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Abstract

Evolutionary theory has produced two conflicting paradigms for the adaptation

of a polygenic trait. While population genetics views adaptation as a sequence

of selective sweeps at single loci underlying the trait, quantitative genetics

posits a collective response, where phenotypic adaptation results from subtle

allele frequency shifts at many loci. Yet, a synthesis of these views is largely

missing and the population genetic factors that favor each scenario are not

well understood. Here, we study the architecture of adaptation of a binary

polygenic trait (such as resistance) with negative epistasis among the loci

of its basis. The genetic structure of this trait allows for a full range of

potential architectures of adaptation, ranging from sweeps to small frequency

shifts. By combining computer simulations and a newly devised analytical

framework based on Yule branching processes, we gain a detailed understanding

of the adaptation dynamics for this trait. Our key analytical result is an

expression for the joint distribution of mutant alleles at the end of the adaptive

phase. This distribution characterizes the polygenic pattern of adaptation at

the underlying genotype when phenotypic adaptation has been accomplished.

We find that a single compound parameter, the population-scaled background

mutation rate Θbg, explains the main differences among these patterns. For a

focal locus, Θbg measures the mutation rate at all redundant loci in its genetic

background that offer alternative ways for adaptation. For adaptation starting

from mutation-selection-drift balance, we observe different patterns in three

parameter regions. Adaptation proceeds by sweeps for small Θbg . 0.1, while

small polygenic allele frequency shifts require large Θbg & 100. In the large

intermediate regime, we observe a heterogeneous pattern of partial sweeps

at several interacting loci.
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1 Author summary

It is still an open question how complex traits adapt to new selection pressures.1

While population genetics champions the search for selective sweeps, quantitative2

genetics proclaims adaptation via small concerted frequency shifts. To date the3

empirical evidence of clear sweep signals is more scarce than expected, while4

subtle shifts remain notoriously hard to detect. In the current study we develop5

a theoretical framework to predict the expected adaptive architecture of a trait,6

depending on parameters such as mutation rate, effective population size, size of7

the trait basis, and the available genetic variability at the onset of selection. For8

a population in mutation-selection-drift balance we find that adaptation proceeds9

via complete or partial sweeps for a large set of parameter values. We predict10

adaptation by small frequency shifts for two main cases. First, for traits with a11

large mutational target size and high levels of genetic redundancy among loci, and12

second if the starting frequencies of mutant alleles are more homogeneous than13

expected in mutation-selection-drift equilibrium, e.g. due to population structure14

or balancing selection.15

2 Introduction16

Rapid phenotypic adaptation of organisms to all kinds of novel environments is17

ubiquitous and has been described and studied for decades Barton and Keightley18

(2002); Messer et al. (2016). However, while the macroscopic changes of phenotypic19

traits are frequently evident, their genetic and genomic underpinnings are much20

more difficult to resolve. Two independent research traditions, molecular population21

genetics and quantitative genetics, have coined two opposite views of the adaptive22

process on the molecular level: adaptation either by selective sweeps or by subtle23

allele frequency shifts (sweeps or shifts from here on).24
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On the one hand, population genetics works bottom-up from the dynamics25

at single loci, without much focus on the phenotype. The implicit assumption26

of the sweep scenario is that selection on the trait results in sustained directional27

selection also on the level of single underlying loci. Consequently, we can observe28

phenotypic adaptation at the genotypic level, where selection drives allele frequencies29

at one or several loci from low values to high values. Large allele frequency30

changes are the hallmark of the sweep scenario. If these frequency changes31

occur in a short time interval, conspicuous diversity patterns in linked genomic32

regions emerge: the footprints of hard or soft selective sweeps Maynard-Smith33

and Haigh (1974); Kaplan et al. (1989); Barton (1998); Hermisson and Pennings34

(2017).35

On the other hand, quantitative genetics envisions phenotypic adaptation top-down,36

from the vantage point of the trait. At the genetic level, it is perceived as a37

collective phenomenon that cannot easily be broken down to the contribution of38

single loci. Indeed, adaptation of a highly polygenic trait can result in a myriad of39

ways through “infinitesimally” small, correlated changes at the interacting loci of40

its basis (e.g. Boyle et al. (2017)). Conceptually, this view rests on the infinitesimal41

model by Fisher (1918) Fisher (1918) and its extensions (e.g. Barton et al.42

(2017)). Until a decade ago, the available moderate sample sizes for polymorphism43

data had strongly limited the statistical detectability of small frequency shifts.44

