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Abstract 

c-Jun N-terminal kinase (JNK), a mitogen activated protein kinase, is activated in 

ischemia brain injury and plays an important role in cerebral ischemic injury. 

Emerging studies demonstrated that JNK-IN-8 (a specific JNK inhibitor) regulates 

traumatic brain injury through controlling neuronal apoptosis and inflammation. 

However, the role of JNK-IN-8 in ischemic stroke and the underlying mechanisms of 

JNK-IN-8 involving neuroprotection remain poorly understood. In the present study, 

male rats were subjected to tMCAO (transient middle cerebral artery occlusion) 

followed by treatment with JNK-IN-8, and then the modified improved neurological 

function score (mNSS), the Foot-fault test and the level of inflammatory cytokines 

(IL-1β, IL-6 and TNF-α) were assessed. We found that JNK-IN-8-treated rats with 

MCAO exerted a significant improvement in spatial learning as measured by the 

improved mNSS, and showed sensorimotor functional recovery as measured by the 

Foot-fault test. JNK-IN-8 also exerted anti-inflammatory effects as indicated by 

decreased activation of microglia and the decreased expresson of IL-6, IL-1β and 

TNF-α. Furthermore, JNK-IN-8 suppressed the activation of JNK and subsequent 

activation of NF-κB signaling as indicated by the decreased level of phosphorylated 

JNK (p-JNK) and p65. These data suggest that JNK-IN-8 suppressed 

neuroinflammation and improved neurological function by inhibiting JNK/NF-κB 

pathway after ischemic brain injury, thus offering a new target for prevention of 

ischemic brain injury. 
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1. Introduction 

 Ischemic stroke is well-known as a leading cause of long-term disability 

worldwide and countless efforts have been made towards the therapeutic treatment on 

the disease. Despite current diagnosis and prognosis for ischemic stroke can be 

facilitated by genetic or transcriptomic biomarkers, it becomes seriously limited in 

terms of early stroke management [1]. It has been demonstrated widely that 

neuroinflammation plays an important role in the pathophysiology of ischemic injury 

stroke in which local neuroinflammation can cause neuronal damage and degeneration 

[2]. Previous clinical studies reported that the prognosis of stroke can be significantly 

influenced by systemic inflammation [3] while inhibition on inflammatory responses 

could decrease brain injury [4]. Therefore, a comprehensive understanding of 

regulation on inflammatory processes in response to the brain injury is a prerequisite 

in terms of developing effective treatment for ischemic stroke. 

 c-Jun N-terminal kinase (JNK), a mitogen activated protein kinase, has been 

shown to be related to inflammatory processes in many diseases [5, 6]. JNK is 

considered as an important stress-responsive kinase and JNK signaling is reportedly 

associated with neuroinflammation, blood–brain barrier (BBB) disruption, and 

oligodendroglial apoptosis in brain injury [7]. Studies on novel therapeutic targets 

neuroinflammation and neuropathic pain have considered JNK as a promising 

candidate due to its regulatory roles in inducing neuroinflammation in vivo and in 

vitro [8]. A specific JNK inhibitor, JNK-IN-8, is a potent and selective covalent 
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inhibitor of JNK and has been used to investigate the precise role of JNK in many 

pathways and diseases [9]. In a previous study, a dual NO-donating oxime and c-Jun 

N-terminal kinase inhibitor is reported to protect cells against cerebral 

ischemia-reperfusion injury in mice, indicating the use of JNK inhibitor is accessible 

for investigation on functions of JNK in ischemia injury [10]. Specifically, JNK-IN-8 

is reported to significantly suppress tumor growth in vitro and in vivo, directly 

proving JNK regulating breast cancer tumorigenesis [11]. These studies exhibit the 

valuable aspect of JNK inhibitors in protecting against molecular occurrence of 

different diseases, however, the precise effect of JNK-IN-8 on neuroinflammation 

related to ischemic stroke remains unclear.  

