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Abstract

Aedes albopictus  (Ae. albopictus) is an important vector of arboviruses such as Dengue virus

(DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Long noncoding RNA (lncRNAs) have

been identified in other vectors including Aedes aegypti and Anopheles mosquitoes, few of which have

been  implicated  in  immunity  and  viral  replication.  To  identify  lncRNAs  with  potential  biological

functions in Ae. albopictus, we performed RNA-seq on Ae. albopictus cells infected with DENV and

ZIKV, and analyzed them together with public datasets. We identified a total of 23,899 transcripts,

16,089 were intergenic while 3,126 and 4,183 of them were antisense and intronic to annotated genes

respectively.  Ae. albopictus  lncRNAs shared many of the characteristics with their invertebrate and

vertebrate counterparts, such as low expression, low GC content, short in length, and low conservation

even among closely  related  species.  Compared to  protein-coding genes,  lncRNAs exhibited  higher

tendency to  be expressed in  a  stage-specific  manner.  Besides,  expression of  lncRNAs and nearest

protein-coding genes tended to be correlated, especially for the gene pairs within 1kb from each other.

We also discovered that Ae. albopictus lncRNAs have the potential to act as precursors for miRNA and

piRNAs, both of which have been implicated in antiviral defense in Aedes mosquito. Upon flavivirus

infection,  lncRNAs  were  observed  to  be  differentially  expressed,  which  possibly  indicates  the

involvement  of  lncRNAs  in  the  host-antiviral  defense.  Our  study  provides  the  first  systematic

identification of lncRNAs in Ae. albopictus, hence, offering a foundation for future studies of lncRNA

functions. 
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Introduction

 The  Asian  tiger  mosquito,  Aedes  albopictus  (Ae.  albopictus)  is  an  important  vector  of

arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Due

to  its  invasiveness  and  aggressive  spread,  Ae.  albopictus  has  widespread  geographic  distribution,

posing serious health threat  across the globe in both tropical  and temperate  regions.  Although  Ae.

albopictus is  considered as less competent  vector  of  DENV than  Aedes aegypti  (Ae.  aegypti),  Ae.

albopictus was responsible for dengue outbreaks in Hawaii, China, and Europe, primarily because of its

fast expansion across the globe (Chen et al., 2015). 

 Although protein-coding genes have been the central focus, many reports have indicated that

noncoding  RNAs  (ncRNAs),  such  as  long  noncoding  RNAs  (lncRNAs)  and  small  RNAs,  play

important roles in development and virus-host interaction (Etebari et al., 2017, 2016; Liu et al., 2015;

Miesen et al., 2016a, 2016b). Although lncRNAs lack coding potential, similar to mRNAs, they are the

products of Pol II, and they undergo polyadenylation, capping and alternative splicing  (Ulitsky and

Bartel, 2013). Due to their mRNA-like features, lncRNAs are usually represented in RNA-seq datasets.

Next-generation sequencing allows quick genome-wide identification of lncRNAs including the lowly

expressed transcripts, and this technology is independent on complete genome and gene annotation,

making it an ideal strategy to detect novel lncRNAs (Wang et al., 2009; Wilhelm et al., 2010). 

lncRNAs act  by  various  mechanisms.  Several  lncRNAs  have  been  shown to  modulate  the

chromatin state, thereby; regulating gene expression inside cells (Wang et al., 2011) Meanwhile, other

lncRNAs were associated with post-transcriptional regulation such as Malat1, which is important for

alternative splicing of mRNA transcripts (Tripathi et al., 2010). lncRNA was also shown to be involved

in virus-host interaction in Ae. aegypti. For example, knockdown of lincRNA_1317 in Ae. aegypti cells

resulted in an increased replication of DENV (Etebari et al., 2016). Another potential role of lncRNAs

is to act as precursors or templates for the generation of mature small RNAs (Yoon et al., 2014). Small

RNAs  in  metazoa  can  be  categorized  into  three  distinct  groups  based  on  their  biogenesis  and
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mechanism of action (Azlan et al., 2016; Siomi et al., 2011): microRNAs (miRNAs), small-interfering

RNAs (siRNAs), and PIWI-interacting RNAs (piRNAs). miRNAs,  ~22  nucleotide  (nt)  in  length,

function in the regulation of gene expression in both animals and plants by targeting cognate messenger

RNAs  (mRNAs)  via  imperfect  base-pairing,  resulting  in  either  mRNA cleavage  or  translational

repression  (Mallory and Vaucheret, 2010). siRNAs are ~ 21 to ~24 nt RNAs in length that originate

from long double-stranded RNA (dsRNA) or hairpins, both of which can be encoded endogenously in

the genome or can be exogenously introduced into the cells. piRNAs (~24-35 nt in length) function to

control  the  activity  of  transposable  element  (TE);  thereby,  ensuring  the  inheritance  of  genomic

information from one generation to another unscathed (Siomi et al., 2011). Studies of piRNAs and their

protein partners, PIWI proteins, in mice and flies have led to the proposal of two piRNA biogenesis

pathways: primary pathway and secondary ping-pong amplification cycle  (Brennecke et  al.,  2007).

