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Abstract

Golden Ratio proportions are found throughout the world of multicellular
organisms but the underlying mechanisms behind their appearance and their
adaptive value if any remain unknown. The Golden Ratio is a real-valued number
but cell population counts are whole numbered. Binet’s formula connects the
Golden Ratio to the whole numbered Fibonacci sequence (fn+1 = fn + fn−1

where f1 = 1 and f2 = 2), so we seek a cellular mechanism that yields Fibonacci
cell kinetics. Drawing on Fibonacci’s description of growth patterns in rabbits, we
develop a matrix model of Fibonacci cell kinetics based on an asymmetric pause
between mitoses by daughter cells. We list candidate molecular mechanisms for
asymmetric mitosis such as epigenetically asymmetric chromosomal sorting at
anaphase due to cytosine-DNA methylation. A collection of Fibonacci-sized cell
groups produced each by mitosis needs to assemble into a larger multicellular
structure. We find that the mathematics for this assembly are afforded by a
simple molecular cell surface configuration where each cell in each group has four
cell to cell adhesion slots. Two slots internally cohere a cell group and two adhere
to cells in other cell groups. We provide a notation for expressing each cell’s
participation in dual Fibonacci recurrence relations. We find that single class of
cell to cell adhesion molecules suffices to hold together a large assembly of
chained Fibonacci groups having Golden Ratio patterns. Specialized bindings
between components of various sizes are not required. Furthermore, the notation
describes circumstances where chained Fibonacci-sized cell groups may leave
adhesion slots unoccupied unless the chained groups anneal into a ring. This
unexpected result suggests a role for Fibonacci cell kinetics in the formation of
multicellular ring forms such as hollow and tubular structures. In this analysis, a
complex molecular pattern behind asymmetric mitosis coordinates with a simple
molecular cell adhesion pattern to generate useful multicellular assemblies.
Furthermore, this reductively unifies two of the hypothesized evolutionary steps:
multicellularity and cellular eusociality.
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Introduction
The Golden Ratio (1 +

√
5)/2 ≈ 1.618... was recognized at least as early as 500

BCE by Phidias, after whom its symbol Φ remains named. Its presence in plants,

mollusks, and vertebrates has been commented by naturalists over the centuries, has

been depicted in the arts, and has been the subject of teleological conjecture [1, 2].

While it appears in cellular automata[3, 4], the molecular or cellular mechanisms

for its presence in multicellular organisms remain unknown. Moreover, it remains

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2018. ; https://doi.org/10.1101/450528doi: bioRxiv preprint 

https://doi.org/10.1101/450528
http://creativecommons.org/licenses/by-nd/4.0/


Butler and Kinane Page 2 of 9

unknown how it confers adaptive biological benefit, or if it does at all. We inspect

the mathematics of the Golden Ratio for hints as to how and why it appears in

multicellular organisms.

The Golden Ratio is a real number but cell population counts are measured by

the whole numbers (0, 1, 2, 3, ...), so we focus our mathematical search on them.

The Fibonacci numbers are the particular whole numbers that obey the recurrence

relation fn+1 = fn + fn−1, where f1 = 1 and f2 = 2, giving the Fibonacci sequence

(1, 2, 3, 5, 8, ...). We employ in this paper the convention common in the combina-

torial literature of f1 = 1 and f2 = 2 (other bodies of work employ F0 = 0 and

F1 = 1). Binet’s formula connects the Golden Ratio to the Fibonacci numbers,

fn+1 =
1√
5
(Φn − (−1/Φ)n) (1)

=
1√
5

󰀣󰀣
(1 +

√
5)

2

󰀤n

−
󰀣
(1−

√
5)

2

󰀤n󰀤
.

We propose that Golden Ratio patterns in multicellular organisms could be

grounded in Fibonacci population kinetics. We propose that the mathematics of

Fibonacci cell kinetics are afforded by an asymmetric pause between progeny cells

before they undergo mitosis. We propose that candidate molecular mechanisms for

kinetically asymmetric mitosis might be found among the described systems for

asymmetric epigenetics.

Dual Combinatorial Engagement
Let us assume that there exists a cell kinetic pathway for a suspension of early

progenitor cells to mitose into a population of Fibonacci-sized cell groups. We need

furthermore to describe how these might assemble into a larger multicellular struc-

ture with Golden Ratio patterns. We propose that the underlying mathematics for

this assembly are afforded by a simple molecular cell surface configuration where

each cell in each group has four cell to cell adhesion slots.

The Fibonacci numbers partake of a rich set of combinatorial identities [5]. Many

of these identities describe how groups of smaller Fibonacci numbers may combine

to form larger ones, with the recursive relation fn+1 = fn + fn−1 being but the

simplest. We propose that this configuration of cell to cell adhesion slots should

allow Fibonacci-sized cell groups to recombine according to those identities, offering

pathways for larger Fibonacci-sized multicellular structures to be assembled from

smaller ones.

