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Structural biologists have fit increasingly complex model types to protein X-ray crystallographic
data, motivated by higher-resolving crystals, greater computational power, and a growing appre-
ciation for protein dynamics. Once fit, a more complex model will generally fit the experimental
data better, but it also provides greater capacity to overfit to experimental noise. While refine-
ment progress is normally monitored for a given model type with a fixed number of parameters,
comparatively little attention has been paid to the selection among distinct model types where the
number of parameters can vary. Using metrics derived in the statistical field of model comparison,
we develop a framework for statistically rigorous inference of model complexity. From analysis of
simulated data, we find that the resulting information criteria are less likely to prefer an erroneously
complex model type and are less sensitive to noise, compared to the crystallographic cross-validation
criterion Rfree. Moreover, these information criteria suggest caution in using complex model types
and for inferring protein conformational heterogeneity from experimental scattering data.

I. INTRODUCTION

Refinement of a Protein Data Bank (PDB) formatted
model is intended to determine the molecular conforma-
tion(s) that best explain the diffraction patterns of X-
rays from a macromolecular crystal. There is growing
interest in fitting increasingly complex types of models
to the experimental data, because some protein crystals
can now be resolved at A◦ngstrom scales and finer [1–
3]; increasing automation and computational power have
made it more tractable to parameterize more complex
models; and finally, there is an emerging appreciation for
the dynamic behavior of proteins in vivo [4–11].

At its simplest, a PDB structural model consists of
a set of x, y, z coordinates for each atom. In addition,
the B-factor (atomic displacement parameter) can be
assigned at the level of each atom, residue, chain, or
unit cell. Further complicating this is the anisotropic B-
factor [12], which is defined by 6 parameters and can sim-
ilarly be assigned per atom or at coarser groupings (e.g.,
in the case of translation-libration-screw refinement [13]).
More complex types of PDB structural models may in-
clude multiple x, y, z coordinates for an atom as alter-
native conformations with associated occupancies (“q”)
[14]. Therefore, the parameters needed to describe a sin-
gle atom in a crystal can vary from about three (when
just x, y, z are refined) to ten times the number of con-
formations (when x, y, z, anisotropic B-factors, and occu-
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pancy are all refined per conformation). Although gen-
eral best practices exist, quantifying when to increase the
model complexity is currently an outstanding challenge.

A fundamental problem in statistics results from the
fact that a more complex model with more parameters
can typically be refined to fit data better than a sim-
pler one [15]. This is necessarily true for nested model
types, where particular constraints on the parameters of
the complex model type reduce it to the simple model
type. When the underlying physical reality is simple, the
complex model will overfit the data—representing noise
as physically meaningful structure [16]—despite report-
ing better quality of fit than the simpler model. Further-
more, the data may be limited (low resolution) and the
potential space of complex solutions that equally satisfy
the data may be large. Hence, practitioners need disci-
plined methods to decide when the data have both suf-
ficient heterogeneity and sufficiently low noise to justify
inferring more complex phenomena. We ask how much
better a complex model type’s quality of fit should be
to justify the additional parameters it requires beyond
those of a relatively simple model type.

In crystallography, prevailing methods used to select
among competing model types rely on the crystallo-
graphic reliability index or “R-factor” [17], an estimate
of the error in the fitted crystallographic model:

R ≡
∑
hkl

∣∣|F obs
hkl | − |F calc

hkl |
∣∣∑

hkl |F obs
hkl |

. (1)

Here sums are taken over Miller indices hkl of the ob-
served reflections’ amplitudes {F obs

hkl } with respect to
hypothetical ones {F calc

hkl } calculated from the crystal
model [18].
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The cross-validation statistic Rfree is the R-factor cal-
culated on randomly chosen test data, distinct from the
working data used to fit the model parameters [19]. Sta-
tistical cross-validation is a general technique that judges
a model type’s merit by quantifying its success at predict-
ing test data that is excluded from use for refining the
model type’s parameters, and thus reports on the predic-
tive error [20, 21].