piRNA biogenesis begins with the transcription of piRNA precursor mainly from distinct loci in the

genome that are referred to as piRNA clusters. The primary biogenesis pathway is thought to contribute

to the initial population of piRNAs, and the ping-pong amplification cycle, then amplifies the piRNA

pool that targets active TE. The two pathways work together to elicit effective defense against active

transposons. (Brennecke et al., 2007; Siomi et al., 2011). 

Here,  we  report  the  first  systematic  genome-wide  identification  and  characterization  of

lncRNAs in Ae. albopictus. To identify a set of high confident lncRNA transcripts, we performed RNA-

seq based de novo transcript discovery,  and applied stringent filtering of transcripts having coding

potential.  We  then  characterized  each  lnRNA  by  many  features  such  as  transcript  structures,

conservation, and developmental expression. We also investigate the functional link of lncRNAs and

small  RNAs,  especially  miRNAs  and  piRNAs.  Beside  that,  we  examined  the  lncRNA expression

landscape upon viral-infection to gain insights into the lncRNA functions in virus-host interaction.

Although  our  knowledge  on  mosquito-virus  interaction  in  Ae.  albopictus  is  still  limited,  results

generated  from  this  study  will  provide  invaluable  resources  for  future  investigations.  Thorough
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understanding on the intricate relationship between viruses and mosquitoes at  cellular level,  which

involved  both  coding  and  non-coding  genes,  is  crucial  for  devising  efficient  strategies  for  vector

control.

Results

Genome-wide identification of lncRNAs in Ae. albopictus

To identify novel lncRNAs, we generated 9 paired-end RNA-seq libraries (triplicate of C6/36

cells  at  rest,  DENV1-infected,  and ZIKV-infected)  and analyzed  them together  with  185 publicly

available RNA-seq libraries generated from Ae. albopictus. To get high confident lncRNA transcripts,

we applied a stringent identification pipeline that was adapted with slight alterations from lncRNA

identification  studies  in  other  species  (Azlan  et  al.,  2018;  Chen et  al.,  2016;  Etebari  et  al.,  2016;

Hezroni et  al.,  2015; Wu et al.,  2016; Young et  al.,  2012). An overview of lncRNA identification

pipeline can be found in Figure 1. The pipeline began with alignment of each RNA-seq library against

Ae.  albopictus  genome  (assembly:  canu_80X_arrow2.2,  strain:  C6/36,  VectorBase)  using  HISAT2

(Kim et al., 2015), followed by assembly of RNA-seq alignments into potential transcripts by Stringtie

(Pertea et al., 2015). The transcript assemblies were then merged using Stringtie, yielding a total of

252,453 transcripts derived from 137,743 loci. 

We  annotated  and  compared  the  transcripts  with  reference  annotation  using  Gffcompare

(Trapnell et al., 2010). For downstream analysis, we only chose novel transcripts that were intergenic,

intronic and antisense to the reference genes – all of which made a total of 37,927 transcripts. Out of

37,927 transcripts, 10,933 were shown to be coding by TransDecoder, and they were discarded. The

remaining  26,994  transcripts  were  subjected  for  coding  potential  assessment  by  three  different

softwares, namely CPAT (Wang et al., 2013), CPC2 (Kang et al., 2017), and CNCI (Sun et al., 2013).

We found that 25,868 transcripts  were identified to be noncoding in all  three algorithms. We then

performed BLASTX  against Swissprot protein database, and 977 transcripts having significant hits (E-
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value  <  10-5)  were  discarded.  Finally,  we  examined  the  strandedness  of  the  remaining  24,891

transcripts,  and  transcripts  without  strand  information  were  removed.  Detailed  description  on  the

prediction analysis and parameter used can be found in Material and Methods section.

In this study, we identified a set of 23,998 novel lncRNA transcripts derived from 20,886 loci.

The number of intergenic, intronic and antisense lncRNAs were 16,089, 4,183, and 3,126 respectively.

Current annotation listed 8,571 lncRNA transcripts; hence, altogether, the total number of lncRNAs in

Ae. albopictus  were 32,569 transcripts. 

