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Abstract

The neural correlates of specific brain functions such as visual orientation tuning and individual

finger movements can be revealed using multivoxel pattern analysis (MVPA) of fMRI data.

Neurofeedback based on these distributed patterns of brain activity presents a unique ability for

precise neuromodulation. Recent applications of this technique, known as decoded

neurofeedback, have manipulated fear conditioning, visual perception, confidence judgements

and facial preference. However, there has yet to be an empirical justification of the timing and

data processing parameters of these experiments. Suboptimal parameter settings could impact

the efficacy of neurofeedback learning and contribute to the ‘non-responder’ effect. The goal of

this study was to investigate how design parameters of decoded neurofeedback experiments

affect decoding accuracy and neurofeedback performance. Subjects participated in three fMRI

sessions: two ‘finger localizer’ sessions to identify the fMRI patterns associated with each of the

four fingers of the right hand, and one ‘finger finding’ neurofeedback session to assess

neurofeedback performance. Using only the localizer data, we show that real-time decoding can

be degraded by poor experiment timing or ROI selection. To set key parameters for the

neurofeedback session, we used offline simulations of decoded neurofeedback using data from

the localizer sessions to predict neurofeedback performance. We show that these predictions

align with real neurofeedback performance at the group level and can also explain individual

differences in neurofeedback success. Overall, this work demonstrates the usefulness of offline

simulation to improve the success of real-time decoded neurofeedback experiments.
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1 Introduction

Multi-voxel pattern analysis (MVPA) extracts information about a person’s cognitive state by1

analyzing spatially distributed patterns of functional MRI activity (Lewis-Peacock and Norman,2

2014; Haxby et al., 2014). This approach has become ubiquitous in cognitive neuroscience since3

the seminal work of Haxby et al. (2001) identified distributed and overlapping representations of4

visual object categories in temporal cortex. MVPA is especially useful for isolating fine-grained5

relationships between brain activity and behavior, such as orientation tuning (Kamitani and Tong,6

2005; Haynes and Rees, 2005) and complex motor programs (Wiestler and Diedrichsen, 2013;7

Kornysheva and Diedrichsen, 2014) which are inaccessible to other human neuroimaging8

analysis methods. However, despite the increased signal-detection sensitivity of MVPA,9

conventional neuroimaging research is limited in its ability to draw causal inferences about10

brain-behavior relationships.11

Investigation into causal mechanisms of MVPA representations of neural activity requires this12

activity to be modulated. However, techniques such as TMS (Walsh and Cowey, 2000) and tDCS13

(Brunoni et al., 2012) are incapable of modulating fine-grained patterns of neural activity. Operant14

conditioning of neural activity, known as neurofeedback, uniquely enables self-modulation of a15

target neural circuit through feedback, most often presented visually (Sulzer et al., 2013; Sitaram16

et al., 2017). Early work in fMRI neurofeedback mirrored contemporary univariate techniques in17

offline fMRI analysis (Ruiz et al., 2014). In recent years, MVPA-based neurofeedback techniques18

have taken hold (LaConte et al., 2007). For instance, a seminal work by Shibata et al. (2011)19

used neurofeedback based on decoded activity from early visual cortex, a process dubbed20

‘decoded neurofeedback’ or ‘DecNef’. The researchers were able to show that individuals could21

learn to self-modulate a targeted pattern of brain activity related to a given orientation of a visual22

grating without stimulus presentation. Intriguingly this was associated with heightened perceptual23

acuity specific to the underlying stimulus. Thus, used in this manner, decoded neurofeedback is a24

powerful and unique tool in neuroscience that can manipulate neural activity patterns to reveal25

causal relationships with behavior. This technique has been used in several applications beyond26

low-level visual perception, including fear conditioning (Koizumi et al., 2017), confidence27

judgements (Cortese et al., 2016), and facial preference (Shibata et al., 2016).28

It is well-known that a large proportion (up to 30%) of willing participants are unable to29

self-regulate their brain activity through neurofeedback training (Allison and Neuper, 2010;30

Hammer et al., 2012). The causes of this are not well understood, and the ‘non-responder’31
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problem remains a key challenge for neurofeedback research and clinical translation. Our32

previous work showed how different factors can affect decoded neurofeedback performance33

using a novel simulation paradigm (Oblak et al., 2017). Using feedback based on simulated brain34

activity in visual cortex, participants performed simple ‘cognitive strategies’ by choosing how to35

rotate an oriented grating clockwise or counterclockwise until a hidden target orientation was36

found. This simulation paradigm enabled the manipulation of ‘neurofeedback’ provided to the37

participant to reflect the signal quality and timing of realistic neural activity, and of unrealistic38

neural activity that would be impossible to present in the scanner by altering or removing the39

hemodynamic delay. Therefore we could link explicit strategy choices, and thus neurofeedback40

performance, with the characteristics of the feedback signal received. The approach produced41

insights into how fMRI neurofeedback presentation can enhance or inhibit learning; for example,42

intermittent feedback is better than continuously presented feedback when participants have a43

poor understanding of the hemodynamic properties of the brain signal. However, these44

simulations did not account for a key element in neurofeedback performance as it relates to45

decoded neurofeedback: the accuracy of decoding the desired fMRI activity patterns in real-time.46

Decoding accuracy can vary widely between experiments and conditions. Standard47

processing techniques, such as normalization, detrending and averaging over time will all affect48

decoding accuracy (Hanke et al., 2009). However, to date there has been no systematic49

approach to investigating the effects of these parameters on neurofeedback performance.50

