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Abstract 
 
An important aspect of network-based analysis is robust node definition. This issue is 
critical for functional brain network analyses, as poor node choice can lead to spurious 
findings and misleading inferences about functional brain organization. Two sets of 
functional brain nodes from our group are well represented in the literature: (1) 264 
volumetric regions of interest (ROIs) reported in Power et al., 2011 and (2) 333 surface 
parcels reported in Gordon et al., 2016. However, subcortical and cerebellar structures 
are either incompletely captured or missing from these ROI sets. Therefore, properties 
of functional network organization involving the subcortex and cerebellum may be 
underappreciated thus far. Here, we apply a winner-take-all partitioning method to 
resting-state fMRI data and careful consideration of anatomy to generate novel 
functionally-constrained ROIs in the thalamus, basal ganglia, amygdala, hippocampus, 
and cerebellum. We validate these ROIs in three datasets via several anatomical and 
functional criteria, including known anatomical divisions and functions, as well as 
agreement with existing literature. Further, we demonstrate that combining these ROIs 
with established cortical ROIs recapitulates and extends previously described functional 
network organization. This new set of ROIs is made publicly available for general use, 
including a full list of MNI coordinates and functional network labels. 
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1. Introduction 
 
The brain is organized into areas that interact with one another to form distributed large-
scale networks (Allman and Kaas, 1971; Felleman and Van Essen, 1991; Petersen and 
Sporns, 2015). Researchers studying the brain at the network level have revealed both 
basic principles of brain organization (Bassett and Bullmore, 2006; Honey et al., 2007; 
Power et al., 2011; Sporns et al., 2004; van den Heuvel and Sporns, 2011; Yeo et al., 
2011) and insights into neurologic and psychiatric diseases (Corbetta and Shulman, 
2011; Kim et al., 2014; Seeley et al., 2009; Sorg et al., 2007). Much of this work has 
borrowed concepts and tools from the field of graph theory in order to model the brain 
as a network (Bullmore and Sporns, 2009; Sporns, 2011). A graph is a mathematical 
description of a network, which is composed of a set of elements (nodes) and their 
pairwise relationships (edges (Bondy and Murty, 1976)). Therefore, any network 
approach requires the definition of a set of nodes, such as regions of interest (ROIs) in 
the case of brain networks.  
 
Ideally, nodes should be internally coherent (e.g., functionally homogeneous) and 
independent, separable units (Bullmore and Bassett, 2011; Butts, 2009, 2008). Brain 
areas and their constituent components—local circuits, columns, and domains (Kaas, 
2012)—display many of these properties, and thus, are suitable nodes for brain network 
analysis. Research efforts focused on node definition often employ data-driven 
techniques to parcellate the cerebral cortex into a set of ROIs meant to represent 
putative brain areas (Cohen et al., 2008; Craddock et al., 2012; Glasser et al., 2016; 
Gordon et al., 2016; Nelson et al., 2010; Power et al., 2011; Schaefer et al., 2017; Wig 
et al., 2013). Most such studies have used resting-state functional connectivity MRI, 
which measures correlations in low-frequency blood-oxygen-level-dependent signals 
across the whole brain while subjects remain awake and alert without engaging in an 
explicit task (Biswal et al., 1995; Gusnard and Raichle, 2001; Snyder and Raichle, 
2012). While many of these existing sets of ROIs sample the cortex quite well, most 
approaches have under-sampled or completely omitted the subcortex and cerebellum.  
 
The poorer representation of these structures is a limitation of previous work, as the 
subcortex and cerebellum are known to be integral for many behavioral, cognitive, and 
affective functions. For example, regions of the cerebellum are involved in adaptive 
behaviors (Thach et al., 1992), including fast adaptations, like eye-blink conditioning 
(Steinmetz et al., 1992; Perrett et al., 1993), as well as those that occur over longer 
timescales, like prism adaptation (Martin et al., 1996; Baizer et al., 1999; Morton and 
Bastian, 2004), and higher order cognitive functions, such as semantic processing 
(Fiez, 2016). Likewise, regions of the basal ganglia and thalamus are important for both 
lower level sensory and higher order cognitive functions (Alexander et al., 1986; Jones, 
1985). Furthermore, subcortical structures and the cerebellum have been implicated in 
a variety of neurologic and psychiatric diseases. For instance, the basal ganglia are 
affected in several movement disorders (Greene et al., 2017, 2013; Rajput, 1993; 
Vonsattel et al., 1985), the hippocampus is disrupted in Alzheimer Disease (Hardy and 
Selkoe, 2002), the amygdala is implicated in Urbach-Wiethe Disease (Siebert et al., 
2003), and the cerebellum is disturbed in Schizophrenia (Andreasen et al., 1996; 
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Bigelow et al., 2006; Brown et al., 2005; Kim et al., 2014) and Autism Spectrum 
Disorder (Fatemi et al., 2002), to name a few. Moreover, interactions between the 
cortex and both subcortical and cerebellar regions are crucial for carrying out functions 
in health (Bostan and Strick, 2018; Greene et al., 2014; Hwang et al., 2017; Kiritani et 
al., 2012) and disease (Andreasen et al., 1999; Gratton et al., 2018a; Schmahmann, 
2004). Because of these interactions between multiple structures, it has been 
postulated that subcortical regions may have important hub-like properties for 
integrating brain systems (Hwang et al., 2017). Thus, brain network analyses should 
include these important regions in order to have a more complete picture of brain 
organization and function.  
 
An issue potentially impeding the inclusion of these regions is that subcortical and deep 
cerebellar nuclei are small relative to the spatial resolution of fMRI, often occupying just 
a few voxels, whereas brain areas in the cerebral cortex (e.g. Area V1) are often larger. 
Furthermore, depending on the acquisition sequence, these regions may have lower 
signal quality (Ojemann et al., 1997) or, especially for the cerebellum, may be captured 
incompletely. Finally, most existing techniques for parcellating the brain into areas, such 
as the one used by Gordon and colleagues (2016), were designed for the cortical 
surface, making them less easily applied to structures where surface-based mapping is 
less appropriate (basal ganglia, thalamus), prone to error (medial temporal lobe) (Wisse 
et al., 2014), or less well-established (cerebellum). Despite these difficulties, including 
the subcortex and cerebellum is necessary to have a full representation of the whole 
brain as a network.  
 