Nevertheless, cross-validation has limitations. For one,
a cross-validation measure is by necessity calculated from
a fraction of the total data set [19], reducing the set of
measurements over which statistical fluctuations can be
averaged (though this can be somewhat mitigated by K-
fold cross validation [22] or its variant in the Rcomplete
method [23]). This increases relative noise, a particu-
lar concern for low-resolution refinement. Furthermore,
cross-validation scores are often used to guide parameter
refinement [24, 25] (e.g., for global weights for geometry
and B-factor restraints in Phenix [“Python-based Hierar-
chical ENvironment for Integrated Xtallography”] [26]).
This practice presents some risk of producing models that
have been overfit to the cross-validation measure, poten-
tially diminishing its validating power [21]. This has led
some to cross-validate the cross-validation measure itself
using Rsleep, calculated from a data fraction excluded
from both refinement and cross-validation [27].

The risk of overfitting a model increases with the num-
ber Nparam of fitted parameters [28]. Model types (such
as isotropic B-factors) with fewer parameters have less
opportunity to overfit to noise than more complex model
types (such as anisotropic B-factors). (For example,
when fitting to N two-dimensional data points, an Nth-
order polynomial can fit perfectly but also captures any
noise in the data, whereas a straight line is too simple
to fit data with significant spread.) Yet fewer parame-
ters give a model type less chance to capture real het-
erogeneity present in the data. The limitations of cross-
validation raise basic practical questions.

How large a change in Rfree is necessary to confidently
adopt a more complex model type? Significance tests
for R-factors have been proposed [29, 30] and employed
to judge the suitableness of B-factor anisotropy [31], but
don’t appear to be widely used. In statistics, such practi-
cal questions have generated a whole field of research on
model selection [15, 16], which is intended to determine
how to weigh the benefit of a more complex model type’s
improved fit to data against its risk of overfitting, and to
discern the appropriate level of model complexity to use
to fit a particular data set.

Two simple and widely used model selection criteria
are the Akaike Information Criterion (AIC) [28],

AIC ≡ −2 ln L̂+ 2Nparam , (2)

and the Bayesian Information Criterion (BIC) [32],

BIC ≡ −2 ln L̂+Nparam lnNobs . (3)

For each criterion, a lower score indicates a better model
type. Each criterion effectively quantifies model-type

complexity as the number Nparam of independently fit-
ted parameters. The criteria differ in how they weight
this complexity (for any reasonable Nobs, BIC weights
Nparam more heavily than AIC does) compared to the
quality of fit, quantified by the maximum likelihood L̂
of the model type [33–35] (maximized with respect to all
parameters {θ}):

L̂ ≡ L(θ̂|~x) = max
θ

P (~x|θ) . (4)

Here P (~x|θ) =
∏Nobs
n=1 P (xn|θ) is the probability that the

data ~x (of dimension Nobs) would be generated by the
given model type with parameter values θ, and θ̂ is the
likelihood-maximizing parameter set. Modern crystallo-
graphic refinement software, such as phenix.refine, use
maximum likelihood methods and output a final likeli-
hood estimate along with the conventional metrics (Rfree)
and the refined structural model.

In this work, we examine the performance of Rfree,
AIC, and BIC at judging nested pairs of model types that
represent common choices crystallographers face during
structure refinement. We find that information crite-
ria are more stringent than Rfree-based model selection
for protein crystallography. On simulated data, AIC
and BIC avoid errors that bedevil Rfree at high noise,
where Rfree often favors types of models more complex
than those used to simulate synthetic data. On experi-
mental data, AIC and BIC rarely prefer more complex
model types, exhibiting greater conservatism than Rfree.
Our results suggest that crystallographers should em-
ploy complex model types with greater caution and rely
on follow-up biochemical tests when interpreting hetero-
geneity from these models.

