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Abstract

It is becoming increasingly clear that brain network organization shapes the course and
expression of neurodegenerative diseases. Parkinson’s disease (PD) is marked by
progressive spread of atrophy from the midbrain to subcortical structures and
eventually, to the cerebral cortex. Recent discoveries suggest that the neurodegenerative
process involves the misfolding and prion-like propagation of endogenous α-synuclein via
axonal projections. However, the mechanisms that translate local “synucleinopathy” to
large-scale network dysfunction and atrophy remain unknown. Here we use an
agent-based epidemic spreading model to integrate structural connectivity, functional
connectivity and gene expression, and to predict sequential volume loss due to
neurodegeneration. The dynamic model replicates the spatial and temporal patterning
of empirical atrophy in PD and implicates the substantia nigra as the disease epicenter.
We reveal a significant role for both connectome topology and geometry in shaping the
distribution of atrophy. The model also demonstrates that SNCA and GBA
transcription influence α-synuclein concentration and local regional vulnerability.
Functional co-activation further amplifies the course set by connectome architecture and
gene expression. Altogether, these results support the theory that the progression of PD
is a multifactorial process that depends on both cell-to-cell spreading of misfolded
proteins and regional vulnerability.

Introduction 1

Neurodegenerative diseases such as Alzheimer’s Disease (AD), Parkinson’s Disease (PD), 2

and Amyotrophic Lateral Sclerosis, are a major cause of psychosocial burden and 3

mortality, but lack specific therapy. Until recently, the mechanism of progressive 4

neuronal death in these conditions was unknown. However, converging lines of evidence 5

from molecular, animal and human postmortem studies point to misfolded neurotoxic 6

proteins that propagate through the central nervous system via neuronal 7

connections [1–6]. These pathogenic misfolded disease-specific proteins function as 8

corruptive templates that induce their normal protein counterparts to adopt a similar 9

conformational alteration, analogous to the self-replication process in prion diseases. 10

Examples include amyloid β-protein (Aβ) and tau in AD and α-synuclein in PD. The 11
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misfolded proteins can deposit into insoluble aggregates and progressively spread to 12

interconnected neuronal populations through synaptic connections. The model of a 13

propagating proteinopathy remains controversial however [7], and direct evidence in 14

humans remains mostly circumstantial [8]. 15

The prion hypothesis suggests that propagation dynamics in neurodegenerative 16

diseases may be modeled using methods derived from infectious disease epidemiology. 17

Just as infectious diseases spread via social contact networks, misfolded proteins 18

propagate via the brain’s connectome. There are different approaches for modeling 19

epidemic spread over a network. In simple diffusion models, disease in any region is 20

modeled as a concentration (e.g. of misfolded protein) and propagation obeys the law of 21

mass effect with first order kinetics [9, 10]. 22

Such models are easily solved mathematically but have limited explanatory power. 23

Another approach is the agent-based model [11], in which the infectious state of each 24

individual agent and its motility are simulated, and where simple local interactions can 25

translate into complex global behavior. Agent-based models have the advantage of easily 26

incorporating additional emergent properties of a system as the epidemic spreads – for 27

example a brain region may lose its ability to propagate the disease once it is severely 28

affected. They also easily incorporate differences among agents (e.g. in susceptibility to 29

infection or mobility), and are useful for testing interventions (e.g. vaccination). 30

Here we propose a Susceptible-Infected-Removed (S-I-R) agent-based model on a 31

brain network to explore the spreading of pathological proteins in neurodegenerative 32

diseases (Fig 1). The agents are individual proteins. The population is split into S, the 33

portion yet to be infected (normal proteins); I, the portion capable of transmitting the 34

infection (misfolded proteins); and R, the portion no longer active in the spreading 35

(metabolized and cleared proteins). We took PD as an example to show how an S-I-R 36

agent-based model can track the spreading of misfolded α-synuclein, the pathological 37

fibrillar species of endogenous α-synuclein suggested to be responsible for PD pathology. 38

Although convincing evidence from animal [12–18] and neuroimaging studies [19,20] 39

supports the propagation of misfolded and neurotoxic α-synuclein, other mechanisms 40

may also drive PD pathology, including cell-autonomous factors, dependent on gene 41

expression, that modulate regional neuronal vulnerability [7]. If the pathology of 42

neurodegenerative diseases is indeed driven by progressive accumulation and 43

propagation of disease-related proteins, such a model should recapitulate the spatial 44

pattern of regional neurodegeneration in patients thereby providing converging and 45

independent evidence for the pathogenic spread hypothesis. We also investigate whether 46

selective vulnerability may influence the spatial patterning of the disease. 47

Fig 1. Agent-based S-I-R model. (A) Misfolded α-synuclein (red) may diffuse
through synaptic connections into adjacent neurons, causing misfolding of normal
α-synuclein (gray). Accumulation of misfolded α-synuclein induces neuronal loss. (B)
At the macroscopic level, misfolded α-synuclein propagates via structural connections,
estimated from diffusion-weighted imaging. Simulated neuronal loss (atrophy) is
compared against empirical atrophy, estimated from PD patients using
deformation-based morphometry (DBM).

Results 48

Model construction 49

• Structural connectivity. Diffusion-weighted MRI data from N=1027 healthy 50

participants was used to construct the anatomical network for α-synuclein 51
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propagation (source: Human Connectome Project, 2017 S1200 release; [21]). 52

Adjacency matrices were reconstructed using deterministic streamline 53

tractography [22]. A group consensus structural connectivity matrix was 54

constructed by selecting the most commonly occurring edges averaged across all 55

subjects, resulting in a binary density of 35% [23–25]. 56

• Functional connectivity. Resting-state functional MRI (fMRI) data from N=496 57

healthy participants (source: Human Connectome Project, 2015 S500 release; [21]) 58

was used to construct the functional connectome. Individual functional 59

connectivity matrices were calculated using Pearson’s correlation coefficient and 60

then normalized using Fisher’s z transform. A group correlation matrix was then 61

constructed by first averaging the z-score connectivity matrices across subjects, 62

and then converted back to correlation values using the inverse transformation. 63

Negative correlation values in the resultant group connectivity matrix were set to 64

zero. 65

• Gene expression. mRNA transcription (measured using in-situ hybridization) 66

profiles of SNCA and GBA were averaged across samples in the same brain parcel 67

and across the six subjects in the Allen Human Brain Atlas (AHBA) dataset. 68

These gene expression profiles determine the local synthesis and degradation of 69

α-synuclein (see Methods). 70

• Atrophy. An atrophy map was derived from T1-weighted MRI scans of 237 PD 71

patients and 118 age-matched healthy controls (source: Parkinson progression 72

marker initiative (PPMI); [26]). For each participant (patient or healthy control), 73

the Deformation-based Morphometry (DBM) value in each parcel was estimated 74

to quantify the local volume change, on which an un-paired t-test was conducted 75

between the patients and healthy controls. The resulting t-statistics were taken as 76

the measure of regional atrophy [19]. 77

• Brain parcellation The brain MRI template was parcellated according to an 78

anatomical segmentation-based atlas, featuring 68 bilateral cortical and 15 79

subcortical regions [27–29]. As only two of the six post-mortem AHBA brains 80

have right hemispheric data available, and diffusion tractography is prone to 81

errors in detecting interhemispheric connections, we simulated propagation using 82

only the left hemisphere, yielding 42 regions in total. 83

• Synuclein propagation. We posited that regional expression level of endogenous 84

α-synuclein already existing in the brain before disease onset may bias the 85

trajectory of misfolded α-synuclein propagation. Therefore, to estimate regional 86

density of endogenous α-synuclein in the healthy brain, we set up a process that 87

used generic information only to simulate the population growth of normal 88

α-synuclein agents. Normal agents in region i are synthesized in each unit area 89

(1mm3 voxel) per unit time with probability αi (the synthesis rate in region i). 90

Meanwhile, any agent already existing in region i can: (a) exit region i and move 91

into the edges it connects to with probabilities proportional to the corresponding 92

connection strengths (densities of the fiber tracts); (b) remain in region i where it 93

may be metabolized with probability βi (the clearance rate in region i). Likewise, 94

the agents in edge (i, j) can (a) exit edge (i, j) to enter region j with probability 95