Ae. albopictus lncRNAs shared similar genomic features with other species

Studies done in other species  revealed that,  compared to protein-coding gene,  lncRNAs are

typically  shorter  in  length,  have  low  GC content,  have  high  repeat  contents,  and  their  sequence

conservation is relatively low even among closely related species (Azlan et al., 2018; Chen et al., 2016;

Etebari et al., 2016; A. Pauli et al., 2012; Wu et al., 2016; Young et al., 2012). Our analysis showed

that  Ae.  albopictus  lncRNAs  shared  similar  characteristics  with  their  vertebrate  and  invertebrate

couterparts. We found that lncRNA transcripts were shorter than protein-coding mRNA (Figure 2A).

Coding mRNA transcripts had a mean length of 2,659 bp, while the average size of novel and known

lncRNAs was 662.9 bp and 697 bp respectively. Besides, both novel and known lncRNAs had lower

GC content than the coding transcripts. Average GC content of novel and known lncRNAs were 42.4%

and 42.8% respectively while coding sequence had the mean GC content of 51.3% (Figure 2B). Not

only lncRNAs had lower GC content, but other non protein-coding sequence in the genome, including

intron, intergenic regions, 5’UTR and 3’UTR, also had lower GC content. 

Similar to previous reports (Hezroni et al., 2015; Nam and Bartel, 2012; Wu et al., 2016), we

found that lncRNA transcripts had higher composition of repeat content compared to coding mRNA

2.37% and 0.08% on lncRNA and protein-coding exon nts respectively were embedded within repeat

elements. Repeat elements embedded within lncRNAs include hellitron, LINE, SINE, satellites, and
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LTR. More than 90% of both novel and known lncRNAs had one isoform per gene, and lncRNA genes

having more than 10 isoforms were less than 10 (Figure 2C). lncRNA loci possesed a slightly lower

isoforms per gene than protein-coding gene. lncRNA had an average of  1.14 isoforms per gene locus,

while protein-coding harbored 1.5 transcripts  per gene.  Shorter length,  lower GC content,  and less

number of isoform per genes suggest that lncRNAs are less complex than protein-coding transcripts. 

To examine the level of sequence conservation, we performed BLASTN of lncRNA transcripts

against the genomes of closely related insects species namely  Ae. aegypti,  C, quinquifasciatus,  An,

gambiae and D. melanogaster. From BLASTN results, we defined conserved lncRNAs as transcripts

having E-value less than 10-50 (Etebari et al., 2016). Only 19 lncRNA transcripts were conserved in all

4 genomes being tested, and most of the conserved lncRNAs (5,224 transcripts) shared high shared

sequence similarity with Ae. aegypti genome. On the contrary, coding mRNAs showed higher level of

sequence conservation by BLASTN (E-value < 10-50) method, as shown by the number of conserved

transcripts  shared  in  all  genomes  and  the  number  of  transcripts  shared  between  Ae.  aegypti

(Supplemental  Figure  2).  Overall,  total  number of  lncRNA transcripts  that  shared  high  sequence

similarity with  Ae. aegypti  was significantly lower than that observed in mRNAs. For instance, only

16% (5,224 out of 32,569 transcripts) of lncRNAs were highly conserved, but for coding mRNAs, 78%

of their total transcripts (33,431 of 42,899 transcripts) exhibited high level of sequence conservation. 

Ae. albopictus lncRNAs may act as precursors for miRNAs and piRNAs

In verterbrates,  some lncRNAs were processed to generate  miRNAs, showing that  lncRNA

transcripts act as precursors in miRNA biogenesis  (Yoon et al., 2014; Zhang et al., 2018, 2017).  To

examine  if  this  was  also  the  case  for  Ae.  albopitus  lncRNAs,  we  examined  lncRNA  genomic

coordinates  that  were  fully  overlapped  with  miRNA  precusor  loci.  Due  to  the  fact  that  miRNA

annotation  was  not  systematically  done  in  Ae.  albopictus  C6/36  genome  (canu_80X_arrow2.2

assembly), we sought to produce comprehensive list of miRNAs by analyzing 20 public small RNA
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datasets (accession: SRA060684 and SRP096579) using miRDeep2 software (Friedländer et al., 2012).

We predicted a total of 116 and 10 known and novel miRNAs (Supplemental Table 2). We defined

known miRNAs as those being already identified in previous reports  (Batz et al.,  2017; Gu et al.,

2013),  or  sharing  the  same seed sequence  to  athropod miRNAs reported  in  miRBase  version  21.

miRNAs  that  did  not  fall  into  any  previously  mentioned  categories  were  defined  as  novel.  By

examining genomic coordinates of both lncRNAs and miRNAs, we found that 8 and 14 precursors

miRNAs  were  fully  overlapped  with  lncRNA  loci  on  the  same  and  opposite  strand  respectively

(Supplemental  Table  3).  We  classified  these  lncRNAs  of  having  potential  to  be  processed  into

functional mature miRNAs.