II. METHODS

We calculated synthetic structure factor amplitudes
from a collection of the 50 protein crystal structures
studied by Phillips and co-workers using ensemble refine-
ment [14]. We then refined structures against the result-
ing synthetic and the original experimental data (Fig. 1).

We created synthetic data by calculating X-ray ampli-
tudes [36, 37] using phenix.fmodel from models derived
from the original PDB entries, but with varying struc-
tural heterogeneity, according to several different model
types (listed in Table I). Solvent molecules were treated
explicitly, i.e. with no bulk solvent mask. We then added
to each resulting structure factor amplitude a random de-
viate sampled from a Gaussian distribution, with stan-
dard deviation ξFavg ranging from a large fraction (ξ =
50%) to negligible fraction (ξ = 0.05%) of the average
amplitude Favg. Resulting negative-valued amplitudes
were excluded from further analysis.

The model types varied with respect to three choices
faced by crystallographers when deciding the appropriate
model-type complexity: whether to fit a distinct individ-
ual B-factor for each atom or a single group B-factor
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FIG. 1. Method schematic. PDB structure (here, a single structure with group isotropic B-factors) is used to generate
synthetic structure factor amplitudes, and noise is added (here, 5% of average amplitude). Alternative synthetic data is
generated from the complex model type (here, two structures with group isotropic B-factors). The two model types (one or
two structures) are fit to each of the synthetic datasets, or to experimental data, generating model selection criteria (Rfree,
AIC, and BIC) to judge the appropriateness of each model type for the given dataset. Lower criteria scores (corresponding to
preferred model type) are in bold green. Numerical results are from 1XY7/2Q48.

B-factor B-factor
NS individuality isotropy XYZs ADPs Nparam

16 individual isotropic 48Na 16Na 64Na

8 individual isotropic 24Na 8Na 32Na

4 individual isotropic 12Na 4Na 16Na

1 individual anisotropic 3Na 6Na 9Na

2 individual isotropic 6Na 2Na 8Na

1 individual isotropic 3Na Na 4Na

1 group isotropic 3Na 1 3Na+1

TABLE I. Number Nparam of parameters for each model type,
containing NS members and Na atoms per member. XYZs:
xyz coordinates; ADPs: atomic displacement parameters (B-
factors).

for all atoms, whether to fit isotropic or anisotropic B-
factors (corresponding respectively to one or six free pa-

rameters per B-factor), and whether to fit one or multi-
ple discrete structural conformations. Thus we employed
the following model types: one structure with identical
isotropic B-factors uniformly fit as a group, one structure
with individual isotropic B-factors fit independently for
each atom, one structure with individual anisotropic B-
factors, and finally fixed-number ensembles of structures
with equally weighted occupancies (with number of en-
semble members ranging from 1 to Ns, the number in the
ensemble PDB based on coordinates deposited by [14]),
each with individual isotropic B-factors. For each simu-
lation, we maintained the resolution limits of the original
experiment.

We also made comparisons to the experimental data
available from the PDB. For each protein, we down-
loaded the X-ray structure factors and converted to MTZ
file format [36]. As needed, we generated restraint in-
formation for geometries of molecules present in PDB
models but not already specified by Phenix’s default re-
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straint libraries, using the electronic Ligand Builder and
Optimization Workbench (eLBOW) [38]. We neglected
anomalous scattering, using only the first array of ob-
served structure factors in each experimental MTZ file.

For each set of synthetic or experimental amplitudes,
we performed crystallographic structure refinement us-
ing the Phenix platform [26]. We refined the same set
of model types as those described above. For each pair
of model types, particular constraints on the parameters
of the complex model type transform it into the simple
one (i.e., the model types are nested). For example, con-
straining all individual B-factors to be identical produces
a group B-factor. Thus, any parametrization (fit) of the
simple model type has a corresponding parametrization
of the complex model type that generates identical data,
hence the best-fit parameters of the complex model type
must provide at least as good a fit to data as the best-fit
parameters of the nested simple model type.