 In the present study, we aimed to investigate whether the use of JNK-IN-8 can 

improve functional recovery through suppressing neuroinflammation in ischemic 

stroke. We used established tMCAO (transient middle cerebral artery occlusion) rat 

model by treatment with JNK-IN-8. We assessed the modified improved neurological 

function score (mNSS), the Foot-fault test and the level of inflammatory cytokines 

(IL-1β, IL-6 and TNF-α). Current data demonstrated that JNK-IN-8 exerted a 

neuroprotective and anti-inflammatory effects and suppressed the activation of JNK 

and subsequent activation of NF-κB signaling in ischemic brain injury, proposing a 

potent treatment for ischemic brain injury. 

 

2. Materials and methods 

2.1 MCAO model 
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 All animal experiments were approved by the Animal Ethics Committee at 

Wenzhou Medical University. Adult male Sprague-Dawley rats (6-8 weeks of age, 

200-250g) were obtained from the Shanghai Laboratory Animal Center (Chinese 

Academy of Sciences, Shanghai, China) and kept in a specific pathogen-free 

environment for the duration of the current study. Rats were randomly divided into 

the sham-operated group (n=5) and experimental group (n=15), which was then 

subdivided into two subgroups (vehicle and JNK-IN-8 group).  

The animals were subjected to MCAO as previously described [12, 13]. Briefly, 

SD rats were anesthetized by choral hydrate (350 mg/kg) intraperitoneally. The right 

common carotid artery (CCA), internal carotid artery (ICA) and external carotid 

artery (ECA) were exposed by a midline cervical incision. The ECA was coagulated 

and inserted into the ICA through the ECA to occlude the MCA. And two hours later, 

the suture was withdrawn to allow MCA perfusion. The regional cerebral blood flow 

was observed to verify the occurrence of ischemia by MCAO, using laser Doppler 

flowmetry (PeriFlux System 5000, Sweden). The sham control rats underwent the 

same procedures except the occlusion of the MCA. The temperature was maintained 

at 37.0°C using a heating pad (Malvern, UK) and the rats were kept on it until the 

closure of the skin incision.  

2.2 Cell culture 

The murine BV2 microglial cells were obtained from the Cell Bank of Chinese 

Academy of Sciences (Shanghai, China), and cultured in Dulbecco modified Eagle 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% 
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penicillin as well as streptomycin (Gibco BRL, Grand Island, USA), and were 

maintained in a humidified incubator at 37�with 5% atmosphere. The 

oxygen-glucose deprivation (OGD) was initiated by exposure of BV2 cells to DMEM 

without serum or glucose in a humidified atmosphere of 95% nitrogen and 5% CO2 

for 6 hours.  

2.3 Drug administration 

Rats were given an intraperitoneal injection of vehicle (saline 150 μl and 20% 

dimethylsulfoxide in PBS) or JNK-IN-8 (Selleck Chemicals, TX, USA; 20 mg/kg 

dissolved in 20% dimethylsulfoxide) after MCAO. Microglia was treated with 10 mM 

JNK-IN-8 and then pro-inflammatory cytokines (TNF-a, IL-1β and IL-6) was 

assessed using qPCR and ELISA.  

2.4 Behavioral Tests 

The modified Neurological Severity Score (mNSS) test was used to measure 

neurological function as previously described [14]. The test was performed on all rats 

preinjury and at 1, 3, 7, and 14 days after MCAO. The mNSS is a composite of the 

motor (muscle status and abnormal movement), sensory (visual, tactile and 

proprioceptive), and reflex tests. Neurological function was graded on a scale of 0-18, 

where a score of 0 indicates normal performance and a total score of 18 points 

indicates maximal deficit. In the severity scores of injury, 1 point is awarded for each 

abnormal behavior or for lack of a tested reflex; thus, the higher the score the more 

severe the injury. 
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The foot-fault test was used to evaluate sensorimotor function before MCAO and 

at 1, 3, 7, and 14 days after MCAO as previously described [15]. The rats were 

allowed to walk on a grid. With each weight-bearing step, a paw might fall or slip 

between the wires. If this occurred, it was recorded as a foot fault. A total of 50 steps 

were recorded for the right forelimb. 