Our lab previously published two (now widely used) sets of ROIs: (1) 264 volumetric 
ROIs (Power et al., 2011) and (2) 333 surface-based cortical parcels (Gordon et al., 
2016). The first was created via combined task fMRI meta-analysis and resting-state 
functional correlation mapping, and the second was created via a gradient-based 
parcellation of resting-state fMRI data. These two ROI sets sample the cortex well, 
representing a diverse set of brain areas that can be organized into functional networks. 
Many investigators have used them to describe functional brain organization in a variety 
of healthy samples (Power et al., 2013; Zanto and Gazzaley, 2013), lifespan cohorts 
(Baniqued et al., 2018; Gallen et al., 2016; Gu et al., 2015; Nielsen et al., 2018; Rudolph 
et al., 2017), as well as populations with neurologic and psychiatric diseases (Gratton et 
al., 2018a; Greene et al., 2017; Sheffield et al., 2015; Siegel et al., 2018). However, the 
first set (264 volumetric ROIs) under-samples subcortical and cerebellar structures, as 
only 17 ROIs are non-cortical, and the second set (333 parcels) is restricted to the 
cortex only, which is true of other popular ROI sets, e.g. (Glasser et al., 2016; Yeo et al., 
2011).  
 
The goal of the current study was to expand these ROI sets to better represent 
subcortical and cerebellar structures. Novel ROIs were created in the thalamus, basal 
ganglia, and cerebellum by use of a data-driven, winner-take-all partitioning technique 
that operates on resting-state fMRI data (Choi et al., 2012; Greene et al., 2014; Zhang 
et al., 2010). Additional ROIs were generated in the amygdala and hippocampus on the 
basis of anatomical sub-divisions and previously published literature. The ROIs were 
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validated via anatomical and functional criteria. Finally, we described whole-brain 
functional network organization using these refined subcortical and cerebellar ROIs 
combined with previously established cortical ROIs. The fully updated set of ROIs is 
made publicly available for general use, including a list of coordinates and consensus 
functional network labels, at https://greenelab.wustl.edu/data_software. 
 
 
2. Material and Methods 
 
2.1. Primary dataset- WashU 120 
 
2.1.1. Dataset characteristics 
 
The primary dataset used in this study has been described previously (Power et al., 
2011). Eyes-open resting-state fMRI data were acquired from 120 healthy, right-
handed, native English speaking, young adults (60 F, age range 18-32, mean age 24.7). 
Subjects were recruited from the Washington University community and screened with a 
self-report questionnaire. Exclusion criteria included no current or previous history of 
neurologic or psychiatric diagnosis as well as no head injuries resulting in a loss of 
consciousness for more than 5 minutes. Informed consent was obtained from all 
participants, and the Washington University Internal Review Board approved the study. 
The data are available at https://legacy.openfmri.org/dataset/ds000243/. 
 
2.1.2. Data acquisition 
 
A Siemens MAGNETOM Tim TRIO 3.0T MRI scanner and a 12 channel Head Matrix 
Coil were used to obtain T1-weighted (MP-RAGE, 2.4s TR, 1x1x1mm voxels) and 
BOLD contrast sensitive (gradient echo EPI, 2.5s TR, 4x4x4mm voxels) images from 
each subject. The mean amount of BOLD data acquired per subject was 14 minutes 
(336 frames, range = 184-729 frames). Subjects were instructed to fixate on a black 
crosshair presented at the center of a white background. See Power et al., 2011 for full 
acquisition details. 
 
2.1.3. Preprocessing 
 
The first 12 frames (30 seconds) of each functional run were discarded to account for 
magnetization equilibrium and an auditory evoked response at the start of the EPI 
sequence (Laumann et al., 2015). Slice timing correction was applied first. Then, the 
functional data were aligned to the first frame of the first run using rigid body transforms, 
motion corrected (3D-cross realigned), and whole-brain mode 1000 normalized (Miezin 
et al., 2000). Next, the data were resampled (3 cubic mm voxels) and registered to the 
T1-weighted image and then to a WashU Talairach atlas (Ojemann et al., 1997) using 
affine transforms in a one-step operation (Smith et al., 2004).  
 
Additional preprocessing of the resting-state BOLD data was applied to remove artifacts 
(Ciric et al., 2017; Power et al., 2014). Frame-wise displacement (FD) was calculated as 
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in Power et al., 2012, and frames with FD greater than 0.2 mm were censored. 
Uncensored segments with fewer than 5 contiguous frames were censored as well 
(mean +/- std frames retained = 279 +/- 107). All censored frames were interpolated 
over using least squares spectral estimation (Hocke and Kämpfer, 2009; Power et al., 
2014). Next, the data were bandpass filtered from 0.009-0.08 Hz and nuisance 
regression was implemented. The regression included 36 regressors: the whole-brain 
mean, individually defined white matter and ventricular CSF signals, the temporal 
derivatives of each of these regressors, and an additional 24 movement regressors 
derived by expansion (Friston et al., 1996; Satterthwaite et al., 2012; Yan et al., 2013). 
FreeSurfer 5.3 automatic segmentation was applied to the T1-weighted images to 
create masks of the gray matter, white matter, and ventricles for the individual-specific 
regressors (Fischl et al., 2002).  Finally, the data were smoothed with a Gaussian 
smoothing kernel (FWHM = 6 mm, sigma = 2.55). 
 
At the end of all processing, each censored/interpolated frame was removed from the 
time series for all further analyses. 
 
2.2. Secondary dataset- HCP 80 
 
2.2.1. Dataset characteristics 
 
Due to a partial cutoff of cerebellar data in the primary dataset (outside of the field of 
view), an independent secondary dataset was used to supplement analyses related to 
the cerebellum. This dataset was composed of 80 unrelated individuals from the Human 
Connectome Project (HCP) 500 Subject Release (40F, age range 22-35, mean age 
28.4) with high quality (low-motion) data, described previously (Gordon et al., 2017a). 
All HCP data are available at https://db.humanconnectome.org. 
 
2.2.2. Data acquisition 
 
A custom Siemens SKYRA 3.0T MRI scanner and a custom 32 channel Head Matrix 
Coil were used to obtain high-resolution T1-weighted (MP-RAGE, 2.4s TR, 
0.7x0.7x0.7mm voxels) and BOLD contrast sensitive (gradient echo EPI, multiband 
factor 8, 0.72s TR, 2x2x2mm voxels) images from each subject. The HCP used 
sequences with left-to-right and right-to-left phase encoding, with a single RL and LR 
run on each day for two consecutive days for a total of four runs (Van Essen et al., 
2012). Thus, for symmetry, the BOLD time series from each subject’s best (most frames 
retained after censoring) LR run and their best RL run were concatenated together.  
 
