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Abstract Asexual populations are expected to accumulate deleterious mutations through a9

process known as Muller’s Ratchet. Lynch, Gabriel, and colleagues have proposed that the10

Ratchet eventually results in a vicious cycle of mutation accumulation and population decline that11

drives populations to extinction. They called this phenomenon mutational meltdown. Here, we12

analyze the meltdown using a multitype branching process model where, in the presence of13

mutation, populations are doomed to extinction. We find that extinction occurs more quickly in14

small populations, experiencing a high deleterious mutation rate, and mutations with more15

severe deleterious effects. The effects of mutational parameters on extinction time in doomed16

populations differ from those on the severity of Muller’s Ratchet in populations of constant size.17

We also find that mutational meltdown, although it does occur in our model, does not determine18

extinction time. Rather, extinction time is determined by the expected impact of deleterious19

mutations on fitness.20

21

Introduction22

“All populations are doomed to eventual extinction.” Lynch and Gabriel (1990)23

In the absence of back mutations, an asexual individual cannot produce offspring carrying fewer24

deleterious mutations than itself. Indeed, it is always possible that individual offspring will accrue25

additional deleterious mutations. As a result, the class of individuals with the fewest deleterious26

mutationsmay, by chance, disappear irreversibly from the population, a process known asMuller’s27

Ratchet (Muller, 1964; Felsenstein, 1974; Haigh, 1978). Successive “clicks” of the Ratchet will cause28

the fitness of asexual populations to decline. Muller’s Ratchet has been invoked to explain the29

evolution of sex (Muller, 1964; Felsenstein, 1974; Gordo and Campos, 2008), the extinction of small30

populations (Lynch et al., 1993, 1995a), the accelerated rate of evolution of endosymbiotic bacteria31

(Moran, 1996), the degeneration of Y-chromosomes (Charlesworth, 1978;Gordo and Charlesworth,32

2000b), and cancer progression (McFarland et al., 2013, 2014).33

Haigh (1978) argued that the Ratchet should click at a rate inversely proportional to the size of34

the least-loaded class in a population. If k is the lowest number of deleterious mutations present35

in an individual in the population, the size of the least-loaded class at mutation-selection-drift36

equilibrium is37

n̂k = Ne−U∕s , (1)

where N is the size of the population, U is the expected number of deleterious mutations per38

genome per generation, and s is the deleterious effect of a mutation. Haigh suggested that genetic39

drift causes the actual value of nk to deviate stochastically from n̂k. The smaller the value of n̂k, the40
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greater the probability that nk will hit zero, causing the Ratchet to click. If n̂k > 1, then after a click41

of the Ratchet, the size of the new least-loaded class will go to a new equilibrium, n̂k+1, equal to42

n̂k in Equation 1. Haigh concluded that Muller’s Ratchet should click faster in small populations,43

experiencing a high deleterious mutation rate, and mutations with milder deleterious effects (low44

s). Subsequent work has derived more accurate estimates of the rate of clicking of the Ratchet,45

both when n̂k > 1 (Stephan et al., 1993; Gordo and Charlesworth, 2000a,b; Neher and Shraiman,46

2012;Metzger and Eule, 2013) and when n̂k < 1 (Gessler, 1995; Rouzine et al., 2003, 2008).47

Beginning with Haigh’s foundational study, most research on Muller’s Ratchet has assumed48

that the size of a population remains constant as deleterious mutations accumulate (e.g., Gessler,49

1995; Gordo and Charlesworth, 2000a,b; Rouzine et al., 2003; Metzger and Eule, 2013). This as-50

sumption is biologically unrealistic—if true, fitness would decline continuously but the population51

would be immortal (Lynch and Gabriel, 1990; Melzer and Koeslag, 1991). Lynch, Gabriel, and col-52

leagues studied more realistic models where the fitness of an individual influences its fertility and53

populations experience density-dependent regulation (Lynch and Gabriel, 1990; Lynch et al., 1993;54

Gabriel et al., 1993; Lynch et al., 1995a). They found that Muller’s Ratchet causes population size55

to decline, which accelerates the Ratchet, which further reduces population size. This positive56

feedback results in a “mutational meltdown” that drives the population to extinction (Lynch and57

Gabriel, 1990; Lynch et al., 1993; Gabriel et al., 1993).58

In one model, Lynch et al. (1993) considered a population of asexual organisms subject to a59

carrying capacity of N̂ individuals. Each individual produces R offspring. The number of mutations60

is Poisson distributed with rate U . The offspring then undergo viability selection with a probability61

of survival62

wk = (1 − s)k , (2)

where k ≥ 0 is the number of deleterious mutations in the individual offspring, and 0 < s < 1 is63

the deleterious effect of each mutation. If the number of offspring surviving viability selection is64

N ′ > N̂ ,N ′ − N̂ individuals die and N̂ individuals survive, independently of their fitness; ifN ′ ≤ N̂ ,65

all N ′ individuals survive. Reproduction occurs after viability selection and density-dependent66

regulation. Assuming that initially all individuals in the population aremutation-free and thatNR >67

N̂ , Muller’s Ratchet proceeds in three phases in this model. First, mutations enter the population68

and accumulate rapidly. As the distribution of mutation numbers approaches mutation-selection-69

drift equilibrium mutation accumulation slows down. Second, the rate of mutation accumulation70

settles into a steady rate. This phase proceeds as in the classic constant population size model of71

Muller’s Ratchet (Haigh, 1978) and lasts while NRw ≳ N̂ . Third, when mean viability reaches w =72

1∕R (i.e., when NRw = N̂ ) the population size begins to decline, triggering mutational meltdown.73