Numerous decoded neurofeedback studies lack an empirical justification for parameter selection51

(Watanabe et al., 2017), leaving the possibility of suboptimal neurofeedback training, which may52

contribute to the non-responder problem. The goal of the present study was to examine how53

real-time fMRI decoding accuracy is affected by these parameters, and likewise, how decoder54

accuracy contributes to neurofeedback performance.55

Being able to address this question in a systematic manner requires explicit knowledge of56

neurofeedback strategies being used by participants. However, cognitive strategies used for57

neurofeedback, which commonly take the form of mental imagery (deCharms et al., 2005), can58

be difficult to identify and quantify. Here, we simplified this challenge by focusing on a restricted59

set of explicit strategies: individual finger movements, which are supported by neural correlates in60

primary sensorimotor cortex (M1/S1). There is ample literature on fMRI neurofeedback of mean61

regional activity in M1/S1 (Yoo and Jolesz, 2002; Weiskopf et al., 2004; Chiew et al., 2012;62

Friesen et al., 2017), and evidence that univariate M1/S1 self-modulation is associated with63

improvements in fine-motor control. For instance, Bray et al. (2007) found improved reaction time64
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following M1/S1 neurofeedback training, and Blefari et al. (2015) observed a positive correlation65

between precision grip motor skill and neurofeedback performance. There are, however, no66

published attempts at decoded neurofeedback for M1/S1. Thus, by using a well-defined neural67

circuit (M1/S1) and measurable strategies (finger pressing), we sought to gain insight more68

generally into how people learn to use decoded neurofeedback, and under what conditions such69

learning is best facilitated.70

Here, we designed a ‘finger localizer’ experiment based on previous finger individuation71

decoding experiments (e.g. Diedrichsen et al. (2012); Ejaz et al. (2015)) that could be used to72

train fMRI pattern classifiers for a neurofeedback experiment (Fig 1). We had participants (N=6)73

complete two of these localizer sessions, on separate days, which allowed us to investigate74

multiple parameters that impact real-time decoding performance in M1/S1. We first simulated75

participant neurofeedback performance using feedback yoked to individual localizer trials. This76

fully automated simulation helped us examine estimated neurofeedback performance in different77

conditions such as changes in region-of-interest (ROI) and different feedback success thresholds.78

Then, we recruited a new set of human participants (N=10) to perform this target-finding79

experiment with the same yoked neurofeedback and compared performance to participants in a80

real neurofeedback session. The combined simulation and experimentation provide a unique81

method for investigating fundamental questions about neurofeedback. The results may help to82

mitigate the non-responder problem, making decoded neurofeedback a more robust procedure.83

2 Materials and methods

2.1 Participants

Six healthy participants (2 female, average age 26.4 years, SD=2.4) were recruited from the84

University of Texas at Austin community in accordance with the University of Texas Institutional85

Review Board. All subjects completed two localizer sessions, but one subject was unable to86

participate in the neurofeedback session due to a hand injury that occurred after the second87

localizer session. An additional ten healthy participants (3 female, average age 24.3, SD=3.6)88

were recruited for a simulated neurofeedback experiment using the brain data from the localizer89

sessions of the original group of participants. Written informed consent was obtained from all90

participants.91
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Figure 1: Experimental design. In both localizer (A) and neurofeedback (B) trials, a cue precedes a 10 sec period of finger pressing

at 1 Hz, followed by feedback. The localizer feedback reflects behavioral performance for repeated presses of a finger chosen by the

experimenter. The neurofeedback reflects the real-time fMRI decoder output for the target finger based on presses of a finger chosen

by the participant. Below, the decision process for advancing trials in the neurofeedback session is presented. The target finger

remains the same from trial to trial until a predetermined success threshold is reached, at which point a new random target finger is

selected.

2.2 General procedure

The experiment consisted of three fMRI sessions separated by at least 24 hours: two localizer92

sessions followed by one neurofeedback session. The localizer and neurofeedback sessions were93

similar in structure, as shown in Fig 1. The primary purpose of two localizer sessions was to94

identify the fMRI activity patterns in sensorimotor cortex corresponding to pressing each of the95

four fingers of the right hand (index, middle, ring, little). However, the secondary purpose of the96

localizer was to imitate the timing and processing limitations of a real-time fMRI neurofeedback97

session. Therefore, the duration of trials and runs were identical in both types of sessions, with98

both consisting of 8 fMRI runs. These finger-specific activity patterns identified in the localizer99

were used as targets in the neurofeedback session.100

Each run began with a 40 sec baseline period, in which only a grey fixation circle was visible101

(diameter: 1.5◦ of visual angle). During the final 3 sec of the baseline period, the fixation circle102

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/450403doi: bioRxiv preprint 

https://doi.org/10.1101/450403


flashed white at 1Hz to indicate the beginning of trials. Each run consisted of 20 trials of 16 sec103

each: 2 sec to cue the target finger, 10 sec of finger presses, 1 sec of rest, 2 sec of feedback,104

and 1 sec of rest before the next trial. On each trial, four circles appeared in the center of the105

screen (corresponding to the four fingers; 1.5◦ each, spanning 10◦ horizontally total) and were106

used to coordinate finger presses. In the cue period of the localizer task, only one circle turned107

grey indicating that this was the finger to be pressed on the trial. In the neurofeedback task, all108

circles turned grey indicating that the participant should choose one finger to press for the duration109

of that trial. Then, finger presses were cued at a rate of 1Hz for 10 sec with a filled white circle110

corresponding to the cued (localizer) or selected (neurofeedback) finger.111

To ensure consistent behavior from participants, we encouraged rhythmic presses.112

