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ABSTRACT 
 
Radiotherapy is integral to the care of a majority of cancer patients. Despite differences in               
tumor responses to radiation (radioresponse), dose prescriptions are not currently tailored to            
individual patients. Recent large-scale cancer cell line databases hold the promise of unravelling             
the complex molecular arrangements underlying cellular response to radiation, which is critical            
to novel predictive biomarker discovery. Here, we present RadioGx, a computational platform for             
integrative analyses of radioresponse using radiogenomic databases. We first used RadioGx to            
investigate the robustness of radioresponse assays and indicators. We then combined           
radioresponse and genome-wide molecular data with established radiobiological models to          
predict molecular pathways that are relevant for individual tissue types and conditions. We also              
applied RadioGx to pharmacogenomic data to identify several classes of drugs whose effects             
correlate with radioresponse. RadioGx provides a unique computational toolbox to advance           
preclinical research for radiation oncology and precision medicine. 
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INTRODUCTION 
 
Radiotherapy is routinely used as curative therapy for cancer patients. Recent technological            
advances have considerably augmented the physical precision of radiotherapy, resulting in           
improved cure rates and less toxicity (Baumann et al., 2016; Bernier et al., 2004; Verellen et al.,                 
2007). Biologically motivated improvements (such as the addition of radiosensitizing drugs) to            
radiotherapy delivery have not seen such dramatic improvements despite the known differences            
in radiation efficacy that exist among patients with a particular tumor type (Bentzen and              
Overgaard, 1994; Kozin et al., 2008; Krause et al., 2009). This is due in part to a lack of                   
predictive biomarkers on which to stratify patients. Instead, the stratification of patients to             
different radiotherapy-containing regimens continues to be based primarily on clinical variables           
such as tumor stage and patient age (Baumann et al., 2016; Verellen et al., 2007).  
 
The biological determinants of cellular response to radiation, referred to as radioresponse, are             
complex and include both genomically based cell-intrinsic and external microenvironmental          
factors (Baumann et al., 2016; Bernier et al., 2004; Steel et al., 1989; Verellen et al., 2007; West                  
et al., 1993). Intrinsic radiosensitivity is thought to vary among individual tumors of the same               
type with implications for optimal radiotherapy dosing and curability. Measurement of intrinsic            
radiosensitivity in molecularly-characterized cancer cell lines could provide the radiogenomic          
data necessary to develop predictors of radioresponse. However, despite decades of research            
there remain no clinically utilized radiosensitivity biomarkers that have been discovered from cell             
culture radiogenomic studies. There are many reasons for this, including the need for             
clonogenic assays when measuring intrinsic radiosensitivity in vitro (Puck and Marcus, 1956),            
which are cumbersome and are not amenable to large screens or radiogenomic studies (Bristow              
et al., 2018; Yard et al., 2015). Furthermore, radiosensitivity varies with dose in a complex and                
highly individual manner, rendering measurements at multiple dose-levels a necessity.  
 
Most short-term cytotoxicity assays amenable for high-throughput analysis of drug response           
have endpoints at 72 hours. These assays are inappropriate for measuring radiosensitivity            
because of the delayed cellular death by mitotic catastrophe that often occurs following ionizing              
radiation exposure (Brown and Wouters, 1999). To address this limitation, an extended duration             
(9-day) viability assay was developed as a surrogate for clonogenic survival that is amenable to               
high-throughput processing in microtiter plates (Abazeed et al., 2013). This assay was recently             
applied to 533 cancer cell lines across 17 histologies with multiple radiation dose levels (Yard et                
al., 2016), becoming the largest radioresponse dataset published by a significant margin. This             
increase in the scale of radioresponse data holds great potential to contribute to the discovery of                
robust predictive biomarkers that could someday be translated into clinical use. However, full             
utilization by the research community requires sophisticated analysis tools that can           
appropriately model cellular response to radiation and seamlessly integrate associated          
molecular and pharmacogenomic profiles of cell lines. 
 
In this study, we performed a preclinical assessment of intrinsic radiosensitivity using            
large-scale radiogenomic datasets (Figure 1). We sought to (i) model dose-response data using             
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the linear-quadratic (LQ) model (Brenner, 2008; Dale, 1985; Fowler, 1989); (ii) integrate the             
modeled radioresponse profiles with transcriptomic data to determine pathway- and          
tissue-specific determinants of radioresponse; (iii) infer radioresponse under hypoxic conditions;          
and (iv) identify classes of drugs with cytotoxic effects that correlate with radioresponse. To              
facilitate these and other future analyses, we developed RadioGx, a new computational toolbox             
enabling comparative and integrative analysis of radiogenomic datasets. Our work provides a            
framework for future hypothesis generation and preclinical assessments of radioresponse using           
appropriate biological assays and indicators. 
 
 
RESULTS 
 
The RadioGx Platform 
To realize the full potential of large-scale radiogenomics datasets for robust biomarker            
discovery, we developed the RadioGx software package (Supplementary Figure 1). RadioGx           
represents the first computational toolbox that integrates radioresponse data with radiobiologic           
modeling and molecular data from hundreds of cancer cell lines. Within RadioGx, datasets are              
standardized with comprehensive cell line annotations including the type of radioresponse           
assay (i.e., clonogenic assay and 9-day viability assay) and indicators used to generate             
dose-response data (i.e., SF2 and AUC). RadioGx enables fitting of dose-response data using             
established radiobiological models, quality control in order to investigate the consistency and            
biological plausibility of radioresponse assays and indicators, and integration of these data with             
other data types and radioresponse models (Figure 1). 

 
 
Figure 1: An overview of pre-clinical assessment of radiosensitivity using dose-response and            
molecular profiling data . (A ) A schematic illustrating data collection, curation, processing of            
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radiogenomic data obtained from cancer cell lines of diverse histologies. (B ) A schematic illustrating the               
process of radiobiological modeling using the linear-quadratic model, assessing the consistency of            
dose-response data across assays, and evaluating distinct radiation sensitivity indicators such as area             
under the survival curve (AUC) and surviving fraction after 2 Gy (SF2). (C ) A schematic illustrating                
integrative analysis of modeled radioresponse from distinct cell lines with associated           
genomic/transcriptomic data, pharmacogenomic data, and hypoxia modeling. 
 
Modeling radiation response within RadioGx 
Multiple dose-response measurements from the same cell line can be incorporated into            
established radiobiological models to predict the effect of specific perturbations (e.g.,           
radiotherapy fraction size or hypoxia) on radioresponse. Within RadioGx, we applied the            
commonly used linear-quadratic (LQ) model to fit 9-day viability assay data for 533 cancer cell               
lines (Yard et al., 2016) (Figure 2A). The LQ model goodness-of-fit was high for the majority of                 
cell lines (median R2 = 0.958; Supplementary Figure 2A). For 498/533 (93%) of cell lines, the                
model fit the data reasonably well (R2 ≥ 0.6); these cell lines were retained for subsequent                
analyses.  
 

 
Figure 2: Fitting of dose-response data to the LQ model and concordance of radiation response               
across asays. (A) LQ model fit using RadioGx on the SNU-245 cholangiocarcinoma cell line (red) and                
SK-ES-1 Ewing sarcoma cell line (blue). The LQ model describes the fraction of cells predicted to survive                 
(y-axis) a uniform radiation dose (x-axis) and is characterized by and components for each cell line.          α   β       
For SNU-245 and SK-ES-1, and ,    .14 ( Gy ),  (Gy )α = 0 −1 

β −2 = 0   .45 (Gy ), .02 (Gy )α = 0 −1 β = 0 −2  
respectively. Solid curves indicate the model fit and points denote experimental data (Yard et al., 2016).                
(B) Histogram of AUC values calculated using the computeAUC function in RadioGx. (C) Correlation              
(Pearson R with standard deviation) of radioresponse results produced by the 9-day viability assay and               
the standard clonogenic assay according to the following indicators: SF2, SF4, SF6, SF8, and AUC.               
Primary data were obtained from Yard et al.. 
 