2.5 Quantitative real-time PCR (qPCR) 

Total RNA was extracted from microglia using Trizol reagent (Invitrogen, CA, 

USA) following the manufacturer’s instructions. Reverse transcription (RT) was 

carried out using Prime Script TM Master Mix and oligo-dT primers (Takara, Japan). 

qPCR was performed using 2×SYBR Green Mix (Vazyme Biotech, China) on 

Applied Biosystems 7300 real-time PCR system (Applied Biosystems, CA, USA). 

β-actin were used as references for mRNA. The primer information was shown in 

Supporting Table.S1.  

2.6 Western blotting 

 Total protein was extracted from cerebral cortex or microglia with 

homogenization in lysis buffer and centrifuged at 12,000 rpm for 15 min. 

Bicinchoninic acid (BCA) assay (Cell Signaling Technology, Boston, MA) was used 

to determine the protein concentrations. The western blotting was conducted as 

previously described [16]. After western blotting, the proteins were incubated with 

specific primary antibodies against Iba-1 (1:1000, ab178846, Abcam, MA, USA), 

JNK (1:1000, #9252, CST, MA, USA), p-JNK (1:1000, #9251, CST), P65 (1:1000, 

#3039, CST), I-kBa (1:1000, #9242, CST) overnight at 4�, and subsequently detected 
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using the secondary antibody (1:2000; Cell Signaling Technology, Boston, MA). 

β-actin was used as an internal control. 

2.7 ELISA assay for TNF-α, IL-1β, and IL-6 

The ELISA assay was performed using ELISA kit (ADL, San Diego, USA) 

according to instructions. Briefly, to quantify TNF-α, IL-1β and IL-6 protein level in 

brain tissues, 96 well plates coated with indicated antibodies were treated with the 

addition of the supernatants of brain tissue homogenates (1:20 dilution). After the 

reaction between enzyme and substrate, the absorbances of samples were measured at 

450nm with a microplate reader. Standard curves were applied using diluted standard 

solutions to provide the comparison for the calculation of rat TNF-α, IL-1β and IL-6 

in the samples. All the procedures were repeated for at least three times. 

2.8 Immunofluorescence staining 

 The immunofluorescence staining in brain tissues was performed as previously 

described [17]. Specific primary antibody against Iba-1 (1:1500, ab178846) was used 

to mark the section at 4°C overnight. Secondary antibody for immunofluorescence 

was anti-rat Alexa Fluor 488 (1:1000, Invitrogen) and then counterstained with DAPI 

(ATOM, USA). The samples were observed and analyzed by the LEICA TCS SPE 

microscope (Leica, Germany) and LEICA software LAS AF, respectively. And the 

positive cells were statistically counted and plotted. 

2.9 Statistics 

All data are presented as mean ± standard deviation (SD) from at least three 

separate experiments. The differences between groups were analyzed using Student’s t 
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test. Differences were deemed statistically significant at p < 0.05. 

 

3. Results 

3.1 JNK-IN-8 enhances functional recovery after stroke 

c-Jun N-terminal kinases (JNK) are important stress responsive kinases, and JNK 

signaling is the shared pathway linking microglia activation, neuroinflammation and 

cerebral ischemic injury [18, 19]. Previous studies demonstrated that JNK inhibition 

by specific inhibitor (e.g., IQ-1S and SP600125) contributes to reduce cerebral 

ischemia-reperfusion injury in mice [20, 21]. JNK-IN-8, an adenosine 

triphosphate-competitive irreversible pan-JNK inhibitor, exerts a protective role in 

inhibiting traumatic brain injury and cancer cell grow [22, 23]. Here we investigated 

whether JNK-IN-8 treatment reduces cerebral ischemic injury and regulates 

ischemia-induced neuroinflammation using experimental model of ischemic stroke.  