During this phase the population is doomed to extinction.74

Lynch et al. (1993) derived some analytical expressions to describe the dynamics of mutation75

accumulation during the first two phases and the times at which these two phases end. However,76

they did not present any analytical theory on the dynamics or duration of the third (meltdown)77

phase itself (see also Gabriel et al., 1993; Lynch et al., 1995a). Thus, the validity of the Lynch-78

Gabriel view of the mutational meltdown is difficult to evaluate. Here we model the mutational79

meltdown phase of Muller’s Ratchet using a multitype branching process. We derive an analytical80

approximation for the expected time to extinction under this model of populations doomed to81

extinction. We find that extinction occurs more quickly in small populations, experiencing a high82

deleterious mutation rate (u), and mutations with more severe deleterious effects (high s). Our83

results differ from predictions on the relationship between the severity of Muller’s Ratchet and84

mutational parameters in populations of constant size. We also find that mutational meltdown,85

although it does occur in doomed populations, is not an important determinant of time to extinc-86

tion. Rather, extinction time is approximately inversely proportional to the product us, that is, the87

expected impact of deleterious mutations on fitness.88
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Figure 1. Multitype branching process. At each time step, an individual of type k—i.e, with k deleterious
mutations (light gray)—can have one of four fates (A–D) with different probabilities, P (see Table 1). It can
either die (D) or survive and split into two daughters (A–C). The daughters inherit the kmutations from their
mother. A daughter can acquire one additional mutation and become a type k + 1 individual (dark gray) (B–C).

Model89

Branching process90

A population consists of Nk individuals with k = 0, 1, 2, … deleterious mutations. Below, we refer91

to individuals with k deleterious mutations as belonging to type k.92

The size N =
∑

iNi of the population is allowed to change according to a discrete-time branch-93

ing process. Each generation, an individual of type k reproduces by splitting into two daughters94

with probability wk∕2 and dies with probability 1 − wk∕2 (Figure 1), where wk is the expected num-95

ber of offspring of an individual of type k—i.e., its absolute fitness (Equation 2). We assume that all96

mutations have the same deleterious effect s and do not interact epistatically.97

Any offspring may acquire one deleterious mutation with probability u. Note that u is defined98

differently from the mutation rate, U , in Haigh’s model (Equation 1). The number of mutant off-99

spring of a surviving individual of any type is binomially distributed with parameters 2 and u (Fig-100

ure 1).101

This branching process yields the probability generating function (p.g.f.) of the number of k-102

type offspring of a k-type individual103

'k(x) = 1 −
wk

2
(

1 − u2 − 2u(1−u)x − (1−u)2x2
)

(3)

and mean reproduction matrixM with entries104

{

mk,k = wk(1 − u)
mk,k+1 = wku

(4)

where mi,j is the expected number of offspring of type j generated by an individual of type i. All105

other entries ofM are 0.106

The mean reproduction matrix for generation t isM t, the t-th power ofM . For any t, all entries107

ofM t below the diagonal are 0. Assuming the fitness function in Equation 2, we can get an explicit108

form for the entries m(t)i,j ofM
t:109

m(t)k,k+j = (1 − u)
t−juj(1 − s)tk+

j(j−1)
2

j
∏

i=1

1 − (1 − s)t+1−i

1 − (1 − s)i
(5)

where j = 0, 1, 2, … For a proof, see Appendix 1.110

Extinction time of individuals of type k111

Let �k denote the time of extinction of individuals of type k in a population started from Nk ances-112

tors of type k where Nk is a random variable on {0, 1, 2, ...} (if Nk = 0, then �k = 0). There are no113

individuals of type i < k in the population. By a standard result from probability theory114

E[�k] =
∞
∑

t=0
P (�k > t) .
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Table 1. Variables and parameters.

Symbol Description

u Probability that an individual acquires a deleterious mutation (Figure 1).
s Deleterious effect of a mutation (Equation 2).
wk Fitness of an individual of type k, i.e. with k deleterious mutations (Equation 2).
mi,j Expected number of offspring of type j generated by an individual of type i

(Equation 4).
n0 Initial number of mutation-free individuals in the population.

nk Expected number of k-type individuals in the population.
N Total population size (Equation 19).
tk Expected extinction time of k-type individuals in generations, i.e. the k-th click of the

Ratchet (Equation 12).
Δtk Interval between clicks k − 1 and k of the Ratchet (Equation 21).
xk Expected number of k-type individuals at the extinction time of type k − 1

(Equation 11).
T Expected extinction time of the entire population in generations (Equation 10).

The time of extinction of the entire type-k subpopulation is the time of extinction of the Nk115

independent subpopulations started from the ancestors. The p.g.f. of the number of k-type indi-116

viduals in generation t is given by the t-fold composition of 'k (Equation 3) with itself, denoted by117

'(t)k . We get118

�k = max{�k,1, ..., �k,Nk}

where �k,j is the time of extinction of the subpopulation started from the jth individual, j = 1, ..., Nk.119

If we let Z (k,j)
t denote the number of type-k individuals in generation t stemming from the jth120

individual we have the equivalence121

�k,j ≤ t ⇔ Z (k,j)
t = 0

and get the conditional probability given Nk122

P (�k > t|Nk) = 1 − P (�k ≤ t|Nk)

= 1 −
Nk
∏

j=1
P (�k,j ≤ t)

= 1 −
(

'(t)k (0)
)Nk

for t > 0 which gives123

E[�k] = P (�k > 0) + E

[

∞
∑

t=1

(

1 −
(

'(t)k (0)
)Nk

)

]

With nk = E[Nk], a first-order Taylor approximation gives124

E[�k] ≈ P (�k > 0) +
∞
∑

t=1

(

1 −
(

'(t)k (0)
)nk)

(6)

Note that for k = 0 we have P (�0 > 0) = 1 because there are always individuals present at time 0.125