2.2.3. Preprocessing 
 
The preprocessing steps were the same as those detailed in Section 2.1.3 except for 
the following: (1) the first 41 frames (29.52 seconds) of each run were discarded, (2) no 
slice timing correction was applied, (3) field inhomogeneity distortion correction was 
applied (using the mean field map), (4) the data were not resampled (they were 
collected at 2 cubic mm isotropic voxels), and (5) the Gaussian smoothing kernel was 
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smaller (FWHM = 4 mm, sigma = 1.7). The first two changes are due to the increased 
temporal resolution of the HCP data acquisition (0.72s TR) and the last two changes are 
due to the increased spatial resolution of HCP data acquisition (Glasser et al., 2013). 
Distortion correction was not applied to the primary dataset because field maps were 
not collected in most participants. In addition, the increased temporal resolution caused 
respiration artifacts to alias into the FD trace (Fair et al., 2018; Siegel et al., 2017). 
Thus, FD values were filtered with a lowpass filter at 0.1 Hz and the filtered FD 
threshold was set at 0.1 mm (mean +/- std frames retained = 2236 +/- 76). 
 
For the purpose of the winner-take-all partitioning of the secondary dataset (described 
in section 2.4), a CIFTI was created for each subject. Thus, preprocessed cortical BOLD 
time series data (from the secondary dataset only) were mapped to the surface, 
following the procedure of Gordon et al., 2016, and combined with volumetric 
subcortical and cerebellar data in the CIFTI format (Glasser et al., 2013; Gordon et al., 
2016). 
 
At the end of all processing, each censored/interpolated frame was removed from the 
time series for all further analyses. 
 
2.3. Validation dataset- MSC 
 
2.3.1. Dataset characteristics 
 
Since the primary and secondary datasets were used to create the subcortical and 
cerebellar ROIs (described in sections 2.5 and 2.6), results for functional network 
community assignment (described in section 2.7) were validated with a third 
independent dataset, the Midnight Scan Club (MSC), described previously (Gordon et 
al., 2017b). These data are available at 
https://openneuro.org/datasets/ds000224/versions/00002. The MSC dataset consists of 
5 hours of resting-state BOLD data from each of 10 individuals (5 F, age range 24-34, 
mean age 29) over a two-week period.  
 
2.3.2. Data acquisition 
 
The same scanner, head coil, and acquisition parameters described in Section 2.1.2 
were used to for the MSC. However, a single resting-state run lasting 30 minutes was 
collected on 10 separate days. Each scan was acquired starting at midnight (Gordon et 
al., 2017b). 
 
2.3.3. Preprocessing 
 
For each subject, all runs were concatenated together in the order that they were 
collected. The initial preprocessing steps were the same as those detailed in Section 
2.1.3 except for the following: (1) the functional images were registered to the average 
T2-weighted anatomical image (4 were collected per subject), then to the average T1-
weighted anatomical image (4 were collected per subject), and finally to the Talairach 
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atlas, (2) field inhomogeneity distortion correction was applied (using the mean field 
map), and (3) one subject (MSC08) was excluded due to a substantial amount of low-
quality data and self-reported sleeping during acquisition, as detailed previously 
(Gordon et al., 2017b; Laumann et al., 2016). 
 
Additional preprocessing followed Marek and colleagues (Marek et al., 2018). Again, FD 
was used to exclude high-motion frames; however, due to respiratory artifacts affecting 
the realignment parameters (Power et al., 2018; Siegel et al., 2017), a lowpass filter (0.1 
Hz) was applied to those parameters before calculation of FD. Consequently, the 
threshold for frame censoring was lowered to 0.1mm. Frames with outstanding (>2.5 
standard deviations above the mode computed across all runs) DVARS values (as 
calculated in Power et al., 2012) were also excluded. All censored frames were 
interpolated over using least squares spectral estimation. After, a bandpass filter (0.005-
0.1 Hz) was applied.  
 
Finally, component-based nuisance regression was implemented. Individual-specific 
FreeSurfer 6.0 segmentation was used to define masks of the gray matter, white matter, 
and ventricles. A mask of extra-axial (or edge (Patriat et al., 2015)) voxels was also 
created by thresholding the temporal standard deviation image (>2.5%, excluding all 
voxels within a dilated whole-brain mask). BOLD data was extracted from all voxels in 
each mask (separately), and dimensionality reduction was applied as in CompCor 
(Behzadi et al., 2007). The number of components retained was determined 
independently for each mask such that the condition number (i.e., the maximum 
eigenvalue divided by the minimum eigenvalue) was greater than 30. All retained 
components were submitted to a regressors matrix that also included the 6 realignment 
parameters. To avoid collinearity, singular value decomposition was applied to the 
regressors covariance matrix. Components of this decomposition were retained up to an 
upper limit (condition number >=250). Then, all of the final retained components, the 
whole-brain mean, and its temporal derivative were regressed from the BOLD time 
series. 
 
At the end of all processing, each censored/interpolated frame was removed from the 
time series for all further analyses. 
 
2.4. Winner-take-all partitioning of the subcortex and cerebellum 
 
In order to first identify functional subdivisions within subcortical structures and the 
cerebellum, a winner-take-all partitioning technique was applied to the basal ganglia, 
thalamus, and cerebellum, as previously described (Greene et al., 2014). Past 
applications of this winner-take-all approach have yielded results consistent with known 
connectivity from the animal literature (Buckner et al., 2011; Choi et al., 2012; Fair et al., 
2010; Greene et al., 2014; Zhang et al., 2008). 
 
Briefly, the mean resting-state time series were extracted from each of 11 previously 
defined cortical networks (Power et al., 2011): default mode, frontoparietal, 
cinguloopercular, salience, dorsal attention, ventral attention, visual, auditory, 
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somatomotor dorsal, somatomotor lateral, and orbitofrontal. In order to remove the 
shared variance among cortical networks thereby increasing specificity of the 
subcortico-cortical and cerebello-cortical correlations, partial correlations were then 
calculated between the time series from each cortical network and the resting-state time 
series from each subcortical or cerebellar gray matter voxel (e.g., for each cortical 
network and subcortical voxel, a residual correlation was computed after partialling out 
the signal from the other cortical networks). Each voxel was then assigned to the 
network with which it correlated most in a winner-take-all fashion (Buckner et al., 2011; 
Choi et al., 2012; Greene et al., 2014; Zhang et al., 2010), generating a functional 
partition of subcortical and cerebellar structures.  
 