Four adhesive slots are the minimum for each cell to adhere to two other cells

within its Fibonacci-sized cell (to hold the group together) and to adhere to two

other cells in two other Fibonacci-sized cell groups. This permits chaining between

them. We separate cell to cell adhesion by function into intra and inter Fibonacci-

sized group adhesion but the same molecular adhesion machinery may serve both

functions since in each case adhesion is between one individual cell and another.

We provide an over and under arrow notation to track the engagement of each

cell in two intergroup Fibonacci combinatorial identities. To match the notation by

function we classify the vertical slots as intergroup. We classify the horizontal slots
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primarily as intragroup except at boundaries between groups where they bound

two cells from two groups across a gap. We treat the horizontal slots as implied

and focus the notation on the vertical ones since they express the binding between

Fibonacci-sized groups. The equals sign of an identity is replaced in this notation by

an arrowhead and the plus sign by the intersection of arrow lines. The operands to

the plus operator are the numbers of cells indicated by the arrow lines’ originating

groups. In this simplified treatment we assume there may be multiple operands on

the left hand side of an equal side and a single result on the right hand side. We do

not allow a cell or cell group to bind to itself.

In this notation, for example, we might represent f1 + f2 = f3 in the top vertical

slots as

f1 f2 f3 . (2)

This may represent the biological process whereby the top intergroup cell adhesion

slots of cell groups of sizes f1 and f2 adhere to and occupy the top adhesion slots of

a cell group of size f3. The vertical slots have size given by the Fibonacci number.

This notation is specific to this application and is unrelated to the Fibonacci number

of a graph[6]. A triplet as this is the simplest Fibonacci adhesion event involving

cell groups of different sizes.

We explore how mitosis might yield Fibonacci-sized groups then we employ this

notation to analyze how a nascent population of Fibonacci-sized groups might re-

combine.

Asymmetric Mitosis
Binet’s formula implies that Golden Ratio multicellular biofractals might appear

if cell population sizes were to grow not as powers of two as governed by classical

mitosis (1 → 2 → 4 → 8 → ...), but according to the Fibonacci numbers,

f1 → f2 → f3 → f4 → ... = 1 → 2 → 3 → 5 → ....

Fibonacci described a rabbit reproduction model based on asymmetric pause be-

tween reproduction (Fig 1) [7]. We adapt this model to cell kinetics, substituting the

replication unit of a rabbit pair with a cell in a multicellular organism. We assume

that cells in a group share an equivalent interval between mitotic cycles. There is an

evolving description of the biomolecular infrastructure that might coordinate the

timing of mitosis in groups of cells[8, 9, 10]. In the models of asymmetric mitosis

below we name cells within a kinetic group with lower case characters.

We consider two cell classes, r (replicate) and p (pause), of different kinetic prop-

erties but otherwise of the same phenotype. In each generation interval an r cell

replicates to another r cell plus a p cell, and a p does not divide but matures into

an r cell that divides in the following generation,

r → r + p (3)

p → r
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Under Lindenmayer, this corresponds to a propagating, deterministic 0L model[11,

12, 13]. Using subscripting to indicate the number of r and p cells in a bud at

generation n, we then have for a generation

rn+1 = rn + pn

pn+1 = pn.

In matrix notation this is

󰀣
rn+1

pn+1

󰀤
=

󰀣
1 1

1 0

󰀤󰀣
rn

pn

󰀤
.

By recursion, the formula for the population at the n+ 1th generation is then

󰀣
rn+1

pn+1

󰀤
=

󰀣
1 1

1 0

󰀤n 󰀣
r1

p1

󰀤
.

The matrix

G =

󰀣
1 1

1 0

󰀤

formally connects this model of asymmetric mitosis to the Fibonacci sequence [14,

15].

G

󰀣
fn−1

fn−2

󰀤
=

󰀣
1 1

1 0

󰀤󰀣
fn−1

fn−2

󰀤

=

󰀣
fn−1 + fn−2

fn−1

󰀤

=

󰀣
fn

fn−1

󰀤
.

The matrix G on its own can produce any three sequential Fibonacci numbers

fn−2, fn−1, fn as[15, 16]

󰀣
fn fn−1

fn−1 fn−2

󰀤
=

󰀣
1 1

1 0

󰀤n

. (4)

The eigen decomposition of the matrix G connects the Fibonacci sequence to the

Golden Ratio, Φ, because G has eigenvalues λ1 = Φ and λ2 = −1
Φ and eigenvectors

v1 =

󰀣
Φ

1

󰀤
, v2 =

󰀣
−1/Φ

1

󰀤
. (5)

By the definitions of eigenvector and eigenvalue, the structure of v1 and the value

of λ1 indicate that if ri and pi are in a Golden Ratio, they will both increase by a
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Golden Ratio in the next generation. This result is consistent with Binet’s formula

for calculating an arbitrary Fibonacci number from the Golden Ratio.