For k > 0, however, we have P (�k > 0) < 1 because, for example, the entire population may already126

be extinct in generation 1.127

In a similar way, we get the variance as128

Var[�k] = E[�k(�k − 1)] + E[�k] − E2[�k] (7)
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where129

E[�k(�k − 1)] = 2
∞
∑

t=1
tP (�k > t)

≈ 2
∞
∑

t=1
t
(

1 −
(

'(t)k (0)
)nk)

Extinction time of the entire population130

By well-known results from the theory of branching processes, the extinction time of the entire131

population has finite mean only in the subcritical case, that is, when the mean number of offspring132

per individual is less than 1. The expected number of offspring of type k produced by an individual133

of type k is mk,k (Equation 4). If mk,k = 1 (the critical case), the extinction time �k is finite but has an134

infinite mean and if mk,k > 1 (the supercritical case), �k itself may assume the value∞.135

Equation 4 shows that mk,k < 1 (the subcritical case) for individuals of any type k provided all136

mutations are deleterious (0 < s < 1) and the mutation rate is nonzero (u > 0). Thus, the expected137

extinction time of every type k is finite. In other words, the population is doomed to eventual138

extinction.139

Start with a fixed number n0 of mutation-free individuals and denote by T0 the time (generation)140

of extinction of this class. Conditioned on T0, the expected number of individuals in class 1 (those141

with k = 1 mutation) is therefore m(T0)0,1 (see Equation 5) which we note is a function of the random142

variable T0. Thus, the expected number of individuals in class 1 at the time of extinction of class143

0 is obtained by taking the expected value in m(T0)0,1 . To this end, recall Equation 5 and define the144

function145

g1(⋅) = m
(⋅)
0,1

so that146

E
[

m(T0)0,1

]

= E[g1(T0)]

≈ g1
(

E[T0]
)

where we use a first-order Taylor approximation. To generalize the idea, we define the expected147

number of descendants of type j from a mutation-free individual after t generations148

gj(t) =

⎧

⎪

⎨

⎪

⎩

0 , t < j

m(t)0,j , t ≥ j
(8)

(see Equation 5).149

Now let Tk be the extinction time for type k and let tk = E[Tk]. Then we have the approximation150

151

E
[

m(Tk)0,k+j

]

≈ gk+j(tk) (9)

the expected number of individuals of type k + j at the extinction of type k for j = 1, 2,… The152

expected extinction time of the entire population is153

T = E[T ] = lim
k→∞

tk . (10)

Now let X(k)
Tk−1
be the number of k-type individuals at the extinction time of type k − 1 and let154

xk = E
[

X(k)
Tk−1

]

≈ n0 gk(tk−1) . (11)
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From Equation 6, the expected extinction times of consecutive classes can be computed as155

tk ≈ tk−1 + P (�k > 0) +
∞
∑

t=1

(

1 −
(

'(t)k (0)
)xk)

(12)

where n0 is the initial population size. Note that tk is the time of the k-th click of the Ratchet. As we156

noted above, for k = 0 we have P (�0 > 0) = 1 (Equation 6). Thus, if the population is founded by n0157

mutation-free individuals, the time to extinction of the mutation-free class is given exactly by158

t0 = 1 +
∞
∑

t=1

(

1 −
(

'(t)k (0)
)n0)

. (13)

When k > 0, Equation 12 is an approximation (see Equation 6 and Equation 11). In addition, we159

do not have a closed form expression for P (�k > 0) for k > 0. We can, however, place bounds on160

P (�k > 0) by noting that161

�k > 0 ⇔ X(k)
Tk−1

> 0 (14)

and that if Y is any random variable on {0, 1, 2, ...} we have162

E[Y ] = E [Y |Y > 0]P (Y > 0)

≥ P (Y > 0) (15)

By Equation 11, Equation 14, and Equation 15 we get the bounds163

0 ≤ P (�k > 0) ≤ min(1, xk) . (16)

Because extinction of the whole population is irreversible, P (�k > 0) is expected to decline for164

successive classes:165

P (�k > 0) ≤ P (�k−1 > 0) .

Large initial population size166

The expected time to extinction of the mutation-free class, t0, is given by Equation 13. Following167

Jagers et al. (2007), there exists a sequence c(n0)→ c as n0 →∞ such that168

t0 = −
ln n0 + c(n0)
lnm0,0

, (17)

where m0,0 = 1−u < 1 (Equation 4) is the expected number of mutation-free offspring per mutation-169

free individual and n0 is the initial number of mutation-free individuals. Note that the value of c170

depends on u (e.g., for u = 0.01 and 0.02, numerical estimates using Equation 13 and Equation 17171

yield c = 3.3737 and 2.7058, respectively).172

Equation 17 shows that t0 grows logarithmically with n0 with a slope of −1∕ lnm0,0. If u is small,173

the slope becomes ≈ 1∕u. Thus, increasing initial population size delays extinction of the mutation-174

free class more when the mutation rate is low than when it is high.175

The value of t0 is not affected by the effects of mutations, s (Equation 13 and Equation 17),176

because the rate at which individuals “leave” the mutation-free class is independent of s. The177

selection coefficient does, however, affect the size of the new least-loaded class (i.e., individuals178

with k = 1mutation), x1 (Equation 11), and therefore the total time to extinction.179

We now investigate the limiting behavior of x1 as n0 → ∞. By Equation 11 and Equation 17 we180

get181

x1 ≈ n0 g1(t0)

=
C(n0)u
s(1 − u)

(

1 − (1 − s)t0
)