2.5. ROI creation 
 
Spherical ROIs (diameter = 8mm) were placed in the (volumetric) center of each of the 
winner-take-all partitions in the basal ganglia, thalamus, and cerebellum. Then, the 
ROIs were manually adjusted such that (1) all ROIs included only gray matter voxels 
and (2) no ROIs had any overlapping voxels. Two additional ROIs (one per hemisphere) 
were added to the center of the amygdala based on anatomy (Talairach and Tournoux, 
1988; Woolsey et al., 2008). Further, four ROIs (two per hemisphere) were added to the 
anterior and posterior portions of the hippocampus on the basis of the work from Kahn 
and colleagues (Kahn et al., 2008) that demonstrated distinct functional connectivity 
profiles for these two regions. In total, 34 subcortical and 27 cerebellar ROIs were 
created. 
 
These new subcortical and cerebellar ROIs were then combined with two previously 
described sets of cortical ROIs from our lab, as follows:  
 
ROI Set 1 (Power264 + new): Spherical cortical ROIs were used from the 264 
volumetric ROIs reported in (Power et al., 2011). Four of these ROIs in the medial 
temporal lobe (two per hemisphere) were removed (Talairach coordinates: (-20, -24, -
18), (17, -30, -15), (-25, -41, -8), (26, -39, -11)) and replaced by the four new 
hippocampus ROIs, due to some overlapping voxels. In addition, the 17 subcortical and 
cerebellar ROIs from the original 264 were replaced by 55 new subcortical and 
cerebellar ROIs. Finally, the 2 new amygdala ROIs were added. Thus, ROI Set 1 is 
composed of 239 cortical, 34 subcortical (including the amygdala and hippocampus), 
and 27 cerebellar volumetric ROIs, for a total of 300 ROIs.  
 
ROI Set 2 (Gordon333 + new): ROI set 2 was generated by combining the 333 surface-
based cortical parcels (Gordon et al., 2016) with the newly generated subcortical and 
cerebellar ROIs. Thus, ROI Set 2 is composed of 333 surface-based cortical parcels 
and 34 subcortical (including the amygdala and hippocampus) and 27 cerebellar 
volumetric ROIs, for a total of 394 ROIs. For all analyses using this ROI set, we utilized 
the center of each cortical parcel projected into volumetric atlas space (Gordon et al., 
2016). The parcels in this format are publicly available at 
https://sites.wustl.edu/petersenschlaggarlab/parcels-19cwpgu/. 
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2.6. Seedmaps and consensus functional network communities for each ROI 
 
2.6.1. Seedmaps 
 
To validate the winner-take-all assignments of voxels used for ROI placement, we first 
conducted seedmap analyses to show how each ROI was correlated with every other 
gray matter voxel. A seedmap represents the pattern of correlations between the mean 
BOLD time series from a given ROI and all other gray matter voxels in the brain. We 
generated group-average seedmaps for both ROI Sets and each dataset (primary, 
secondary, validation). The preprocessed BOLD time series for each gray matter voxel 
within each ROI were averaged together (after removing censored and interpolated 
frames). Then, the Pearson correlation between each new ROI and every other gray 
matter voxel in the brain was computed for each subject. The subject-specific maps 
were Fisher transformed, averaged together, and inverse Fisher transformed. 
 
2.6.2. Correlation matrices 
 
We generated correlation matrices to examine the community structure of the new 
ROIs. A correlation matrix is the set of all possible pairwise correlations between mean 
BOLD time series from each ROI organized into a symmetric matrix (since correlations 
are undirected). We computed correlation matrices for both ROI Sets and each dataset 
(primary, secondary, validation). The preprocessed BOLD time series for each gray 
matter voxel within each ROI were averaged together (after removing censored and 
interpolated frames). Then, the Pearson correlation between every pair of ROIs was 
computed to create a 300 x 300 (ROI Set 1) and 394 x 394 (ROI set 2) correlation 
matrix for each subject. Each matrix was Fisher transformed, all matrices were 
averaged together (within each ROI set and dataset), and inverse Fisher transformed.  
 
2.6.3. Community detection 
 
To determine the functional network membership of each ROI, an information-theoretic 
community detection algorithm was implemented (InfoMap (Rosvall and Bergstrom, 
2008)). InfoMap requires a sparse matrix, so an edge density threshold was applied to 
the correlation matrices. The networks (correlation matrices) were thresholded until only 
the strongest X percent of edges remained. We ran InfoMap over a range of thresholds 
(X = 2-10% inclusive, with a 1% step increment, following Power et al. (2011)).  
 
In general, the magnitude of BOLD correlations between the cortex and the subcortex, 
the cortex and the cerebellum, and the subcortex and the cerebellum is substantially 
weaker than within-structure (and particularly, cortico-cortical) correlations. The primary 
reasons for this are distance from the head matrix coil and signal dropout due to 
sinuses. For instance, in the primary dataset, off-diagonal (between-structure) 
correlations from the subcortex and cerebellum account for 40% of the weakest decile 
of correlations (i.e., the 10% of correlations closest to 0), even though the subcortex and 
cerebellum account for only 23% of all ROIs. Therefore, in order to ensure that 
between-structure correlations were included, structure-specific thresholding was used 
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(Marek et al., 2018). The correlation matrix was separated into cortical, subcortical, and 
cerebellar components (e.g., the subcortical component is every entry in each row 
corresponding to any subcortical ROI) and the edge density thresholds were applied to 
each component separately. Thus, if a 2% structure-specific edge density was applied 
to the matrix, the top 2% of cortical, top 2% of subcortical, and top 2% of cerebellar 
correlations (excluding diagonal entries) were extracted and all other correlations were 
set to 0. 
 
2.6.4. Consensus network procedure  
 
Consensus functional network communities were determined in a semi-automated, 
multistep process. First, a weighting procedure was applied across InfoMap thresholds. 
For the 2% and 3% thresholds the weight was 5, for the 4% and 5% thresholds the 
weight was 3, and the weight was 1 for all other thresholds. These weights were chosen 
to bias the consensus solution to have approximately 17 networks on the basis of work 
from Yeo and colleagues (Yeo et al., 2011). Since smaller networks tend to show up at 
sparser thresholds, those thresholds contribute more weight than the denser thresholds. 
For each ROI (independently), the InfoMap-determined community at each threshold 
was noted, taking the weights into account, and the highest weighted community was 
assigned as the consensus.   
 