Using the LQ model for each cell line, we calculated the area under the survival curve (AUC) as                  
a summary radioresponse indicator that is independent of a specific dose level. As expected, a               
range of radioresponse profiles were seen (Figures 2B). We next compared AUC and             
dose-specific survival data (SF2, SF4, SF6, and SF8) from the 9-day viability assay with              
clonogenic survival data generated by Yard et al. for a subset of cell lines (Figure 2C and                 
Supplementary Figure 2B-F). We observed high Pearson correlation (R ≥ 0.8) for AUC (n = 15),                
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SF2 (n = 12), SF4 (n = 15), and SF6 (n = 15), but SF8 showed only moderate correlation (R =                     
0.64; n = 11), consistent with prior observations suggesting poor reproducibility of survival             
assays following high doses of ionizing radiation (Nuryadi et al., 2018). Taken together, the              
9-day viability assay provides a robust surrogate for clonogenic survival to ionizing radiation at a               
range of dose levels. Moreover, the LQ model within RadioGx allows for characterization of              
radioresponse and derivation of radioresponse indicators for the vast majority of cancer cell             
lines. 
 
Comparison of radioresponse indicators 
Summary indicators of radioresponse are useful for preclinical investigations. As radioresponse           
data within RadioGx has been fit to the LQ model, there is an opportunity to describe                
radioresponse through imputed survival across a range of dose levels (AUC) or at a specific               
dose level (e.g., SF2). There is currently no consensus regarding the optimal indicator for use               
across studies, with both AUC and SF2 frequently used (Deacon et al., 1984; de Jong et al.,                 
2015; Hall et al., 2014; Torres-Roca et al., 2005). The use of SF2 as a radioresponse indicator                 
has been bolstered by clinical observations that local tumor control following radiotherapy may             
be associated with SF2 measured from ex vivo tumor cells (Torres-Roca and Stevens, 2008).              
Moreover, SF2 is thought to differentiate between radiosensitive and radioresistant cell types            
(Fertil and Malaise, 1985). However, there is currently insufficient evidence to support the             
routine use of SF2 or AUC when probing the molecular determinants of radioresponse.  
 
We compared AUC and SF2 across all cell lines within RadioGx. The values were well               
correlated (ρ = 0.92, 95%CI: 0.90 - 0.93, p=2.2e-16; Figure 3A); the strongest correlations were               
observed among the most radiosensitive cell lines, and the weakest correlations were observed             
among the most radioresistant cell lines, where cell death at higher doses likely contributes to               
the AUC value but has no bearing on SF2 (Figure 3B and Supplementary Figure 3). We then                 
asked whether the biological processes that govern these two radioresponse indicators are the             
same. To achieve this, we correlated the basal level gene expression data from the Cancer Cell                
Line Encyclopedia (CCLE) (Barretina et al., 2012) with the radioresponse indicators (SF2 and             
AUC), and performed gene set enrichment analysis (GSEA) on the gene list ranked based on               
correlation estimates. For an FDR < 5%, 77 transcriptional pathways were enriched using AUC              
as the radioresponse indicator, out of which 41 and 36 pathways were positively and negatively               
correlated with AUC, respectively (Supplementary File 1, Supplementary Figure 4). Similarly,           
using SF2 as the radioresponse indicator, only 38 pathways were enriched, out of which 19               
were positively correlated with the SF2 value. All but three of the pathways enriched using SF2                
were enriched using AUC (Figures 3C and 3D).  
 
The 17 pathways that were significantly correlated with radioresponse using the AUC indicator             
but not the SF2 indicator included biological processes known to impact radioresponse,            
suggesting stronger relevance for AUC. For instance, the Nrf2-mediated oxidative stress           
response pathway was positively associated with AUC but not with SF2 (Supplementary File 1).              
In conditions of oxidative stress, such as following radiation, degradation of Nrf2 is prevented,              
leading to its stabilization and translocation into the nucleus, where it activates expression of a               
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wide variety of downstream antioxidant targets (Espinosa-Diez et al., 2015); this pathway has             
previously been described as contributing to intrinsic radioresistance (Abazeed et al., 2013;            
Singh et al., 2010). In addition, progression through the cell cycle following radiation response is               
a known factor in determining cell survival vs. cell death via mitotic catastrophe. Three pathways               
directly related to cell cycle progression ([1] cell cycle: G2/M DNA damage checkpoint             
regulation , [2] cell cycle: G1/S checkpoint regulation , and [3] cell cycle control of chromosomal              
replication ) were all seen exclusively when using AUC as the radioresponse indicator. Thus, as              
compared with SF2, AUC was able to capture more gene expression pathways putatively             
correlated with radioresponse including pathways with known mechanistic roles in mediating           
cellular radioresponse. Taken together, our analyses reveal AUC and SF2 as related            
radioresponse indicators with AUC providing for a more comprehensive characterization of the            
biological processes underpinning radioresponse. As a result of these findings, we exclusively            
used AUC as the radioresponse indicator for subsequent analyses. 

 
Figure 3: Concordance of SF2 and AUC . (A) Correlation between the radioresponse indicators, SF2              
and AUC, across 498 cell lines. (B) Pearson correlation (with standard deviation) between SF2 and AUC                
across 498 cell lines based on tertiles. (C) Venn diagram illustrating the transcriptional pathways              
associated with radioresponse using SF2 or AUC as the response indicator. (D) False discovery rate               
(FDR) for each transcriptional pathway from (C) illustrating greater levels of statistical significance among              
pathways specific to AUC.   
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Radiobiological modeling to estimate impact of DNA repair on survival 
The LQ model can be used to estimate the dependence of cellular survival on radiotherapy               
fraction size and DNA repair. The and values produced by the LQ model allow for       α    β          
comparisons among distinct cell lines or tumors, and in clinical practice the ratio is used to            /β  α      
predict cellular response to different radiotherapy fractionation schemes.  
 
Using the LQ model, we derived the ratio for cancer cell lines within RadioGx. A wide range       /β  α            
of values were observed (Figure 4A; median = 10.14; interquartile range = 4.49 - 28.07). As /β  α                 
expected, the component was strongly anti-correlated with AUC, whereas the component   α           β   
displayed no significant association with AUC (Figure 4B). This result indicates that for the cell               
line data contained within RadioGx, dependence of cellular survival on radiotherapy fraction size             
is a distinct parameter that describes radioresponse and should therefore be considered            
alongside radiosensitivity (e.g., AUC or SF2) in preclinical investigations.  
 
In order to examine the biological factors that underlie the differences between α, β and AUC,                
we identified transcriptional pathways that were significantly associated with each          
radioresponse metric. For an FDR of 5%, we found 14 pathways commonly associated with all 3                
metrics (Figure 4C; Supplementary File 2). Supporting the biological relevance of these            
pathways, several known components of DNA damage response, signaling, and repair were            
represented among the 14 common pathways. For instance, pathways related to mismatch            
repair in eukaryotes, role of BRCA1 in DNA damage response , and cell cycle control of               
chromosomal replication were each present. These results, which are consistent with           
fundamental tenets of radiobiology, suggest that analysis of large cell line resources within             
RadioGx could be performed to generate novel hypotheses and could contribute to preclinical             
biomarker discovery.  
 

 
 
Figure 4: Distinct biological underpinnings of derived from the LQ model. (A) Histogram of      /β  α          

values obtained from the LQ model across all cell lines. (B) Pearson correlations (with standard/β (Gy)  α                 
deviation) between AUC and the and components of the LQ model. (C) Transcriptional pathways     α   β          
that are significantly associated with AUC, , and/or .α β  
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Modeling the effects of hypoxia on radioresponse 
By integrating radioresponse and molecular data, RadioGx is meant to enable new biological             
insights and predictions. To further demonstrate the utility of RadioGx for this purpose, we next               
extended the radiobiological modeling to incorporate the putative effects of oxygen availability in             
the tumor microenvironment on radioresponse (Daşu et al., 2005).  
 
Molecular oxygen is necessary to mediate the indirect effects of ionizing radiation to exert cell               
kill. Thus, cells become more resistant to radiation under oxygen-deficient conditions. We            
derived adjusted AUC values for the cancer cell lines within RadioGx at a range of oxygen                
partial pressures. As expected, reduced oxygen partial pressure resulted in a predicted increase             
in AUC (Figure 5A). Cell lines from distinct cancer histologies displayed consistent increases in              
AUC under hypoxic conditions (p<2.2e-16 for all, Wilcoxon test), but the magnitude of this              
increase differed between histologies (Figure 5B). The largest and smallest median differences            
in AUC were observed for cancer cell lines from the breast and large intestine, respectively.               
These differences reflect a non-linear relationship between oxygen availability and          
radioresponse that is dependent on ./β  α   

 
 

Figure 5: Integrative analysis of radiobiological model with transcriptomic data and prediction of             
radioresponse under hypoxia. (A) Hypothetical illustration of cancer cell surviving fraction according to             
dose and oxygen partial pressure, as modeled using RadioGx. Solid curves are modeled using Equation               
(3) (Methods). The computed AUC values are 2.41, 2.71, 2.97 for normoxia (160 mmHg), hypoxic               
condition with 10 mmHg, and hypoxic condition with 5 mmHg, respectively. (B) Changes in AUC by tissue                 
type (with minimum of 15 cell lines within RadioGx) under normoxic (160 mmHg) or hypoxic (5 mmHg)                 
conditions, ordered according to median AUC under normoxia. (C) The difference in ranks are shown               
between the strength of univariate association of each gene with AUC under normoxic (160 mmHg) vs.                
hypoxic (5 mm Hg) conditions across cancer cell lines within RadioGx.  
 