To test the effect of JNK-IN-8 on regulating cerebral ischemic injury, the 

sensorimotor performance of the stroke severity was evaluated by assaying foot-fault 

and modified neurological severity score (mNSS) after JNK-IN-8 treatment. Rats 

subjected to MCAO, and then received vehicle or JNK-IN-8 intraperitoneally at 2 h 

after MCAO. The mNSS and Foot-fault test were carried out prior to the treatment 

after MCAO, at day 1, 3, 7 and 14 after MCAO.  

The mNSS was close to 12 in rats with MCAO (both the vehicle and JNK-IN-8 

groups) on day 1 post-MCAO, suggesting that neurological functional deficits were 

comparable in both groups before treatment (Figure 1A). Significant decrease of 
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mNSS was found over time in the vehicle-treated rats on day 3, 7 and 14 after MCAO, 

indicating that a spontaneous sensorimotor functional recovery occurred after MCAO. 

Importantly, JNK-IN-8 treatment resulted in a significant functional recovery on day 3, 

7 and 14 after MCAO compared with the vehicle (Figure 1A). JNK-IN-8 treatment 

also reduced the frequency of forelimb foot-fault occurrence compared with vehicle 

(Figure 1B). These results demonstrated that JNK-IN-8 improves functional recovery 

after stroke. 

3.2 JNK-IN-8 inhibits microglia activation in vivo after stroke 

Microglia rapidly responds to cerebral injury through proliferating, changing 

morphology, and cytokines production [24, 25]. Post-ischemic inflammation is a 

primary step in the progression of brain ischemia-reperfusion injury [26, 27]. To 

unveil the potential mechanism of JNK-IN-8 on treating MCAO rats, microglia 

activation was analyzed by immunofluorescence analysis using Iba-1 antibody. Figure 

2A showed that MCAO resulted in a significant microglia activation in ipsilateral 

cortex at 4 h after MCAO as indicated by the intensive ramified Iba-1-positive 

staining, which was obviously inhibited by JNK-IN-8 treatment (Figure 2A). To 

verify the effect of JNK-IN-8 on microglia activation, the protein level of Iba-1 in 

ipsilateral cortex was assayed by western blot analysis. As shown in Figure 2B, the 

protein level of the microglial marker Iba-1 was significantly increased in the 

ipsilateral cortex of MCAO rats compared with the control group of rats, whereas this 

increase was inhibited by JNK-IN-8 treatment.  

We then assessed the effects of JNK-IN-8 on the production of pro-inflammatory 
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cytokines in brain tissues. ELISA analysis was carried out to assay the protein level of 

TNF-α, IL-1β and IL-6 in brain tissues. As shown in Figure 2C-E, MCAO resulted in 

a significant increase of TNF-α, IL-1β and IL-6, whereas JNK-IN-8 treatment 

inhibited these pro-inflammatory cytokines production. These data suggest that 

JNK-IN-8 plays important roles in inhibiting cerebral ischemia-induced microglia 

activation and subsequent neuroinflammation.  

3.3 JNK-IN-8 inhibits the activation of JNK-NK-κB pathway 

We then investigated whether JNK-IN-8 treatment inhibited JNK activation in 

vivo after MCAO. Western blot analysis revealed that brain phosphorylated JNK 

(p-JNK) levels were increased at 4 h after MCAO, and JNK-IN-8 treatment 

significantly attenuated brain p-JNK level compared with the vehicle, indicating JNK 

pathway was activated after MCAO and ischemia-induced JNK activation was 

inhibited after JNK-IN-8 treatment (Figure 3A and B).  