1/lij where lij is the mean length of the fiber tracts between region i and j, 96

reflecting our intuition that agents in longer edges have lower probability of exiting 97

the edge; (b) remain in edge (i, j) with probability 1− 1/lij . The synthesis rate αi 98

and clearance rate βi in region i are the SNCA and GBA expression z-scores 99

respectively in region i converted to (0, 1) using the standard normal cumulative 100
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distribution function. The system has only one stable point which can be found 101

numerically (see S1 Text and S1 Fig), suggesting that the growth of α-synuclein 102

will deterministically converge to an equilibrium state set by the connectome and 103

the gene expression profiles. The regional density of normal agents (number of 104

agents per voxel) solved at the stable point was taken as the initial state of the 105

system on which to simulate the misfolded α-synuclein spreading process. 106

• Synuclein misfolding. We next initiated the pathogenic spread by injecting 107

misfolded α-synuclein agents into the seed region, here chosen as the substantia 108

nigra. The updating rules of normal agents (above) were adapted to account for 109

their susceptibility to infection from contact with misfolded agents. Apart from 110

the rules defined in the aforementioned growth process, normal (susceptible) 111

agents in region i that survive degradation can be infected with probability γi 112

thereby becoming misfolded (infected) agents. In the absence of any molecular 113

evidence to the contrary, misfolded agents are updated with the same mobility 114

(exiting/remaining in regions/edges) and degradation (clearance rate) as normal 115

agents. The new system seeded with misfolded α-synuclein has two fixed points: 116

(1) one represents the scenario in which misfolded α-synuclein dies out, cleared by 117

metabolic mechanisms before being able to transmit the infection to the entire 118

population; (2) the other represents a major outbreak of misfolded α-synuclein, 119

spreading to other regions via physical connections, causing further misfolding of 120

endogenous α-synuclein and widespread propagation (see S1 Text and S1 Fig). In 121

this model, neither the injection number of misfolded α-synuclein agents nor the 122

choice of seed region will affect the magnitude of misfolded α-synuclein 123

accumulation at the fixed point; rather, they determine whether the spreading 124

process converges to the epidemic scenario or dies out quickly. See S1 Table for 125

the full list of parameters and their explanations. 126

Simulated neuronal loss replicates the spatial pattern of atrophy 127

We first investigated whether misfolded α-synuclein spreading on the healthy 128

connectome could replicate the spatial patterning of atrophy observed in PD patients. 129

We simulated the propagation of misfolded agents and the accrual of atrophy due to the 130

toxic accumulation of the aggregates. Two factors that may induce neuronal loss were 131

accounted for: (1) the accumulation of misfolded α-synuclein, which will cause 132

region-specific cell or synaptic loss directly; (2) atrophy due to deafferentation 133

secondary to cell death or synaptic loss in connected regions. At each time point, we 134

compared the relative magnitude of simulated atrophy with the spatial pattern of 135

empirical atrophy using Spearman’s rank correlation coefficient, yielding the model fit 136

as a function of time t. 137

As the misfolded agents propagate and accumulate in the system, the model fit 138

increases up to a maximum value (r=0.63, p=1.71×10−5, Fig 2A) after which it drops 139

slightly and stabilizes (see S1 Text). It is possible that the slight decrease following the 140

peak occurs because simulated atrophy becomes increasingly widespread as the 141

propagation of misfolded agents progresses, while the empirical atrophy was derived 142

from de novo PD patients at their first-visit in PPMI. Fig 2B shows the linear 143

relationship between simulated and empirical atrophy across all nodes at peak fit, while 144

Fig 2C shows the spatial correspondence between simulated and empirical atrophy. 145

Interestingly, the model fit finally stabilizes with increasing t as the regional 146

accumulation of misfolded α-synuclein approximates the stable point (see S2 Fig for 147

model fit up to 105 time steps), a finding that mirrors recent discoveries in animal 148

models where misfolded α-synuclein eventually ceases to increase in later stages [30]. 149

We also note that misfolded α-synuclein arrival time at each brain region resembles the 150
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Fig 2. Model fit. (A) Correlations between simulated atrophy and empirical atrophy
derived from PD patient DBM maps up to t = 104. Correlations are shown as a
function of simulation time. After reaching the peak value (r = 0.63, r = 1.71× 10−5),
the model fit slightly drops and finally stabilizes. See S2 Fig for correlations up to
t = 105. (B) Model fit at the peak of Spearman’s correlation taken from panel a. Using
Pearson’s correlation coefficients yielded comparable results (r = 0.56, p = 1.52× 10−4).
Values shown in the axes are normalized. The outlier at the bottom right is the nucleus
accumbens (for a possible explanation see Discussion). C: Simulated atrophy and
empirical atrophy plotted on the ICBM152 standard MNI template. The slices were
chosen at x=-22, y=-7, z=0 (MNI coordinates). The underlying data can be found in
https://github.com/yingqiuz/SIR simulator/blob/master/results/Fig2.mat.

well-established Braak stages of PD [31,32] (S3 Fig). For validation purposes, we 151

estimated the DBM values using an alternative pipeline (fsl anat) [33], re-obtained the 152

t-statistics as the atrophy measure, and found the model fit based on the new measure 153

yielded a comparable temporal pattern (S4 Fig). 154

We next investigated if the model fit was consistent across variations in structural 155

network connection densities. We selected varying subsets of the most commonly 156

occurring edges in the individual structural connectivity matrices, varying the binary 157

density of the group structural network matrix from 25% to 45% (of all possible edges). 158

We then simulated the spreading processes on each network, derived the atrophy 159

estimate at each region and compared it with the empirical atrophy pattern using 160

Spearman’s rank correlation coefficient. All the simulations yielded comparable model 161

fits with the peak correlation values consistently around 0.6 (Fig 3, blue curve), 162

suggesting that the S-I-R agent-based model is robust to variations in network density. 163

Notably, we also assessed the Spearman’s correlation between the regional density of 164

misfolded α-synuclein and the empirical atrophy pattern. Across the same set of 165

networks, simulated atrophy consistently provides better fits with the empirical atrophy 166

than the regional density of misfolded α-synuclein (Fig 3, red curve), indicating that 167

accounting for tissue loss due to both α-synuclein and deafferentation yields a better 168

model of regional atrophy accrual than the mere accumulation of misfolded α-synuclein. 169

Note that as Spearman’s correlation is relatively unstable when sample size is limited, it 170

may peak at early-spreading time frames while at the time the simulated atrophy bears 171

no real resemblance to the real atrophy pattern. At the same time, atrophy is a late 172

stage in symptom progression of PD. We therefore discarded the early-spreading 173

timeframes, defined as the timesteps at which change of misfolded α-synuclein density 174

in any of the regions exceeds 1%. 175

Finally, we investigated whether the observed atrophy patterns could be directly 176

reproduced from simpler topological measures, without invoking agent-based dynamics. 177

We first tested whether simple regional variation in GBA or SNCA expression is 178

associated with regional variation in atrophy. Neither GBA nor SNCA expression 179

profiles bear a strong association with the spatial map of empirical atrophy (GBA: 180

Spearman’s r=-0.2402, p=0.1301; Pearson’s r=-0.3109, p=0.0478; SNCA: Spearman’s 181

r=-0.2385, p=0.1330; Pearson’s r=-0.2824, p=0.0736). Next, we tested whether simple 182

network metrics provide a comparable fit to the observed atrophy values. We correlated 183

the atrophy map with node-level network metrics including node degree, node strength, 184

and eigenvector centrality at each network density ranging from 25% to 45%. Hubs, or 185

nodes with greater degree connectivity or centrality, tend to be more atrophied (Fig. 3, 186

green, purple and yellow curves), echoing the findings that hubs are often implicated in 187

a host of brain disorders [34]. However, none of the metrics performed as well as the full 188

agent-based model in matching the spatial pattern of empirical atrophy. Altogether, 189

these results suggest that the protein dynamics embodied by the S-I-R agent-based 190
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Fig 3. The full dynamic model outperforms static network measures across
multiple network densities. The full spread model has more predictive power than
static topological metrics, including node degree (yellow), node strength (purple) and
eigenvector centrality (green). Moreover, simulated atrophy (blue) from the full
agent-based model yielded higher correlation with empirical atrophy than the modeled
density of misfolded α-synuclein (red, peak correlation along t at each density),
suggesting that loss of neuronal tissue resulting from misfolded α-synuclein
accumulation plus deafferentation is a better measure of atrophy in PD than the mere
accumulation of misfolded α-synuclein. Model fit was assessed using Spearman’s
correlation coefficient. The overall pattern of results was consistent across multiple
network densities. Using Pearson’s correlation coefficient yielded similar results (S5 Fig).
For the same analysis using two finer-grained anatomical parcellations see S6 Fig. The
underlying data can be found in
https://github.com/yingqiuz/SIR simulator/blob/master/results/Fig3.mat.