Next, we evaluated the univariate association of gene expression levels measured under            
normoxic conditions with AUC values under normoxic and hypoxic conditions. For an FDR <              
5%, the numbers of genes that were significantly associated with radioresponse were 1,825 and              
2,395 under normoxic and hypoxic conditions, respectively (Supplementary File 3). Moreover,           
1,375 genes were negatively associated with radioresponse under normoxic condition but           
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positively associated with radioresponse under hypoxic condition, and 471 genes were           
positively associated with radioresponse under normoxic condition but negatively associated          
with radioresponse under hypoxic condition (Supplementary Figure 5). In keeping with these            
effects, we observed large changes in the ranking of strength of correlation of specific genes               
with radioresponse under oxic and hypoxic conditions (Figure 5C). The gene with the greatest              
change, PPM1A, has been implicated in the regulation of cellular stress response and has              
previously been shown to have hypoxia-specific activity (Heikkinen et al., 2010). WDR70, a             
gene with known roles in DNA double strand break repair (Guo et al., 2016; Zeng et al., 2016),                  
also displayed a large change in this analysis (Figure 5C). One might hypothesize based on our                
results that WDR70 could have previously uncharacterized hypoxia-specific activities and/or          
expression; these findings warrant further investigation. 
 
Tissue specificity of radioresponse and repair 
It is known that distinct tissues and tumor types respond differently to ionizing radiation              
exposure. Intrinsic radiosensitivity has been suggested as a major contributing factor to this             
differential response (Yard et al., 2016). We used RadioGx to interrogate radioresponse within             
tissue types represented by a minimum of 15 cell lines (Figure 6).  
 
To examine the biological factors that may underlie suspected differences in radioresponse            
between tissue types, we identified 281 transcriptional pathways that were significantly           
associated with radioresponse within at least one tissue type (Figure 6A; Supplementary File 4).              
Of these 281 pathways, 123 were statistically significant only in one tissue type (Supplementary              
Figure 6). Overall, there were more statistically significant pathway associations with           
radiosensitivity than radioresistance (total across all tissue types: 437 and 226, respectively).            
Remarkably, we did not find any transcriptional pathways that were statistically significantly            
associated with radioresponse across all tissue types. We also observed variable values           /β  α   
among the tissue types within RadioGx (Figure 6B), suggesting heterogeneity of DNA repair             
and dependence on radiotherapy fraction size. Our findings support the use of tumor-specific as              
opposed to pan-cancer radioresponse biomarkers and radiosensitizing strategies. 
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Figure 6: Tissue specificity of molecular determinants of radioresponse. (A) The tissue types             
(columns) represented by a minimum of 15 cancer cell lines were considered for analysis. A total of 281                  
pathways are depicted (rows) and are annotated by function. Colours designate pathways significantly             
associated with AUC (FDR < 5%). (B) Heterogeneity of ratios across cancer cell lines derived from         /β  α         
distinct tissue types ordered according to median values. 
 
Common dependencies of therapeutic effects among radiotherapy and drugs 
Datasets within RadioGx are standardized with regard to cell line annotations such that             
integrated analyses using other existing datasets can be easily conducted. For instance, our             
previously published tool, PharmacoGx (Smirnov et al., 2016), contains pharmacogenomic data           
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from multiple studies and enables meta-analysis of pharmacogenomic data. We wished to            
identify categories of drugs with cytotoxic effects that correlate with radioresponse, so we             
interrogated RadioGx to compare cellular responses to ionizing radiation and chemotherapeutic           
agents (n=545 distinct drugs). Drug responses were obtained from 480 cancer cell lines from              
the CTRPv2 pharmacogenomic dataset (Supplementary Table 1) that were in common between            
the datasets. We computed the correlation between drug response and radiation response            
across the cancer cell lines (Supplementary Figure 7) and then classified drugs according to              
pharmacological categories (i.e., by cellular targets and/or mechanisms of action). Drugs           
targeting the cytoskeleton, DNA replication, and mitosis displayed the strongest correlations           
with radioresponse (FDR < 5%) (Figure 7). Thymidylate synthetase inhibitors such as the known              
radiosensitizing drug, fluorourocil, also displayed cytotoxic effects that correlated with          
radioresponse but did not reach statistical significance. In addition to these anticipated and             
largely confirmatory findings, we also observed unexpected negative associations between          
radioresponse and cytotoxic effects of drugs targeting numerous cell signaling pathways (i.e.,            
PI3K signalling, ERK MAPK signaling, WNT signalling, EGFR signalling, ABL signalling),           
although these were not statistically significant. 
 

 
 
Figure 7: Identification of drugs and pharmacological classes with cytotoxic effects on cancer cell              
lines that correlate with radioresponse. Pharmacological enrichment analysis using radiation AUC as            
the radioresponse indicator. Pharmacological classes with statistically significant associations with          
radioresponse in cancer cell lines are indicated. 
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DISCUSSION 
 
To date, the paradigm of precision medicine has primarily been applied to advanced incurable              
cancers. For early stage curable cancers for which radiotherapy is used with curative intent,              
there remains a need for more precise biologically-tailored radiotherapy delivery. For instance,            
there are currently no clinically implemented molecular biomarkers that are predictive of            
radioresponse. This also extends to predictive insights into the response of tumors to other              
therapeutic agents that may be administered in combination with radiotherapy. Although           
molecular diagnostic tools are making their way into clinical practice in other settings, the lack of                
equivalent molecular indicators in the field of radiobiology has impeded translation in this             
domain (Baumann et al., 2016; Bibault et al., 2013; Bristow et al., 2018).  
 
Recently, large radioresponse and genomic datasets have been generated from hundreds of            
cancer cell lines, providing an opportunity to address this unmet need. We have developed              
RadioGx, an open-source software package that enables users to perform integrative analysis            
of radiogenomic datasets for preclinical evaluation of radioresponse determinants. RadioGx          
standardizes published nomenclature and annotations between datasets and integrates         
dose-response and molecular data.  
 
We used RadioGx to evaluate the appropriateness of the 9-day viability assay for assessing              
radioresponse, the robustness of distinct radioresponse indicators, and the utility of applying            
established radiobiological models to the data for novel hypothesis generation. We confirmed            
the findings from Yard et al. that the 9-day viability assay, which is amenable to high-throughput                
processing and analysis, largely recapitulates the results of the more tedious clonogenic assay.             
We note that some prior putative intrinsic radiosensitivity gene expression signatures that were             
generated using cell line clonogenic survival data have failed to validate using independent sets              
of cancer cell lines (Bratman et al., 2017; Hall et al., 2014), highlighting the need for robust                 
reproducible methodologies for future studies. Moreover, we found that AUC derived from the             
LQ model might provide a more complete characterization of the biological processes            
underpinning radioresponse as compared with the dose-specific SF2 indicator, particularly for           
relatively radioresistant cell types. Based on our findings, we suggest that AUC be the              
radioresponse indicator of choice for preclinical studies. While we found that the LQ model fit               
the radioresponse data for the vast majority of cancer cell lines within RadioGx, a small subset                
were not amenable to LQ modeling and should be excluded or used with caution in future                
radiogenomic analyses. 
 