Participants received positive visual feedback if presses occurred within a specific response113

window (200-500 ms) of each 1-sec epoch during the 10-sec pressing period. This response114

window was dynamically adjusted during the localizer sessions (see Section 2.3 for details), but115

remained constant for the neurofeedback session. The cued (or chosen) finger was filled in with a116

color corresponding to a participant’s performance on that press, beginning when the finger was117

pressed and ending at 800 ms into the 1-sec press epoch. Presses that occurred inside the118

response window filled the pressed finger’s circle green, and presses that were either too fast or119

too slow filled the circle yellow. If the incorrect (or unchosen) finger was pressed, the correct120

finger’s circle filled red. After a brief 1-sec wait period, trial-ending visual feedback appeared as a121

centrally presented green circle (2-10◦) that expanded or contracted based on performance122

during the preceding 10-sec pressing period. In the localizer session, feedback was based on the123

rhythmicity of presses on that trial (i.e., the proportion of presses made within the desired124

response window). In the neurofeedback session, feedback was based on the correspondence125

between the pattern of fMRI activity for the target finger learned by the classifier during the126

localizer sessions, and the actual real-time pattern of fMRI activity evoked by the chosen finger127

on that trial. On the first trial, the feedback circle expanded smoothly from the origin to a diameter128

corresponding to the feedback value. At each subsequent trial, the feedback circle expanded or129

contracted over 500ms from the previous diameter to the updated diameter to ensure a smooth130

visual display. When the feedback on a neurofeedback trial exceeded the ‘target found’ success131

threshold, the starting point for feedback on the next trial was reset to zero and a new target was132

selected (see Section 2.4 and Fig 1B).133
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2.3 Localizer sessions (Days 1 and 2)

As stated earlier, the purpose of localizer sessions was to identify the fMRI activity patterns in134

sensorimotor cortex corresponding to pressing each of the four fingers of the right hand (index,135

middle, ring, little). The general task procedures for the localizer task are described above. All136

participants completed two localizer sessions separated by no more than 7 days (5+/-2 days,137

mean+/-s.d.). In each session, the 8 fMRI runs consisted of 20 total trials, with 5 trials for each of138

the 4 fingers. The order of trials was pseudorandomized to ensure an approximately equal139

number of each finger transitions (including pressing the same finger two trials in a row). Both140

localizer sessions were identical other than the order of button presses. As described above, we141

encouraged rhythmic presses by providing visual feedback (color-filled circles) for each finger142

press based on whether it was made within a desired response window (200-500 ms). In the143

localizer task, one ‘point’ was awarded for each correct response made within this window. Points144

were tallied at the end of each trial and mapped onto the green feedback circle, with 0 points145

corresponding to the minimum circle diameter and 10 points corresponding to the maximum146

diameter. The total score was also tallied and presented to participants at the end of each run. To147

control for task difficulty, an adaptive staircase procedure was used to incrementally adjust the148

rewarded response-time window based on performance after each trial. A threshold of 70%149

correct responses (7 points) was selected for staircasing. If this threshold was exceeded (8 or150

more points), then the upper limit of the time window decreased by 20 ms (i.e., to 480ms),151

making the task slightly harder. If performance was below this threshold (6 or fewer points), then152

the upper limit of the window increased by 20 ms (i.e., to 520ms), making the task slightly easier.153

If performance matched this threshold, no changes were made to the response window.154

2.4 Neurofeedback session (Day 3)

The purpose of the neurofeedback session was to investigate whether human participants could155

efficiently and accurately interpret fMRI decoder outputs related to pressing the four fingers of the156

right hand on a trial-by-trial basis. As such, the participant’s goal was to respond to the decoded157

neurofeedback by finding and then pressing with the finger associated with the targeted brain158

pattern (i.e. ‘target finger’). Participants had 160 trials (20 trials per run, 8 runs total) to find as159

many target fingers as possible. A series of target fingers was pseudo-randomly generated for the160

experiment. A full set of 160 targets was generated in the unlikely case that a target was found161

each trial. The order of targets was determined by a concatenation of 20 lists that each contained162
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a randomly shuffled arrangement of 8 finger targets (2 for each finger). This allowed for the163

target finger to occasionally repeat and to prevent prediction of the target finger (e.g. by process164

of elimination over a series of targets). Participants chose one finger to press each trial. After165

10 presses of the same finger, the feedback circle appeared, as in the localizer sessions, except166

that here the size of the circle corresponded to the fMRI decoder output for the target finger in167

sensorimotor cortex (M1+S1, see Section 2.7). The decoder outputs (from 0 to 1, for each finger)168

indicated the likelihood estimates from the fMRI pattern classifier that the fingers were pressed.169

The minimum diameter of the feedback circle corresponded to 0% probability of the target finger,170

and the maximum diameter corresponded to 100% probability (Fig 1B). If the participant had been171

pressing the target finger during the trial, its output value should be relatively high. Note that172

the target output could also be spuriously high when a different finger is pressed if the data on173

that trial is particularly noisy or the decoder performs poorly in general. If the output exceeded this174

threshold, the feedback circle turned green and a ‘+1’ text appeared in the fixation circle, indicating175

that a target had been reached and a new random target would be selected. If the decoder output176

for the target finger was below a chosen threshold (50% probability), the feedback circle appeared177

grey and the target remained for the next trial. The total score (number of targets reached) was178

tallied and presented to participants at the end of each run. If the current target was not reached179

by the end of a run, that target was continued at the beginning of the next run.180