→
Cu

s(1 − u)
(18)
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Figure 2. Populations are doomed to extinction in our model. (A) Dynamics of population size, N , in 40
populations founded by n0 = 100mutation-free individuals and subject to mutations with deleterious effect
s = 0.01 and rate u = 0.01. Black vertical lines above the time axis indicate extinction times. (B) Blue line shows
mean N based on stochastic simulations of 104 replicate populations like those shown in (A). Light blue
region indicates N ± SD[N] (standard deviation). If SD[N] > N , the lower bound of the region was set to zero.
Red dashed line indicates expected population size (Equation 19). (C) Distribution of extinction times, T , in
the stochastic simulations described in (B). Blue line shows mean T based on the 104 replicate populations.
Red line shows T calculated numerically (seeMaterials and Methods). (D) Extinction times of populations
with the same mutational parameters as those in (A) but with a range of initial populations sizes, n0. Blue line
shows mean values of T based on stochastic simulations of 104 replicate populations for 41 values of n0
evenly spaced on a log-scale over 4 orders of magnitude. Light blue region indicates T ± SD[T ]. If SD[T ] > T ,
the lower bound of the region was set to zero. See Figure 2–Figure Supplement 1 for more on the variability
of T . Red line shows T calculated numerically.
Figure 2–Figure supplement 1. Variability of extinction time declines with population size.

Figure 2–source data 1. The code to generate these figures is in the Jupyter notebook https://github.com/rbazev/

doomed/blob/master/python/fig2.ipynb.

Figure 2–source data 2. The data to generate these figures is at https://github.com/rbazev/doomed/blob/master/

python/data/ (files named fig2*).

as n0 → ∞, where C(n0) = ec(n0). If u is small and n0 is large, Equation 18 becomes x1 ≈ Cu∕s.182

Interestingly, Equation 18 shows that x1 approaches a constant as n0 increases.183

Change in population size184

If a population is founded by n0 mutation-free individuals, the expected total population size t185

generations later is186

E [N(t)] = n0
t

∑

j=0
gj(t) (19)

(see Equation 8).187

Initially, N(0) = n0. Since all individuals have the same fitness, the population size is not ex-188

pected to change in the following generation: E [N(1)] = n0. One generation later, the population189

size is expected to decline by E [N(2)] − E [N(1)] = −n0us. In subsequent generations, if mutations190

have small effects, the population size is expected to continue to decline at approximately the191
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Figure 3. Mutational parameters have different effects on extinction time in doomed populations and the

severity of Muller’s Ratchet in populations of constant size. (A–B) Values are mean extinction times, T , in
populations founded by n0 = 100mutation-free individuals but with different mutational parameters.Figure 3–Figure Supplement 1 shows the variability of T . (A)Mutations have deleterious effect s = 0.01 and a
range of mutation rates, u. (B)Mutations occur with u = 0.01 and have a range of values of s. Blue lines show
mean values of T based on stochastic simulations of 104 replicate populations for 21 values of the parameter
being manipulated, evenly spaced on a log-scale. Light blue regions indicate T ± SD[T ] If SD[T ] > T , the lower
bound of the region was set to zero. Red lines show T calculated numerically (seeMaterials and Methods)
for 41 values of the parameter being manipulated, evenly spaced on a log-scale. Figure 3–FigureSupplement 2 shows that the theoretical predictions for low s become more accurate with increasing
population size. (C) Severity of Muller’s Ratchet in populations of constant size and a deleterious mutation

rate of U = 0.01 per genome per generation. Values are the expected declines in mean fitness per thousand
generations, 103 × s∕Δt, for 101 values of s evenly spaced on a log-scale. Δt is the time between clicks of the
Ratchet calculated using the method of Gordo and Charlesworth (2000a,b). Dashed and solid lines indicate
n̂k < 10 and n̂k ≥ 10, respectively (Equation 1). The trend shown in (C) was confirmed by simulation (not
shown).

Figure 3–Figure supplement 1. Variability of extinction time declines with mutation rate and is approximately

invariant with selection coefficient.

Figure 3–Figure supplement 2. Theoretical predictions for low s become more accurate with increasing pop-

ulation size.

Figure 3–source data 1. The code to generate these figures is in the Jupyter notebook https://github.com/rbazev/

doomed/blob/master/python/fig3.ipynb.

Figure 3–source data 2. The data to generate these figures is at https://github.com/rbazev/doomed/blob/master/

python/data/ (files named fig3*).

same rate192

E [N(t + 1)] − E [N(t)] ≈ −n0ust . (20)

Results193

Small population size, highmutation rate, andmutations of large effect accelerate194

extinction195

In our model, population size, N , can increase as well as decrease from generation to genera-196

tion. However, all increases are transient and the population will eventually go extinct (Figure 2A).197

The expected value of N can be predicted accurately by Equation 19 (Figure 2B). However, the198

dynamics of the expected value of N are not sufficient to predict the time to extinction. Two pop-199

ulations with different initial population sizes, n0, will be expected to show the same N∕n0 at any200

time (because they will have the same gj(t), Equation 19), but the smaller population is expected201

to go extinct earlier (Figure 2C and Figure 2D). Equation 10 provides good estimates of expected202

extinction time, T, and variability in extinction time, over a broad range of initial population sizes,203

n0 (Figure 2D, Figure 2–Figure Supplement 1, and Figure 3–Figure Supplement 2), and mutational204

parameters (Figure 3A, Figure 3B, and Figure 3–Figure Supplement 1). (See Appendix 2 for an ex-205

planation of why Equation 10 tends to overestimate the true value of T.) Below, we focus on the206

numerical calculations of T based on Equation 10.207
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Our model has three parameters—n0, u, and s—and all of them influence extinction time.208

Smaller populations tend to go extinct faster. Figure 2D and Figure 3–Figure Supplement 2A show209

that T is approximately proportional to the logarithm of the initial population size, n0. When n0210

is large, t0 ∝ ln n0 (Equation 17) and x1 is approximately constant (Equation 18). Thus, Δt1,Δt2,…211