A major hurdle in the development of large-scale radioresponse datasets has been the technical              
and throughput challenges associated with the clonogenic assay. We demonstrated how           
existing data within RadioGx can be used to generate hypotheses and make predictions to              
inform future investigations. For instance, recognizing a dearth of large-scale radioresponse           
data under hypoxic conditions, we integrated radiobiological modeling with gene expression           
data from RadioGx, which allowed us to predict radioresponse under hypoxic conditions. Our             
findings suggest that the change in radioresponse under hypoxia is tissue-specific and that             
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specific genes are either differentially associated with radioresponse under normoxic and           
hypoxic conditions or may have expression levels or activity that are regulated by oxygen              
tension; these specific hypotheses generated by our analysis through RadioGx could be tested             
experimentally in future studies. In addition, by combining RadioGx with an existing            
pharmacogenomics analysis platform, we uncovered drugs with cytotoxic effects that are           
correlated or anti-correlated with radioresponse, suggestive of genomic/transcriptomic        
dependencies related to their mechanisms of action. We were able to confirm drug classes with               
therapeutic effects that overlap with ionizing radiation (e.g., mitotic inhibitors); moreover, this            
analysis proposed novel hypotheses regarding possible anticorrelated therapeutic effects with          
drugs targeting a number of cellular signaling pathways such as ABL and EGFR. Future studies               
may seek to examine whether members of these drug classes may make rational combination              
therapies with radiation as a result of reduced additive toxicity. 
 
In summary, this study demonstrates the impact of combining radiogenomic datasets with            
established radiobiological models and other existing pharmacogenomic data. Future         
applications of RadioGx may include generation of biomarkers for intrinsic radiosensitivity and            
selection of novel combination therapies for preclinical testing. Thus, we envision that RadioGx             
will help to accelerate preclinical radiotherapeutic discovery pipelines and guide the selection of             
appropriate biological endpoints. 
 
 
METHODS 
 
Curation of dose-response and transcriptomic data 
One of the major hurdles in genomic studies involving cell lines is the lack of standardized                
identifiers for cell lines. In order to overcome this, we assigned a unique identifier to each cell                 
line and radiation therapy, and matched entities with the same unique identifier throughout the              
implementation. Moreover, there is a lack of standardization in annotating genomics features,            
i.e. annotating probe expression to gene expression across various microarray datasets. Hence,            
we have used the annotations from the BrainArray database, which reflect recent annotation of              
the human genome to perform the mapping from microarray probe sets to genomic expression              
data.  
 
We implemented a RadioSet (also known as RSet) in the RadioGx package. This class is a data                 
container storing radiation dose-response and molecular data along with experimental metadata           
(detailed structure provided in the Supplementary Materials). In addition, this class also enables             
efficient implementation of curated annotations for cell lines, and molecular features, which            
facilitates comparisons between across different datasets. We have implemented a unique set            
of functions that facilitates users to analyze radiogenomic datasets. One of the primary functions              
is the downloadRSet that allows users to download the RadiationSet (RSet) object. We have              
also incorporated a function, linearQuadraticModel , which plots the radiation cell survival curve            
using the standard radio-biological formalism, the linear-quadratic (LQ) model (see below). This            
function considers normal distribution to fit the errors as a default parameter, but the users also                
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have an option to choose Cauchy distribution. For a given dataset by the end user, this function                 
fits the dataset with the LQ model, and returns radiobiological parameters alpha and beta along               
with the goodness of fit. To extract several features from this curve, we have implemented a                
function computeAUC, which enables users to compute area under the survival curve (AUC),             
computeSF2 function, which returns the fraction of cells that survive a radiation dose of 2Gy,               
computeD10  function, which returns the radiation dose at which only 10% of cells survive.  
 
Supplementary Table 1 presents the sensitivity and transcriptomic datasets that are used in this              
study, and the functionality of the RadioGx package is presented in Table 1. 
 

Function  Summary 

linearquadraticmodel Fit the dose response data using LQ model 

computeAUC Calculates the AUC of the LQ model fit 

computeD10 Calculates the dose at which 10% of cells survive 

computeSF2 Computes the SF2 for a given dose response data 

doseresponsecurve Plots the dose response curve 

 
Table 1: Functionality of RadioGx package. 
 
Radiobiological Model 
A radiobiological model is a formulation that is used to allow comparisons of various clinically               
relevant radiotherapy treatment regimens. The most commonly used model in current clinical            
practice is the LQ model (Brenner, 2008; Dale, 1985; Fowler, 1989), which assumes that there               
are two components to cell killing induced by radiation: one that is proportional to dose (linear,                

) and another that is proportional to the square of the dose (quadratic, ). The LQ model α               β     
describes the fraction of cells that survived (S) a uniform dose D (Gy); the survival fraction of                 
cells after irradiating with an acute dose D is given by: 

        xp(− D D )S = e α − β 2  
 (1) 

 
The ratio varies by the cell population or tissue that is being irradiated, and reflects the  α

β                

response to different fractionation schemes. Cell populations or tissues with a high value are              
less sensitive to the effects of fractionation than those with a low value.  
 
Radiobiological Modelling of Hypoxia 
The LQ model can also be used to model the effect of hypoxia. Hypoxia is a hallmark of many                   
solid malignant tumors and influences tumor progression, therapy resistance, development of           
metastases, clinical behavior, and response to conventional treatments like radiotherapy (Hall           
and Giaccia, 2012). The survival fraction of cells due to a given radiotherapy dose is given by                 

15  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449793doi: bioRxiv preprint 

https://paperpile.com/c/AXwsnE/j63u+tBaI+0eYt
https://paperpile.com/c/AXwsnE/WX8gN
https://paperpile.com/c/AXwsnE/WX8gN
https://doi.org/10.1101/449793


Equation (1) under well-oxygenated, or normoxic conditions. However, the surviving fraction of            
cells may vary depending on the amount of oxygen concentration in the tumor, as cells in the                 
hypoxic region are considered to be more resistant to radiation therapy. This hypoxic effect can               
be incorporated into the LQ model using the, “Oxygen Enhancement Ratio (OER)”, which can              
be normalized to yield the “Oxygen Modification Factor (OMF)” (Alper and Howard-Flanders,            
1956; Daşu et al., 2005; Titz and Jeraj, 2008; Wouters and Martin Brown, 1997). OMF is defined                 
as follows: 

  (2)MF   O =  
OERm

OER(O )2 =  1
OERm O +K2 m

(OER O )+K
m* 2 m  

 
where is the oxygen concentration in the system in mmHg, mm Hg, defined as the O2           Km = 3      
oxygen at which half of the ratio is achieved, and is the maximum value at           OERm = 3      
well-oxygenated condition. Therefore, the LQ model given in Equation (1) can be modified to              
include oxygen concentration as follows: 
 

       xp(− OMFD (OMFD) )S = e α − β 2  
 (3) 

 
In general, the OER can be a function of radiation dose. Some studies have suggested that the                 
maximal oxygen enhancement varies in the range of 2.5-3 with differences in radiation dosage              
(Freyer et al., 1991; Palcic and Skarsgard, 1984; Skarsgard and Harrison, 1991). This can be               
simply included into the revised LQ model by considering different OERs for the parameters α               
and β, that is, and . However, since we consider the normalized OER (or, OMF),    OERα      OERβ           
the introduction of these separate terms will not produce a significant difference in the final               
survival fraction. Thus, we assume in our mathematical framework. We assume      OERα = OERβ       
that the system is moderately hypoxic, i.e. approximately 5 mm HG for the present study. 
 
Association with drug response and Pharmacological Enrichment Analysis 
We used CTRPv2 dataset in PharmacoGx package (version 1.10.3) (Smirnov et al., 2016) that              
has 545 drugs to compute the association between radioresponse and drug response (defined             
by the Area under the curve of the Hill function). We also performed pharmacological              
enrichment analysis, an adaptation of the GSEA methodology. For this, we computed the             
correlation of radioresponse with each drug response, and a pharmacological set represents a             
gene set. Similar to the GSEA method, a running sum is calculated, starting with the first                
compound-level statistic to the last. The sum is increased if a compound-level statistic belongs              
to the pharmacological class of interest, otherwise, the sum is decreased. The enrichment score              
of the pharmacological class of interest is defined as the maximum deviation from zero of the                
running sum (Seashore-Ludlow et al., 2015) (Supplementary Figure 8). 
 
Pathway Analysis 
The pathway enrichment analysis on the gene expression data is carried out using the gene set                
enrichment analysis (GSEA) method (Subramanian et al., 2005) with pathways defined by            
QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City,        
www.qiagen.com/ingenuity). Genes were ranked based on their coefficient of correlation          
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between the gene expressions and the IHC scores (core density or stromal retention ratio).              
GSEA was then used to compute the enrichment score for each pathway with statistical              
significance calculated using a permutation test (10,000 permutations) as implemented in the            
piano package (Väremo et al., 2013). Nominal p-values obtained for each pathway are             
corrected for multiple testing using the false discovery approach (FDR) (Benjamini and            
Hochberg, 1995). 
 