To maximize the ability of the refinement procedure
to find the globally optimal fit (and hence the maximum
likelihood as needed for the information criteria), we ini-
tialized each refinement for simulated data with the clos-
est possible model to the original model used to create
the data (before added noise [39]). This was trivial for
fitting the same model as that used to generate the data.
To fit an Nfit-member ensemble model type to synthetic
data simulated from an Ndata-member ensemble model
type, when Nfit < Ndata, we initialized the refinement
with the first Nfit members from the ensemble. When
Nfit > Ndata, we initialized with Nfit/Ndata copies of each
of theNdata members, with a small random shift added to
each coordinate (using the flag “sites.shake=0.01”) to en-
sure stability of the refinement. Anisotropic refinements
of isotropically generated data were seeded with an initial
anisotropic model generated using the phenix.pdbtools
“convert to anisotropic” command, which changes the B-
factor representation from a scalar to a diagonal ma-
trix with diagonal entries all equal to the original sin-
gle B-factor. Similarly, an isotropic model was gener-
ated from an anisotropic model using the Phenix “con-
vert to isotropic” command, which converts the matrix
B-factor representation to a scalar that preserves the B-
factor averaged over all directions. An initial group B-
factor model was generated from an individual B-factor
model by replacing each B-factor with the mean value
across all B-factors. An individual B-factor model was
seeded from a data-generating group B-factor model by
giving each atom the same initial B-factor.

We calculated Rfree (1) on 5-10% of the data (omit-
ted from calculating Rwork), randomly selected indepen-
dently of that fraction used for Rfree in [14]. We calcu-
lated AIC (2) and BIC (3) using the highest likelihood L
(defined in Eq. (4) of Ref. [25]) among those Phenix re-
ported during each of 20 macrocycles of semi-automated
crystallographic model type refinement [40, 41], using the
remaining 90% of working data. Table I lists the number
of fitted parameters for each model type. We scored the
relative performance for each nested pair of model types

according to each criterion C ∈ {Rfree,AIC,BIC} using

∆C = C( ~xS | θ̂simple)− C( ~xS | θ̂complex) . (5)

∆C > 0 indicates a preference for the complex model
type and ∆C < 0 a preference for the simple one.

III. RESULTS

Synthetic data provide a substantial benchmarking ad-
vantage, because the data-generating model and noise
level are specified. For a given pair of model types,
when the data was generated by a parametrization of
the simple model type, that simple model type should
always be preferred over the complex one, regardless of
the noise level. Thus we compared the performance of
nested pairs of model types on synthetic data generated
by the simpler one of the pair. Whenever a criterion
prefers a model type more complex than that used to
generate the data, this indicates an unambiguous model
selection error. (Note that the reverse scenario is am-
biguous: when data is generated by the complex model
type, at zero noise the complex model type should be pre-
ferred; however, above some finite noise level—dependent
on the true data heterogeneity and generally difficult to
determine a priori—the simpler model type is the right
choice, because the noise prevents faithful reconstruction
of extra structural detail by the complex model type.)

We first investigated a modest increase in complex-
ity between grouped and individual isotropic B-factors.
This would increase the number of parameters from 1,801
to 2,400 on a 600-atom (∼100-residue) protein. Con-
ventionally, individual B-factors are refined at better
than ∼3.5 A◦ resolution. Figure 2 shows the difference
∆C ≡ Cgroup − Cindividual, and thus the preference of
different criteria for group or individual B-factor model
types on data simulated from either the simpler (group
B-factor) model type or the more complex (individual B-
factors) model type. As noise increases, all methods tend
to favor the simple model type. As data heterogeneity
increases from group to individual B-factors, all methods
look more favorably on the complex model type. As res-
olution decreases, all methods show a weak trend toward
an increasing preference for the simple model type. Of
most significance, AIC and BIC never choose the wrong
model type (one more complex than the one generating
the data), but at high noise Rfree sometimes does.