2.5 Apparatus

Finger presses were recorded from the index, middle, ring, and little fingers of the right hand using181

a four-button box (Current Designs, Philadelphia, PA). The button box was affixed to a wooden182

board, which lay on the participant’s lap. Sandbags were placed under the right arm according183

to participant comfort in the first localizer session, and placed in the same position during the184

second and third sessions. Participants received visual instructions and visual feedback through185

a back-projection screen, driven by Python and PsychoPy running on a MacBook Pro.186

2.6 fMRI acquisition

Participants were scanned in a Siemens Skyra 3T scanner with a 32-channel head coil. For all187

fMRI sessions, the same EPI sequence was used (TR=2 sec; 36 slices; in-plane resolution188

2.3x2.3 mm; 100x100 matrix size; 2.15 mm slice thickness; 0.15 mm slice gap; 2x multiband189

factor). After auto-alignment to the AC-PC plane, a manual adjustment was performed to ensure190
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full coverage of the motor cortex. The same manual adjustment parameters were applied to the191

subsequent localizer and neurofeedback sessions. A high-resolution T1-weighted anatomical192

image (MEMPRAGE; FoV 256 mm (256 x 256 matrix), 176 sagittal slices; in-plane resolution193

1x1mm; 256x256 matrix size; 1 mm slice thickness; TR=2530 ms; TE=1.64/3.5/5.36/7.22) was194

also acquired during the first localizer session. To collect real-time fMRI data, a high-performance195

GPU was installed in the Measurement And Reconstruction System (MARS) that handles image196

reconstruction; this dedicated hardware speeds reconstruction times by more than a factor of ten.197

From there, the raw images are immediately sent via a 10Gb/s fiber link that runs directly from198

the MARS to the analysis workstation (a Dell Precision T7600n, with dual eight-core E5-2665199

2.4GHz processors, 64GB 1600MHz registered ECC memory). Data is then transformed into a200

standard NIFTI imaging file format for preprocessing, registration, and MVPA analysis using201

custom Python software (Instabrain; https://github.com/LewisPeacockLab/instabrain).202

2.7 Regions-of-Interest

Regions-of-Interest (ROIs) within sensorimotor cortex were identified using a Freesurfer (Dale203

et al., 1999) segmentation of the high-resolution MEMPRAGE image. Four regions were used204

as the basis for ROI analysis: Brodmann areas 4a, 4p, 3a, and 3b. All masks were generated205

simultaneously in each participant’s functional space using Freesurfer’s mri label2vol to ensure206

that each functional voxel was assigned to only one of the regions. These masks were then207

combined into the left primary motor cortex (M1: combined BA4a and BA4p) and left primary208

somatosensory area (S1: combined BA3a and BA3b). Five additional ROIs were then generated209

from combinations of these two primary ROIs: a combined ROI (M1+S1), and reduced-overlap210

versions (− and −−) of M1 and S1. To create these versions, the adjacent ROI (for M1: S1; for211

S1: M1) was expanded by one or two voxel widths (−: 2.3mm, −−: 4.6mm, using fslmaths options:212

e.g. -kernel sphere 2.3 -dilM) and subtracted from the standard ROI.213

2.8 fMRI processing

The mean of the first fMRI run of the first localizer session was used as a reference functional214

image (RFI). All functional volumes from both localizer sessions underwent rigid body motion215

correction to the RFI template using FSL’s MCFLIRT. Each functional voxel then underwent some216

combination of detrending and normalization (z-scoring) on a run-by-run basis. Three levels of217

detrending were investigated: none, real-time (using all prior data from the current run), and218
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offline (using data from the entire run). Four types of z-scoring were investigated: none, baseline219

rest (using the baseline rest period at the beginning of each run), real-time (using all prior data220

from the current run), and offline (using data from the entire run). The baseline rest detrending221

condition was further subdivided to evaluate the impact of the amount of baseline data used, from222

2 TRs (4 sec) up to 20 TRs (40 sec). In each localizer run there were 40 trials per finger, thus 80223

total trials of data were collected per finger. Mean voxel activities were extracted for each trial224

using a 3-TR (6-sec) sliding window across the trial. Resulting fMRI activity patterns were then225

masked by ROIs and submitted to a sparse multinomial logistic regression classifier (SMLR;226

Krishnapuram et al. (2005)). Classifier importance maps (McDuff et al., 2009) were calculated to227

identify voxels that contributed significantly to the identification of each finger. For within-session228

analyses, a leave-one-run-out cross-validation was performed to determine decoder accuracy.229

For across-session analysis, the decoder was trained on one localizer session and applied to the230

other localizer session (and vice versa). For the neurofeedback session, real-time detrending and231

z-scoring were based on the full 40-sec baseline rest period. FSL’s MCFLIRT was used to realign232

real-time functional volumes to the RFI template for each participant. Based on offline analyses233

of the localizer data, we sought to maximize the quality of decoded neurofeedback by focusing on234

fMRI data from the combined M1+S1 ROI during the final 6-sec time window prior to feedback235