After this automated consensus procedure, authors BAS, CG, and DJG reviewed the 
community assignment of each new subcortical and cerebellar ROI. In ambiguous 
cases (e.g., an even split in assignment across thresholds), we consulted literature 
describing the anatomy and function of that brain region. Consensus network 
communities were assigned in this way for 8 unclear cases (the 8 ROIs in the putamen). 
 
All cortical ROIs retained their original assignment from published works (Power et al., 
2011 for ROI Set 1 and from Gordon et al., 2016 for ROI Set 2) unless there was strong 
evidence to overturn the original. Specifically, if an ROI in the present InfoMap solution 
received the same assignment across all thresholds and that assignment was distinct 
from the original, then the ROI was assigned to the novel network community. 
Furthermore, 5 ROIs originally assigned to the salience network were reassigned to the 
cingulo-opercular network. We made this change because (1) the ROIs showed profiles 
intermediate between salience and cinguloopercular assignments and (2) previously 
published studies revealed that these brain regions demonstrate task-evoked activity 
consistent with the cingulo-opercular network (Dosenbach et al., 2006; Dubis et al., 
2016; Gratton et al., 2018b, 2017; Neta et al., 2014). 
 
2.6.5. Validation of consensus networks 
 
The primary and secondary datasets were used to create the subcortical and cerebellar 
ROIs, respectively. The validation dataset (MSC) was used to test the validity of the 
consensus functional network communities in both cases. The network community 
assignment for each ROI was compared across all datasets, and discrepancies were 
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noted. Further, consensus networks were compared with those from previously 
published literature as well as anatomical atlases of brain regions. 
 
2.7. Spring-embedded graphs 
 
To visualize the community structure of networks in an abstract graph space, spring-
embedded graphs were created. The networks (correlation matrices) were thresholded 
in the same way as in Section 2.6.3, and the resulting matrices were submitted to a 
physical model of connected springs (the Kamada-Kawai algorithm, as used in Power et 
al., 2011). Correlations between pairs of ROIs were modeled as force constants 
between connected springs such that strongly correlated ROIs were “pulled” close to 
one another. ROIs were colored according to their consensus functional network 
community or their anatomical location.  
 
 
3. Results 
 
3.1. Subcortical and cerebellar ROIs 
 
The final set of subcortical and cerebellar ROIs overlaid onto the winner-take-all 
partitions are displayed in Figure 1. These winner-take-all partitions were similar to 
previously published partitions for the basal ganglia (Choi et al., 2012; Greene et al., 
2014), thalamus (Hwang et al., 2017), and cerebellum (Buckner et al., 2011).  
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Figure 1: Subcortical and cerebellar ROIs. The new ROIs (white circle with black outline) are displayed 
in serial coronal (A and D), sagittal (B and E), and axial (C and F) sections for the subcortex in the left 
column (A, B, and C) and for the cerebellum in the right column (D, E, and F). The ROIs are overlaid on 
top of the voxel-wise winner-take-all partitioning, except for ROIs in the amygdala and anterior 
hippocampus, which are overlaid on anatomical coronal sections in the bottom right panel of F.  

 
 
The 34 subcortical ROIs sampled the following anatomical structures (bilaterally): the 
head and tail of the caudate; anterior dorsal, posterior dorsal, anterior ventral, and 
posterior ventral putamen; the globus pallidus (internus and externus combined); the 
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ventral striatum (i.e., nucleus accumbens); the amygdala (nuclei not distinguished); 
anterior and posterior hippocampus; and regions in the thalamus. The locations of the 
thalamic ROIs included the following nuclei and surrounding territory (the resolution of 
our data was not fine enough to delineate precise thalamic nuclei): medio-dorsal (MD), 
latero-dorsal (LD), ventro-anterior (VA), ventro-lateral (VL), ventro-postero-lateral (VPL), 
and lateral geniculate nucleus (LGN)-pulvinar. The 27 cerebellar ROIs sampled the 
vestibulo-, spino-, and cerebro-cerebellum, including the cerebellar vermis, classical 
motor cerebellar cortex, and cerebellar association cortex (Woolsey et al., 2008). 
 
3.2. Correlation structure replicates across datasets 
 
Exemplar seedmaps for the primary dataset are displayed in Figure 2 and the group-
average correlation matrices for all datasets using ROI Set 1 are displayed in Figure 3. 
The correlation matrices using ROI Set 2 are displayed in SI Figure 1. The seedmaps 
were comparable to previously published maps (Figure 2). The matrices were quite 
similar across datasets (r120,HCP = 0.90, r120,MSC = 0.93, rHCP,MSC = 0.87), with results from 
the primary dataset replicating best in the validation (MSC) dataset. However, in the 
secondary (HCP) dataset, there was approximately 0 correlation between subcortical 
ROIs and all other ROIs, including homotopic subcortical ROI pairs. The likely reason 
for this difference is due to poor temporal signal-to-noise ratio in the subcortex of HCP 
data (Ji et al., 2018), which we demonstrate here in SI Figure 2. Thus, we excluded the 
secondary dataset from all further analyses. 
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Figure 2: Exemplar seedmaps for the new ROIs. Functional correlation seedmaps are shown for an 
exemplar ROI in the cerebellum (A), basal ganglia (B), and hippocampus (C). The consensus functional 
network assignment of each ROI is represented by its color (left column). Seedmaps display the 
correlations between the mean BOLD signal from the ROI in question and the BOLD signal from every 
other gray matter voxel (middle column). Results were similar to comparable seedmaps from previously 
published studies (right column).  
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Figure 3: Correlation matrices are similar across datasets. The full (300 x 300) correlation matrices 
for ROI Set 1 are displayed for each dataset in the left column, and zoomed-in versions of the subcortical 
and cerebellar portions of the matrices are displayed in the right column (the corresponding images for 
ROI Set 2 are shown in SI Figure 1). The cortical portion of the correlation matrix is sorted by functional 
network community, whereas the subcortical and cerebellar portions are sorted first by anatomical 
structure (i.e., basal ganglia, thalamus, and cerebellum) and then by functional network community (within 
each structure). The matrices are quite similar (e.g., the correlation between the primary and validation 
datasets is 0.93), except for the subcortical portion of the secondary dataset (HCP- Human Connectome 
Project). We observed poor temporal signal-to-noise in subcortical HCP data (SI Figure 2). 