Research Reproducibility 
RadioGx is implemented in R. The code, documentation, and detailed tutorial describing how to              
run our pipeline and reproduce our analysis results are open-source and publicly available             
through the RadioGx GitHub repository (https://github.com/bhklab/RadioGx). A virtual machine         
reproducing the full software environment is available on Code Ocean. Our study complies with              
the guidelines outlined in (Gentleman, 2005; Sandve et al., 2013; Stroup et al., 2000). All the                
data are available in the form of RSet objects with associated digital object identifiers (DOI).  
 
 
ACKNOWLEDGMENTS 
 
This work was supported by a grant to SVB from the V Foundation for Cancer Research                
(V2018-010). SVB and BHK are supported by the Gattuso-Slaight Personalized Cancer           
Medicine Fund at the Princess Margaret Cancer Centre. ML is supported by a fellowship from               
STARS21. We also gratefully acknowledge the support from the Princess Margaret Cancer            
Foundation and the Princess Margaret Cancer Center Head & Neck Translational Program, with             
philanthropic funds from the Wharton Family, Joe’s Team, and Gordon Tozer. 
 
 
COMPETING INTERESTS 
 
SVB is a co-inventor on a patent relating to circulating tumor DNA detection technology that has 
been licensed to Roche Molecular Diagnostics. BHK is a co-inventor on four patents related to 
the prediction of survival and drug response in breast cancer patients.  All other authors declare 
no competing interests. 
 
 
  

17  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449793doi: bioRxiv preprint 

https://paperpile.com/c/AXwsnE/sZyp
https://paperpile.com/c/AXwsnE/mqGq
https://paperpile.com/c/AXwsnE/mqGq
https://github.com/bhklab/RadioGx
https://paperpile.com/c/AXwsnE/XDBuU+2ZUJD+GI6ng
https://doi.org/10.1101/449793


REFERENCES 

Abazeed ME, Adams DJ, Hurov KE, Tamayo P, Creighton CJ, Sonkin D, Giacomelli AO, Du C, 
Fries DF, Wong K-K, Mesirov JP, Loeffler JS, Schreiber SL, Hammerman PS, Meyerson M. 
2013. Integrative radiogenomic profiling of squamous cell lung cancer. Cancer Res 
73 :6289–6298. 

Alper T, Howard-Flanders P. 1956. Role of oxygen in modifying the radiosensitivity of E. coli B. 
Nature  178 :978–979. 

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, 
Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, 
Meltzer J, Korejwa A, Jané-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, 
Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones 
MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, 
Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie 
K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, 
Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA. 2012. The Cancer Cell 
Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 
483 :603–607. 

Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, 
Bortfeld T. 2016. Radiation oncology in the era of precision medicine. Nat Rev Cancer 
16 :234–249. 

Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol  57 :289–300. 

Bentzen SM, Overgaard J. 1994. Patient-to-Patient Variability in the Expression of 
Radiation-Induced Normal Tissue Injury. Semin Radiat Oncol  4 :68–80. 

Bernier J, Hall EJ, Giaccia A. 2004. Radiation oncology: a century of achievements. Nat Rev 
Cancer 4 :737–747. 

Bibault J-E, Fumagalli I, Ferté C, Chargari C, Soria J-C, Deutsch E. 2013. Personalized 
radiation therapy and biomarker-driven treatment strategies: a systematic review. Cancer 
Metastasis Rev 32 :479–492. 

Bratman SV, Milosevic MF, Liu F-F, Haibe-Kains B. 2017. Genomic biomarkers for precision 
radiation medicine. Lancet Oncol  18 :e238. 

Brenner DJ. 2008. The Linear-Quadratic Model Is an Appropriate Methodology for Determining 
Isoeffective Doses at Large Doses Per Fraction. Semin Radiat Oncol  18 :234–239. 

Bristow RG, Alexander B, Baumann M, Bratman SV, Brown JM, Camphausen K, Choyke P, 
Citrin D, Contessa JN, Dicker A, Kirsch DG, Krause M, Le Q-T, Milosevic M, Morris ZS, 
Sarkaria JN, Sondel PM, Tran PT, Wilson GD, Willers H, Wong RKS, Harari PM. 2018. 
Combining precision radiotherapy with molecular targeting and immunomodulatory agents: 
a guideline by the American Society for Radiation Oncology. Lancet Oncol  19 :e240–e251. 

Brown JM, Wouters BG. 1999. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. 
Cancer Res 59 :1391–1399. 

Dale RG. 1985. The application of the linear-quadratic dose-effect equation to fractionated and 
protracted radiotherapy. Br J Radiol  58 :515–528. 

Daşu A, Toma-Daşu I, Karlsson M. 2005. The effects of hypoxia on the theoretical modelling of 
tumour control probability. Acta Oncol  44 :563–571. 

Deacon J, Peckham MJ, Steel GG. 1984. The radioresponsiveness of human tumours and the 
initial slope of the cell survival curve. Radiother Oncol  2 :317–323. 

de Jong MC, Ten Hoeve JJ, Grénman R, Wessels LF, Kerkhoven R, Te Riele H, van den Brekel 

18  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449793doi: bioRxiv preprint 

http://paperpile.com/b/AXwsnE/23ni
http://paperpile.com/b/AXwsnE/23ni
http://paperpile.com/b/AXwsnE/23ni
http://paperpile.com/b/AXwsnE/23ni
http://paperpile.com/b/AXwsnE/23ni
http://paperpile.com/b/AXwsnE/23ni
http://paperpile.com/b/AXwsnE/23ni
http://paperpile.com/b/AXwsnE/ih2L
http://paperpile.com/b/AXwsnE/ih2L
http://paperpile.com/b/AXwsnE/ih2L
http://paperpile.com/b/AXwsnE/ih2L
http://paperpile.com/b/AXwsnE/ih2L
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/O37dT
http://paperpile.com/b/AXwsnE/tAZP
http://paperpile.com/b/AXwsnE/tAZP
http://paperpile.com/b/AXwsnE/tAZP
http://paperpile.com/b/AXwsnE/tAZP
http://paperpile.com/b/AXwsnE/tAZP
http://paperpile.com/b/AXwsnE/tAZP
http://paperpile.com/b/AXwsnE/mqGq
http://paperpile.com/b/AXwsnE/mqGq
http://paperpile.com/b/AXwsnE/mqGq
http://paperpile.com/b/AXwsnE/mqGq
http://paperpile.com/b/AXwsnE/mqGq
http://paperpile.com/b/AXwsnE/mqGq
http://paperpile.com/b/AXwsnE/JVij
http://paperpile.com/b/AXwsnE/JVij
http://paperpile.com/b/AXwsnE/JVij
http://paperpile.com/b/AXwsnE/JVij
http://paperpile.com/b/AXwsnE/JVij
http://paperpile.com/b/AXwsnE/JVij
http://paperpile.com/b/AXwsnE/5hye
http://paperpile.com/b/AXwsnE/5hye
http://paperpile.com/b/AXwsnE/5hye
http://paperpile.com/b/AXwsnE/5hye
http://paperpile.com/b/AXwsnE/5hye
http://paperpile.com/b/AXwsnE/5hye
http://paperpile.com/b/AXwsnE/1JTz0
http://paperpile.com/b/AXwsnE/1JTz0
http://paperpile.com/b/AXwsnE/1JTz0
http://paperpile.com/b/AXwsnE/1JTz0
http://paperpile.com/b/AXwsnE/1JTz0
http://paperpile.com/b/AXwsnE/1JTz0
http://paperpile.com/b/AXwsnE/1JTz0
http://paperpile.com/b/AXwsnE/Kh1A
http://paperpile.com/b/AXwsnE/Kh1A
http://paperpile.com/b/AXwsnE/Kh1A
http://paperpile.com/b/AXwsnE/Kh1A
http://paperpile.com/b/AXwsnE/Kh1A
http://paperpile.com/b/AXwsnE/Kh1A
http://paperpile.com/b/AXwsnE/0eYt
http://paperpile.com/b/AXwsnE/0eYt
http://paperpile.com/b/AXwsnE/0eYt
http://paperpile.com/b/AXwsnE/0eYt
http://paperpile.com/b/AXwsnE/0eYt
http://paperpile.com/b/AXwsnE/0eYt
http://paperpile.com/b/AXwsnE/SBgh
http://paperpile.com/b/AXwsnE/SBgh
http://paperpile.com/b/AXwsnE/SBgh
http://paperpile.com/b/AXwsnE/SBgh
http://paperpile.com/b/AXwsnE/SBgh
http://paperpile.com/b/AXwsnE/SBgh
http://paperpile.com/b/AXwsnE/SBgh
http://paperpile.com/b/AXwsnE/SBgh
http://paperpile.com/b/AXwsnE/SBgh
http://paperpile.com/b/AXwsnE/23FX
http://paperpile.com/b/AXwsnE/23FX
http://paperpile.com/b/AXwsnE/23FX
http://paperpile.com/b/AXwsnE/23FX
http://paperpile.com/b/AXwsnE/23FX
http://paperpile.com/b/AXwsnE/j63u
http://paperpile.com/b/AXwsnE/j63u
http://paperpile.com/b/AXwsnE/j63u
http://paperpile.com/b/AXwsnE/j63u
http://paperpile.com/b/AXwsnE/j63u
http://paperpile.com/b/AXwsnE/j63u
http://paperpile.com/b/AXwsnE/CH5H
http://paperpile.com/b/AXwsnE/CH5H
http://paperpile.com/b/AXwsnE/CH5H
http://paperpile.com/b/AXwsnE/CH5H
http://paperpile.com/b/AXwsnE/CH5H
http://paperpile.com/b/AXwsnE/CH5H
http://paperpile.com/b/AXwsnE/yY78
http://paperpile.com/b/AXwsnE/yY78
http://paperpile.com/b/AXwsnE/yY78
http://paperpile.com/b/AXwsnE/yY78
http://paperpile.com/b/AXwsnE/yY78
http://paperpile.com/b/AXwsnE/yY78
http://paperpile.com/b/AXwsnE/prTk
https://doi.org/10.1101/449793