Next, we examined the switch from isotropic to
anisotropic refinement, which is conventionally per-
formed only at high resolution (i.e., better than ∼1.2-
1.5 A◦ resolution) [42]. Figure 3 shows the preference
of different criteria for isotropic or anisotropic B-factor
model types on data simulated from either the simpler
(isotropic) model type or the more complex (anisotropic)
one. As noise increases, AIC and BIC increasingly pre-
fer simpler model types, but Rfree sometimes prefers
more complex ones. As data heterogeneity increases
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FIG. 2. Rfree, unlike AIC and BIC, is vulnerable to erroneously preferring an individually fit B-factor model
type. Preference ∆C ≡ Cgroup − Cindividual for complex model type (individual fit B-factors) over simple model type (group
fit B-factor) as a function of resolution, for C = Rfree, AIC, and BIC (top row to bottom row). Higher value indicates higher
preference for complex (individual) model type, with zero indicating indifference. Left column: data generated from model
type with single group B-factor. Right: data generated from model type with individual B-factors. Noise varies from none
(small black points) to high (standard deviation 50% of average amplitude, large purple points).

from isotropic to anisotropic B-factors, all methods show
greater preference for the complex model type. As reso-
lution decreases, all methods increasingly prefer simpler
model types. AIC and BIC never choose the unambigu-
ously wrong model type, but at medium noise Rfree often
does.

Although anisotropic B-factors can fit elliptical elec-
tron density distributions, multiple conformations are
needed to fit distributions with multiple minima. For
this reason, various ensemble refinement methods have
been developed. Here we used fixed-number ensembles
similar to those created by Phillips and colleagues in
[14]. Figure 4 shows the preference of different criteria
for model types containing fewer or greater numbers of
ensemble members, on data simulated from the simpler
(fewer ensemble member) model type. As noise increases,
Rfree sometimes prefers more complex model types, AIC
rarely does, and BIC never does. As resolution decreases,

Rfree shows no strong trend, but AIC and BIC increas-
ingly prefer simpler model types. BIC never erroneously
chooses the overly complex model type, but AIC on rare
occasions does, and even at low noise Rfree frequently
does.

Figure 5 summarizes, as a function of noise, the propor-
tion of ‘false positives,’ where a selection criterion prefers
the complex model type when the synthetic data is gen-
erated from the nested simple model type. (It is worth
noting that typical noise estimates for successful diffrac-
tion experiments are likely to be in the 1-10% range [43].)
In general, across the three nested comparisons shown
here, AIC and BIC make more conservative selections,
consistently identifying simple data sets and rejecting
the overfit model types that sometimes fool Rfree. To
explicitly address the possibility of Rfree overfitting, we
introduced an additional selection criterion, the heuristic
‘supplemented R-factor’ Rsupp that only prefers the com-
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FIG. 3. Preference ∆C ≡ Ciso − Caniso for complex model type (anisotropic B-factors) over simple model type (isotropic B-
factors) as a function of resolution, for C = Rfree, AIC, and BIC (top row to bottom row). Higher value indicates higher
preference for complex (anisotropic) model type, with zero indicating indifference. Left column: data generated from isotropic
model type. Right column: data generated from anisotropic model type. Noise as in Fig. 2.

plex model type if Rfree is lower and the Rfree–Rwork gap
hasn’t dramatically increased ((Rwork − Rfree)complex <
1.5(Rwork − Rfree)simple). Rsupp achieves the same low
false-positive rates as AIC and BIC, except in the iso-
aniso comparison at low-to-moderate noise.