 
 
3.3. Functional network organization using the expanded ROI Set 
 
We used a data-driven community detection algorithm (InfoMap) to determine the 
functional network community membership of the expanded set of ROIs (Rosvall and 
Bergstrom, 2008). The results of this analysis are displayed in Figure 4. Communities 
are shown for all tested edge density thresholds alongside the consensus network 
communities (see section 2.6).  
 
In the subcortex and cerebellum, the consensus network communities were as follows: 
ROIs in the caudate associated with the default mode network (head) or the 
frontoparietal network (tail). The putamen and globus pallidus ROIs joined the 
somatomotor dorsal network. In the thalamus, the default mode network was assigned 
to mediodorsal region, the cinguloopercular network to the laterodorsal and ventral 
anterior regions, the somatomotor dorsal network to the ventrolateral and ventral 
posteriolateral regions, and the visual network to the ROI that includes the lateral 
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geniculate nucleus and the posterior portion of the pulvinar. We use the names of the 
thalamic nuclei for convenience here, even though the ROIs encompass more gray 
matter than just the nuclei themselves. Cerebellar ROIs joined various networks, 
including the default mode, frontoparietal, and cinguloopercular networks (lateral), the 
somatomotor networks (motor cerebellar cortex), and the visual network (vermis). Most 
of the observed network assignments agree with known brain function, such as the 
association between ventral posteriolateral thalamic region and the somatomotor dorsal 
network. 
 
While some ROIs did not vary in network membership across thresholds (e.g., the tail of 
the caudate ROIs), others changed network membership after a certain threshold (e.g., 
the putamen ROIs) or switched between two or more networks (e.g., some of the 
thalamic ROIs). This variation is similar to the variation seen with cortical ROI 
assignments (e.g., see Figure 1 from Power et al., 2011 and Figure 2A from Power et 
al., 2013) and is indicative of the loss of some finer-scale community structure at denser 
thresholds.  
 
Importantly, we replicated these community assignments in the validation dataset 
(MSC; note that we did not use the secondary dataset for this analysis due to poor 
signal-to-noise in the subcortex). The consensus communities from the primary and 
validation datasets were broadly consistent across the two ROI Sets, with 55 out of 61 
subcortical (including the amygdala and hippocampus) and cerebellar ROIs receiving 
the same assignment.  
 
Most cortical ROIs retained their functional network membership from Power et al., 
2011 (ROI Set 1) or Gordon et al., 2016 (ROI Set 2). Nonetheless, due to the addition of 
the new ROIs, we observed two functional networks not previously observed with the 
original ROI sets: (1) a network composed of ROIs in the amygdala, ventral striatum, 
orbitofrontal cortex, and ventral medial prefrontal cortex, which we will call the “reward” 
network and (2) a network composed of ROIs in the anterior hippocampus and 
entorhinal cortex, which we will call the “MTL” network. In addition, in ROI Set 1, 10 
previously unlabeled ROIs were now assigned to a network: 4 to the reward network, 3 
to the MTL network, 2 to the visual network, and 1 to the dorsal attention network. Also, 
12 ROIs changed network membership: 2 from the cinguloopercular network to the 
somatomotor dorsal network, 1 from the auditory network to cinguloopercular network, 
and 9 from the salience network to the frontoparietal (2), dorsal attention (1), and 
cinguloopercular (6) networks. For ROI Set 2, 39 previously unlabeled ROIs were 
assigned to a network: 8 to the reward network, 10 to the MTL network, 16 to the 
parietooccipital network, and 5 to the default mode network (SI Figure 3). Again, 
consensus communities from the primary and validation datasets were broadly 
consistent. 
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Figure 4: InfoMap-defined functional network communities. The InfoMap-defined functional network 
community of each ROI is displayed. (A) Cortical ROIs are shown projected onto the surface of the brain, 
and some of the non-cortical ROIs are displayed in axial slices to the right of the cortical surface. (B) The 
matrices represent the functional network assignment of each ROI across all tested edge densities, with 
the consensus functional network community displayed in the last column of each matrix (delineated by 
the vertical black line). Results are shown for the primary and validation datasets. The matrices on the 
right show zoomed-in results for all non-cortical ROIs. Results were highly consistent in the subcortex, 
cerebellum, amygdala, and hippocampus, with a total of 3 disagreements between datasets (in addition to 
3 unlabeled ROIs at the bottom of the cerebellum forming their own “network” in the MSC dataset). 
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3.4. Subcortical and cerebellar ROIs integrate with known functional networks  
 
To visualize the ROIs in functional network space, we created spring-embedded graphs, 
displayed in Figure 5 (other edge densities in SI Figure 4). The implemented spring 
model aggregates nodes with strong correlations between themselves and weak 
correlations with other nodes. Thus, it is possible to observe which nodes segregate into 
separate communities and which nodes act as connector hubs, mediating interactions 
across different network communities (Gordon et al., 2018).  
 
As is evident from the position of the bolded network nodes, the subcortical and 
cerebellar ROIs were distributed throughout the spring-embedded graph. For instance, 
the cerebellar ROIs (gray) were not segregated from the rest of the network 
communities as in previous reports (Gratton et al., 2018a; Power et al., 2011). This 
finding was consistent between the primary and validation datasets. However, we 
observed that the basal ganglia, thalamus, and cerebellum did segregate into their own 
network communities when the graph was created without structure-specific edge 
density thresholding (SI Figure 4; see Section 2.6.3 for the thresholding procedure). 
That is, the basal ganglia, thalamus, and cerebellum clustered into their own separate 
network communities with standard edge density thresholding (applying the threshold 
uniformly to the whole correlation matrix), likely because of the lower correlation 
magnitudes associated with these regions.  
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Figure 5- Spring-embedded graphs show that subcortical and cerebellar ROIs integrate with well-
characterized network communities. Spring-embedded graphs are displayed for ROI Set 1 using the 
primary and validation datasets at a structure-specific edge density threshold of 3% (other edge densities 
shown in SI Figure 4; see section 2.6.3 for the thresholding procedure). Non-cortical ROIs are larger and 
have a bold outline. The color of each ROI represents its consensus functional network community 
assignment, except for the non-cortical ROIs, which are labeled by anatomical structure. The basal 
ganglia, thalamus, and cerebellum distribute throughout the graph, integrating with well-characterized 
networks rather than segregating into their own communities.  