 It was reported that Ae. albopictus was capable of producing piRNAs that were derived from

protein-coding  genes,  suggesting  that,  beside  TE  silencing,  piRNAs  may  possess  other  roles  in

biological pathways (Liu et al., 2016). Here, we extended the exploration of gene-derived piRNA by

focusing on the piRNAs deriving from lncRNA loci. To explore this possibility, we aligned small RNA

reads of 24-32 nt in size against lncRNA transcripts, and checked for the presence of typical piRNA

characteristics such as 5’U bias and ping-pong signature, both of which represent hallmarks of piRNA

characteristics conserved across all animal kingdom. Interestingly, we discovered that small RNA reads

that aligned to lncRNAs displayed 5’U bias and ping-pong signature (Figure 3). The finding suggests

that the biogenesis of lncRNA-derived piRNAs in Ae. albopictus involved both primary and secondary

pathways; thereby, highlighting the possible role of piRNAs in the regulation of lncRNA expression.  

piRNAs were mostly transcribed  from genomic  loci  termed piRNA clusters,  which  are the

sources of most piRNAs  (Azlan et al., 2016; Siomi et al., 2011). Since our findings pointed out the

possibility of lncRNAs producing piRNAs, we then asked if lncRNA loci were largely present within

piRNA clusters. To answer this question, we first identified piRNA clusters in Ae. albopictus genome

(canu_80X_arrow2.2 assembly) using proTRAC  (Rosenkranz and Zischler, 2012), and subsequently

discovered that the genome harbored a total of 385 clusters  (Supplemental Table 4). Our analysis
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revealed that the number of lncRNA transcripts intersecting with piRNA cluster loci was only 290, of

which 160 of them were found to be fully overlapped with the clusters. The low number observed here

implies that, the ability of lncRNAs serving as precusor for piRNA biogenesis is not directly due to

their genomic location being present within piRNA clusters. 

Developmental expression of Ae. albopictus lncRNAs

In other species, lncRNAs showed high tendency to be expressed in a development-specific

fashion (Cabili et al., 2011; Chen et al., 2016; Nam and Bartel, 2012; Andrea Pauli et al., 2012). To

investigate if this was also true in  Ae. albopictus  lncRNAs, we analyzed public dataset (accession:

SRP055126) that provided transcriptome of seven developmental stages of Ae. albopictus that include

0-24 and 24-48 embryonic stages, L1-L2 and L3-L4 larvae,  pupae, adult males, and adult females.

Consistent with findings reported in other species, across seven developmental stages, we observed that

the overall expression of lncRNA was lower than protein-coding genes (Figure 4A). 

To investigate the specificity of lncRNA expression, we compared for each gene the maximum

expression among 7 developmental stages to the mean expression over the remaining 6 stages  (Nam

and Bartel, 2012). We repeated the same method with transcript-level expression of both lncRNA and

protein-coding transcripts. By this metric, at transcript-level expression, lncRNAs were found to be

more  differentially  expressed  than  mRNAs.  Median  fold  difference  between  maximum and  mean

TPMs  of  lncRNAs  and  mRNAs  were  2.4  and  0.96  respectively.  On  the  contrary,  at  gene-level

transcription,  such difference  was not  observed,  as  median  fold  difference  between maximum and

mean TPMs of lncRNAs and coding genes were relatively similar – lncRNA was 2.4 and coding gene

was 2.1.  

To investigate the coexpression of lncRNAs in specific developmental stages, we conducted a

hierarchical  clustering  analysis  in  Morpheus (https://software.broadinstitute.org/morpheus) based on

Pearson correlation of z scores of each lncRNA (Figure 5A). We discovered that, compared to protein-
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coding  genes,  vast  majority  of  lncRNAs  were  more  tightly  clustered  according  to  specific

developmental stages. We further computed specificity score of each lncRNA using an entropy-based

metric  of  Jensen-Shannon (JS) divergence as  previously described  (Cabili  et  al.,  2011).  The score

ranges from zero for ubiquitously expressed genes, to one for genes specifically expressed in only one

tissue. Based on this measure, lncRNAs displayed more specifity as 61% of them scored 1 while the

fraction of protein-coding genes showing JS score of 1 was only 28%. Therefore, the results obtained

here further corroborate  previous findings that claimed lncRNAs in many species displayed higher

tissue or stage-specific expression compared to that of protein-coding genes  (Cabili et al., 2011; A.

Pauli et al., 2012; Wu et al., 2016). 

