnetic effects on 1273	

cancer by the US National Institute of Health and the Department of Energy during the 1990’s, 1274	

Sastre et al. (Sastre et al., 2002) analyzed EEG signals for power changes in several frequency 1275	

bands averaged over 4 s intervals before and after changes in the background magnetic field.  1276	
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However, they did not do the time/frequency analysis that we report here nor averaging of 1277	

repeated rotations over many trials; wavelet methods were not used as frequently at that time.  1278	

To test the impact of these differences in data analysis algorithms, we analyzed our data using 1279	

the techniques in Sastre et al.  These analyses did not reveal any significant differences in total or 1280	

band-specific power between any conditions. Thus, our results are consistent with previous 1281	

findings. 1282	

Other differences between our studies lie in the stimulation parameters.  In four of seven 1283	

conditions from Sastre et al. (A, B, C and D), the field intensities used (90 µT) were twice as 1284	

strong as the ambient magnetic field in Kansas City (45 µT) and were well above intensity 1285	

alterations known to cause birds to ignore geomagnetic cues (W. Wiltschko, 1972).  1286	

Additionally, Sastre et al. chose to use clockwise but not counterclockwise rotations (conditions 1287	

B and C).  In our study, rotating the declination clockwise did not yield statistically significant 1288	

effects although the reasons are not yet understood (Table 1). 1289	

 1290	
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