MWM, Verheij M, Begg AC. 2015. Pretreatment microRNA Expression Impacting on 
Epithelial-to-Mesenchymal Transition Predicts Intrinsic Radiosensitivity in Head and Neck 
Cancer Cell Lines and Patients. Clin Cancer Res 21 :5630–5638. 

Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas 
S. 2015. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 
6 :183–197. 

Fertil B, Malaise EP. 1985. Intrinsic radiosensitivity of human cell lines is correlated with 
radioresponsiveness of human tumors: analysis of 101 published survival curves. Int J 
Radiat Oncol Biol Phys 11 :1699–1707. 

Fowler JF. 1989. The linear-quadratic formula and progress in fractionated radiotherapy. Br J 
Radiol  62 :679–694. 

Freyer JP, Jarrett K, Carpenter S, Raju MR. 1991. Oxygen enhancement ratio as a function of 
dose and cell cycle phase for radiation-resistant and sensitive CHO cells. Radiat Res 
127 :297–307. 

Gentleman R. 2005. Reproducible research: a bioinformatics case study. Stat Appl Genet Mol 
Biol  4 :Article2. 

Guo L-D, Wang D, Yang F, Liang Y-J, Yang X-Q, Qin Y-Y, Ren L-F, Zeng M, Tang Z-Z, Wang 
X-J, Wang S, Liu C, Lou J-Y, Chen J. 2016. [Functional Analysis of DNA Damage Repair 
Factor WDR70 and Its Mutation in Ovarian Cancer]. Sichuan Da Xue Xue Bao Yi Xue Ban 
47 :501–506. 

Hall EJ, Giaccia AJ. 2012. Radiobiology for the Radiologist. Lippincott Williams & Wilkins. 
Hall JS, Iype R, Senra J, Taylor J, Armenoult L, Oguejiofor K, Li Y, Stratford I, Stern PL, 

O’Connor MJ, Miller CJ, West CML. 2014. Investigation of radiosensitivity gene signatures 
in cancer cell lines. PLoS One 9 :e86329. 

Heikkinen PT, Nummela M, Leivonen S-K, Westermarck J, Hill CS, Kähäri V-M, Jaakkola PM. 
2010. Hypoxia-activated Smad3-specific dephosphorylation by PP2A. J Biol Chem 
285 :3740–3749. 

Kozin SV, Niemierko A, Huang P, Silva J, Doppke KP, Suit HD. 2008. Inter- and intramouse 
heterogeneity of radiation response for a growing paired organ. Radiat Res 170 :264–267. 

Krause M, Gurtner K, Deuse Y, Baumann M. 2009. Heterogeneity of tumour response to 
combined radiotherapy and EGFR inhibitors: differences between antibodies and TK 
inhibitors. Int J Radiat Biol  85 :943–954. 

Nuryadi E, Mayang Permata TB, Komatsu S, Oike T, Nakano T. 2018. Inter-assay precision of 
clonogenic assays for radiosensitivity in cancer cell line A549. Oncotarget 9 :13706–13712. 

Palcic B, Skarsgard LD. 1984. Reduced oxygen enhancement ratio at low doses of ionizing 
radiation. Radiat Res 100 :328–339. 

Puck TT, Marcus PI. 1956. Action of x-rays on mammalian cells. J Exp Med  103 :653–666. 
Sandve GK, Nekrutenko A, Taylor J, Hovig E. 2013. Ten simple rules for reproducible 

computational research. PLoS Comput Biol  9 :e1003285. 
Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, Jones V, Bodycombe 

NE, Soule CK, Gould J, Alexander B, Li A, Montgomery P, Wawer MJ, Kuru N, Kotz JD, -Y. 
Hon CS, Munoz B, Liefeld T, Dan ik V, Bittker JA, Palmer M, Bradner JE, Shamji AF, 
Clemons PA, Schreiber SL. 2015. Harnessing Connectivity in a Large-Scale 
Small-Molecule Sensitivity Dataset. Cancer Discov 5 :1210–1223. 

Singh A, Bodas M, Wakabayashi N, Bunz F, Biswal S. 2010. Gain of Nrf2 function in 
non-small-cell lung cancer cells confers radioresistance. Antioxid Redox Signal 
13 :1627–1637. 

Skarsgard LD, Harrison I. 1991. Dose dependence of the oxygen enhancement ratio (OER) in 

19  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449793doi: bioRxiv preprint 