Next, we examined the experimental data sets from
Levin, et al. [14] where the ‘true’ model type is not
known, and many other errors (e.g., measurement er-
rors or initial model errors) may be conflated. Single-
member (simple) and eight-member (complex) ensem-
bles were previously deposited in the PDB, which al-
lowed us to evaluate Rfree, AIC, and BIC for model se-
lection. In addition, we calculated simulated data based
on the single-member or eight-member ensembles. Fig-
ure 6 (left column) shows that Rfree evaluates many of
the complex ensembles as better fits to the experimental
data. However, both AIC and BIC consistently prefer
the simpler model type. This result against experimen-
tal data is corroborated by the results against data simu-
lated from a single-member ensemble (middle) and from

an eight-member ensemble (right). Note that the exper-
imental results are comparable to simulated results for
the synthetic noise levels used here, lending some credi-
bility to the incorporation of Gaussian noise in the cal-
culated data. From single-member simulated data, AIC
and BIC always prefer the simpler model type. Simi-
larly, the information criteria prefer the simpler model
type even when the underlying data are calculated from
the complex model type, except for AIC in some cases
with very low noise.

Next, we performed refinements of different nested
model types against the experimental data of Levin, et
al. and evaluated how often the more complex model
type was selected (Fig. 8). For group vs. individual
B-factors, only BIC rejects the more complex model
types. This suggests that BIC is more stringent than
common practices in the field, where individual B-factors
are normally refined across the entire range of resolutions
used here. Interestingly, although anisotropic B-factors
were preferred for the majority of models by Rfree, AIC
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FIG. 4. Preference ∆C ≡ CN − C2N for complex model type (twice as many ensemble members as used to generate data) over
simple model type (same number of members) as a function of resolution, for C = Rfree, AIC, and BIC (top row to bottom
row). Higher value indicates higher preference for complex model type (with more members), with zero indicating indifference.
Data generated from model type with one (left column), two (middle), or four members (right). Noise as in Fig. 2.

FIG. 5. Proportion of proteins where selection criterion (Rfree, Rsupp, AIC, or BIC) prefers a complex model type to fit data
generated from a simple model type, as a function of noise. Simple and complex model types compared are listed above each
panel. Error bars show Wilson score 95% confidence interval.
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FIG. 6. Model selection on synthetic data makes similar judgments to model selection on experimental datasets.
Preference ∆C ≡ C1−member−C8−member for complex (8-member) model type over simple (1-member) model type as a function
of resolution, for C = Rfree, AIC, and BIC (top row to bottom row). Higher value indicates higher preference for complex model
type (with more members), with zero indicating indifference. 1- and 8-member ensemble model types are fit to experimental
diffraction patterns (left column, ×), or to synthetic patterns (filled dots, •) simulated using one member (middle column) or
eight members (right column). Noise as in Fig. 2.

only preferred them for a small number of models. To
judge whether this is consistent with heuristics commonly
employed in the field, we assessed whether the Rfree-
Rwork divergence had dramatically increased for some of
the models refined with anisotropic B-factors. Indeed,
Fig. 8 also shows there was evidence of overfitting for
many of these model types as detected by the Rsupp cri-
terion. In contrast, for ensemble model types, Rfree and
Rsupp tracked closely, and AIC rarely (and BIC never)
preferred the more complex model types.

IV. DISCUSSION

Protein crystallography has historically developed
model types with increasingly detailed representations of
conformational heterogeneity in protein crystals [14, 44–
48]. Yet it remains unclear how to know when heteroge-
neous model types are justified by the experimental data.
A complex model type with many parameters may pro-
vide a better fit to data than a simple model type with

few. Yet, parameters added to improve an existing model
type’s quality of fit bring with them the hazard that they
may not parsimoniously describe the physical character-
istics of interest. The practical trade-off between accu-
racy (quality of fit) and parsimony (reduced vulnerabil-
ity to overfitting) defines the long-standing problem of
model selection: What is the most appropriate amount
of complexity to use to model a particular experimental
dataset?
Rfree is often incorporated into model selection meth-

ods [49, 50]. But if Rfree is exploited both to select model
type and to estimate model type errors [51], it may fall
prey to precisely the problem it was designed to address:
selecting an overly complex model type to fit spurious
characteristics of ambient noise. Adding consideration
of the Rwork-Rfree gap (in this work via Rsupp) can re-
duce this overfitting, warranting further study of its role
in model selection, but current uncertainty on how best
to incorporate both Rwork and Rfree presents practical
complications.