model provide explanatory power above and beyond network topology and gene 191

expression. 192

Identifying the disease epicenter 193

We next investigated whether the model yields a disease epicenter consistent with 194

previous literature. In the aforementioned process of normal α-synuclein growth, we 195

solved the regional density of normal agents at the stable point as a baseline estimation 196

of endogenous α-synuclein level in healthy brains. Recent findings from animal studies 197

have suggested that α-synuclein expression level correlates with neuronal vulnerability 198

in PD [30,35]; likewise, in our model, higher regional abundance of normal α-synuclein 199

agents should indicate greater likelihood of exposure to and growth of infectious agents, 200

higher chance of disease transmission, and consequently, greater vulnerability to the 201

accumulation of misfolded α-synuclein. 202

We find that, of the 42 left hemisphere regions, substantia nigra has the highest 203

normal α-synuclein level (Fig 4, blue line). The elevated density of endogenous 204

α-synuclein renders substantia nigra susceptible to the encroaching of infectious 205

misfolded α-synuclein in the model, increasing both its vulnerability to misfolded 206

protein and its chance of acting as a disease epicenter to further the propagation of the 207

epidemic. This corresponds with observations of Lewy body inclusions and 208

dopaminergic neuron loss in substantia nigra of PD patients as well as its role in most 209

of the presenting symptoms of the disease [32,36,37]. Moreover, other basal ganglia 210

regions have relatively high levels of normal α-synuclein at the equilibrium compared to 211

cortical regions (caudate ranks among the highest 42.9% of all the regions; putamen, 212

31.0%; pallidum, 28.6%), consistent with their role in propagating the disease process to 213

the cerebral cortex [20]. These findings suggest that our model can indeed represent 214

regional variations in selective vulnerability to the pathogenic attacks underlying PD 215

progression by combining information from the healthy connectome and SNCA and 216

GBA expressions. 217

An alternative definition of disease epicenter is the seed node most likely to 218

propagate an outbreak. As explained in the previous section, the agent-based model has 219

two fixed points representing disease extinction or major outbreak. Although, in our 220

model, the choice of seed region and injection number of misfolded α-synuclein agents 221

does not affect the final magnitude of misfolded α-synuclein accumulation, it can shift 222

the properties of the two fixed points, determining which one the system will converge 223

to. We posited that the probability of triggering an outbreak in a brain region indicates 224

its likelihood of acting as an epicenter. Therefore, we quantified the spread threshold for 225
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Fig 4. Identifying the disease epicenter. Densities of normal α-synuclein (blue) at
equilibrium (represented by the stable point) and spread threshold (red). Spread
threshold was inverted by − log10, so higher values indicate lower thresholds. Spread
thresholds reflect the susceptibility of a region to trigger an epidemic. Basal ganglia
regions are rich in endogenous α-synuclein (caudate ranks among the top 42.9% regions;
putamen, 31.0%; pallidum, 28.6%) and have relatively low spread threshold (caudate
ranks among the lowest 35.7%; putamen, 38.1%; pallidum, 16.7%). Substantia nigra has
the highest normal α-synuclein level and lowest spread threshold, making it the most
probable epicenter of disease outbreak. The underlying data can be found in
https://github.com/yingqiuz/SIR simulator/blob/master/results/Fig4.mat.

each region, i.e., the minimally-required injection amount of misfolded α-synuclein to 226

initiate an outbreak. In traditional epidemic disease models that do not consider spatial 227

structure or synthesis of new susceptible hosts, basic reproduction number R0 (the 228

average number of susceptible agents that will be affected by an infectious agent before 229

it is removed) marks the transition between the regimes in which disease spreads or 230

extinguishes [38]. However, in our agent-based higher-order system in which new agents 231

are constantly synthesized and move across regions, the transition threshold can only be 232

determined numerically by scanning across different injected amounts of misfolded 233

α-synuclein to find the point at which the disease no longer extinguishes. More 234

specifically, starting with an injection amount at which the disease does not spread (here 235

we chose 1e-13), we incremented the value by step sizes of 1e-13 until the point where 236

the disease no longer extinguishes, and took this as the spread threshold. This procedure 237

was repeated for every region, yielding 42 regional spread thresholds (Fig 4, red curve). 238

Substantia nigra has the lowest spread threshold (Fig 4, red curve), suggesting that 239

it is also the most plausible seed region to initiate an epidemic spread. This is 240

consistent with the notion that substantia nigra acts as the epicenter for propagation to 241

the supratentorial central nervous system [19], and is generally one of the earliest 242

regions to display neuronal loss in clinically overt PD. Interestingly, other basal ganglia 243

regions also exhibited relatively low spread thresholds (caudate ranks among the lowest 244

35.7% of all the regions; putamen, 38.1%; pallidum, 16.7%). Note however that our 245

model does not include regions caudal to the midbrain, which are likely affected earlier 246

than the substantia nigra (see Discussion). 247

Connectome architecture shapes disease spread 248

We next asked whether model fit depends on the connectome’s topology and/or spatial 249

embedding (geometry). To address this question, we implemented two types of null 250

models, in which (a) the topology of the connectome was randomized (rewired null); or 251

(b) the spatial positions of the regions were shuffled (spatial null) (Fig. 5). 252

Fig 5. Effects of network topology and geometry. (A) Systematic disruption of
connectome topology (rewired null). (B) Systematic disruption of spatial embedding
(spatial null). Both procedures significantly degrade model fit as measured by
Spearman’s correlation. Red = real structural network (empirical network); grey = null
networks. Rewired null: p25% < 0.001, p30% = 0.0035, p35% = 0.0013, p40% = 0.0035;
spatial null: p25% < 0.001, p30% < 0.001, p35% < 0.001, p40% < 0.001). The underlying
data can be found in
https://github.com/yingqiuz/SIR simulator/blob/master/results/Fig5.mat.

Rewired null networks were generated by swapping pairs of edges while preserving 253

the original degree sequence and density using the Maslov-Sneppen algorithm [39] 254
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implemented in the Brain Connectivity Toolbox 255

(https://sites.google.com/site/bctnet/) [40]. Note that it is possible that the edges after 256

swapping are not defined in the original connectivity matrices (because no actual fiber 257

tracts exist between the two regions). To interpolate fiber length in the rewired null 258

network, for each region pair (i, j), we calculated the Euclidean distances between every 259

possible pair of voxels respectively belonging to region i and j, and took the median as 260

the distance between region i and j. Next, we fitted a simple linear regression model on 261

the originally existing edges (i.e., y = w0 + w1x+ ε, where y is the fiber length and x is 262

the distance defined as above) and assigned the predicted fiber lengths to the new 263

connections created during the rewiring process. Spatial null networks were generated 264

by swapping the physical positions of the nodes while keeping their original connection 265

profiles [41,42]. This null model retains the degree sequence and connection profiles of 266

every region, but randomizes spatial proximity. Networks at binary density 25%, 30%, 267

35% and 40% were selected as representatives to construct the two types of null 268

networks, with 10,000 realizations each. We then implemented the dynamic model on 269

each network and compared model fits for the empirical and null networks. 270

The agent-based model simulated on top of the empirical structural network yielded 271

significantly greater fit to empirical atrophy than models simulated on either type of 272

null network. This result was consistent across network densities (rewired null, Fig 5A: 273

p25% < 0.001, p30% = 0.0035, p35% = 0.0013, p40% = 0.0035; spatial null, Fig 5B: 274

p25% < 0.001, p30% < 0.001, p35% < 0.001, p40% < 0.001) and suggests that the high 275

correspondence between simulated and empirical atrophy in PD is jointly driven by 276

connectome topology and geometry. 277

Gene expression shapes disease spread 278

We next sought to directly assess the influence of local gene expression on spreading 279

patterns of neurodegeneration. Based on molecular evidence, the model uses regional 280

expression of GBA and SNCA as determinants of α-synuclein clearance and synthesis 281

rate. (Note however that any other gene known to influence α-synuclein synthesis or 282

dynamics could also be included in the model.) Regional GBA and SNCA expressions 283

were shuffled 10,000 times respectively by re-assigning the expression scores in each 284

parcel (Fig 6A and 6B respectively). We then implemented the dynamic models with 285

randomized expression levels and compared differences in model fit when using the 286

empirical gene expression levels (Fig 6, red curve) and permuted gene expression levels 287

(Fig 6, grey bar). 288

Shuffling the transcription profile of either gene significantly degraded model fit 289

(Fig 6A, GBA: p25% = 0.0031, p30% < 0.001, p35% < 0.001, p40% = 0.0024; Fig 6B, 290