Previous reports showed that two neighboring genes have higher tendency to be coexpressed;

thereby, showing strong correlation in expression levels  (Cabili et al., 2011; Nam and Bartel, 2012;

Ulitsky  et  al.,  2011).  We asked if  lncRNAs in  Ae.  albopictus  displayed  correlation  in  expression

between nearby or overlapping protein-coding genes that were  located either on the same or opposite

strand in the genome. We found that expression of the lncRNA and nearest protein-coding gene was

correlated especially those within 1kb from each other, either on the same or opposite strand (Mean

correlation  of  0.4).  As the  distance  increased  up to  10kb,  mean  correlation  between  lncRNA and

protein-coding  genes  lowered  to  around  0.2  (Figure  5C).  Overlapping  genes,  on  the  other  hand,

showed less mean correlation than that of neighboring genes. Hence, this study showed that neigboring

genes tended to show higher degree of expression correlation with lncRNAs than randomly assigned

gene pairs 

lncRNAs were differentially expressed upon Flavivirus infection

Studies on Ae. aegypti transcriptomes provided the evidence that lncRNAs could be involved in

DENV and ZIKV-mosquito interaction. To examine if this was also the case in  Ae. albopictus, we

generated  paired-end RNA-seq libraries  derived from triplicates  of  C6/36 cells,  larval-derived  Ae.
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albopictus cell line, infected with dengue virus serotype 1 (DENV1) and ZIKV. We combined both

protein-coding genes and lncRNAs in our differential expression analysis using Salmon v0.9 (Patro et

al.,  2017) followed  by  edgeR  (Robinson  et  al.,  2010a).  In  general,  we  found  that  C6/36  cell

transcriptome was highly responsive to both DENV1 and ZIKV infection. A total of 3,349 and 4,246

genes were upregulated and downregulated respectively (|log2 FC| > 1, FDR < 0.01) upon DENV1

infection  (Supplemental Table 6). Of these genes, 1,360 and 379 of them were lncRNAs that were

respectively  upregulated  and  downregulated.  Meanwhile,  analysis  of  ZIKV-infected  transcriptomes

revealed a total of 3,677 upregulated genes (|log2 FC| > 1, FDR < 0.01), 1,115 of them were lncRNAs.

We detected 3,979 genes (2,698 were lncRNAs) were downregulated upon ZIKV infection in C6/36

cells.

Distribution  of  fold  change  showed  that  upon  DENV1  infection,  protein-coding  gene  and

lncRNA experienced somewhat similar level of differential expression (Figure 6A). Mean fold change

of  protein  coding  gene  and  lncRNA  following  DENV  infection  was  1.71  and  1.70  respectively.

Meanwhile,  in ZIKV-infected transcriptome, we discovered that mean fold change of lncRNA was

higher than protein-coding gene  (Figure 6A).  For instance,  lncRNA average fold change was 3.26

while  protein-coding  was  1.92  upon ZIKV infection.  The  discrepancy  observed  here  suggest  that

different virus may elicit different transcriptional responses to the host cells. Besides, the observation

that  lncRNAs had different   transcriptional  response  than  protein-coding gene  especially  in  ZIKV

transcriptome raised the possibility that differential exression of lncRNAs was not necessarily due to

the co-expression with their neighboring protein-coding genes. 

To  investigate  this  possibility,  we  looked  for  protein-coding  genes  located  closest  to

differentially expressed lncRNA loci, and examined how many of them having signifcant differential

expression. We discovered that the number of differentially expressed protein-coding genes residing in

close proximity to differentially expressed lncRNA was low. For example, in DENV transcriptome,

only  225  out  of  5,858  differentially  expressed  protein-coding  genes  were  located  closely  to
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differentially expressed lncRNA, while in ZIKV, the number was 205 out of 3,803. Therefore, the

findings  further  subtantiate  the  idea  that  change  in  lncRNA  transcriptional  expression  landscape

following virus infection was not just a byproduct of the neighboring protein-coding genes. 

  We detected a total  of 2,071 genes that were differentially  expressed in both DENV and

ZIKV-infected  cell  transcriptomes.  Of 2,071 genes,  717 of  them were lncRNAs.  We noticed  that,

compared to 2,071 genes, the number of genes that were both upregulated and downregulated in ZIKV

and DENV were less than the number of genes having differential expression in opposite direction.

Total  number  of  lncRNA  genes  having  opposite  fold  change  in  DENV  and  ZIKV  infected

transcriptomes was 506, while for protein-coding genes, the number was 905. This further support the

notion that different virus evokes different transcriptional responses within the same host. Flavivirus

infected transcriptome data generated in this study was limited to Ae. albopictus C6/36 cell line. Thus,

to investigate whether the findings reported here were also true in adult Ae. albopictus mosquitoes, we

analyzed available RNA-seq dataset on Ae. albopictus  infected with DENV (Tsujimoto et al., 2017),

and the results showed that the overall pattern of transcriptional response especially lncRNAs upon

virus infection was similar regardless of tissue or cell types (Supplemental Figure 3). 

We  realized  that  our  virus-infected  transcriptomes  were  valuable  for  identifying  important

pathways involved in flavivirus infection. Because our main focus was to study lncRNAs, pathways

and gene ontology analysis of differentially expressed protein-coding genes were not discussed here.