(TRs 4-6) on each trial.236

2.9 Neurofeedback simulation: simulated behavior

To help calibrate design parameters and predict human performance in the neurofeedback237

session, we performed an offline simulation using fMRI data from the localizer sessions. The238

across-session fMRI decoder outputs from every trial in every localizer session were used (160239

trials x 2 sessions x 6 participants = 1,920 trials, with 480 trials per finger). As in the real240

neurofeedback session, a pseudo-random target finger was chosen for every trial. A simple241

search strategy was chosen for the behavioral simulation: choosing each of the fingers242

sequentially, starting with the index, until the target was found (i.e., index, middle, ring, little,243

index-...). For each simulated pressing trial, a sample trial corresponding to the selected finger244

was randomly chosen (with replacement) from the full set of localizer trials to simulate the brain245

activity on the trial. If the decoder output for the target finger exceeded a success threshold246

(which could occur due to noise, leading to a false positive) then the target was considered found247

and a new target was chosen for the next simulated trial. Several conditions were tested: two248

different ROIs (M1+S1, and M1 alone), and a range of success thresholds (from 25% to 90% in249
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5% increments). For each combination of conditions, a total of N=1,000 participants were250

simulated, each performing 160 trials of simulated neurofeedback, as in the real experiment.251

2.10 Neurofeedback simulation: human behavior

We also conducted a behavioral experiment to compare neurofeedback performance using252

human strategies compared to the simulated (sequential) behavioral strategy. Using the same253

across-session decoder outputs from the localizer sessions, a new set of human participants254

(N=10) attempted to find targets as in the neurofeedback experiment. The structure of the255

experiment was similar to the neurofeedback session except accelerated in time: participants256

only had to make a single press (rather than 10-sec of presses) to choose their finger, and257

feedback appeared immediately after the press. This accelerated timing allowed us to investigate258

two ROIs (using decoded neurofeedback from M1+S1 and also from M1 only) in a short period of259

time. We previously found no difference in trials-to-target for accelerated simulated feedback260

compared to the significantly slower feedback pace of real-time fMRI (Oblak et al., 2017).261

Furthermore, participants had no knowledge of the true target: only a one-dimensional feedback262

signal was provided for the target, which meant that false positives were possible, mimicking a263

true neurofeedback experiment in which incorrect strategies may spuriously cause positive264

feedback signals. We conducted 8 consecutive runs of trials for each ROI (20 trials per run, ROI265

order randomized across participants), similar to the real neurofeedback experiment. This266

experiment lasted approximated 10 minutes per participant.267

2.11 Statistics

A separate linear mixed-effects model was created to predict decoder accuracy for each of real-268

time decoding, baseline sensitivity, normalization, and detrending analyses. Each model included269

ROI (S1 or M1) and decoding type (within or between session) as fixed effects and subject as a270

random effect. Tukey’s post-hoc test (α <0.05) was used to determine the differences between271

each condition. To compare decoding accuracy across ROIs (M1+S1, M1, S1, M1−, S1−, M1−−,272

and S1−−), paired t-tests (df=5) were used. To compare the correlation of decoder outputs across273

ROIs, the mean correlation (averaged across both localizer sessions) for each subject was Fisher274

Z-transformed and submitted to a paired t-test. Performance of real neurofeedback and simulated275

neurofeedback participants were compared using an independent groups t-test (df=13).276

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/450403doi: bioRxiv preprint 

https://doi.org/10.1101/450403


3 Results

3.1 Real-time decoding limitations

Using fMRI data from the two localizer sessions, we characterized the limitations of decoding277

individual finger presses in real-time from fMRI activity in M1 and S1 by manipulating key analysis278

parameters: timing, baseline duration, normalization type, and detrending type (Fig 2).279

Figure 2: Real-time decoding limitations. (A) Real-time finger decoding over time (chance: 25%). The feedback cutoff (1-sec

before the feedback period) is the last time at which fMRI data can be used for neurofeedback. Each displayed time point includes

time-averaged fMRI data from the current time repetition (TR) and the two previous TRs. (B) Sensitivity of decoding to the baseline

time period used for normalization (z-scoring). (C) Decodability for four different types of normalization: none, z-scoring based on

20 TRs of baseline data, realtime z-scoring, and z-scoring based on a full run of data, which is equivalent to offline analysis. (D)

Decodability for three different types of detrending: none, real-time detrending, and offline detrending based on a full run of data. Error

bars indicate a 95% confidence interval. M1 shown in blue and S1 shown in orange. Within session decoding shown with solid lines

and closed circles and between-session decoding shown with dashed lines and open circles. Selected statistical comparisons shown.

Stars indicate significant differences at p<0.01 (**) and p<0.001 (***).

3.1.1 Real-time decoding over time

The timing limitations of real-time decoding were related to the intermittent feedback timing. In280

order to deliver feedback at the scheduled time (11 sec after the beginning of each pressing281

period), we could only use data gathered up to 1 sec before the feedback period. However,282

the timing of this feedback period could be adjusted to save time or optimize decodability. To283

assess the optimality of feedback timing, we analyzed decoding accuracies at TRs 5, 6, and 7,284

corresponding to our hypothesized optimal feedback TR (6) and the TRs immediately before and285

after (5 and 7). We found decoding at TR 6 to be significantly better than TR 5 (+5.6% decoding,286
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Tukey’s HSD, p<0.001), whereas TR 7 was not significantly different than TR 6 (-0.1% decoding,287

p=0.996). Fig 2A illustrates these differences. This analysis also revealed a large main effect288

of ROI (S1 > M1: +20.1% decoding, p<0.001) and a small but reliable main effect of session289