As an alternative for model selection, information cri-
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FIG. 7. Preference ∆C ≡ Csimple − Ccomplex for complex model type over simple model type to fit experimental data, as a
function of resolution, for C = Rfree, AIC, and BIC (top row to bottom row). Higher value indicates higher preference for
complex model type, with zero indicating indifference. Columns (left to right) represent model-type comparisons of group vs.
individual, iso- vs. anisotropic, 1- vs. 2-member, 2- vs. 4-member, and 4- vs. 8-member, respectively. Noise as in Fig. 2.

FIG. 8. Proportion of proteins where selection criterion C (Rfree, Rsupp, AIC, or BIC) prefers a complex model type to fit
experimental data. Error bars show Wilson score 95% confidence interval.

teria mitigate the risk of overfitting superfluous model
type parameters by assigning explicit penalties to dis-
courage use of complex model types. Information criteria
thus explicitly weigh the risks of additional parameters
against the benefits of using them.

We find that AIC and BIC are credible criteria for
model selection in protein X-ray crystallography, outper-

forming Rfree on data simulated from simple model types
and suggesting caution when employing more complex
model types in refinement against experimental data. In
synthetic data generated from the simpler model type—
where one should never prefer the more complex model
type, regardless of noise level—Rfree often erroneously
prefers the unambiguously wrong, more complex (over-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2018. ; https://doi.org/10.1101/448795doi: bioRxiv preprint 

https://doi.org/10.1101/448795
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

fit) model type. As synthetic noise increases, information
criteria more predictably (compared to Rfree) increase
their preference for simpler model types (Figs. 2,3,4).
On experimental scattering data where we do not a pri-
ori know the correct answer, AIC and especially BIC
judge model types significantly more conservatively than
does Rfree (Fig. 6). Whereas Rfree on average supports
the use of more complex model types—across all our
pairwise comparisons—to fit the experimental diffraction
data considered, AIC and BIC generally prefer simpler
model types (Fig. 8).

As a measure of quality of fit, we used Phenix’s like-
lihood function. Our work assumes that this likelihood
quantifies the probability of generating the observed data
from the proposed parameterization of the model type
and noise model.

Knowledge about typical protein geometry is incorpo-
rated into structure refinement in the form of what is ef-
fectively a Bayesian prior over bond lengths, bond angles,
torsion angles, clashes, B-factor variation among neigh-
boring atoms, and so on [52]. These various restraints
on geometry and B-factor variation reduce the effective
number of free parameters during refinement [31], but are
not accounted for in our parameter counts (Table I). As
complex model types have more parameters and hence
will have their effective number of free parameters re-
duced more than simple model types, the information
criteria (as currently formulated) may be overestimating
the complexity of the complex model types, and thus
overly penalizing them. Additional complications may
emerge because the weight between restraints and data
is often optimized based on Rfree.

Moreover, refinement should be less likely to find the
best-fit parameters for a more complex model type, given
the higher-dimension parameter space to search through.
Thus standard refinement can be expected to underesti-
mate the quality of fit possible for a complex model type.

Our noise model is highly simplified and thus results
in R-factors that refine to convergence. Such small
Rfreevalues are not observed for real data, where the ‘R-
factor gap’ can be sizable [53]. A more sophisticated noise
model, such as that incorporated in MLFSOM [53], could
alleviate this discrepancy.