Gene ontology analysis can be found in Supplemental Figure 4.   

Discussion

Ae.  albopictus,  a  vector  of  several  viruses  such as  DENV, ZIKV, and CHIKV,  is  a  highly

invasive species that thrives in temperate and tropical regions (Chen et al., 2015; Paupy et al., 2009).

Genomic and transcriptomic investigation of Ae. albopictus should provide valuable genetic resources

that will inform the biology of this mosquito especially on its competency as a successful vector. With
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this in mind, we performed global de novo annotation of lncRNA using RNA-seq data generated in this

study and publicly available datasets. In this study, we have generated the first systematic annotation of

Ae. albopictus transcriptome focusing primarily on lncRNAs. Huge number of sequencing reads with

deep coverage enabled us to reconstruct high-confidence 23,899 lncRNA transcripts in Ae. albopictus.

In parallel to its genome being the largest mosquito genome sequenced to date, to our knowledge, the

number Ae. albopictus lncRNAs annotated in this study is the largest compared to other insects such as

Ae. aegypti, D. melanogaster, and An. gambiae (Chen et al., 2015; Miller et al., 2018). Large genome

size  feature  enables  Ae.  albopictus to  harbor  great  numbers  of  lncRNA genes,  which  possibly

contribute genetic materials for successful adaptation following selection in new environments (Chen et

al., 2015). 

Currently, three versions of Ae. albopictus genomes have been released – Foshan strain, AaloF1

(Chen  et  al.,  2015),  Rimini  strain,  AalbR1 (Dritsou  et  al.,  2015),  and C6/36,  canu_80X_arrow2.2

(Miller et al., 2018). Due to small contigs and limited gene annotation of AalbR1 assembly, we only

considered to use either canu_80X_arrow2.2 or AaloF1 assembly in this study. AaloF11 assembly was

generated using Illumina platform while canu_80X_arrow2.2 was sequenced using PacBio technology.

Due to deep coverage of long-read sequencing by PacBio technology, canu_80X_arrow2.2 assembly

has  larger  contigs  than  any  previously  assembled  mosquito  genome  (Miller  et  al.,  2018);  hence,

offering advantage of identifying complete gene sequences. For that reason, we finally decided to use

canu_80X_arrow2.2 assembly for lncRNA annotation. 

Analysis of the characteristics of lncRNA in  Ae. albopictus  revealed that, despite having low

level of sequence conservation among closely related insect species, lncRNAs shared strikingly similar

genomic features with other species including invertebrates and vertebrates.  Ae. albopictus lncRNAs

shared many of the characteristics of their vertebrates counterparts (Hezroni et al., 2015; Andrea Pauli

et al., 2012): short transcript length, relatively low expression, low level of sequence conservation, low

number of isoforms, higher proportion of repeat-embedded nucleotides, low GC contents, and tend to
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be  coexpressed  with  neighboring  protein-coding  genes.  Developmental  profile  of  transcript-level

expression showed that lncRNA transcripts were more differentially expressed than mRNAs. However,

this was not the case when the same analysis was performed at gene-level expression. This observation

highlights the possibility that  Ae. albopictus  lncRNAs undergo active alternative splicing throughout

the development, and certain isoforms are required in specific developmental stages. 

Besides,  lncRNAs  are  expressed  in  developmental-specific  manner,  and  the  degree  of

specificity is much higher than protein-coding genes. The association of specific sets of lncRNAs with

well-defined developmental stage and sex, suggest that Ae. albopictus lncRNAs possess various roles

in development. In addition, we observed that lncRNAs expressed during 0-24 hour and 24-48 hour

embryo were clustered closer together, suggesting that these early embryonic lncRNAs might regulate

same set of functions in embryogenesis. We also noticed that lncRNAs might have the potential to act

as precursors to mature miRNAs and piRNAs, suggesting that lncRNAs are accessible to AGO/PIWI

and  other  proteins  responsible  for  small  RNA biogenesis.  Interestingly,  the  discovery  that  piRNA

deriving  from  lncRNA transcripts  was  among  the  first  to  be  documented.  Based  on  the  piRNA

hallmarks features (5’U bias and ping-pong signature) found specifically in lncRNA-derived piRNAs,

we proposed that  piRNAs in  Ae.  albopictus,  besides  TE silencing,  they  might  be involved in  the

regulation of lncRNAs. 

This study also showed that genome-wide expression of lncRNAs were altered upon DENV and

ZIKV infection. In line with previous studies done in mammale and Ae. aegypti (Etebari et al., 2017,

2016;  Zhao et  al.,  2018), alteration of lncRNA expression landscape following flavivirus infection

observed in this study implicates the involvement of Ae. albopictus lncRNAs in virus-host interaction.