Therefore, the detection of sweeps with clear footprints was the major objective45

for many years. Since recently, however, huge sample sizes (primarily of human46

data) enable powerful genome-wide association studies (GWAS) to resolve the47

genomic basis of polygenic traits. Consequently, following conceptual work by48

Pritchard and coworkers Pritchard and Di Rienzo (2010); Pritchard et al. (2010),49

there has been a shift in focus to the detection of polygenic adaptation from50

subtle genomic signals (e.g. Hancock et al. (2010); Berg and Coop (2014);51

Field et al. (2016), reviewed in Csilléry et al. (2018)). Very recently, however,52
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some of the most prominent findings of polygenic adaptation in human height53

have been challenged Berg et al. (2018); Sohail et al. (2018). As it turned out,54

the methods are highly sensitive to confounding effects in GWAS data due to55

population stratification.56

While discussion of the empirical evidence is ongoing, the key objective for57

theoretical population genetics is to clarify the conditions (mutation rates, selection58

pressures, genetic architecture) under which each adaptive scenario, sweeps,59

shifts – or any intermediate type – should be expected in the first place. Yet,60

the number of models in the literature that allow for a comparison of alternative61

adaptive scenarios at all is surprisingly limited (see also Stephan (2016)). Indeed,62

quantitative genetic studies based on the infinitesimal model or on summaries63

(moments, cumulants) of the breeding values do not resolve allele frequency64

changes at individual loci (e.g. Turelli and Barton (1990, 1994); Bürger and Lynch65

(1995); Bürger (2000)). In contrast, sweep models with a single locus under66

selection in the tradition of Maynard Smith and Haigh Maynard-Smith and Haigh67

(1974), or models based on adaptive walks or the adaptive dynamics framework68

(e.g. Geritz et al. (1998); Orr (2005); Matuszewski et al. (2015)) only allow for69

adaptive substitutions or sweeps. A notable exception is the pioneering study by70

Chevin and Hospital Chevin and Hospital (2008). Following Lande Lande (1983),71

these authors model adaptation at a single major quantitative trait locus (QTL)72

that interacts with an "infinitesimal background" of minor loci, which evolves with73

fixed genetic variance. Subsequent models Pavlidis et al. (2012); Wollstein and74

Stephan (2014) trace the allele frequency change at a single QTL in models with75

2-8 loci. Still, these articles do not discuss polygenic adaptation patterns. Most76

recently, Jain and Stephan Jain and Stephan (2015, 2017) studied the adaptive77

process for a quantitative trait under stabilizing selection with explicit genetic78

basis. Their analytical approach allows for a detailed view of allele frequency79

changes at all loci without constraining the genetic variance. However, the model80
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is deterministic and thus ignores the effects of genetic drift. Below, we study a81

polygenic trait that can adapt via sweeps or shifts under the action of all evolutionary82

forces (mutation, selection, recombination and drift). Our model allows for comprehensive83

analytical treatment, leading to a multi-locus, non-equilibrium extension of Wright’s84

formula Wright (1931) for the joint distribution of allele frequencies at the end of85

the adaptive phase. This way, we obtain predictions concerning the adaptive86

architecture of polygenic traits and the population genetic variables that delimit87

the corresponding modes of adaptation.88

The article is organized as follows. The Model section motivates our modeling89

decisions and describes the simulation method. We also give a brief intuitive90

account of our analytical approach. In the Results part, we describe our findings91

for a haploid trait with linkage equilibrium among loci. All our main conclusions92

in the Discussion part are based on the results displayed here. Further model93

extensions and complications (diploids, linkage, and alternative starting conditions)94

are relegated to appendices. Finally, we describe our analytical approach and95

derive all results in a comprehensive Mathematical Appendix. For the ease of96

reading, we have tried to keep both the main text and the Mathematical Appendix97

independent and largely self-contained.98

3 Model99

In the current study, we aim for a “minimal model” of a trait that allows us to clarify100

which evolutionary forces favor sweeps over shifts and vice versa (as well as any101

intermediate patterns). For shifts, alleles need to be able to hamper the rise of102

alleles at other loci via negative epistasis for fitness, e.g. diminishing returns103

epistasis. Indeed, otherwise one would only observe parallel sweeps. Negative104

fitness epistasis is frequently found in empirical studies (e.g. Kryazhimskiy et al.105