(between session < within session: -2.8% decoding, p=0.004).290

3.1.2 Baseline sensitivity

We next investigated how sensitive the decoder was to different amounts of baseline data used for291

normalization (z-scoring). We analyzed four amounts of baseline data: the first 2 TRs, 5 TRs, 10292

TRs, and 20 TRs of the run (Fig 2B). Increasing from using 2 to 5 TRs for baseline normalization293

significantly increased decodability (+31.6% decoding, p<0.001). Increasing from 5 to 10 TRs294

also significantly increased decodability, but with diminishing returns (+4.8% decoding, p<0.001).295

There was no significant difference in decodability between 10 and 20 TRs (+1.9% decoding,296

p=0.58).297

3.1.3 Normalization

Next, we analyzed how different types of normalization (z-scoring) affected decoding. We first298

compared baseline z-scoring (using the full 20-TR baseline period), real-time z-scoring (using all299

previous data from the run), and offline z-scoring (using all the data in the run, Fig 2C). Each of300

these was significantly better than performing no z-scoring at all (p<0.001), yielding mean301

decoding increases of 9.2%, 10.5%, and 12.4% decoding for baseline, real-time, and offline302

conditions, respectively. Within these three types of normalization, there was only a significant303

difference when comparing baseline to offline z-scoring (-3.3% decoding, p=0.022).304

3.1.4 Detrending

Finally, we investigated the effect of different types of detrending on decoding. Both real-time and305

offline detrending were significantly better than no detrending (p<0.001), with a mean decoding306

increase of 8.9% for real-time detrending and 7.2% for offline detrending (Fig 2D). There was no307

significant difference between real-time and offline detrending (p=0.45).308

3.2 Decoding and information transfer across ROIs

We next investigated decoding and decoder outputs in different ROIs (Fig 3A) based on the same309

localizer data.310

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/450403doi: bioRxiv preprint 

https://doi.org/10.1101/450403


Figure 3: Decoding and information transfer across ROIs. (A) ROIs used for analysis. (B) Between session decoding for ROIs.

(C) Correlations between decoder outputs at the same time point but in different ROIs. All correlations are made with the combined

M1+S1 decoder outputs, indicating the correspondence of information between the combined M1+S1 decoder and the reduced ROIs.

(D) Classifier importance maps for the combined M1+S1 decoder of a sample participant, in arbitrary units. C.S. indicates the central

sulcus dividing M1 and S1. Error bars indicate a 95% confidence interval. Selected statistical comparisons shown. Stars indicate

significant differences at p<0.05 (*), p<0.01 (**), and p<0.001 (***). ‘NS’ indicates no significant differences.

3.2.1 Decoding accuracy

Across-session decoding accuracy was highest in S1 (83.4%) and in the combined M1+S1311

region (83.3%), with no significant difference between the two (p=0.85). M1+S1 had significantly312

better decoding than M1 (+18.2% decoding; p=0.002). Moving to the reduced M1− from M1 was313

significantly worse (-13.8%, p=0.019), and also to M1−− from M1− (-8.2%, p=0.027). S1− was314

not significantly worse than S1 (-5.94%, p=0.073), but S1−− was significantly worse than S1−
315

(-26.7%, p<0.001). Fig 3B illustrates differences in decoding accuracy.316

3.2.2 Decoder correlations

The decoder outputs from S1 were more strongly correlated with the combined M1+S1 region317

than were the decoder outputs from M1 correlated to this region (p=0.005). Moving anteriorly,318

the M1− decoder was more weakly correlated than M1 (p=0.003), and M1−− was more weakly319

correlated than M1− (p=0.016). Similarly, moving posteriorly, the S1− decoder was more weakly320

correlated than S1 (p=0.003), and S1−− more weakly correlated than S1− (p<0.001). See Fig 3C321

for correlation results.322
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3.2.3 Importance maps

Classifier importance maps (McDuff et al., 2009) show that important voxels lie on both sides of323

the central sulcus, with more on the posterior (S1) side (Fig 3D). Furthermore, they tend to be324

near to the central sulcus.325

3.3 Finger finding experiment

3.3.1 Predicted performance

We first predicted performance based on a variable success threshold for finding targets in both326

the combined M1+S1 region and in the M1 region alone (Fig 4A). Increasing the success threshold327

caused an exponential increase in the number of trials required to find a target, with diminishing328

returns on predicted target accuracy. Based on these predictions, a threshold of 50% was selected329

for subsequent experiments with human participants to maximize accuracy while minimizing the330

number of trials to target.331

Figure 4: Finger finding neurofeedback experiment performance. (A) Predicted performance based on between-session decoder

outputs from the localizer sessions. The success threshold for finding targets was varied between 25% and 90%. Target accuracy

indicates the proportion of targets in which the finger pressed when the decoder output exceeded the success threshold matched

the target finger. (B) Observed performance for both real neurofeedback and simulated neurofeedback participants using a success

threshold of 50%. Trial-by-trial sample pressing strategies are shown for each condition: predicted, simulated, and real neurofeedback.