Besides,  our  virus-infected  transcriptome analysis  also  revealed  that,  similar  to  other  well-studied

organisms  (Batut  and Gingeras,  2017;  Engreitz  et  al.,  2016),  Ae.  albopictus  lncRNAs presumably

possess their own regulatory elements that specifically govern their expression in response to viral-

infection, independent of the neighboring protein-coding genes. 
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In summary, our study provides the first comprehensive catalog of Ae. albopictus lncRNA. This

study also offer glimpse into lncRNA functions in numerous processes including development and

virus-host  response.  Results  generated  in  this  study  provides  high-quality  resources  for  future

investigation on lncRNA functions in mosquito vectors.  

Materials and Methods

Cell culture and virus

Ae. albopictus C6/36 cell (ATCC: CRL-1660) were cultured in Leibovitz’s L-15 medium (Gibco, 

41300039), supplemented with 10% Fetal Bovine Serum (FBS, Gibco, 10270) and 10% Tryptose 

Phosphate Broth (TPB) solution (Sigma, T9157). C6/36 cells were incubated at 25ºC without CO2. 

BHK-21 cells (ATCC: CCL-10) were cultured at 37ºC in Dulbecco’s modified Eagles Medium 

(DMEM, Gibco, 11995065) supplemented with 10% FBS (Gibco, 10270), and 5% CO2. Dengue virus 

serotype 1 (Hawaiian strain) and Zika virus (Strain H/PF/2013), were propagated in C6/36 cells and 

titered using BHK-21 cells. Determination of DENV1 titer was done using 50% tissue culture 

infectious dose – cytopathic effect (TCID50-CPE) as previously described (Li et al., 2011; Atieh et al., 

2016). DENV1 used in this study was a gift from Dr. David Perera, University Malaysia Sarawak. 

ZIKV used in this study was a gift from Dr Shee Mei Lok, Duke-NUS Medical School, Singapore. 

 Virus infection, RNA extraction and sequencing

C6/36 cells were infected with DENV1 and ZIKV at multiplicity of infection (MOI) of 0.25. After 3

day post infection, RNA extraction was carried out using miRNeasy Mini Kit 50 (Qiagen, 217004)

according to the manufacturer’s protocol. Total RNA was then subjected to next-generation sequencing.

The RNA-sequencing libraries were prepared using standard Illumina protocols and sequenced using

HiSeq2500 platform generating paired-end reads of 150 in size. 
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Preparation of public datasets 

Publicly  available  long  RNA-seq  datasets  were  downloaded  from NCBI  Sequence  Reads  Archive

(SRA). List of public datasets can be found in Supplemental Table 1. Prior to downstream analyses,

RNA-seq adapters were clipped using Trimmomatic version 0.38 (Bolger et al., 2014), and low quality

reads were removed. 

Identification of lncRNA

RNA-seq libraries were mapped against Ae. albopictus genome (assembly: canu_80X_arrow2.2, strain:

C6/36, VectorBase) using HISAT2 version 2.1.0 (Kim et al., 2015). Stringtie version 1.3.2  (Pertea et

al.,  2015) was used to  assemble transcript,  allowing the assembly of potential  novel  transcripts.  A

minimum of 200 bp size was set for transcript assembly.  The resulting gtf files were merged into a

using Stringtie merge, and we only retained transcripts having FPKM and RPKM of more than 0.5.

Gffcompare  (https://github.com/gpertea/gffcompare)  was  used  to  annotate  and  compare  novel

transcripts with the reference annotation. Transcripts with class code “i”, “u”, and “x” were retained for

downstream  analysis.  We  performed  initial  filtering  of  transcripts  having  coding  potential  using

TransDecoder  (Haas et  al.,  2013). We then evaluated further the coding potential  of the remaining

transcripts using CPAT (Wang et al., 2013), CPC2 (Kang et al., 2017), and CNCI (Sun et al., 2013). We

applied cut-off of less than 0.3 for CPAT, and less than 0 for both CPC2, and CNCI. Only transcripts

that passed the cut-off of all three softwares were retained.  To exclude false positive prediction, we

used  BLASTX against  Swissprot  database,  and  transcripts  having  E-value  of  less  than  10-5 were

removed. We then discarded transcripts without genomic strand information. 

