Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A simulation-based approach to improve decoded neurofeedback performance

Ethan Oblak, James Sulzer, Jarrod Lewis-Peacock
doi: https://doi.org/10.1101/450403
Ethan Oblak
1Departments of Mechanical Engineering, The University of Texas at Austin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James Sulzer
1Departments of Mechanical Engineering, The University of Texas at Austin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jarrod Lewis-Peacock
2Departments of Psychology, The University of Texas at Austin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The neural correlates of specific brain functions such as visual orientation tuning and individual finger movements can be revealed using multivoxel pattern analysis (MVPA) of fMRI data. Neurofeedback based on these distributed patterns of brain activity presents a unique ability for precise neuromodulation. Recent applications of this technique, known as decoded neurofeedback, have manipulated fear conditioning, visual perception, confidence judgements and facial preference. However, there has yet to be an empirical justification of the timing and data processing parameters of these experiments. Suboptimal parameter settings could impact the efficacy of neurofeedback learning and contribute to the ‘non-responder’ effect. The goal of this study was to investigate how design parameters of decoded neurofeedback experiments affect decoding accuracy and neurofeedback performance. Subjects participated in three fMRI sessions: two ‘finger localizer’ sessions to identify the fMRI patterns associated with each of the four fingers of the right hand, and one ‘finger finding’ neurofeedback session to assess neurofeedback performance. Using only the localizer data, we show that real-time decoding can be degraded by poor experiment timing or ROI selection. To set key parameters for the neurofeedback session, we used offline simulations of decoded neurofeedback using data from the localizer sessions to predict neurofeedback performance. We show that these predictions align with real neurofeedback performance at the group level and can also explain individual differences in neurofeedback success. Overall, this work demonstrates the usefulness of offline simulation to improve the success of real-time decoded neurofeedback experiments.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted October 23, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A simulation-based approach to improve decoded neurofeedback performance
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A simulation-based approach to improve decoded neurofeedback performance
Ethan Oblak, James Sulzer, Jarrod Lewis-Peacock
bioRxiv 450403; doi: https://doi.org/10.1101/450403
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A simulation-based approach to improve decoded neurofeedback performance
Ethan Oblak, James Sulzer, Jarrod Lewis-Peacock
bioRxiv 450403; doi: https://doi.org/10.1101/450403

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4228)
  • Biochemistry (9107)
  • Bioengineering (6751)
  • Bioinformatics (23944)
  • Biophysics (12089)
  • Cancer Biology (9495)
  • Cell Biology (13741)
  • Clinical Trials (138)
  • Developmental Biology (7616)
  • Ecology (11661)
  • Epidemiology (2066)
  • Evolutionary Biology (15479)
  • Genetics (10618)
  • Genomics (14296)
  • Immunology (9463)
  • Microbiology (22792)
  • Molecular Biology (9078)
  • Neuroscience (48890)
  • Paleontology (355)
  • Pathology (1479)
  • Pharmacology and Toxicology (2565)
  • Physiology (3823)
  • Plant Biology (8308)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2290)
  • Systems Biology (6172)
  • Zoology (1297)