Each tick represents a single finger of the right hand as illustrated. Each line represents one example target search, with the line ending

when the decoder output exceeded the target threshold. Due to noise, occasionally the same finger is repeated. Error bars indicate

standard deviation. M1 shown in blue and M1+S1 shown in purple. ‘NS’ indicates no significant differences.
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3.3.2 Simulated neurofeedback results

We next investigated whether human participants’ performance matched our model predictions332

for the selected success threshold (Fig 4B). In M1+S1, we expected 3.23+/-0.29 trials to target333

(mean+/-s.d.) and 91.7+/-3.7% target accuracy. In our simulated neurofeedback experiment, we334

recorded 3.12+/-0.12 trials to target with 91.9+/-3.4% accuracy using data from this region. In335

the M1 region, our predictions were similarly accurate: the prediction was 4.04+/-0.49 trials with336

73.1+/-7.1% accuracy, and the simulated neurofeedback result recorded was 3.97+/-0.67 trials337

with 70.1+/-6.8% accuracy.338

3.3.3 Real neurofeedback results

We then compared real neurofeedback results to the simulated results in the M1+S1 region that339

was selected for the neurofeedback experiment (Fig 4B). In the scanner, participants required340

2.97+/-0.43 trials to find each target, with 87.7+/-11.7% accuracy. There was no significant341

difference between this performance and the simulated neurofeedback participants’ performance342

(trials-to-target: t(13)=-0.97, p=0.35; accuracy: t(13)=-0.78, p=0.45).343

Finally, we investigated how decoding accuracy influenced performance on our task (Fig 5).344

We selected the 50% success threshold and M1+S1 region in order to qualitatively compare345

performances between the three conditions (predicted, simulated neurofeedback, and real346

neurofeedback). In the predicted dataset, trials-to-target was negatively correlated with decoding347

accuracy (slope of best-fit line=-4.36, r=-0.41, p<0.001 Fig 5A) and target accuracy was348

positively correlated with decoding accuracy (slope=0.66, r=0.48, p<0.001, Fig 5B), as expected.349

The slope for the trials-to-target was negative for simulated neurofeedback (slope=-0.86) and real350

neurofeedback (slope=-3.19); the slope for decoding accuracy was positive for simulated351

neurofeedback (slope=0.70) and real neurofeedback (slope=0.93).352

4 Discussion

This study presents a systematic investigation of optimal parameter selection for the design of real-353

time neurofeedback experiments that rely on multi-voxel pattern analysis of neuroimaging data.354

We collected fMRI data of participants performing individual finger presses and trained classifiers355

to discriminate brain activity patterns for each finger in sensorimotor cortex. These classifiers were356

intended to perform real-time decoding of finger presses in a subsequent neurofeedback session.357
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Figure 5: Influence of decoding accuracy on finger finding performance. (A) Correspondence between observed decoding

accuracy during the finger finding session and the mean number of trials required to find each target. (B) Correspondence between

observed decoding accuracy during the finger finding session and target accuracy (proportion of trials in which the decoder output

exceeded the success threshold and the pressed finger was also the target finger). Solid lines indicated the best-fit line for each

condition.

Offline analyses with real-time processing constraints revealed optimal choices for the analysis of358

these data and the timing of the neurofeedback experiment. Simulated results of neurofeedback359

performance were confirmed by participants receiving real neurofeedback inside the scanner. This360

study demonstrates how the offline simulation of neurofeedback performance using real fMRI data361

can be used to optimize human performance on real-time neurofeedback experiments.362

The simulation of neurofeedback performance is a novel approach to the field. While reliance363

on simulations is common in other neuroscience subdomains such as visual neuroscience (Tong,364

2003), the only other instance of simulation in fMRI neurofeedback is our previous work365

mentioned earlier (Oblak et al., 2017). Whereas in the aforementioned study, we simulated brain366

activity based on known parameters of visual cortex activity, here we present recorded brain367

activity in sensorimotor cortex to both to human participants and to simulated participants with368

predetermined neurofeedback strategies. A key element to this simulation of neurofeedback is an369

explicit strategy, i.e. finger pressing, because it can be directly measured and validated both370

inside and outside of the scanner. Our simulation was validated for explicit strategies through371

similar outcomes in real and simulated neurofeedback (Fig 4B). However, it remains to be372

answered to what degree the explicit strategies used in this paradigm can represent mental373

strategies typically used in neurofeedback. Future work should incorporate more advanced374

learning models, including implicit strategies, into this simulation paradigm. We anticipate such375

simulation of neurofeedback performance to be a valuable tool to improve the efficiency and376
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robustness of experiments.377

Our work shows the benefit of using localizer data to predict neurofeedback performance in378

two ways. First, we were able to design a parameter of our experiment, namely the feedback379

success threshold of 50%, to optimize predicted neurofeedback performance as a tradeoff380

between finding successful strategies and finding accurate strategies (Fig 4A). These predictions381

translated to both real neurofeedback participants and human participants interacting with a382

simulated neurofeedback signal outside of the fMRI scanner (Fig 4B). Although our task and383

model of learning was simple, this same simulation strategy could be used with a more complex384

learning model (Oblak et al., 2017; Watanabe et al., 2017) to determine the required duration of385

an experiment, or to design tuning curves in an adaptive neurofeedback experiment386