http://paperpile.com/b/AXwsnE/prTk
http://paperpile.com/b/AXwsnE/prTk
http://paperpile.com/b/AXwsnE/prTk
http://paperpile.com/b/AXwsnE/prTk
http://paperpile.com/b/AXwsnE/prTk
http://paperpile.com/b/AXwsnE/prTk
http://paperpile.com/b/AXwsnE/prTk
http://paperpile.com/b/AXwsnE/9sXi
http://paperpile.com/b/AXwsnE/9sXi
http://paperpile.com/b/AXwsnE/9sXi
http://paperpile.com/b/AXwsnE/9sXi
http://paperpile.com/b/AXwsnE/9sXi
http://paperpile.com/b/AXwsnE/9sXi
http://paperpile.com/b/AXwsnE/zmUCm
http://paperpile.com/b/AXwsnE/zmUCm
http://paperpile.com/b/AXwsnE/zmUCm
http://paperpile.com/b/AXwsnE/zmUCm
http://paperpile.com/b/AXwsnE/zmUCm
http://paperpile.com/b/AXwsnE/zmUCm
http://paperpile.com/b/AXwsnE/zmUCm
http://paperpile.com/b/AXwsnE/tBaI
http://paperpile.com/b/AXwsnE/tBaI
http://paperpile.com/b/AXwsnE/tBaI
http://paperpile.com/b/AXwsnE/tBaI
http://paperpile.com/b/AXwsnE/tBaI
http://paperpile.com/b/AXwsnE/tBaI
http://paperpile.com/b/AXwsnE/th5U
http://paperpile.com/b/AXwsnE/th5U
http://paperpile.com/b/AXwsnE/th5U
http://paperpile.com/b/AXwsnE/th5U
http://paperpile.com/b/AXwsnE/th5U
http://paperpile.com/b/AXwsnE/th5U
http://paperpile.com/b/AXwsnE/2ZUJD
http://paperpile.com/b/AXwsnE/2ZUJD
http://paperpile.com/b/AXwsnE/2ZUJD
http://paperpile.com/b/AXwsnE/2ZUJD
http://paperpile.com/b/AXwsnE/2ZUJD
http://paperpile.com/b/AXwsnE/2ZUJD
http://paperpile.com/b/AXwsnE/osFB
http://paperpile.com/b/AXwsnE/osFB
http://paperpile.com/b/AXwsnE/osFB
http://paperpile.com/b/AXwsnE/osFB
http://paperpile.com/b/AXwsnE/osFB
http://paperpile.com/b/AXwsnE/osFB
http://paperpile.com/b/AXwsnE/osFB
http://paperpile.com/b/AXwsnE/WX8gN
http://paperpile.com/b/AXwsnE/4j0o
http://paperpile.com/b/AXwsnE/4j0o
http://paperpile.com/b/AXwsnE/4j0o
http://paperpile.com/b/AXwsnE/4j0o
http://paperpile.com/b/AXwsnE/4j0o
http://paperpile.com/b/AXwsnE/4j0o
http://paperpile.com/b/AXwsnE/4j0o
http://paperpile.com/b/AXwsnE/Dq0F
http://paperpile.com/b/AXwsnE/Dq0F
http://paperpile.com/b/AXwsnE/Dq0F
http://paperpile.com/b/AXwsnE/Dq0F
http://paperpile.com/b/AXwsnE/Dq0F
http://paperpile.com/b/AXwsnE/Dq0F
http://paperpile.com/b/AXwsnE/8RZm
http://paperpile.com/b/AXwsnE/8RZm
http://paperpile.com/b/AXwsnE/8RZm
http://paperpile.com/b/AXwsnE/8RZm
http://paperpile.com/b/AXwsnE/8RZm
http://paperpile.com/b/AXwsnE/8RZm
http://paperpile.com/b/AXwsnE/OMwb
http://paperpile.com/b/AXwsnE/OMwb
http://paperpile.com/b/AXwsnE/OMwb
http://paperpile.com/b/AXwsnE/OMwb
http://paperpile.com/b/AXwsnE/OMwb
http://paperpile.com/b/AXwsnE/OMwb
http://paperpile.com/b/AXwsnE/OMwb
http://paperpile.com/b/AXwsnE/Yq0F
http://paperpile.com/b/AXwsnE/Yq0F
http://paperpile.com/b/AXwsnE/Yq0F
http://paperpile.com/b/AXwsnE/Yq0F
http://paperpile.com/b/AXwsnE/Yq0F
http://paperpile.com/b/AXwsnE/Yq0F
http://paperpile.com/b/AXwsnE/DkIF
http://paperpile.com/b/AXwsnE/DkIF
http://paperpile.com/b/AXwsnE/DkIF
http://paperpile.com/b/AXwsnE/DkIF
http://paperpile.com/b/AXwsnE/DkIF
http://paperpile.com/b/AXwsnE/DkIF
http://paperpile.com/b/AXwsnE/ieMN
http://paperpile.com/b/AXwsnE/ieMN
http://paperpile.com/b/AXwsnE/ieMN
http://paperpile.com/b/AXwsnE/ieMN
http://paperpile.com/b/AXwsnE/ieMN
http://paperpile.com/b/AXwsnE/XDBuU
http://paperpile.com/b/AXwsnE/XDBuU
http://paperpile.com/b/AXwsnE/XDBuU
http://paperpile.com/b/AXwsnE/XDBuU
http://paperpile.com/b/AXwsnE/XDBuU
http://paperpile.com/b/AXwsnE/XDBuU
http://paperpile.com/b/AXwsnE/KEWV
http://paperpile.com/b/AXwsnE/KEWV
http://paperpile.com/b/AXwsnE/KEWV
http://paperpile.com/b/AXwsnE/KEWV
http://paperpile.com/b/AXwsnE/KEWV
http://paperpile.com/b/AXwsnE/KEWV
http://paperpile.com/b/AXwsnE/KEWV
http://paperpile.com/b/AXwsnE/KEWV
http://paperpile.com/b/AXwsnE/KEWV
http://paperpile.com/b/AXwsnE/OKI7
http://paperpile.com/b/AXwsnE/OKI7
http://paperpile.com/b/AXwsnE/OKI7
http://paperpile.com/b/AXwsnE/OKI7
http://paperpile.com/b/AXwsnE/OKI7
http://paperpile.com/b/AXwsnE/OKI7
http://paperpile.com/b/AXwsnE/mNQn
https://doi.org/10.1101/449793


radiation inactivation of Chinese hamster V79-171 cells. Radiat Res 127 :243–247. 
Smirnov P, Safikhani Z, El-Hachem N, Wang D, She A, Olsen C, Freeman M, Selby H, Gendoo 

DMA, Grossmann P, Beck AH, Aerts HJWL, Lupien M, Goldenberg A, Haibe-Kains B. 
2016. PharmacoGx: an R package for analysis of large pharmacogenomic datasets. 
Bioinformatics 32 :1244–1246. 

Steel GG, McMillan TJ, Peacock JH. 1989. The radiobiology of human cells and tissues. In vitro 
radiosensitivity. The picture has changed in the 1980s. Int J Radiat Biol  56 :525–537. 

Stroup DF, Berlin JA, Morton SC, Olkin I, David Williamson G, Rennie D, Moher D, Becker BJ, 
Sipe TA, Thacker SB, for the Meta-analysis Of Observational Studies in Epidemiology 
(MOOSE) Group. 2000. Meta-analysis of Observational Studies in Epidemiology: A 
Proposal for Reporting. JAMA 283 :2008–2012. 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, 
Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005. Gene set enrichment analysis: a 
knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl 
Acad Sci U S A 102 :15545–15550. 

Titz B, Jeraj R. 2008. An imaging-based tumour growth and treatment response model: 
investigating the effect of tumour oxygenation on radiation therapy response. Phys Med Biol 
53 :4471–4488. 

Torres-Roca JF, Eschrich S, Zhao H, Bloom G, Sung J, McCarthy S, Cantor AB, Scuto A, Li C, 
Zhang S, Jove R, Yeatman T. 2005. Prediction of radiation sensitivity using a gene 
expression classifier. Cancer Res 65 :7169–7176. 

Torres-Roca JF, Stevens CW. 2008. Predicting response to clinical radiotherapy: past, present, 
and future directions. Cancer Control  15 :151–156. 

Väremo L, Nielsen J, Nookaew I. 2013. Enriching the gene set analysis of genome-wide data by 
incorporating directionality of gene expression and combining statistical hypotheses and 
methods. Nucleic Acids Res 41 :4378–4391. 

Verellen D, De Ridder M, Linthout N, Tournel K, Soete G, Storme G. 2007. Innovations in 
image-guided radiotherapy. Nat Rev Cancer 71–71. 

West CM, Davidson SE, Roberts SA, Hunter RD. 1993. Intrinsic radiosensitivity and prediction 
of patient response to radiotherapy for carcinoma of the cervix. Br J Cancer 68 :819–823. 

Wouters BG, Martin Brown J. 1997. Cells at Intermediate Oxygen Levels Can Be More 
Important Than the “Hypoxic Fraction” in Determining Tumor Response to Fractionated 
Radiotherapy. Radiat Res 147 :541. 

Yard B, Chie EK, Adams DJ, Peacock C, Abazeed ME. 2015. Radiotherapy in the Era of 
Precision Medicine. Semin Radiat Oncol  25 :227–236. 

Yard BD, Adams DJ, Chie EK, Tamayo P, Battaglia JS, Gopal P, Rogacki K, Pearson BE, 
Phillips J, Raymond DP, Pennell NA, Almeida F, Cheah JH, Clemons PA, Shamji A, 
Peacock CD, Schreiber SL, Hammerman PS, Abazeed ME. 2016. A genetic basis for the 
variation in the vulnerability of cancer to DNA damage. Nat Commun 7 :11428. 

Zeng M, Ren L, Mizuno K ’ichi, Nestoras K, Wang H, Tang Z, Guo L, Kong D, Hu Q, He Q, Du 
L, Carr AM, Liu C. 2016. CRL4(Wdr70) regulates H2B monoubiquitination and facilitates 
Exo1-dependent resection. Nat Commun  7 :11364. 