Candidate Mechanisms of Asymmetric Mitosis
Perhaps the molecular machinery controlling the cell cycle is unevenly mixed by

chance following telophase often enough so as generally to favor asymmetric mitosis.

We reject this as unlikely to be robust.

In the standard paradigm of molecular biology, the mitotic cell cycle includes

the dissociation of a double strand of DNA into two single strands at anaphase,

each of which forms a template for the synthesis of a complementary strand. Each

daughter cell receives one of the two identical copies of double stranded chromo-

somal DNA, less any DNA replication errors. Meiosis, by contrast, necessarily has

genetically asymmetric progeny so its mechanisms of asymmetry are distinct from

any contemplated for mitosis.

Perhaps the molecular machinery controlling the cell cycle is unevenly mixed by

chance at telophase often enough so as generally to favor asymmetric mitosis. In

this model, progeny cell asymmetry is by the actions of random chance on classical

mitosis. We reject this as unlikely to be robust.

DNA methylation appears to be an ancient property of eukaryotic genomes that

play a role in development in both plants and animals[17, 18, 19, 20] The 5-

methylation of cytosine in DNA is a candidate mechanism because at mitotic chro-

mosomal sorting during anaphase only one of the two double stranded DNA daugh-

ter strands will be methylated at that position because at replication the comple-

mentary guanine will be matched by an unmethylated cytosine (Fig 2) [21]. Cyto-

sine is methylated at the same 5 position that uracil is methylated to give thymine.

The steric specificity for methylation at the 5 position of a pyrimidine chemically

associates cytosine 5-methylation with the origin of DNA from RNA, but the pale-

obiochemistry of DNA methylation is an active target of investigation[22, 23].

The histone proteins represent another candidate mechanism for asymmetric epi-

genetic transmission. They help compact DNA into the confines of a cell, appear

subject to regulation including by covalent modification, such as by acetylation and

could alter cell cycle regulation [24, 25, 18, 21]. At chromosomal assortment in mito-

sis, modified histone proteins may assort asymmetrically, and hence be transmitted

asymmetrically to the mitotic progeny [24, 26].

The model of Fig 2 depicts one chromosome but an organism may have multi-

ple chromosomes. Regardless of ploidy, candidate mechanisms based on epigenetic

asymmetry call for such asymmetry among the chromosomes at anaphase so as to

produce Fibonacci growth patterns.

Recombinatorial Growth
We exclude from consideration reflexive arrangements such as

f5 f5

and
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f3 f4 f5

that interrupt the chaining.

With this restriction, the presence of two vertical slots implies a potential for infi-

nite chaining. For example, a set of Fibonacci-sized cell groups f1, f2, f3, f4, f5, f6, ...

produced by asymmetric mitosis might assemble by overlapping triplet adhesion into

a scaffold as

f1 f2 f3 f4 f5 f6 ... . (6)

A biological structure of course will not reach infinite size. Yet the capacity for

dual Fibonacci engagement implies a path for a multicellular organism to display

a self-similar scaffold with Golden Ratio biofractal patterns across a broad range

of spatial size. A bio-fractal form may offer the biological efficiency of reuse of the

same cell to cell adhesion molecules to maintain structural integrity across spatial

scales. Specialized adhesion mechanisms are not required to bind Fibonacci-sized

groups of various sizes.

There are Fibonacci identities that produce a larger Fibonacci number from a

collection of smaller ones. An example is

3f1 + f2 + f3 + ...+ fn = fn+2.

If this represented a collection of Fibonacci-sized groups that adhered as

f1 f1 f1 f2 f3 f4 f5 f6

then as per the identity the assembly would have f8 cells. Suppose a Fibonacci-sized

group of cells were to have a way internally to coordinate kinetically asymmetric

mitosis mitosis regardless of how it came to be[8, 9, 10]. Then the f8-sized group

might alternately mitose into a f9-sized group or assemble with other Fibonacci-

sized cell groups. An equivalence of mitosis and assembly implies recursive growth.