SNCA: p25% = 0.0102, p30% = 0.0201, p35% = 0.0084, p40% = 0.0334) suggesting a 291

significant role of GBA and SNCA expression in driving the spatial patterning of 292

atrophy. In other words, the regional expression of the genes, as implemented in the 293

dynamic model, serves to modulate the vulnerability of individual nodes above and 294

beyond their topological attributes by influencing α-synuclein synthesis, seeding and 295

clearance. 296

An alternative explanation for these results is that simply introducing regional 297

heterogeneity in gene expression levels improves model fit, for example because of 298

differences in general transcription levels between cortex and subcortex. To address this 299

possibility, we further assessed model fit in the cases where GBA and SNCA expression 300

is made uniform across all brain regions. Instead of using empirical gene expression, we 301

set uniform synthesis/clearance rates across all regions using the mean expression score, 302

converted to a scalar value between [0, 1] using the standard normal cumulative 303

distribution function. We then computed the model fit (peak Spearman’s correlation 304

value) for this “uniform” model. The models using uniform transcription profiles 305
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Fig 6. Assessing the contribution of GBA and SNCA gene expression. To
assess the influence of gene expression on atrophy, model fit using real expression values
(red) is compared to null models in which node-wise expression profiles of GBA and
SNCA (reflecting, respectively, α-synuclein clearance and synthesis) were shuffled. Both
manipulations significantly reduce model fit regardless of network density. (A) Model fit
of randomized GBA expression (grey bar) is significantly worse than that of the real
GBA expression (red line). p25% = 0.0031, p30% < 0.001, p35% < 0.001, p40% = 0.0024.
(B) Model fit of randomized SNCA expression (grey) is significantly worse than that of
the real SNCA expression (red). p25% = 0.0102, p30% = 0.0201, p35% = 0.0084,
p40% = 0.0334). Notably, uniform transcription profiles, in which all nodes have
identical expression values (blue line) yield above-chance model fit, but perform poorly
compared to the model with real expression values (GBA uniform correlations:
r25% = 0.4479, r30% = 0.3869, r35% = 0.3672, r40% = 0.3481; SNCA uniform
correlations: r25% = 0.5653, r30% = 0.5780, r35% = 0.5767, r40% = 0.5794). The
underlying data can be found in
https://github.com/yingqiuz/SIR simulator/blob/master/results/Fig6.mat.

underperformed compared to those using empirical transcription profiles (Fig. 6, red = 306

empirical gene expression, blue = uniform gene expression); in other words, the 307

incorporation of true local differences in gene expression improves model fit, suggesting 308

that the atrophy pattern in PD is not solely explained by pathogenic spreading per se 309

but also depends on local vulnerability, here dependent on α-synuclein concentration. 310

Models implemented using uniform transcription profiles of either gene exhibited 311

above-chance model fit compared to shuffled transcription profiles (GBA uniform 312

correlations: r25% = 0.4479, r30% = 0.3869, r35% = 0.3672, r40% = 0.3481; SNCA 313

uniform correlations: r25% = 0.5653, r30% = 0.5780, r35% = 0.5767, r40% = 0.5794, blue 314

curve in Fig 6). Altogether, these results demonstrate that regional expression of GBA 315

and SNCA shapes the spatial patterning of atrophy in addition to connectome topology 316

and spatial embedding. 317

Structural and functional connectivity interact to drive disease 318

spread 319

Finally, we tested whether neuronal activity or pre- and post-synaptic co-activation may 320

facilitate α-synuclein propagation. Past neuroimaging studies have shown that cortical 321

thinning in PD is predicted in part by functional connectivity to affected subcortical 322

regions, and that regions that exhibit stronger functional connectivity with the 323

substantia nigra tend to exhibit greater atrophy [19,20]. Secretion of α-synuclein by 324

neurons has been shown to be activity dependent [43]. Spread of α-synuclein through 325

multiple anatomical pathways may be biased by synchronous activity between the pre- 326

and post-synaptic cells, such that the agents are more likely to move towards regions 327

with higher functional connectivity to a seed region. 328

To address this question, we integrated resting-state fMRI functional connectivity 329

into the model. We introduce a term ek×fc(i,j) to rescale the probability of moving from 330

region i to region j previously defined by the connection strength of edge (i, j) while 331

keeping the sum of the probabilities equal to 1 to preserve the multinomial distribution 332

(Fig 7A). As k is increased, the influence of functional connectivity is greater: stronger 333

co-activation patterns play a more influential role in modulating the motion of the 334

agents on structural connections. For structural edges with relatively small 335

corresponding functional connectivity values, larger k may decrease those edges’ 336

contributions to favour propagation through edges with greater functional connectivity. 337

All negative-valued and non-significant functional connections were set to zero. 338
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We varied k from 0 (no influence of functional connectivity) to 5 and derived the 339

corresponding peak values of model fit using the same four structural connectome 340

densities as before (Fig 7). Model fit was improved by progressively increasing the 341

importance of functional connectivity, but only up to a point 342

(k25% = 1, k30% = 2.5, k35% = 2.5, k40% = 2.5). Beyond this point, the influence of 343

functional connectivity dominates the agents’ mobility pattern resulting in diminished 344

model fit. The results were consistent across network densities. These results provide 345

evidence for the notion that while α-synuclein propagation and resultant brain atrophy 346

patterns occur via anatomical connections, they may also be biased by neuronal activity. 347

Fig 7. Incorporating functional connectivity improves model fit. (A) An
illustration of incorporating the influence of functional connectivity. Region 1 is more
densely connected with region 2 than with region 3 (i.e., structural connectivity
w12 > w13) but co-activates more with region 3 than with region 2 (i.e., functional
connectivity fc12 < fc13). If functional connectivity is not incorporated, the probability
of spreading towards region 2 or 3 for agents in region 1 is proportional to the structural
connectivity w12 or w13 (upper panel); after functional connectivity is incorporated,
these probabilities are rescaled to be proportional to exp (k × fc12)w12 and
exp (k × fc13)w13 respectively (lower panel) where k is a factor to control the
importance of functional connectivity. (B) Resting-state fMRI functional connectivity
was incorporated in the model by tuning the probability of α-synuclein propagation
along structural connections. As the influence of functional connectivity is increased,
α-synuclein spreading is biased towards structural connections that exhibit high
functional connectivity. Model fit is shown for a range of structural connection densities.
A balanced effect of functional connectivity and structural connectivity improves model
performance, while excessive influence of functional connectivity degrades model fit.
The same beneficial effect is not observed when randomized “null” functional
connectivity patterns are used (S7 Fig). The underlying data can be found in
https://github.com/yingqiuz/SIR simulator/blob/master/results/Fig7.mat.

348

An alternative explanation is that inclusion of functional connectivity simply leads 349

to over-fitting the model. To test this possibility, we investigated if the same 350

improvement in model fit could be observed if α-synuclein spread is biased by 351

randomized functional connectivity patterns. We generated “null” functional 352

connectivity matrices by randomly re-assigning the parcellated rs-fMRI time series into 353

the 42 left hemisphere regions. The results are shown in S7 Fig. We note two important 354

results. First, atrophy patterns based on real functional connectivity consistently yield 355

significantly higher model fit than atrophy patterns based on null functional 356

connectivity. Second, model fits based on null functional connectivity do not have the 357

same peaked shape as observed when using real functional connectivity. This further 358

supports the conclusion that atrophy patterns observed in PD patients depend on both 359

the structural and functional architecture of the brain. 360

Discussion 361

Modeling the spatio-temporal dynamics of neurodegeneration 362

We developed a networked S-I-R agent-based model of neurodegenerative disease 363

consisting of normal and misfolded proteins. Taking PD as an example, we integrated 364

multimodal neuroimaging and gene expression data to simulate the propagation of 365

misfolded α-synuclein on the healthy connectome. The S-I-R agent-based model 366
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incorporates pathogenic spread (dominated by the connectome) and selective 367

vulnerability (modulated here by α-synuclein concentration derived from gene 368

expression) under one computational framework. The dynamic model replicated the 369

spatial pattern of measured brain atrophy in PD patients and had greater predictive 370

power than any of the constituent features (i.e. network metrics or gene expression) on 371

their own. Our results demonstrate that connectome topology and geometry, local gene 372

expression, and functional co-activation jointly shape disease progression, as systematic 373

disruption of each of these elements significantly degraded model performance. This 374

model yields insights into the mechanism of PD, providing support for the propagating 375

proteinopathy theory, and can be readily adapted to other neurodegenerative diseases. 376

The S-I-R model allowed us to map the interaction between network architecture 377

and regional susceptibility and transmissibility. Solving our S-I-R agent-based model 378

numerically yielded two fixed (or stable) points of the process after seeding of the 379

infection: rapid extinction or epidemic spread (S1 Text, S1 Fig). If the system is 380

attracted to extinction, misfolded proteins will eventually be cleared. If the system is 381

attracted to the second fixed point, this represents an outbreak. However, in our model, 382

misfolded proteins do not accumulate boundlessly, but achieve a stable final 383

concentration where they co-exist with normal proteins. These results are consistent 384

with recent experimental evidence in rodents where injected misfolded α-synuclein grew 385

but eventually ceased to propagate [30], suggesting the existence of an equilibrium. 386