 
 
4. Discussion 
 
Here we present a set of regions of interest (ROIs) that sample the basal ganglia, 
thalamus, cerebellum, amygdala, and hippocampus more completely than previous ROI 
sets in order to provide a whole-brain description of functional network organization. We 
found that the refined region sets recapitulate previous network organization results in 
the cortex and extend functional brain network characterization to the subcortex and 
cerebellum. Notably, these results replicated across independent datasets. In addition, 
due to the inclusion of the new ROIs, we observe two additional functional networks that 
were not present in Power et al. (2011) and Gordon et al. (2016): a reward network and 
a medial temporal lobe (MTL) network. 
 
4.1. Improved sampling of the subcortex and cerebellum 
 
Many recent research efforts have used the 264 ROIs from Power et al., 2011 or the 
333 surface-based parcels from Gordon et al., 2016 to study brain network organization. 
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These studies have examined both structural and functional network organization in a 
wide variety of samples, including healthy young adults (Power et al., 2013; Zanto and 
Gazzaley, 2013), developmental cohorts (Gu et al., 2015; Nielsen et al., 2018; Rudolph 
et al., 2017), older adults (Baniqued et al., 2018; Gallen et al., 2016), and a plethora of 
neurological and psychiatric populations (Gratton et al., 2018a; Greene et al., 2016; 
Sheffield et al., 2015; Siegel et al., 2018). We have gained a better understanding of 
typical and atypical human brain organization from these efforts. However, a full 
characterization of whole-brain network organization in these populations is incomplete 
due to the underrepresentation of the subcortex and cerebellum.  
 
The functionally-defined subcortical and cerebellar ROIs presented in the current work 
provide a better sampling of these structures. By improving the representation of these 
important brain structures, we were able to delineate well-characterized and additional 
functional network communities (relative to our past descriptions). The ability to uncover 
these networks, which have been previously described using other methods, illustrates 
the importance of representing the entire brain in network-based analyses. Further, 
these improved ROI sets may allow future studies to discover previously unobserved, 
yet critical deviations in functional network organization in diseases and disorders in 
which the subcortex and cerebellum are implicated (e.g., Parkinson Disease, Tourette 
Syndrome, Schizophrenia).   
 
It is worth noting that, by definition, the cortical surface parcels omit the subcortex and 
cerebellum. Yet, it is technically possible to parcellate the subcortex and cerebellum 
using an adapted gradient-based methodology (such as the one from Gordon et al., 
2016). This approach would require extending the gradient technique to 3 dimensions. 
As fMRI technology and analysis strategies improve, it would be useful to compare the 
current results to a full subcortical and cerebellar parcellation using this or other 
gradient-based techniques. 
 
4.2. Functional connectivity of the refined ROIs is consistent with previous 
studies and replicates across independent datasets 
 
Correlation seedmaps from the refined ROIs agree with functional connectivity profiles 
reported in previous studies. For example, the ROIs added to the ventral striatum and 
the head of the caudate correspond closely to the seeds placed in the superior ventral 
striatum (VSs) and dorsal caudate (DC) reported in Di Martino et al., 2008, and our 
seedmaps are highly similar to theirs. Likewise, seedmaps from the hippocampus and 
amygdala agree well with those from Kahn et al., 2008 and Roy et al., 2009, 
respectively. The same is true for the thalamus (Hwang et al., 2017) and cerebellum 
(Buckner et al., 2011). 
 
Moreover, the full correlation structure (shown in correlation matrices) was quite 
comparable across the diverse datasets. The one major discrepancy was that in the 
subcortical portion of the matrix from the secondary (HCP) dataset we observed 
correlations near zero. The reason for this observation is likely poor temporal signal-to-
noise ratio (tSNR) in the subcortex of HCP data (Ji et al., 2018). Several factors may 
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contribute to this poor tSNR: (1) The HCP used a custom scanner and coil, which 
caused unique magnetic field inhomogeneities, possibly in part due to subjects’ heads 
being outside of the isocenter of the field. (2) The imaging sequence used an 
aggressive multiband factor and TR (MB = 8, TR = 0.72s) and (3) small voxels (2 cubic 
mm) were used for acquisition (Glasser et al., 2013; Van Essen et al., 2012). Each of 
these factors substantially increase electronic, thermal, and other physical sources of 
noise (Triantafyllou et al., 2005) relative to slower sequences with larger voxels. These 
effects may be amplified as a function of the distance of the imaged structure from the 
head coil, resulting in the poorest tSNR in the subcortex. Further work is needed to 
determine the specific contributions of each factor, as well as others heretofore 
unconsidered, to the observed poor tSNR.  
 
The presented group-level descriptions converge on a very similar picture of functional 
network organization in the subcortex and cerebellum. However, it is likely that there are 
individual differences in both subcortical and cerebellar functional network organization, 
as have been found in cortical functional network organization. Future work designed for 
in-depth study of individuals, as in Poldrack et al., (2015), Braga and Buckner (2017), 
and Gordon et al. (2017b), will be important for elucidating such individual differences. 
In fact, in-depth study of the cerebellum in individuals reveals both common and unique 
features in its functional organization (Marek et al., 2018). 
 
4.3. Reward and MTL functional networks map onto known human brain systems 
 
Group-average functional network organization in the cerebral cortex is largely 
consistent across studies (Power et al., 2011; Yeo et al., 2011), and the addition of 
refined subcortical and cerebellar ROIs did not change functional network organization 
in the cortex substantially (although we observed associations between these canonical 
networks and ROIs in the subcortex and cerebellum). However, the addition of these 
subcortical and cerebellar ROIs allowed for the identification of two additional functional 
networks compared to the original ROI sets reported in Power et al. (2011) and Gordon 
et al. (2016): (1) a “reward” network composed of the amygdala, orbitofrontal cortex, 
and ventromedial prefrontal cortex, and (2) a “medial temporal lobe (MTL)” network 
composed of the anterior hippocampus and entorhinal cortex. It is worth noting that the 
reward network has been observed in studies focusing on reward processing (Camara 
et al., 2009) and its cortical portion is very similar to the limbic network from Yeo et al., 
(2011). The MTL network has been observed in a study of highly-sampled individuals 
(Gordon et al., 2017b) as well as studies focused on the hippocampus (Greicius et al., 
2009). Here, we demonstrate that these networks are measurable at the group-level 
when the whole brain is represented sufficiently. In addition, we found that some cortical 
ROIs that were previously unlabeled (i.e., they did not group with any community) 
received labels with the inclusion of the refined subcortical and cerebellar ROIs, with 
many of them joining the reward and MTL networks.  
 