NF-κB has been shown to be an important upstream modulator for 

pro-inflammatory cytokines in microglia [28, 29]. We then examine whether the 

neuroinflammation-relieving effect of JNK-IN-8 in MCAO rats is related to NF-κB 

activation. As shown in figure 3C-F, the expression of p65 was increased but 

ikappaB-alpha (I-κBa) was significantly decreased by ischemic injury, indicating that 

NF-κB signaling was activated after MCAO. As expected, these changes in NF-κB 

pathway were reversed by JNK-IN-8 treatment.  

3.4 JNK-IN-8 inhibits microglia activation and the production of 

pro-inflammatory cytokines in vitro 
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To verify the role of JNK-IN-8 on microglia activation in vitro, the activation of 

BV2 microglia cells on normoxia or oxygen and glucose deprivation (OGD) with or 

without JNK-IN-8 treatment was assessed by Cell Counting Kit-8 analysis. As shown 

in Figure 4A, cell activity of BV2 microglia cells was significantly decreased with 

JNK-IN-8 treatment under normoxia or OGD, indicating the inhibitory effect of 

JNK-IN-8 on BV2 microglia activation.  

We then assessed the effects of JNK-IN-8 on the production of pro-inflammatory 

cytokines in vitro. OGD cellular models were used and then BV2 cells were treated 

with JNK-IN-8. Figure 4B-D showed that JNK-IN-8 treatment suppressed the mRNA 

level of TNF-α, IL-1β and IL-6 under normoxia. Furthermore, the expression level of 

these pro-inflammatory cytokines in BV2 microglia cells with or without JNK-IN-8 

treatment on OGD was assayed using qPCR. As shown in Figure 4B-D, TNF-α, IL-1β 

and IL-6 mRNA levels were increased under OGD, but JNK-IN-8 treatment 

attenuated OGD-induced upregulation of TNF-α, IL-1β and IL-6 mRNA level. There 

results suggest that JNK-IN-8 treatment contributes to functional recovery after stroke 

in rats by suppressing JNK-NF-κB pathway, and attenuating microglia activation and 

pro-inflammatory response.  

 

4. Discussion 

 In this study, we investigated a possible role of JNK-IN-8 in protecting against 

cerebral ischemia injury in a rat model of MCAO, and determine the precise role of 

JNK-IN-8 in regulations on stroke. The current data demonstrate that (i) JNK-IN-8 

inhibits the activation of JNK-NK-κB pathway, (ii) JNK-IN-8 inhibits microglia 
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activation in vivo after ischemic stroke, (iii) JNK-IN-8 inhibits microglia activation 

and the production of pro-inflammatory cytokines in vitro, (iv) JNK-IN-8 improves 

functional recovery after stroke. These results reveal a potential role of JNK-IN-8 in 

regulating neuroinflammation, and may provide a novel opportunity to treat 

ischemic stroke.  

Post-ischemic inflammation contributes to the development of neuronal injury 

and cerebral infarction [30]. However the advances in suitable therapy for the purpose 

of decreasing neuroinflammation remain limited. The JNK is a mitogen activated 

protein kinase (MAPK) family member that modulates multiple cellular functions, 

such as proliferation, apoptosis, and differentiation [31]. JNK signaling is reportedly 

associated with microglia activation and neuroinflammation [7]. Additionally, JNK 

mediates the activation of NF-κB signaling, which is an important upstream 

modulator for pro-inflammatory cytokines in microglia [28, 29]. Therefore, studies on 

novel therapeutic targets neuroinflammation and neuropathic pain have considered 

JNK as a promising candidate.  

Several synthetic inhibitors of JNK have been described in cerebral 

ischemia/reperfusion injury, including small molecules SP600125, AS601245 and 

IQ-1S. Guan et al reported that SP600125 treatment inhibits the activation of JNK and 

provides neuroprotection in ischemia/reperfusion by suppressing neuronal apoptosis 

[32]. Another study demonstrated that SP600125 attenuated subarachnoid 

hemorrhage-cerebral vasospasm through a suppressed inflammatory response [33]. 