(Equation 21) are also expected to approach constant values as n0 → ∞. Since t0 grows logarith-212

mically, this result implies that t0 represents an increasing fraction of T as n0 increases. Therefore,213

we also expect T to grow logarithmically with n0. Variability in extinction time declines with n0214

(Figure 2–Figure Supplement 1).215

At a particular value of n0, however, t0 is not sufficient to explain the variation in total extinction216

time for different mutational parameters: t0 dominates T when u∕s is low, but not when it is high217

(Figure 4B and Figure 4–Figure Supplement 1A). One reason for this pattern is that x1 increases218

with u∕s (Equation 18; Figure 4C).219

Mutations cause extinction in our model, but how do they influence extinction time? One pos-220

sibility is that T is determined by the severity of Muller’s Ratchet. High mutation rate and muta-221

tions of large effect accelerate extinction in doomed populations (Figure 3A, Figure 3B, and Fig-222

ure 4A). Mutational parameters act differently on Muller’s Ratchet in populations of constant size:223

at certain mutation rates the severity of the Ratchet is maximal at intermediate mutational effects224

(Gabriel et al., 1993; Gordo and Charlesworth, 2000a,b) (Figure 3C). There are two possible expla-225

nations for this discrepancy. First, the Ratchet may operate differently in doomed populations226

and populations of constant size. Second, Muller’s Ratchet may not determine extinction time in227

doomed populations. We explore each of these possibilities in the next two sections.228
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Figure 4. High mutation rate and mutations of large effect accelerate extinction in doomed populations. (A)

Expected extinction time, T, of populations founded by n0 = 100mutation-free individuals and subject to
mutations with deleterious effect s and rate u. T was calculated numerically (seeMaterials and Methods) for
21 × 21 = 441 combinations of values of s and u evenly spaced on a log-scale. (See Figure 4–FigureSupplement 1B for the variability of T .) (B) Expected extinction time of the mutation-free class, t0, as a
proportion of T for the populations shown in (A). t0 was calculated numerically (seeMaterials and Methods).Figure 4–Figure Supplement 1A shows t0. (C) Expected number of individuals with k = 1mutation at t0, x1
(Equation 11), for the populations shown in (A).
Figure 4–Figure supplement 1. Expected extinction time of the mutation-free class and variability of extinc-

tion time.

Figure 4–source data 1. The code to generate these figures is in the Jupyter notebook https://github.com/rbazev/

doomed/blob/master/python/fig4.ipynb.

Low mutation rate and mutations of large effect accelerate mutational meltdown229

Lynch and colleagues have proposed that Muller’s Ratchet accelerates in a doomed population as230

population size declines, driving the population to extinction—a phenomenon they called muta-231

tional meltdown (Lynch and Gabriel, 1990; Lynch et al., 1993; Gabriel et al., 1993). Do our doomed232

populations experience mutational meltdown?233
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To answer this question we need a way to quantify the rate of mutational meltdown. Let234

Δtk =

{

t0 , k = 0

tk − tk−1 , k > 0
(21)

be the interval between clicks k − 1 and k of the Ratchet, where tk denotes the time of the k-th235

click. In populations of constant size, the Ratchet is expected to click at a steady rate over time,236

that is, Δtk is not expected to change with k (Haigh, 1978; Gordo and Charlesworth, 2000a,b). In237

contrast, under mutational meltdown the Ratchet is expected to accelerate in successive clicks,238

that is, Δtk is expected to decline with k. We find that Δtk declines approximately exponentially239

with k in doomed populations (Figure 5A). Thus, we use the rate of this decline, �, to measure the240

rate of mutational meltdown.241

Mutational parameters have large effects on the rate of mutational meltdown. Low mutation242

rate and mutations of large effect accelerate mutational meltdown (Figure 5). This result is consis-243

tent with the effects ofmutational parameters onΔt0 andΔt1 in large populations (Equation 17 and244

Equation 18). Low values of u increase Δt0 and decrease x1, and therefore Δt1, causing mutational245

meltdown to accelerate. High values of s have no effect on Δt0 but decrease x1, and therefore Δt1,246

also causing the meltdown to accelerate.247
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Figure 5. Mutational meltdown does not determine extinction time in doomed populations. (A) Circles

denote time between clicks, Δtk (Equation 21). Click k indicates the extinction of k-type individuals. Values of
t0 were calculated using Equation 13; values of t1, t2, and t3 were calculated using Equation 12 (seeMaterials
and Methods). Note that Δtk is displayed on a log-scale. Each combination of mutational parameters results
in populations having the same expected extinction time (T = 223.52). Lines indicate linear regression fits of
ln Δtk on k (meltdown rates: � = −3.20,−1.14 and −0.32, respectively). (B)Meltdown rates, �, calculated as
shown in (A) for 21 × 21 = 441 combinations of values of s and u evenly spaced on a log-scale.

Figure 5–source data 1. The code to generate this figure is in the Jupyter notebook https://github.com/rbazev/

doomed/blob/master/python/fig5.ipynb.