Multicellular Rings

Let us assume that a scaffold made of dual Fibonacci combinatorial elements tends

to seek a combinatorial arrangement that is fully engaged, meaning where all vertical

positions of all symbols participate uniquely in one equation whether on the left

hand side as an operand or the right hand side as a result. This corresponds to a

biological interpretation where where all cell to cell adhesion slots are occupied. We

observe that an open scaffold such in Equation 6 based on concatenated triplets

cannot have full engagement at minimum because each end has one vertical slot

that is not engaged.
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However, if the two ends have an unengaged vertical slot of equal size, then the

structure can fold and bind into full engagement. An example is the palindrome

f4 f3 f2 f1 f1 f2 f3 f4 . (7)

A palindrome is not the only closed form with full engagement. In S1 File we prove

a set of conditions where a fully engaged ring can be made from random triplets

of Fibonacci groups. With that proof in hand, we generate random numbers that

conform to the terms of the proof to guarantee that the result will be a fully engaged

scaffold ring (for example see Fig 3).

If a number of ring shapes of the same diameter were to stack up above and below

the plane of the page and each cell were to have a further pair yet of unoccupied

intergroup adhesion slots oriented in the third dimension perpendicular to the plane

of the page, then the rings could anneal into a tubular structure. We use here the

Fibonacci numbers to count the number of cells in a cell group, but the Fibonacci

numbers offer a different combinatorial interpretation. For an open form of length

n cell diameters, the Fibonacci number fn carries the combinatorial interpretation

of counting the number of ways to fill those n cell diameters with single cells and

cell pairs. For a ring with circumference n cell diameters, that count is given by

the Lucas number Ln[5, 16, p 17]. For a given number of cell diameters, the Lucas

numbers are larger than the Fibonacci numbers, as per the identity

Ln = fn + fn−2.

Since for the same number of cells the Lucas number is larger than the Fibonacci

number, a ring shape as a template offers a larger number of ways for single cells

and pair cells to anneal to it than does a non-branching open shape. As with the

Fibonacci numbers, the ratio between adjacent Lucas numbers tends toward the

Golden Ratio.

Individual Replicative Restraint Algebraically Promotes Fractal
Collaboration
In classical mitosis, cell populations grow as powers of two (1, 2, 4, 8,...) but in kinet-

ically asymmetric mitosis as modeled here, cell populations grow as the Fibonacci

numbers (1, 2, 3, 5,...). All else being equal, classical mitosis enjoys a reproductive

advantage since 2n grows faster than fn for increasing n. Kinetically asymmetric mi-

tosis requires the further expenditure of a relatively complex asymmetric molecular

subsystem such as asymmetric epigenetics.

However, equipped with a molecularly simple cell to cell adhesion tendency, indi-

viduals in these cell groups may engage in dual Fibonacci combinatorial identities

with individuals in other cell groups to assemble efficient multicellular biofractals

inclusive of rings. It remains unknown how multicellular organisms develop luminal

specializations, but they might represent an extension into three dimensions of the

process described here. Insofar as kinetically asymmetric mitosis produces one re-

productive and one transiently non-reproductive ”caste”, this analysis algebraically
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unifies two hypothesized major evolutionary transitions: the formation of multicel-

lular forms and of eusocial organizations[27, 28, 29]. The Golden Ratio arises less

as a universal constant but more as an spatial side effect of coordinated mitosis and

assembly[30].

This notation expresses the formation of multicellular rings as an algebraic possi-

bility but no argument is made as to thermodynamic probability. Further research

is required to characterize the potential impacts of statistical errors in the pro-

cesses and of deviations in the molecular mechanisms. We emphasize the analysis of

triplets, but many other forms may be considered. This analysis could be furthered

by the incorporation of work on cellular automata[12, 31, 32, 33]. Further research is

required to analyze three-dimensional configurations of Fibonacci-sized cell groups,

their combinatorial assembly properties, and their thermodynamic constraints.
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Figures

[width=5 in]AsymMitWithPause

Figure 1 Fibonacci population growth in rabbits and cells with asymmetric pause after each
reproduction. Each row is termed a group. The thin horizontal lines represent intragroup
adhesions. Similarly, each cell also has unoccupied intergroup cell adhesion slots (not shown).
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Figure 2 Cytosine methylation creates epigenetic asymmetry of chromosomes in
the cell cycle before mitosis.
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Figure 3 A Scaffold Ring. All inter and intragroup adhesion slots are occupied. The arrows
depict the intergroup adhesion slot bindings.

Additional Files
Additional file 1 — Sample additional file title

Random combinatorial scaffold rings.
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Figure 1 Fibonacci population growth in rabbits and cells with asymmetric pause after each
reproduction. Each row is termed a group. The thin horizontal lines represent intragroup
adhesions. Similarly, each cell also has unoccupied intergroup cell adhesion slots (not shown).
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Figure 2 Cytosine methylation creates epigenetic asymmetry of chromosomes in
the cell cycle before mitosis.
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Figure 3 A Scaffold Ring. All inter and intragroup adhesion slots are occupied. The arrows
depict the intergroup adhesion slot bindings.
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