IQ-1S releases NO during its oxidoreductive bioconversion and 
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improves stroke outcome in a mouse model of cerebral reperfusion [20]. Noteworthily, 

different JNK inhibitor exerts diverse physiological properties because of targeting 

different members of the JNK family. Although currently available candidate JNK 

inhibitors with high therapeutic potential are identified, the further search for selective 

JNK inhibitors remains an important task.  

In the study, the role of JNK-IN-8 in regulating neuroinflammation and neurological 

function after stroke was investigated. JNK-IN-8 treatment inhibits stroke-induced 

microglia activation in vivo and in vitro. TNF-α, IL-1β and IL-6 levels are increased 

under OGD, but JNK-IN-8 treatment attenuates OGD-induced upregulation of TNF-α, 

IL-1β and IL-6 level. There results suggest that JNK-IN-8 treatment contributes to 

attenuate microglia activation and pro-inflammatory response. As expected, JNK-IN-8 

significantly inhibits brain p-JNK level compared with the vehicle, indicating 

ischemia-induced JNK activation was inhibited by JNK-IN-8. Furthermore, we 

demonstrated that JNK-IN-8 reduces JNK-mediated activation of NF-κB signaling. 

More important, MCAO rats treated with JNK-IN-8 exerts a significant improvement 

in spatial learning and sensorimotor functional recovery as measured by the mNSS 

and Foot-fault test. Taken together, this study suggests an interesting prospect to target 

JNK-IN-8 as a potent therapy for ischemic stroke. 
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Figure legends 

Figure.1. JNK-IN-8 improves functional recovery after stroke 

(A) Modified neurological severity scores (mNSS) of rat behavior after MCAO and 

intraperitoneal injection of vehicle or JNK-IN-8 (20 mg/kg). n = 5. *P<0.05. (B) A 

foot-fault test after MCAO and intraperitoneal injection of vehicle or JNK-IN-8 (20 
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mg/kg). n = 5. *P<0.05. *Single asterisk indicated the significant difference when 

P<0.05. 

Figure.2. JNK-IN-8 inhibits microglia activation in vivo after stroke 

(A) Immunofluorescence of microglia cells in ipsilateral cortex after MCAO and 

intraperitoneal injection of vehicle or JNK-IN-8. (B) Western blot analysis of Iba-1 in 

ipsilateral cortex after MCAO and intraperitoneal injection of vehicle or JNK-IN-8. 

(C-E) ELISA analysis of TNF-a (C), IL-1β (D) and IL-6 (E) level in brain tissues 

after MCAO and intraperitoneal injection of vehicle or JNK-IN-8. *P<0.05. 

Figure.3. JNK-IN-8 inhibits the activation of JNK-NK-κB pathway 

(A and B) Western blot analysis of brain JNK and phosphorylated JNK (p-JNK) levels 

after MCAO and intraperitoneal injection of vehicle or JNK-IN-8. (C and D) Western 

blot analysis of brain p65 levels after MCAO and intraperitoneal injection of vehicle 

or JNK-IN-8. (E and F) Western blot analysis of brain I-kBa levels after MCAO and 

intraperitoneal injection of vehicle or JNK-IN-8. *P<0.05. 

Figure.4. JNK-IN-8 inhibits microglia activation and the production of 

pro-inflammatory cytokines in vitro 

(A) JNK-IN-8 treatment (10mM) inhibited BV2 microglia viability determined by 

Cell Counting Kit-8 kit. (B-D) JNK-IN-8 treatment (10mM) reduced the mRNA 

levels of TNF-α (B), IL-1β (C), and IL-6 (C) in BV2 cells determined by quantitative 

real-time PCR, BV2 cells under normoxia with OGD groups, BV2 cells subjected to 

oxygen and glucose deprivation. *P<0.05. 
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