Extinction time is determined by the rate of fitness decline248

Does mutational meltdown determine extinction time? Figure 5 shows that doomed populations249

can experience strong mutational meltdown. However, mutational meltdown does not determine250

extinction time. Although the three scenarios summarized in Figure 5A have widely different melt-251

down rates, they have the same expected extinction time, T = 223.52. The lack of correlation252

between T and � is clear when we compare Figure 4A and Figure 5B. Although the meltdown rate253

does not determine extinction time, for a given extinction time, the meltdown rate is positively cor-254

related with the variability in extinction time (Figure 3–Figure Supplement 1 and Figure 4–Figure255

Supplement 1B).256

The results so far indicate that Muller’s Ratchet does not determine extinction time in doomed257

populations. So what does? Extinction is, trivially, caused by decline in population size. In our258

model the rate of decline in population size is determined by the product of mutation rate and259

effect, us (Equation 20). This makes intuitive sense because the rate of decline in population size is260
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determined by the absolute fitness of individuals and both u and s are inversely related to fitness:261

increasing s reduces the fitness of an individual directly (Equation 2) and increasing u reduces the262

fitness of an individual’s offspring. This explains why time to extinction declines with both u and s263

(Figure 4A).264

Discussion265

Most models of Muller’s Ratchet have assumed that populations maintain a constant size as266

deleterious mutations accumulate (Haigh, 1978; Gessler, 1995; Gordo and Charlesworth, 2000a,b;267

Rouzine et al., 2003; Metzger and Eule, 2013). This is typically justified as resulting from density-268

dependent regulation of population size. However, the assumption is unrealistic because it pre-269

vents populations from ever going extinct (Lynch and Gabriel, 1990;Melzer and Koeslag, 1991). In270

a series of studies relaxing the assumption of constant population size, Lynch, Gabriel, and col-271

leagues argued that Muller’s Ratchet eventually generates a positive feedback where the Ratchet272

clicks, which causes population size to decline, which strengthens genetic drift relative to natu-273

ral selection, which in turn accelerates the Ratchet (Lynch and Gabriel, 1990; Lynch et al., 1993;274

Gabriel et al., 1993). They called this vicious cycle mutational meltdown and concluded that it275

drives populations to extinction. However, the lack of quantitative theory on the mutational melt-276

down has made it difficult to evaluate the Lynch-Gabriel hypothesis.277

Our results challenge the Lynch-Gabriel hypothesis. Although doomed populations can ex-278

perience mutational meltdown—measured by the acceleration of Muller’s Ratchet—, the rate of279

mutational meltdown does not determine extinction time (Figure 5A). Therefore, the Lynch-Gabriel280

mutational meltdown is not a general cause of extinction. Rather, our results suggest that extinc-281

tion time is determined by the expected impact of deleterious mutations on fitness. Interestingly,282

if we compare populations with the same expected extinction time but different mutational pa-283

rameters, populations undergoing faster meltdown rate have more variable extinction times than284

populations undergoing slower meltdown (Figure 4–Figure Supplement 1).285

The Lynch-Gabriel hypothesis emphasized the role of the change in the strength of genetic drift286

in causing mutational meltdown (e.g., “we refer to this synergism between mutation accumulation287

and random genetic drift as a mutational meltdown”; Lynch et al., 1993). Our results indicate that288

extinction in doomed populations is driven by mutation pressure, not genetic drift. Gessler (1995)289

identified a related phenomenon in the operation of Muller’s Ratchet under constant population290

size: if the mutation rate is too high the Ratchet is driven by mutation pressure, not genetic drift.291

Since the expression “mutational meltdown” is now in common usage (e.g., Poon and Otto, 2000;292

Rowe and Beebee, 2003; Allen et al., 2009; McFarland et al., 2014), we propose that it be revised293

to refer to extinction caused by mutation pressure.294

The extent to which real populations undergo mutational meltdown is unclear. A population295

must first enter the doomed regime. Models of Muller’s Ratchet in populations of constant size296

have identified three major risk factors that can drive populations into the doomed regime: long-297

term reductions in population size, increases in mutation rate, and intermediate deleterious ef-298

fects of mutations (Lynch and Gabriel, 1990; Lynch et al., 1993; Gabriel et al., 1993; Lynch et al.,299

1995a; McFarland et al., 2013). Increased mutation rate can even drive a very large population300

into the doomed regime—a phenomenon known as lethal mutagenesis (Bull et al., 2007). Next,301

we consider the first two risk factors..302

Population size can decline as a result of changes in the environment, such as, climate change,303

decreased food availability, emergence of infectious diseases, and habitat loss or fragmentation.304

For example, the emergence of Devil Facial Tumor Disease, a transmissible cancer, has caused the305

size of the Tasmanian devil population to decline by ∼77% within 5 years (Hawkins et al., 2006;306

Lazenby et al., 2018). As a result, the devils are under risk of extinction (McCallum et al., 2009).307

Our results indicate that increasing population size causes relatively small delays in extinction in308

doomed populations. T is approximately proportional to the logarithm of initial population size309
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(Figure 2D). Similar results have been obtained in other stochastic models of population dynamics310

(Lande, 1993; Jagers et al., 2007).311

Increases in mutation rate have been observed directly in experimental populations. For ex-312

ample, a population of Escherichia coli adapting to a constant environment evolved a mutator mu-313

tation after ∼25,000 generations that increased mutation rate by ∼150-fold (Barrick et al., 2009;314

Wielgoss et al., 2013). Evolution experiments have revealed that real populations can, indeed, ex-315

perience increased extinction risk when the mutation rate is high. Zeyl et al. (2001) allowed 12316

populations of the yeast Saccharomyces cerevisiae with genetically elevated mutation rate to evolve317

and found that two of them went extinct within 2,900 generations. One of these populations318

went extinct shortly after a large decline in fitness. Bank et al. (2016) subjected two populations of319

influenza A virus to gradually increasing concentrations of favipiravir, a drug that increases the mu-320

tation rate of the virus, and observed that both populations accumulated mutations rapidly and321

went extinct. The results from both of these studies are broadly consistent with the occurrence of322

a mutational meltdown. However, they do not allow us to distinguish between the Lynch-Gabriel323

model and ours.324

The results described in the previous paragraph indicate that mutational meltdownmight have325

clinical applications. Mutagenic agents are being explored as antiviral drugs (Loeb et al., 1999;326