These different outcomes (extinction vs outbreak) might perhaps represent normal aging 387

versus progressive neurodegeneration, or mild versus malignant PD [44]. 388

Agent-based models built on networks allow for the determination of the origin of a 389

disease outbreak and arrival times at different locations [45]. Combining network 390

structure with protein spreading dynamics allowed for the identification of the 391

substantia nigra as the likeliest disease epicenter. Mirroring the Reproduction number 392

R0 [38], which marks the transition between disease extinction and outbreak in 393

conventional epidemic models, we estimated spread threshold for our S-I-R agent-based 394

model. This represents the minimum number of infectious agents that need to be 395

introduced in any area to cause an outbreak. In our model, the substantia nigra has the 396

lowest spread threshold, identifying it as a likely disease epicenter. This is not to say 397

that the substantia nigra is the origin of the disease, or the first affected site: the 398

concept of epicenter as used here is similar to ”best propagator” [10], and identifies the 399

region most likely to trigger an outbreak, rather than the first affected site. According 400

to the Braak hypothesis, the dorsal motor nucleus of the vagus is the initial central 401

nervous system target in PD [31,32]; however, we could not include structures in the 402

pons and medulla due to difficulty in imaging either atrophy or white matter tracts in 403

the brainstem. Nonetheless, our model is consistent with the substantia nigra acting as 404

a propagator of disease from brainstem to supratentorial areas [19]. We suggest that 405

this may result from its high concentrations of α-synuclein and widespread connections. 406

We also used the agent-based model to estimate α-synuclein arrival time at each brain 407

region after seeding the substantia nigra (S3 Fig). 408

We took advantage of several useful features of agent-based models to provide an 409

understanding of factors involved in disease propagation. Others have applied more 410

traditional diffusion models to Alzheimer’s Disease [9, 10] and to neurodegeneration 411

more generally [46]; however the agent-based model used here affords us the possibility 412

of testing different mechanisms of disease, likelihood of outbreak, effect of emergent 413

properties (such as the effect of regional neuronal death on subsequent disease 414

propagation) and, eventually, therapeutic interventions. Note that we divided the 415

population into compartments in which the agents share the same characteristics, 416

making the spreading dynamics more tractable and computationally efficient. This 417

simplified model can easily be tailored to accommodate a full agent-based setting by 418
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introducing more fine-grained rules. For example, the transmission rate 419

γi = 1− eM ln(1−γ0
i ) can be extrapolated as γi = 1− e

∑M
k=1 ln(1−γ0

i,k) to model 420

individually differentiated transmission rates γ0
i,k in region i. 421

Interplay of local vulnerability and network propagation 422

The small-world properties of brain networks that favour information flow may also 423

potentiate disease spread [47]. These properties include short path lengths [48] and 424

community structure [49,50], the second of which may potentiate global disease spread 425

by enhancing local, intra-community infection [51]. The presence of high degree nodes 426

(hubs) that are highly interconnected also favours disease propagation [52]. Hubs are 427

expected to have faster arrival times, and greater accumulation of infected agents, 428

making them especially vulnerable to attack. Indeed, hubs manifest greater structural 429

abnormalities in a host of neurodegenerative diseases [34], including PD [19]. Here we 430

show that disruptions of brain network architecture reduce model fit, providing evidence 431

that the emergent dynamics of synucleinopathy depend on network topology and 432

geometry. 433

However, while we did find that network metrics predict brain atrophy, the full S-I-R 434

agent-based model provided a better fit to the empirical data than these metrics on 435

their own (Fig 3). Spatial proximity among regions and local differences in 436

synthesis/clearance of α-synuclein both impose constraints on the spreading process. As 437

a result, atrophy patterns are shaped by, but ultimately transcend, the underlying 438

connection patterns. The present model correctly predicts that the regions most 439

vulnerable to atrophy are not simply those that participate in the greatest number of 440

connections or those that are a few steps away from other infected regions. More 441

specifically, the agent-based model allowed us to test two competing theories of PD 442

pathogenesis: prion-like protein propagation versus regional vulnerability [1, 7]. Here we 443

chose to model regional vulnerability by incorporating estimated local α-synuclein 444

concentration, known to facilitate seeding [53] and increase neuronal vulnerability in 445

animal models [35]. We used regional expression of GBA and SNCA as estimates of 446

α-synuclein clearance and synthesis rates to derive the concentration of endogenous 447

α-synuclein. We showed that incorporating this information into the model improved 448

the correlation with empirical atrophy in PD patients; moreover, spatial permutation of 449

gene expression degraded the fit. Thus, our findings support the theory that the 450

dynamics of disease progression arise from an interplay between regional vulnerability 451

and network-wide propagation. 452

Our results provide converging evidence for the involvement of GBA and SNCA in 453

PD pathology previously indicated in animal and cellular studies [54]. Mutations in 454

GBA are the most common genetic risk factor for PD [55,56]; mutations and 455

multiplications of SNCA have been implicated in driving the severity of the 456

pathology [57–59]. It is worth noting that simple spatial correlation measures alone 457

failed to link GBA or SNCA regional expression to empirical atrophy; the gene 458

expression effects only emerged from the full agent-based propagating model, which 459

therefore provides a new way to identify gene-disease associations in the central nervous 460

system. New genes can easily be incorporated for the PD model, or to adapt it to other 461

neurodegenerative diseases. 462

It is also known that α-synuclein is secreted in an activity dependent manner [43]. 463

We therefore tested the influence of resting state-fMRI derived measures of functional 464

connectivity on protein mobility. As a measure of synchronous neuronal activity in pre- 465

and post-synaptic regions, functional connectivity will bias the proteins into regions 466

showing greater co-activation. Once again we found that this addition significantly 467

improved the model fit. Thus, functional co-activation also shapes the pattern of disease 468
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propagation, explaining why atrophy patterns in neurodegenerative diseases tend to 469

resemble intrinsic functional networks [19,60]. 470

Methodological considerations 471

Although the S-I-R agent-based model provided a good fit to observed 472

neurodegeneration, there are several caveats and limitations in the present study. First, 473

regional variations in vulnerability apart from the effects of α-synuclein concentration 474

were not accounted for. It is possible that regions respond differently to the toxicity of 475

α-synuclein aggregates, and this can easily be incorporated into the model by 476

introducing new factors, such as genes that control resilience to energetic stress for 477

example [61]. Moreover, tissue loss was homogeneously modelled as a simple linear 478

combination of local damage (from α-synuclein accumulation) and deafferentation, 479

which may not reflect reality. Also, cell death may slow the propagation of misfolded 480

α-synuclein and accrual of atrophy, especially in more affected regions. Although we did 481

not take this effect into account here, it can easily be incorporated into the model using 482

agent-based rules. 483

Note also that our model does not attempt to distinguish between neuronal, axonal, 484

dendritic or other tissue loss as causes of atrophy. Our only hypothesis is that tissue 485

damage from α-synuclein accumulation is reflected in MRI deformation. However, 486

atrophy measured with DBM does not necessarily reflect death of neurons. Indeed, 487

postmortem studies in PD demonstrate a dissociation between alpha-synuclein 488

pathology and neuronal loss, which is prominent in some areas (e.g. substantia nigra), 489

but virtually absent in others (cortex, amygdala) [72]. This is similar to normal 490

senescence, where there is widespread tissue atrophy in cortex despite preservation of 491

neuronal numbers [73]. Thus, it is possible that tissue atrophy in PD in some regions 492

may reflect loss of dendritic arbors and spines without loss of neurons. 493

Moreover, the white matter network may not represent the exact physical routes of 494

spread. It is possible that α-synuclein spread occurs only between specific cell types, or 495

in one direction, while, in our model, the agents spread bi-directionally along the fiber 496

tracts. The outlier region (accumbens, Fig 2B), which impedes model fit, serves as an 497

example. Nucleus accumbens is one of the least atrophied regions in the dataset used 498

here, whereas it exhibits high atrophy in the model. One possible reason for this 499

disagreement is that we did not include the different subsections of the substantia nigra 500

and their projections in the structural connectome used for the model. While we seeded 501

the entire substantia nigra, it is known that the medial portion, which projects to the 502

accumbens [62], is less affected in PD than the lateral substantia nigra, which projects 503

to dorsal striatum [31,32]. 504

Also, the structural and functional connectomes used here were derived from healthy 505

individuals, as typically done [9, 10,19,60]. However, disease-related alterations to cell 506