 

20  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449793doi: bioRxiv preprint 

http://paperpile.com/b/AXwsnE/mNQn
http://paperpile.com/b/AXwsnE/mNQn
http://paperpile.com/b/AXwsnE/mNQn
http://paperpile.com/b/AXwsnE/mNQn
http://paperpile.com/b/AXwsnE/mNQn
http://paperpile.com/b/AXwsnE/rLRB
http://paperpile.com/b/AXwsnE/rLRB
http://paperpile.com/b/AXwsnE/rLRB
http://paperpile.com/b/AXwsnE/rLRB
http://paperpile.com/b/AXwsnE/rLRB
http://paperpile.com/b/AXwsnE/rLRB
http://paperpile.com/b/AXwsnE/rLRB
http://paperpile.com/b/AXwsnE/STwG
http://paperpile.com/b/AXwsnE/STwG
http://paperpile.com/b/AXwsnE/STwG
http://paperpile.com/b/AXwsnE/STwG
http://paperpile.com/b/AXwsnE/STwG
http://paperpile.com/b/AXwsnE/STwG
http://paperpile.com/b/AXwsnE/GI6ng
http://paperpile.com/b/AXwsnE/GI6ng
http://paperpile.com/b/AXwsnE/GI6ng
http://paperpile.com/b/AXwsnE/GI6ng
http://paperpile.com/b/AXwsnE/GI6ng
http://paperpile.com/b/AXwsnE/GI6ng
http://paperpile.com/b/AXwsnE/GI6ng
http://paperpile.com/b/AXwsnE/GI6ng
http://paperpile.com/b/AXwsnE/U4X6
http://paperpile.com/b/AXwsnE/U4X6
http://paperpile.com/b/AXwsnE/U4X6
http://paperpile.com/b/AXwsnE/U4X6
http://paperpile.com/b/AXwsnE/U4X6
http://paperpile.com/b/AXwsnE/U4X6
http://paperpile.com/b/AXwsnE/U4X6
http://paperpile.com/b/AXwsnE/U4X6
http://paperpile.com/b/AXwsnE/w7gV
http://paperpile.com/b/AXwsnE/w7gV
http://paperpile.com/b/AXwsnE/w7gV
http://paperpile.com/b/AXwsnE/w7gV
http://paperpile.com/b/AXwsnE/w7gV
http://paperpile.com/b/AXwsnE/w7gV
http://paperpile.com/b/AXwsnE/aEnA
http://paperpile.com/b/AXwsnE/aEnA
http://paperpile.com/b/AXwsnE/aEnA
http://paperpile.com/b/AXwsnE/aEnA
http://paperpile.com/b/AXwsnE/aEnA
http://paperpile.com/b/AXwsnE/aEnA
http://paperpile.com/b/AXwsnE/aEnA
http://paperpile.com/b/AXwsnE/M6kM
http://paperpile.com/b/AXwsnE/M6kM
http://paperpile.com/b/AXwsnE/M6kM
http://paperpile.com/b/AXwsnE/M6kM
http://paperpile.com/b/AXwsnE/M6kM
http://paperpile.com/b/AXwsnE/M6kM
http://paperpile.com/b/AXwsnE/sZyp
http://paperpile.com/b/AXwsnE/sZyp
http://paperpile.com/b/AXwsnE/sZyp
http://paperpile.com/b/AXwsnE/sZyp
http://paperpile.com/b/AXwsnE/sZyp
http://paperpile.com/b/AXwsnE/sZyp
http://paperpile.com/b/AXwsnE/sZyp
http://paperpile.com/b/AXwsnE/JneO
http://paperpile.com/b/AXwsnE/JneO
http://paperpile.com/b/AXwsnE/JneO
http://paperpile.com/b/AXwsnE/JneO
http://paperpile.com/b/AXwsnE/CMts
http://paperpile.com/b/AXwsnE/CMts
http://paperpile.com/b/AXwsnE/CMts
http://paperpile.com/b/AXwsnE/CMts
http://paperpile.com/b/AXwsnE/CMts
http://paperpile.com/b/AXwsnE/CMts
http://paperpile.com/b/AXwsnE/eARl
http://paperpile.com/b/AXwsnE/eARl
http://paperpile.com/b/AXwsnE/eARl
http://paperpile.com/b/AXwsnE/eARl
http://paperpile.com/b/AXwsnE/eARl
http://paperpile.com/b/AXwsnE/eARl
http://paperpile.com/b/AXwsnE/eARl
http://paperpile.com/b/AXwsnE/cbPf
http://paperpile.com/b/AXwsnE/cbPf
http://paperpile.com/b/AXwsnE/cbPf
http://paperpile.com/b/AXwsnE/cbPf
http://paperpile.com/b/AXwsnE/cbPf
http://paperpile.com/b/AXwsnE/cbPf
http://paperpile.com/b/AXwsnE/Lu60
http://paperpile.com/b/AXwsnE/Lu60
http://paperpile.com/b/AXwsnE/Lu60
http://paperpile.com/b/AXwsnE/Lu60
http://paperpile.com/b/AXwsnE/Lu60
http://paperpile.com/b/AXwsnE/Lu60
http://paperpile.com/b/AXwsnE/Lu60
http://paperpile.com/b/AXwsnE/Lu60
http://paperpile.com/b/AXwsnE/6WTT
http://paperpile.com/b/AXwsnE/6WTT
http://paperpile.com/b/AXwsnE/6WTT
http://paperpile.com/b/AXwsnE/6WTT
http://paperpile.com/b/AXwsnE/6WTT
http://paperpile.com/b/AXwsnE/6WTT
http://paperpile.com/b/AXwsnE/6WTT
https://doi.org/10.1101/449793


Intersect PSets on 
drugs, cells, 

concentrations
Subset PSet on 
drugs and cells

Connectivity score 
using GSEA or GWC

Drug dose-response curve functions 

Fit the 
curve

Plot the 
curve

Compute IC50, 
AUC, ABC, Amax

Microarray 
expression DNA-Seq SNP arrayRNA-seq 

expression

Preprocess, QC, annotate and normalize molecular profiles of cell lines

Standardize cell line 
and drug identifiers

Normalize to viability (%) 
and concentrations (μM)

Raw drug 
sensitivity data

Semi-automated 
curation of cell line 
and drug identifiers

Create ExpressionSet objects

PSet

Create PSet Download PSet 

Summarize 
molecular 

profiles

Identify drug 
sensitivity 
signatures 

Identify drug 
perturbation 

signatures 

Summarize 
sensitivity 

profiles

Intersect RSets on 
radiation technique, 

cells

Subset RSet on 
histology, sub-histology

Radiation dose-response curve 
functions 

Fit the 
curve

Plot the 
curve

Compute SF2, D10 
AUC, Alpha, Beta

Microarray 
expression DNA-Seq SNP arrayRNA-seq 

expression

Preprocess, QC, annotate and normalize molecular profiles of cell lines

Standardize cell line 
and radiation identifiers Dose-response

data

Semi-automated 
curation of cell line 

and radiation 
identifiers

Create ExpressionSet objects

RSet

Create RSet Download RSet 

Summarize 
molecular  

profiles

  

Summarize 
sensitivity  

profiles

Intersect PSets on 
drugs, cells, 

concentrations
Subset PSet on 
drugs and cells

Connectivity score 
using GSEA or GWC

Drug dose-response curve functions 

Fit the 
curve

Plot the 
curve

Compute IC50, 
AUC, ABC, Amax

Microarray 
expression DNA-Seq SNP arrayRNA-seq 

expression

Preprocess, QC, annotate and normalize molecular profiles of cell lines

Standardize cell line 
and drug identifiers

Normalize to viability (%) 
and concentrations (μM)

Raw drug 
sensitivity data

Semi-automated 
curation of cell line 
and drug identifiers

Create ExpressionSet objects

PSet

Create PSet Download PSet 

Summarize 
molecular 

profiles

Identify drug 
sensitivity 
signatures 

Identify drug 
perturbation 

signatures 

Summarize 
sensitivity 

profiles

Radiobiological 
Modeling (under 

hypoxia, 
fractionation)

Supplementary Figure 1: Design of RadioGx platform.
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Supplementary Figure 2: Goodness of fit by the radiobiological model and comparison of dose-

response across assays.
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Supplementary Figure 3: Comparison of SF2 and AUC based on tertiles.
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Supplementary Figure 4: Pathway analysis comparison: SF2 vs. AUC.
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Supplementary Figure 5: Univariate correlation between radiation response associated genes under

oxic and modeled hypoxic conditions.
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Supplementary Figure 6: The tumour types (n=12) represented by a minimum of 15 cell lines were

considered for analysis. A total of 281 pathways are enriched for FDR< 5%. Number of positively and

negatively enriched pathways in each tissue.
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Supplementary Figure 7: Replication of Figure 1 from Yard et al 2016, demonstrating the correlation

between drug response and radiation response. Figure produced using RadioGx package.
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Supplementary Figure 8: Methodology for pharmacological enrichment analysis.
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