Crotty et al., 2001; Pariente et al., 2001; Bank et al., 2016). Increased mutation rate in tumor cells327

has been found to correlate with improved outcomes for some cancers (Silva et al., 2000; Birkbak328

et al., 2011; Andor et al., 2016). Several inhibitors of key components of the DNA-repair and DNA329

damage-response machinery (e.g., PARP inhibitors, Lord et al., 2015), are currently being used to330

treat cancer, or are under preclinical or clinical development (Brown et al., 2017).331

The relative theoretical neglect of the evolutionary dynamics in doomed populations is surpris-332

ing given that it is central to understanding the long-term consequences of both Muller’s Ratchet333

(Lynch and Gabriel, 1990; Lynch et al., 1993; Gabriel et al., 1993; Lynch et al., 1995a) and lethal334

mutagenesis (Bull et al., 2007; Matuszewski et al., 2017). In both cases, the duration of the melt-335

down phase was dismissed because it was predicted to be short relative to the time required for336

the population to become doomed (Lynch et al., 1993, 1995a; Bull et al., 2007). We believe that337

this neglect of the meltdown phase is misplaced because it is an important phase in the life of a338

population—the last chance for the population to be rescued by beneficial mutations and avoid339

extinction. The dynamics and duration of the meltdown phase are expected to be important de-340

terminants of the probability of evolutionary rescue. For a given probability of beneficial mutation341

and selection coefficient of those mutations, populations that decline in size more slowly and re-342

tain higher proportions of mutation-free individuals for longer, are more likely to be rescued (Mar-343

tin et al., 2013). Rescue of doomed populations may play an important role in cancer progression344

(McFarland et al., 2013, 2014).345

A central assumption of our model is that individuals experience hard selection (Wallace, 1975).346

The expected number of offspring of an individual is its absolute fitness, wk (Equation 2), and is347

both density independent and frequency independent. The Lynch-Gabriel models make similar348

assumptions during themutational meltdown phase (Lynch et al., 1993, 1995a). In contrast, classic349

models of Muller’s Ratchet typically assume soft selection (Wallace, 1975). Constant population350

size implies density dependence. Selection is also frequency dependent: the expected number of351

offspring of an individual depends not only on its fitness, but on the fitness of other individuals352

in the population. The difference in the mode of selection in these models explains the different353

effects of the deleterious effect of a mutation, s, on extinction time in our model, and on the354

severity of Muller’s Ratchet in classic models. In doomed populations, increasing s accelerates355

extinction, albeit with diminishing returns (Figure 2B and Figure 4). In models with soft selection,356

the Ratchet is most severe at an intermediate value of s (Figure 2C; Lynch et al., 1995a; Gordo and357

Charlesworth, 2000a,b).358

In reality, populations do not necessarily experience either of the extremes of soft or hard se-359

lection. Factors such as population structure, resource availability, and the mechanism of competi-360
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tion can modulate the “softness” of selection in complex ways; different genotypes in a population,361

and even different genes, can experience different softness of selection (Laffafian et al., 2010; Ho362

and Agrawal, 2012). This raises the interesting question of how mutational meltdown operates in363

regimes of intermediate softness, or with a smooth transition between soft and hard selection as364

mutations accumulate.365

Ourmodel includes at least three other simplifications that could have important consequences366

for the evolutionary dynamics of doomed populations. First, the environment, and therefore se-367

lection, is constant. Wardlaw and Agrawal (2012) showed that temporal variation in selection can368

accelerate Muller’s Ratchet in populations of constant size. Second, all mutations are deleterious.369

Beneficial mutations could, potentially, rescue a population from extinction (Martin et al., 2013).370

Furthermore, compensatory mutations might become more common as fitness declines (Poon371

and Otto, 2000; Silander et al., 2007). Third, individuals reproduce asexually. Sex has been shown372

to slow down Muller’s Ratchet dramatically in populations of constant size (Pamilo et al., 1987;373

Charlesworth et al., 1993), and can delay extinction in large populations (Lynch et al., 1995b). We374

believe that our model provides a promising framework to explore the consequences of relaxing375

these assumptions for the fate of populations doomed to extinction.376

Materials and Methods377

Numerical calculations378

Expected extinction time of the mutation-free class379

We calculated t0 by computing Equation 13 until the following criterion was met380

(

'(t)k (0)
)n0

−
(

'(t+1)k (0)
)n0

< 10−6 .

A similar criterion was applied when evaluating Equation 7 and Equation 12.381

Expected extinction time382

We calculated T = E[T ] (Equation 10) by computing Equation 12 until the following criterion was383

met384

tk − tk−1 < 10−6 .

We computed T for both bounds of P (�k > 0) when k > 0 (Equation 16). We present only results for385

the lower bound. None of our conclusions would be changed if we used the upper bound results386

instead (not shown).387

Variance in extinction time388

We calculated the variance in extinction time by computing389

Var[T ] =
∞
∑

k=0
Var[�k] , (22)

up to the same value of k used to calculate T (see Equation 7). Again, we only present results for390

the lower bound of P (�k > 0) when k > 0 (Equation 16). Equation 22 assumes that the extinction391

times of different classes are independent (i.e., we ignore the covariance terms). This assumption392

was confirmed by simulations (not shown).393

Coefficient of variation in extinction time394

The coefficient of variationmeasures the variability of a variable relative to its mean. We calculated395

the coefficient of variation of extinction time by computing396

CV[T ] =

√

Var[T ]
T

. (23)
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Code availability397

Numerical calculations and stochastic simulations of the branching process model were done us-398

ing software written in Python 2.7 and available at https://github.com/rbazev/doomed/blob/master/399

python/doomed.py.400
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Appendix 1512

Proof of Equation 5513

Given real numbers b and x and n ∈ ℕ (the nonnegative integers), let A denote the “almost
diagonal” n × nmatrix

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 b
x bx

x2 bx2

⋱ ⋱

xn−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

whose ith row is simply xi−1 multiplied by ( 0 0 ⋯ 0 1 b 0 0 0 ⋯ ), the 1 oc-
curing in the ith position. Since A is upper triangular, so is its kth power (for k ∈ ℕ), with
diagonal entries

Ak(i, i) = xk(i−1).