integrity should eventually affect network function. Connectomics data in PD are 507

starting to become available and it will be interesting to incorporate these time-varying 508

effects into our agent-based model. 509

Finally, we focused on only two genes in modelling synucleinopathy, while many 510

other genes such as LRKK2 and MAPT, and proteins such as dopamine or tau, may 511

also influence or interact with synucleinopathy propagation. Using a small subset of 512

genes avoids high model complexity and allowed modelling the proteinopathy in a 513

parameter-free setting. However, the parameter-free setting introduces another caveat: 514

the model converts gene expression scores and fiber density into probabilities without 515

scaling their relative magnitude, while the actual rate of synthesis/clearance and protein 516

spreading may not be at the same scale. (However, see S8 Fig for evidence that the 517

model is robust to these parameter choices.) 518
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One of the future directions is to customize the model with individual anatomical, 519

functional, genetic or clinical data to increase its ability to predict disease trajectory 520

and to identify factors that promote resistance to disease spread. Moreover, this model 521

can hopefully help test new preventative procedures. Introducing medications may 522

change the parameters of the dynamical system; for example, increasing GBA activity 523

to elevate the clearance rate would make the stable point for extinction more robust to 524

small perturbations. 525

Materials and methods 526

Human brain parcellation 527

We used a brain parcellation generated by atlas-based segmentation [28]. 68 cortical 528

parcels were defined using curvature-based information [27], which is available in 529

FreeSurfer (http://surfer.nmr.mgh.harvard.edu). Subcortical parcels, including 530

thalamus, caudate, putamen, pallidum, accumbens, amygdala, and hippocamppus, were 531

extracted using the same software from a whole brain segmentation [63]. Finally, 532

substantia nigra was added to the atlas using the location provided in the ATAG atlas 533

(https://www.nitrc.org/projects/atag) [29]. Only the left hemisphere was used in this 534

model, resulting in a total of 42 regions for the subsequent analysis. We used only the 535

left hemisphere to simulate the propagation model because it is difficult to accurately 536

determine interhemispheric connections using tractography [64]. Moreover, regional 537

gene expression was mostly available only for the left hemisphere (see Regional gene 538

expression). 539

PPMI patient data and image processing 540

PPMI is an open-access comprehensive observational clinical study [26], longitudinally 541

collecting multimodal imaging data, biological samples and clinical and behavioural 542

assessments in a cohort of PD patients. 3T high-resolution T1-weighted MRI scans of 543

355 subjects (237 PD patients, 118 age-matched healthy controls) were obtained from 544

the initial visit of PPMI to assess group-level regional atrophy using Deformation-Based 545

Morphometry (DBM) [19], a method to detect local changes in tissue density. DBM was 546

performed using the minc-toolkit available at 547

https://github.com/BIC-MNI/minc-toolkit-v2. 548

After denoising [65], inhomogeneity correction [66], and linear intensity scaling, 549

individual MRI images are registered non-linearly to the MNI152-2009c template [67], 550

yielding the corresponding transformation fields to be inverted into deformation maps in 551

MNI space. Instead of directly using the displacement value U(x) = (u1(x), u2(x), u3(x)) 552

of voxel x at coordinates (x1, x2, x3), we calculate the derivative of the displacement in 553

each direction and take the determinant of the jacobian matrix J minus 1, namely, 554

|J | − 1, as the value of deformation at x, which reflects local volume change. 555

J =
∂U

∂x
=

 ∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 (1)

These values constitute a 3D deformation map for each subject, on which an un-paired t 556

test is conducted to derive the statistical difference (t-score) between the PD patients 557

and the healthy controls at each voxel as a measure of local atrophy. Considering that 558

in the denoising stage a non-local smoothing filter was applied to the T1 images, we 559

decided to exclude substantia nigra in the estimation of atrophy as it is too small in size 560

compared to the smoothing parameter and the deformation map may therefore not 561
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reflect the true level of tissue loss in such a small structure. Therefore, although 562

substangia nigra is included in the spreading model (and plays a vital role), the model fit 563

was assessed using only the 41 much larger cortical and subcortical regions (see [19] for 564

more). The deformation maps can be found in https://neurovault.org/collections/860/. 565

Regional gene expression 566

Regional gene expression levels were derived from the six post-mortem brains included 567

in the AHBA [68], a multimodal atlas of the anatomy and microarray-based gene 568

expression of the human brain. Individuals who donated their brains had no history of 569

psychiatric or neurological disorders. Since four of the brains have data from the left 570

hemisphere only, we only modeled the left hemisphere in our study, selecting a total of 571

3021 samples of GBA (probe ID: 1025373, 1025374) and SNCA (probe ID: 1020182, 572

1010655) in left hemisphere regions. Cortical samples were volumetrically mapped to 573

the 34 cortical regions of our parcellation according to their corrected MNI coordinates 574

(https://github.com/chrisfilo/alleninf) [69], also including samples that are within 1mm 575

of the nearest gray matter coordinates assigned to any region. Subcortical samples were 576

assigned to one of the 8 subcortical regions as specified by the structure names provided 577

in the AHBA, due to imperfect registration of the post-mortem brains onto MNI space. 578

For each probe, all samples that fell in the same anatomical region were averaged and 579

then normalized across all 42 left hemisphere regions, generating transcription maps of 580

each individual probe. These probe maps were next averaged according to the gene 581

classification and normalized again across the regions, yielding the spatial expression 582

profiles for SNCA and GBA respectively, represented as 42× 1 vectors (S9 Fig). 583

Diffusion weighted image processing and structural connectivity 584

A total of 1027 subjects’ preprocessed diffusion MRI data with the corresponding T1 585

images was obtained from the Human Connectome Project (2017 Q4, 1200-subject 586

release) to construct an average macroscopic structural connectivity map of the healthy 587

brain. With a multishell scheme of b values 1000, 2000, 3000 s/mm2 and the number of 588

diffusion sampling directions 90, 90, 90, the diffusion data were reconstructed in 589

individual T1 spaces using generalized q-sampling imaing (GQI) [70] with a diffusion 590

sampling length ratio of 1.0, outputting at each voxel quantitative anisotropy (QA) and 591

the Spin distribution function (SDF), a measurement of the density of diffusing water at 592

different orientations [71]. 593

Deterministic fiber tracking was conducted in native space using DSI studio 594

(www.dsi-studio.labsolver.org) [22]. The 42 left hemisphere regions in standard space 595

were mapped non-linearly onto the individual T1 images using the FNIRT algorithm 596

(https://fsl.fmrib.ox.ac.uk/) [33] with a warp resolution of 8mm, 8mm, 8mm. The 34 597

cortical regions were dilated toward the grey-white matter interface by 1mm. The QA 598

threshold was set to 0.6∗Otsu’s threshold, which maximizes the variance between 599

background and foreground pixels. To compensate for volume-size introduced biases, 600

deterministic tractography was performed for each region (taken as the seed region) 601

separately. With an angular cutoff of 55, step size of 0.5mm, minimum length of 20mm, 602

and maximum length of 400mm, 100,000 streamlines were reconstructed for each seed 603

region. Connection strength between the seed region and the target region was set to be 604

the density of streamlines (streamline counts) normalized by the volume size (voxel 605

counts) of the target region and the mean length of the streamlines. The goal of this 606

normalization is to correct for the bias toward large regions and long fibers inherent in 607

the fiber tracking algorithms. The procedure was repeated for each region (as the 608

tractography seed region), resulting in 42 connection profiles (42 1× 42 vectors). Each 609

connection profile consists of the connection strengths between the seed region and all 610
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other brain regions with self-connection set to zero. These connection profiles were 611

finally concatenated to generate a 42× 42 structural connectivity matrix per subject. 612

Varying numbers of most commonly occurring edges were selected and averaged across 613

the individual structural connectivity matrices to construct the group structural 614

connectivity matrix with binary density ranging from 25% to 45%. These group-level 615

matrices were finally symmetrized to represent (un-directed) brain networks. Likewise, 616

we also constructed a group-level distance matrix in which elements denote mean 617

euclidean length of the corresponding streamlines, which were used to model the 618

mobility pattern of agents in the edges. 619

S-I-R agent-based model 620

The S-I-R agent-based model includes five modules: 621

• (a) production of normal α-synuclein 622

• (b) clearance of normal and misfolded α-synuclein 623

• (c) misfolding of normal α-synuclein (infection transmission) 624

• (d) propagation of normal and misfolded α-synuclein 625

• (e) accrual of neuronal tissue loss (atrophy). 626

It assumes that α-synuclein molecules are independent agents with mobility patterns 627

and lifespans characterized by the connectome’s architecture, neuronal activity, and 628

regional gene expression. The normal α-synuclein agents, synthesized continuously 629

under the modulation of regional SNCA expression, are susceptible to the misfolding 630

process when they come in contact with a misfolded agent. Once infected, they adopt 631

the misfolded form and join the infected population. Both normal and infected agents 632

may spread via fiber tracts towards connected regions. The degradation rate of both 633

agents is modulated by GBA expression, which codes for the lysosomal enzyme 634

glucocerebrosidase [56]. 635

Production of normal α-synuclein. In each voxel of region i, a new normal 636

agent may get synthesized per unit time with probability αi, i.e., the synthesis rate in 637

region i. αi is chosen as Φ0,1(SNCAexpressioni) where Φ0,1(·) is the standard normal 638

cumulative distribution function. Hence a higher expression score entails a higher 639