The reward and MTL functional networks map onto well-characterized brain systems. 
Most of the ROIs in the reward network are connected to each other anatomically in 
rodents, nonhuman primates, and humans (Ongur and Price, 2000; Carmichael and 
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Price, 1995; Amaral and Price, 1984). Moreover, these brain areas are known to be 
functionally related, as they are important for various aspects of decision making and 
reward-related behavior, such as economic choice (Padoa-Schioppa and Assad, 2006), 
emotional regulation (Phelps, 2006), and gambling (Bechara et al., 2000, 1997). 
Likewise, the ROIs in the MTL network are well-connected anatomically (Duvernoy, 
1988; Woolsey et al., 2008) and support various aspects of memory formation, 
consolidation, and retrieval, as well as other important functions, such as spatial 
mapping (Burgess et al., 2002; Moser and Moser, 1998; Tulving and Markowitsch, 
1998). Though our current work is agnostic to the function of these brain systems, we 
show that their constituent regions demonstrate coherent spontaneous fluctuations in 
the BOLD signal. 
 
4.4. Subcortical and cerebellar ROIs integrate with known functional networks 
 
To visualize the organization of the ROIs in functional network space, we created 
spring-embedded graphs. We observed that the subcortical and cerebellar ROIs 
integrate with various well-characterized network communities composed of cortical 
regions instead of segregating on their own (i.e., away from cortical ROIs). This 
organization fits with the known anatomy and function of the subcortex and cerebellum 
better than a model in which each structure is segregated into its own community. For 
instance, individual nuclei in the thalamus project directly to distinct brain systems 
(Woolsey et al., 2008) and play unique roles in behaviors associated with those systems 
(Guillery, 1995; Van Der Werf et al., 2000). Likewise, striato-cortical and cerebello-
cortical anatomical connections show specific projections to unique regions of cortex 
(Woolsey et al., 2008) and are known to be integral for the function of various large-
scale, distributed systems, such as the motor system (Glickstein and Doron, 2008) and 
regions of higher order systems (Alexander et al., 1986; Strick et al., 2009). 
 
This finding of integration was revealed by the use of structure-specific edge density 
thresholding (i.e., thresholding the cortex, subcortex, and cerebellum separately). In 
most network analyses, only the strongest positive correlations are considered for 
network-based analyses, such as spring-embedded graphs. However, subcortical 
correlations are generally weaker than cortical correlations. Thus, if the top 5% 
strongest positive correlations are selected, almost all subcortical correlations will be 
excluded. To avoid this exclusion, we implemented structure-specific thresholding. This 
choice ultimately affects the nature of the spring-embedded graph as well as the 
determination of functional network communities. Without structure-specific 
thresholding, subcortical ROIs group with one another into two separate network 
communities (basal ganglia and thalamus), while the entire cerebellum is lumped into 
one network community. In terms of human brain functional organization, this pattern of 
anatomical clustering seems artificially inflated due to low subcortex-to-cortex and 
cerebellum-to-cortex correlations. By using structure-specific thresholding, we were able 
to observe functional network organization that is more consistent with the known 
functions of the subcortex and cerebellum.  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/450452doi: bioRxiv preprint 

https://doi.org/10.1101/450452
http://creativecommons.org/licenses/by-nc-nd/4.0/


There are advantages to both anatomical and functional network-based divisions of 
ROIs. For instance, anatomical network divisions allow for analysis of important 
distinctions between the cortex, subcortex, and cerebellum, whereas functional network 
divisions better represent putative brain function. Ultimately, researchers should be 
cognizant of these effects when choosing how to perform network-based analyses. 
 
4.5. Conclusions 
 
We created new subcortical and cerebellar ROIs to improve the representation of these 
important structures for brain network analysis. Combining these new ROIs with 
previously characterized cortical ROIs allowed further insight into whole-brain functional 
network organization. Going forward, inclusion of these ROIs will yield more 
comprehensive results from fMRI studies of typical and atypical brain organization and 
function. The ROI Sets and consensus functional network assignments described here 
are available for immediate download and use at 
https://greenelab.wustl.edu/data_software. 
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Supplemental Figures 
 
 

 
SI Figure 1: Correlation matrices for ROI Set 2. The center of each surface-based parcel 
from Gordon and Laumann et al., 2016 (Cerebral Cortex) was projected into volume space and 
combined with the new ROIs presented in this work to create ROI Set 2. The mean BOLD 
timeseries from all voxels within each ROI was extracted. The correlation matrices for each 
dataset are displayed, and zoomed-in portions of the matrix corresponding to the new ROIs are 
on the right. 
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SI Figure 2: Poor temporal Signal-to-Noise Ration (tSNR) in the subcortex of Human 
Connectome Project data. Similar to previously published studies, we found that there was 
poor tSNR in the subcortex of HCP data. Representative images of tSNR (mean divided by 
standard deviation of the BOLD timeseries at each voxel) are displayed for an individual from 
the primary dataset (WashU 120) and from the HCP dataset (top). The images are scaled to the 
maximum tSNR value in the WashU image. The distributions on the bottom represent tSNR for 
all subcortical ROIs across each individual in each dataset. The distribution for HCP (red) is 
significantly worse than the primary dataset (mean +/- std = 9.63 +/- 6.48 for HCP; 137.79 +/- 
76.22 for WashU). 
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SI Figure 3: InfoMap-defined functional network community assignments for ROI Set 2. 
The functional network communities detected via InfoMap are displayed for the primary (WashU 
120; top row) and validation (MSC; bottom row) datasets. The results were very similar to those 
shown in the main text, and there was good agreement between the two datasets. The primary 
difference is the presence of the Parietal Occipital Network in the cortex (gray), which was not 
observed with ROI Set 1. 
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SI Figure 4: Spring-embedded graphs at other tested edge densities. The top portion of the 
figure shows the difference between structure-specific edge density thresholding and traditional 
thresholding (uniform across the matrix). The basal ganglia, thalamus, and cerebellum 
segregate into their own network communities when traditional thresholding is used (top right 
graph). Spring-embedded graphs for other structure-specific edge density thresholds are 
displayed in the bottom portion of the figure for the primary and validation datasets. The non-
cortical ROIs (larger, bold outlines) distribute throughout each graph, integrating with known 
functional networks. 
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