The superdiagonal entries aren’t quite as simple, but can also be expressed explicitly in

terms of x, k and b.

514

515

516

517

518

519

520

521

522

523

524

525

526

Lemma 1. For n, k ∈ ℕ, 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − i one has

Ak(i, i + j) = bjx
j(j−1)
2 +k(i−1)

j
∏

l=1

xk+1−l − 1
xl − 1

,

provided that we declare x0 = 1.

527

528

529

530

531

Proof. We induct on k. When k = 1, for j = 1 and any i the given expression becomes

bxk(i−1) x − 1
x − 1

= bx(i−1) = A(i, i + 1) .

When j ≥ 2, then the l = 2 factor in the product is x2−2−1
x2−1

= 0, so that regardless of i the
entire expression becomes 0, which again equals A(i, i + j). We conclude that the stated
result holds for k = 1.

532

533

534

535

536

537

538

Now assume the result is true for some k ≥ 1. Since Ak+1 = A ⋅ Ak and A(i,l) = 0 unless
l ∈ {i, i + 1},

Ak+1(i, i + j) =
n
∑

l=1
A(i,l)Ak(l, i + j)

= xi−1Ak(i, i + j) + bxi−1Ak(i + 1, i + j)

= xi−1
(

Ak(i, i + j) + bAk(i + 1, (i + 1) + (j − 1)))
)

.
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Using the inductive hypothesisa we obtain

Ak+1(i, i + j)

= bjxi−1+
(j−1)(j−2)

2 +ki

(

j−1
∏

l=1

xk+1−l − 1
xl − 1

)

(

xj−k−1 x
k+1−j

xj − 1
+ 1

)

= bjxi−1+
(j−1)(j−2)

2 +ki

(

j−1
∏

l=1

xk+1−l − 1
xl − 1

)

(

1 − xj−k−1 + xj − 1
xj − 1

)

= bjxi−1+
(j−1)(j−2)

2 +ki+j−k−1

(

j−1
∏

l=1

xk+1−l − 1
xl − 1

)

(

xk+1 − 1
xj − 1

)

= bjx
j(j−1)
2 +(k+1)(i−1)

(

j−1
∏

l=1

xk+1−l − 1
xl − 1

)

(

xk+1 − 1
xj − 1

)

= bjx
j(j−1)
2 +(k+1)(i−1)

(

j
∏

l=1

1
xl − 1

)(

j−1
∏

l=0
(xk+1−l − 1)

)

= bjx
j(j−1)
2 +(k+1)(i−1)

(

j
∏

l=1

x(k+1)+1−l − 1
xl − 1

)

,

which shows that the formula holds for the exponent k + 1. This concludes the proof.

539

540

541

542

543

544

545

546

547

548

aStrictly speaking, the inductive hypothesis will only apply to the term Ak(i+1, (i+1)+ (j −1)) when j ≥ 2. However,
if we adopt the convention that any empty product is equal to one, the expression stated in the result agrees with

Ak(i + 1, (i + 1) + (j − 1)) when j = 1 as well.
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Appendix 2549

Overestimation of the Expected Extinction Time550

As shown in theModel section, an approximation is made in Equation 9 in order to derive
analytical expressions for click times (tk) and time to extinction (T). Figure 2D, Figure 3A, Fig-ure 3B, and Figure 3–Figure Supplement 2A show that the approximation is quite accurate
over broad ranges of parameters but consistently overestimates T.

551

552

553

554

Overestimation of T is partly explained by the concavity of E[�k] as a function of xk in
Equation 6. The second derivative with respect to xk is

d2E[�k]
dx2k

= −
∞
∑

t=1

(

'(t)k (0)
)xk

ln2
(

'(t)k (0)
)

which is negative because both factors of each term in the sum are positive and hence the

function is concave. By the reversed Jensen’s inequality, for a concave function, E[f (X)] <
f (E[X]), which implies that E[�k] is consistently overestimated by Equation 6. Thus, Equa-tion 10 overestimates T.

555

556

557

558

559

560

561

562

563
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Figure 2–Figure supplement 1. Variability of extinction time declines with population size.

Blue circles show coefficient of variation of T , CV[T ], for the data shown in Figure 2D. Red line
shows CV[T ] calculated numerically using Equation 23.
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Figure 3–Figure supplement 1. Variability of extinction time declineswithmutation rate and

is approximately invariant with selection coefficient. Blue circles show coefficient variation

of T , CV[T ], for the data shown in the corresponding panel of Figure 3. Red line shows CV[T ]
calculated numerically using Equation 23.
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Figure 3–Figure supplement 2. Theoretical predictions for low s becomemore accurate with
increasing population size. (A) Extinction times of populations with u = 0.01 and s = 10−3 over
a range of initial populations sizes, n0. Blue line shows mean values of T based on stochastic
simulations of 104 replicate populations for 41 values of n0 evenly spaced on a log-scale over 4
orders of magnitude. Light blue region indicates T ± SD[T ]. If SD[T ] > T , the lower bound of the
region was set to zero. (B) Variability of extinction times shown in (A). Blue circles show coefficient

variation of T , CV[T ]. Red line shows CV[T ] calculated numerically using Equation 23.
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Figure 4–Figure supplement 1. Expected extinction time of the mutation-free class and vari-

ability of extinction time. (A) Expected extinction time of the mutation-free class, t0, used in
Figure 4B. (B) Coefficient of variation of T , CV[T ], calculated numerically using Equation 23.
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