α-synuclein synthesis rate. The increment of normal agents in region i is αiSi∆t after a 640

total time ∆t, where Si is the size (voxel count) of region i. ∆t was set to 0.01. 641

Clearance of normal and misfolded α-synuclein. Agents in region i, either 642

normal or misfolded, may get cleared per unit time with probability βi, the clearance 643

rate in region i. As for synthesis rate, βi is set to Φ0,1(GBAexpressioni). Considering 644

that the probabililty that an agent is still active after a total time ∆t is given by 645

limδτ→0(1− βδτ)∆t/δτ = e−β∆t, the cleared proportion within time step ∆t is 646

1− e−β∆t. 647

Misfolding of normal α-synuclein (infection transmission). The normal 648

agents that survive clearance may become infected with probability γi = 1− eMi ln(1−γ0
i )

649

in region i, where Mi is the population of misfolded agents and γ0
i is the baseline 650

transmission rate which measures the likelihood that a single misfolded agent can 651

transmit the infection to other susceptible agents. Therefore (1− γ0
i )Mi is the 652

probability that a single normal agent is not infected by any of the Mi misfoled agents 653

so that γi = 1− (1− γ0
i )Mi = 1− eMi ln(1−γ0

i ) denotes the probability of getting infected 654

by at least one of the Mi misfolded agents in region i per unit time [11,38]. The 655

baseline transmission rate γ0
i in region i is set to the reciprocal of region size, 1/Si. 656

Analogous to the clearance module, the probability that a normal agent is uninfected 657
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after a total time ∆t is given by limδτ→0(1− γ0
i δτ)Mi∆t/δτ = e−γ

0
iMi∆t, thus the 658

proportion of normal agents that undergo misfolding within ∆t is 1− e−γ
0
iMi∆t. 659

Therefore, in determining the baseline regional density of normal α-synuclein, we 660

increment the population of normal agents Ni with: 661

∆Ni = αiSi∆t− (1− e−βi∆t)Ni (2)

After the system reaches the stable point (error tolerance ε < 10−7), we initiate the 662

pathogenic spread and update the population of normal (N) and misfolded (M) agents 663

with: 664

∆Ni = αiSi∆t− (1− e−βi∆t)Ni − (e−βi∆t)(1− e−γ
0
iMi∆t)Ni (3)

∆Mi = (e−βi∆t)(1− e−γ
0
iMi∆t)Ni − (1− e−βi∆t)Mi (4)

The system has two fixed points, whose final positions will not be affected by the initial 665

conditions of (Ni,Mi), including the choice of seed region and seeded misfolded agents 666

(see S1 Text). Note that normal and misfolded agents are equivalent to susceptible and 667

infected agents. 668

Propagation of normal and misfolded α-synuclein. Agents in region i may 669

remain in region i or enter the edges according to a multinomial distribution per unit 670

time with probabilities: 671

Pregion i→region i = ρi (5)

Pregion i→edge (i,j) = (1− ρi) wij∑
j wij

(6)

where wij is the connection strength of edge (i, j) (fiber tracts density between region i 672

and j). The probability of remaining in the current region i, ρi, was set to 0.5 for all i 673

(see S9A Fig for other choices of ρi; we note that the model fit is robust to variations in 674

ρi). Analogously, the agents in edge (i, j) may exit the edge or remain in the same edge 675

per unit time with binary probabilities: 676

Pedge (i,j)→region j = 1
lij

(7)

Pedge (i,j)→edge (i,j) = 1− 1
lij

(8)

where lij is the length of edge (i, j) (the mean length of the fiber tracts between region i 677

and region j). In the absence of definitive molecular evidence of different spreading 678

rates for normal and misfolded α-synuclein, we do not assume different exit and 679

propagation dynamics for the two types of agents. We use N(i,j),M(i,j) to denote the 680

normal/misfolded population in edge (i, j). After a total time ∆t, the increments of 681

Ni,Mi in region i are: 682

∆Ni =
∑
j

1
lji
N(j,i)∆t− (1− ρi)Ni∆t (9)

∆Mi =
∑
j

1
lji
M(j,i)∆t− (1− ρi)Mi∆t (10)

Likewise, 683

∆N(i,j) = (1− ρi) wij∑
j wij

Ni∆t− 1
lij
N(i,j)∆t (11)

∆M(i,j) = (1− ρi) wij∑
j wij

Mi∆t− 1
lij
M(i,j)∆t (12)

We adopt an asynchronous implementation in which the propagation of normal and 684

misfolded agents is operated before the synthesis, clearance and infection at each ∆t. 685

We have also tried other implementations, including propagation after 686
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synthesis/clearance/infection at each ∆t and synchronous implementation, and found 687

the differences are negligible, suggesting that our results are independent of the 688

modules’ update order. Note that although the agent-based model can also be viewed in 689

a stochastic framework (i.e. individual agents alter their states stochastically and the 690

total number of agents at any time is discrete valued), we conducted the simulations in 691

a deterministic way (i.e. using the mean values for each subpopulation of agents in a 692

region, which can take on non-integer values), which preserves the dynamics of disease 693

spreading as the population of protein agents is sufficiently large. 694

Another important question to consider is whether the model fit we observed arises 695

only from our particular choice of synthesis/clearance and propagation rate. Specifying 696

the synthesis/clearance rate as a value between 0 and 1 transformed from the gene 697

expression z-scores, we have simplified the complex relationship between transcriptions 698

and the actual function of the gene; likewise, setting the probability of exiting an edges 699

simply to the reciprocal of edge length, we have implicitly specified the relative scale 700

and regional synthesis/clearance and propagation processes. It is possible that theses 701

assumptions implicitly imposed on the model might not be able to reflect the actual 702

spreading process. However, we found that the model yielded robust results as long as 703

the relative magnitude of variations in regional gene expression z-scores is preserved in 704

synthesis/clearance rate (S10A Fig). Moreover, varying the scale of propagation rate 705

with respect to the synthesis/clearance process within certain range has little effect on 706

model fit as well (S10B Fig). 707

Accrual of neuronal tissue loss (atrophy). We model neuronal tissue loss as 708

the result of two processes: direct toxicity from accumulation of native misfolded 709

α-synuclein and deafferentation (reduction in neuronal inputs) from neuronal death in 710

neighbouring (connected) regions. The atrophy accrual at t within ∆t in region i is 711

given by the sum of the two processes: 712

∆Li(t) = k1(1− e−ri(t)∆t) + k2

∑
j

wji∑
j wji

(1− e−rj(t−1)∆t) (13)

where ri(t) is the proportion of misfolded agents in region i at time t, and 1− e−ri(t)∆t 713

quantifies the increment of atrophy caused by accumulation of native misfolded 714

α-synuclein aggregates within ∆t at time t. The second term 1− e−rj(t−1)∆t, weighted 715

by wji/
∑
j wji and summed up across j, accounts for the increment of atrophy induced 716

by deafferentation from neighbouring regions within ∆t at t− 1. k1, k2 are the weights 717

of the two terms with k1 + k2 = 1. We set k1 = k2 = 0.5 such that native α-synuclein 718

accumulation and the deafferentation have equal importance in modelling the total 719

atrophy growth (see S10B Fig for other choices of k1, k2; we note that the model fit is 720

consistent across k1/k2 ranging from 0.1 to 10). Code of the model and relevant data 721

can be found in https://github.com/yingqiuz/SIR simulator. 722

Integration of functional connectivity 723

We used resting-state functional MRI (fMRI) scans from the Human Connectome 724

Project (2015, S500 release) to construct the functional connectivity maps. Both 725

left-right and right-left phase encoding direction data were used. Based on the 726

minimally preprocessed resting-state fMRI data, further processing steps were 727

performed, including: 1) nuisance signal regression (including white matter, 728

cerebrospinal fluid, global signal, and six motion parameters); 2) bandpass temporal 729

filtering (0.01 Hz f 0.08 Hz); 3) spatial smoothing using a 4mm FWHM Gaussian kernel. 730