Differential expression and functional annotation 

Salmon version  Salmon v0.9 was used to quantify gene expession  (Patro et al.,  2017). Differential

expression analysis was done using edgeR (Robinson et al., 2010b) in R/Bioconductor environment.
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Functional annotation was done using DAVID 6.8 (Huang et al., 2009a, 2009b) Briefly, differentially

expressed  transcripts  were  ‘BLASTX’ed  against  Ae.  aegypti  peptide  reference  (Vectorbase)  with

parameter of E-value < 10-3. The Ae. aegypti gene IDs were used as input in DAVID 6.8. 

miRNA identification

Analysis of miRNA discovery and expression levels were performed using the miRDeep2 v2.0.0.8

(Friedländer et al.,  2012). Precursor miRNAs within the arthropod family (retrieved from miRBase

version  21)  were  used  as  sequence  templates  of  the  related  species  (Miesen et  al.,  2016a).  After

prediction,  we  set  two  thresholds:  (1)  a  significant  Randfold  p-value  (p-value  <  0.05)  predicted

Randfold v2.0.1 (Bonnet et al., 2004) for precursor miRNAs, and (2) the lowest miRDeep2 score cutoff

(4.0) that had highest signal-to-noise ratio (4.5) (Ikeda et al., 2015) Predicted miRNAs that share the

same homology and seed sequence with annotated miRNAs in miRBase (version 21) were categorized

as homologous miRNAs, while those that do not share any sequence homology were putatively novel

miRNAs. 

piRNA identification

Reads mapped to known ncRNA (snoRNAs, rRNAs, tRNAs, miscRNAs, and previously identified

miRNAs) in  Ae. albopictus  were removed.  Sequence of non-coding RNAs (except miRNAs) were

curated from NCBI and VectorBase. The unaligned reads were considered as unannotated, and they

were filtered to 24-34 nt in size. Filtered reads were then checked for the presence of 5’U bias and

ping-pong signature. Ping-pong signature and 5’U bias were analyzed using perl script provided in

NGS toolbox (Rosenkranz et al., 2015). Prediction of piRNA clusters was performed using proTRAC

v2.4 with default settings (Rosenkranz and Zischler, 2012).
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Figure 1 lncRNA identification pipeline455
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Figure 2 Characterization of Ae. albopictus lncRNA (A) Size distribution of mRNA transcripts, novel
and known lncRNA (B) GC content (C) Number of isoform per gene 
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Figure 3 lncRNA-derived piRNA (A) Percentage of nts at each position in the reads. High percentage of U at the first position (B) Ping-
pong signature of known and novel lncRNA
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Figure 4 Developmental expression of Ae. albopictus lncRNA (A) Distribution of expression of lncRNA and protein-coding genes across
seven developmental stages. (B) Differential expression at gene level of lncRNAs and protein-coding gene (C) Differential expression at
transcript level of lncRNA transcripts and mRNA transcripts. In (B) and (C), for each lncRNA and protein-coding gene or mRNA, the
maximum TPM value across seven developmental stages was plotted with respect to the mean of the remaining six stages. The insets within
(B) and (C) display cumulative distributions of log2-scaled ratios of maximum and mean TPM of lncRNA and protein-coding gene or
mRNAs. 
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Figure 5 Stage-specific expression lncRNA and correlation with protein-coding gene (A) Hierarchical
clustering  of  lncRNA and protein-coding  gene  across  seven developmental  stages.  lncRNA shows
tighter clustering than protein-coding gene as displayed by distinct seven nodes on the row dendogram.
(B) The distribution of maximal  JS specificity  score across  seven stages.  (C) Correlation between
lncRNA expression and their closest neighboring protein-coding gene. The plot shows mean Pearson
correlation for lncRNA - protein-coding gene pairs in either on the same of opposite strand. Error bars
show the 95% confident interval. 
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Figure 6  Differential  expression of lncRNA upon DENV1 and ZIKV infection (A) Distribution of log2 fold change (FDR < 0.01) of
lncRNA and protein-coding gene in DENV and ZIKV-infected transcriptomes. (B) Heatmaps showing the value of log2 fold change (FDR <
0.01) of lncRNA and protein-coding genes that were differentially expressed in both DENV1 and ZIKV-infected transcriptomes. Large
number of genes of both lncRNA and protein-coding were found to be upregulated in one transcriptome but downregulated in another. 
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Supplemental Figure 1 Coding probability computed by CPAT and CPC2. 522
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Supplemental Figure 2 Conservation of Ae. albopictus lncRNA (A) Similarity bit score of Ae. albopictus lncRNA and mRNA transcripts
with closely related insect genomes. (B) The Venn diagrams show the number of conserved Ae. albopictus lncRNAs and mRNAs (BLASTN
e-value < 10-50) with closely related insect genomes.  
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Supplemental Figure 3 Differential expression of lncRNAs in midgut and carcass infected with dengue virus serotype 2 (DENV2) from
Tsujimoto et al. 2017 (A) Number of lncRNAs that were differentially expressed (FDR < 0.01) in both carcass and midgut in day1 and day 5
post infection. (B) Distribution of log2 fold change (FDR < 0.01) of lncRNA and protein-coding gene. 
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Supplemental Figure 4 Gene ontology analysis of protein-coding genes that were differentially expressed in DENV1 and ZIKV-infected
C6/36 cells. 
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