The multiconformer model type [54], which has al-
ternative conformations for some but not all atoms or
residues, represents a middle ground between single-
member and multi-member ensemble model types. Fu-
ture study using our model selection framework may il-
luminate its potential advantages. However, the multi-
conformer model type presents additional practical diffi-
culties surrounding the choice of how many atoms—and
which ones—merit representation by alternative confor-
mations, and ambiguity about the true number of free
parameters that are fitted since it considers potentially
all atoms or residues for more complex representation.
Torsion-angle refinement [55] is another method that re-
duces the number of free parameters while attempting
to retain sufficient flexibility to capture true structural

heterogeneity.
This work represents an initial investigation of exist-

ing model selection techniques, directly applied to judg-
ing protein model types in fits to X-ray crystallography
data. For the most part, we have treated Phenix as a
black box; taking the likelihood it reports at face value,
as an end user would. An interesting extension would re-
lax the simplifying assumption embodied in AIC and BIC
that the posterior distribution is unimodal (with a single
peak in probability), allowing for the multimodal nature
of the prior protein knowledge (e.g., the Ramachandran
plot has multiple peaks), which becomes especially rele-
vant at the relatively low parameter-to-observation ratios
here. One could also sample over the posterior distribu-
tion (such as in the Deviance Information Criterion) [56]
instead of making the strong assumptions AIC and BIC
do about the shape of the posterior distribution.

This framework is quite general and should also pro-
vide an interesting perspective on model selection in
other structural biology contexts such as nuclear mag-
netic resonance, cryo-electron microscopy, and integra-
tive modeling [57]. Indeed, X-ray crystallography likely
represents a best-case scenario in terms of the ratio of
data to free parameters and relatively low noise, so prob-
lems encountered in overfitting crystallographic models
to data should only be more prominent in more data-
sparse structural fields.

Appendix A: Likelihood

Here we detail Phenix’s likelihood [25]. The likelihood
assumes that the joint probability distribution P({Fs})
describing the structure factor amplitudes {Fs} indexed
by reciprocal vectors s in the set S = {s} may be ap-
proximated by a product of independent distributions,

P({Fs}) =
∏
s∈S

P (Fs) , (A1)

with the probability of a model producing an individual
amplitude assumed to be Gaussian in the modulus of the
discrepancy between prediction and data,

P (Fs) = 1
πεsβs

exp
[
− (∆Fs)2

εsβs

]
. (A2)

Here ∆Fs = F obs
s − αsF

calc
s quantifies the difference be-

tween the observed amplitude F obs
s and the predicted

amplitude F calc
s .

The fitted parameters αs and βs quantify the expecta-
tion and variance of the amplitude error [58]. The fitted
multipliers εs adjust for the varying mean intensities of
the different reflections [24]. Parameters αs, βs, and εs
are all fitted during the refinement, but their number
do not vary among the physical model types. So when
comparing model type performance, subtracting one in-
formation criterion from another, these contributions to
the number of fitted parameters cancel.
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For acentric reflections [25], integrating Eq. (A2) over
the (inaccessible) complex phase information [25] gives
the distribution of amplitudes

P acentric
s (Fs) =2F obs

s
εsβs

exp
[
− (F obs

s )2 + αs(F calc
s )2

εsβs

]
×

I0

(
2αsF

obs
s F calc

s
εsβs

)
, (A3)

for I0(x) the modified Bessel function of the first kind.
For our purposes, it is sufficient to neglect the model-
independent terms in Eq. (A3) to obtain the model-
dependent (negative) log-likelihood for each reflection

− lnLacentric
s = α2

s(F calc
s )2

εsβs
− ln I0

(
2αsF

obs
s F calc

s
εsβs

)
.

(A4)

For centric reflections [25], Eq. (A2) instead reduces to

P centric
s (Fs) =

√
2

πεsβs
exp
[
− (F obs

s )2 + αs(F calc
s )2

2εsβs

]
×

cosh
(
αsF

obs
s F calc

s
εsβs

)
, (A5)

giving the model-dependent terms in the (negative) log-
likelihood per reflection,

− lnL centric
s = α2

s(F calc
s )2

2εsβs
− ln cosh

(
αsF

obs
s F calc

s
εsβs

)
.

(A6)
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