(deBettencourt et al., 2015). Second, given our fully designed experiment, we were able to387

predict the neurofeedback performance of individuals (Fig 5). This type of prediction could be388

used as an exclusionary criterion for patients in neurofeedback treatment or to predict the389

required duration of treatment; it could also be used to alter neurofeedback parameters for390

individuals based on their own localizer data.391

Our neurofeedback predictions show how a given decoder accuracy translates to392

neurofeedback performance. In all cases, neurofeedback performance increased with increasing393

decoder accuracy. Therefore, our secondary goal was to explore which typical parameters of394

decoded neurofeedback experiment had the largest effect on decoding accuracy. Two standard395

fMRI preprocessing steps, normalization and detrending, were found to have a large effect on396

real-time decoding. Real-time z-scoring increased decoding accuracy by 10.5% (Fig 2C) and397

real-time detrending increased decoding accuracy by 8.9% (Fig 2D) compared to no398

preprocessing at all. Critically, these results did not suffer relative to offline decoding, indicating399

that the real-time preprocessing constraints were not a performance bottleneck.400

We next found that we could decode from an earlier timing window than standard decoded401

neurofeedback experiments without a significant reduction in decoder accuracy. The standard402

timing window for decoded fMRI neurofeedback is a 6-sec stimulus period followed by a 6 sec403

decoding period (Shibata et al., 2011), accounting for the hemodynamic delay. We increased the404

length of the stimulus period (in this case, finger pressing) to 10 sec, yet decoded 2 sec earlier405

than Shibata et al. (2011) (Fig 2A). For behaviors and ROIs other than those detailed in this work,406

we recommend designing a localizer with varying stimulus periods and rest periods to determine407

the best tradeoff between decodability and feedback timing for that experiment408

The standard normalization method for decoded neurofeedback is z-scoring using a baseline409
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resting period of 20 sec at the beginning of each fMRI run (Shibata et al., 2011). Our results410

support this choice, as there was no significant increase in subsequent decodability when we411

doubled the length of the baseline period to 40 sec. However, we also show that real-time z-scoring412

can be used to achieve similar decoding performance (Fig 2B), calling into question the necessity413

of this baseline period. The success of real-time z-scoring may have been due to our study414

having a strict set of strategies (one of four finger presses) for participants. In less constrained415

situations, results may depend on the variability of participants’ strategies (and neural activity)416

during neurofeedback trials. However, it would remain valid to normalize based on a baseline rest417

period each run.418

We observed differences in decoder performance dependent on the specificity and location of419

the ROI. For instance, we found that by reducing the size of our ROIs by only one voxel width,420

decoding accuracy was reduced by 14% in M1 and by 6% in S1 (Fig 3B). These results are not421

surprising given the limited spatial resolution of fMRI and high intersubject variability. This422

evidence suggests that predetermined segregation of ROIs should be handled carefully. If a423

neurofeedback experiment targets a specific behavior without a well-defined anatomical424

hypothesis, then we should err on the side of inclusion and allow the decoder to automatically425

select relevant voxels in the brain (Shibata et al., 2016). However, if there is a strict hypothesis426

based on a neural mechanism in a specific ROI, then it is reasonable to restrict the voxels at the427

expense of decodability (Shibata et al., 2011). In our case, we chose a broad M1+S1 ROI428

because we were not attempting to segregate a specific neural mechanism, such as separating429

motor output from tactile sensation. If we had a strict motor or sensory hypothesis, isolating the430

M1 or S1 ROI may be necessary. However, if such segregation was necessary, and subsequently431

reduced decoder performance, the procedures illustrated here could be used to predict432

neurofeedback performance, such as the number of trials required to induce neurofeedback433

learning. Fig 5 shows how decoder accuracy is predictive of neurofeedback performance. Thus,434

one of the contributions of the of this work is the suggestion that a targeted decoder accuracy435

should be predetermined together with the goals of the study prior to commencing436

neurofeedback training.437

While here we show the power of simulation of decoded neurofeedback parameters, there are438

limitations to what we can conclude. For example, the number of neurofeedback participants was439

low (N=5), especially compared to the simulated neurofeedback participants (N=10). As expected,440

we did not find a difference in performance between the two groups, validating our model. It is441

possible, however, that a difference may arise with a larger sample of neurofeedback participants.442
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If differences were found, the model could be improved to address more subtle facets of the443

experiment. For example, although participants were not instructed to self-modulate their brain444

activity, their performance could nonetheless be affected by neurofeedback-induced changes in445

the brain. If real neurofeedback performance were to diverge from simulated performance, this446

is one likely factor that should be accounted for in the model. Perhaps more importantly, we447

focused only on M1 and S1, which not only could affect our model, but also generalizability of the448

model to other brain regions. Another mitigating factor is the composition of variability in decoder449

output: we cannot conclude whether the variability in decoder output is due to measurement noise,450

spontaneous neural activity, or variability in motor behavior. Assessing the source of variability in451

decoder output is a key component of modeling decoded neurofeedback that future work must452

address.453

4.1 Conclusions

In this work we show that decoded neurofeedback performance is highly correlated to decoder454

accuracy, and we systematically determine the parameter settings needed to optimize that455

decoder accuracy. We modeled neurofeedback performance using simulations based on real456

brain data, compared this with human performance with the same brain data, and finally457

compared it with real neurofeedback performance. We observed similar performance in all cases,458

validating the accuracy of the simulations. We found a quantitative representation of the high459

level of dependence of neurofeedback performance on success threshold and decoder accuracy.460

These results will help improve the robustness of decoded neurofeedback experiments, both by461

identifying proper preprocessing parameters and by identifying likely ‘non-responder’ participants462

prior to training. The simulation paradigm validated here can be used in future research to463

pre-emptively and efficiently sweep the parameter space to optimize the design of decoded464

neurofeedback experiments.465
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