After quality control, 494 subjects were finally included. 731

We then extracted the mean time course in each of the 42 regions and computed the 732

pairwise Pearson’s correlation coefficients to derive individual functional connectivity 733
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matrices. Normalized by Fisher’s z transform, the functional connectivity matrices were 734

averaged across subjects and converted back to correlations using inverse Fisher 735

transform to generate the group functional connectivity matrix. All negative 736

correlations in the resultant functional connectivity matrix were set to zero, having no 737

influence on the agents’ mobility pattern. 738

Integration of functional connectivity into the model should bias mobility of the 739

agents towards region pairs showing greater co-activation patterns. Agents thus have a 740

higher chance of entering the edges that connect regions having stronger synchronous 741

neuronal activity. More specifically, the weights wij (connection strength of structural 742

connectivity) in equation (6) were scaled by ek×fc(i,j) , where fc(i,j) is the functional 743

connectivity between region i and region j. Therefore the probability that agents move 744

from region i to edge (i, j) per unit time is determined by 745

Pregion i→edge (i,j) = (1− ρi)
ek×fc(i,j)wij∑
j ek×fc(i,j)wij

(14)

Note that increasing k makes the influence of functional connectivity more 746

differentiated across the edges: the stronger functional connectivity values will be 747

enhanced while the weaker ones may be suppressed. 748
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Supporting Information

S1 Text. Analysis of the fixed points.

S1 Table. A list of all the parameters or notations used in the model. Note
that only k, ρi, k1, k2 are free parameters: k was scanned from 0 to 5 to study the effect
of functional connectivity on disease spread (Fig. 7); ρi = 0.5 for all the regions so that
agents have equal chance of staying in the same region or moving out; k1 = k2 = 0.5 so
that the two factors ((i) native misfolded α-synuclein accumulation; (ii) deafferentation
from connected regions) contributed equally to the total atrophy growth. We also note
that model fit is robust across multiple choices of ρi, k1, k2 (S10 Fig).

S1 Fig. An illustration of the phase plane at α = 5000, β1 = 0.5, β2 = 0.5,
γ = 0.001. M decreases with N (N nullcline, blue, equation (S4)) and N increases with
M (M nullcline, orange, equation (S5)), therefore apart from (N = 10000,M = 0) there
is only one another intersection (N = 5017.15,M = 4982.85) of the two lines, indicating
that the system has two fixed points only. The vector field (arrows) denotes the
direction of the gradient at each position (i.e., the system at that point will move along
the direction of the corresponding arrow). The code to generate the figure can be found
in https://github.com/yingqiuz/SIR simulator/tree/master/results/S1 Fig.ipynb.

S2 Fig. Model fit up to t = 105. Correlations between simulated atrophy and
empirical atrophy derived from PD patient DBM maps. Correlations are shown as a
function of simulation time. At large t, the model fit stabilizes as the system approaches
the stable point. The underlying data can be found in
https://github.com/yingqiuz/SIR simulator/tree/master/results/S2 Fig.mat.

S3 Fig. Arrival time of misfolded α-synuclein in the model. (A) Regional
arrival time of misfolded α-synuclein is defined as the time steps required for misfolded
α-synuclein amount to exceed 1 (after seeding at the substantia nigra with one
misfolded agent). This roughly follows the Braak staging hypothesis (see [31]). (B)
Arrival time of misfolded α-synuclein at each brain region. The underlying data can be
found in https://github.com/yingqiuz/SIR simulator/tree/master/results/S3 Fig.mat.

S4 Fig. Model fit with atrophy estimated using fsl anat. The computational
model replicates empirical atrophy patterns estimated using an alternative
deformation-based morphometry pipeline. Model fits are comparable between the
minctools and FSL-estimated atrophy patterns. The underlying data can be found in
https://github.com/yingqiuz/SIR simulator/tree/master/results/S4 Fig.mat.
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S5 Fig. Model fit based on Pearson’s correlation coefficient yielded
comparable results across network density from 25% to 45%. The model
integrated with gene expression levels has more predictive power than the density of
misfolded α-synuclein (red) and the static network metrics, including node degree
(yellow), node strength (green), or eigenvector (purple) centrality. The underlying data
can be found in
https://github.com/yingqiuz/SIR simulator/tree/master/results/S5 Fig.mat.

S6 Fig. Model fit at 65-region and 119-region resolution. The 42 regions
used in the main manuscript were hierarchically partitioned into 65 regions and then a
further 119 regions. Simulations were conducted on these two finer resolutions, and
yielded comparable results to the model fit at 42-region resolution. (A) Spearman’s
correlation (blue curve) and Pearson’s correlation (red curve) versus time using the
65-region parcellation. Black dot: peak position of the correlation coefficients. (B) The
model has more predictive power than its constituent factors (as assessed by
Spearman’s correlation). C: Spearman’s correlation (blue curve) and Pearson’s
correlation (red curve) versus time using the 119-region parcellation. Black dot: peak
position of the correlation coefficients. D: The model has more predictive power than its
constituent factors (as assessed by Spearman’s correlation). The underlying data can be
found in https://github.com/yingqiuz/SIR simulator/tree/master/results/S6 Fig.mat.

S7 Fig. Permutation tests for functional connectivity (FC). Increasing k (the
influence of FC on α-synuclein transmission) first facilitates then degrades model fit.
The red line indicates model fit using true FC values. For each k, rs-fMRI time series
were re-assigned to construct null FC matrices. The null model fit declines
monotonously as k increases (gray line). At smaller vaues of k, simulations based on
real FC yield significantly higher model fit than the null settings as indicated by the
95% confidence interval (gray bar), while at larger k, real FC ceases to have advantage
over null FC. The underlying data can be found in
https://github.com/yingqiuz/SIR simulator/tree/master/results/S7 Fig.mat.

S8 Fig. Exploring other choices of synthesis/clearance and propagation
rates. (A) In the main setting, we transformed the SNCA/GBA expression z-scores to
synthesis/clearance rates using a standard normal cumulative distribution function (Fig.
2). To test other possibilities of the relation between gene expression and synthesis or
clearance rate, we chose a set of commonly used functions that have domain of all real
numbers and return values monotonically from 0 to 1. The temporal pattern of model
fit is robust to the choice of transformation functions: the model yields similar results as
long as the relative magnitudes of regional gene expressions are preserved. xi is the gene
expression z-score in region i and f(xi) is the transformation function. (B) We set the
probability of exiting an edge (i, j) to the reciprocal of edge length li,j in the main
setting. However, it is possible that the protein agents propagate faster or slower than
the regional synthesis/clearance process. To test sensitivity of the model to the rate of
protein propagation, we introduced propagation speed v and set the probability thereof
to v/li,j such that varying v changes the relative scale of the propagation process
vis-a-vis the regional synthesis/clearance process (e.g., increasing v suggests that the
propagation process happens faster than the regional synthesis/clearance processes). We
chose v = 0.1, 1, 10 (where v = 1 corresponds to the results in the main text) and found
that the relative scale of the two processes has little effect on the model fit.
https://github.com/yingqiuz/SIR simulator/tree/master/results/S8 Fig.mat.

S9 Fig. GBA and SNCA expression. (A) Regional GBA expression. There are
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three probes for GBA (probe id: 1025372, 1025373, 1025374). Probes 1025372 and
1025373 were included to generate the group transcription profile. Probe 1025374 was
excluded as it deviated too much from probe 1025372 (Pearson correlation=0.30), while
the correlation between the other two probes is 0.79. (B) Regional SNCA expression.
Probes 1020182, 1010655 were included to generate the group transcription map.
Compared to GBA expression, SNCA is more homogeneous in cortical regions. The
underlying data can be found in
https://github.com/yingqiuz/SIR simulator/tree/master/results/S9 Fig.mat.

S10 Fig. Testing free parameters ρi, k1, k2. Model fit (Spearman’s correlation) is
robust to variations in ρi, k1, k2 (results shown at network density %35). (A) ρi controls
the probability of remaining in region i while (1-ρi) is the probability of exiting region i
per unit time. The main results are based on ρi = 0.5. However, the model fit is
consistently above 0.55 across ρi ranging from 0.1 to 0.9. (B) For the atrophy in region
i, k1 controls the contribution of α-synuclein accumulation inside region i, while k2

controls the contribution of deafferentation induced by atrophy in connected regions.
k1 + k2 = 1. The model fit is consistently over 0.5 across k1/k2 ranging from 0.1 to 10.
These results suggest that the predicative power of the model is robust to variations in
free parameters ρi or k1/k2. The underlying data can be found in
https://github.com/yingqiuz/SIR simulator/tree/master/results/S10 Fig.mat.
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