(2014)) and implicit to the Gaussian selection scheme used by (e.g. Chevin and106
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Hospital (2008); Jain and Stephan (2015, 2017)). More fundamentally, diminishing107

returns are a consequence of partial or complete redundancy of genetic effects108

across loci or gene pathways. Adaptive phenotypes (such as pathogen resistance109

or a beneficial body coloration) can often be produced in many alternative ways,110

such that redundancy is a common characteristic of beneficial mutations.111

As our basic model, we focus on a haploid population and study adaptation112

for a polygenic, binary trait with full redundancy of effects at all loci. Any single113

mutation switches the phenotype from its ancestral state (e.g. “non-resistant”) to114

the adaptive state (“resistant”), further mutations have no additional effect. On115

the population level, adaptation can be produced by a single locus where the116

beneficial allele sweeps to fixation, or by small frequency shifts of alleles at many117

different loci in different individuals – or any combination. The symmetry among118

loci (no build-in advantage of any particular locus) and complete redundancy119

of locus effects provides us with a trait architecture that is most favorable for120

collective adaptation via small shifts – and with a modeling framework that allows121

for analytical treatment. The same model has been used in a preliminary simulation122

study Hermisson and Pennings (2017). In the context of parallel adaptation in a123

spatially structured population, analogous model assumptions with redundant loci124

have been used Ralph and Coop (2010, 2015); Paulose et al. (2018). In a second125

step, we extend our basic model to relax the redundancy condition, as described126

below.127

3.1 Basic model128

Consider a panmictic population ofNe haploids, with a binary trait Z (with phenotypic129

states Z0 “non-resistant” and Z1 “resistant”, see Fig 1). The trait is governed by130

a polygenic basis of L bi-allelic loci with arbitrary linkage (we treat the case of131

linkage equilibrium in the main text and analyze the effects of linkage in Appendix A.1).132

Only the genotype with the ancestral alleles at all loci produces phenotype Z0, all133
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other genotypes produce Z1, irrespective of the number of mutations they carry.134

Loci mutate at rate µi, 1 ≤ i ≤ L, per generation (population mutation rate at135

the ith locus: 2Neµi = Θi) from the ancestral to the derived allele. We ignore136

back mutation. The mutant phenotype Z1 is deleterious before time t = 0, when137

the population experiences a sudden change in the environment (e.g. arrival of138

a pathogen). Z1 is beneficial for time t > 0. The Malthusian (logarithmic) fitness139

function of an individual with phenotype Z reads140

W (Z) =


sdZ for t < 0

sbZ for t ≥ 0.

(1)

Without restriction, we can assume Z0 = 0 and Z1 = 1. Then W (Z0) = 0141

and W (Z1) = sd < 0, respectively W (Z1) = sb > 0, measure the strength of142

directional selection on Z (e.g. cost and benefit of resistance) before and after143

the environmental change. For the basic model, we assume that the population144

is in mutation-selection-drift equilibrium at time t = 0.145

3.2 Model extensions146

We extend the basic model in several directions. This includes linkage (Appendix A.1),147

alternative starting conditions at time t = 0 (Appendix A.2), diploids (Appendix A.3),148

and arbitrary time-dependent selection s(t) (Mathematical Appendix M.1). Here,149

we describe how we relax the assumption of complete redundancy of all loci.150

Diminishing returns epistasis, e.g. due to Michaelis-Menten enzyme kinetics,151

will frequently not lead to complete adaptation in a single step, but may require152

multiple steps before the trait optimum is approached. In a model of incomplete153

redundancy, we thus assume that a first beneficial mutation only leads to partial154

adaptation. We thus have three states of the trait, the ancestral state for the155

genotype without mutations, Z0 = 0 (non-resistant), a phenotype Zδ = δ (partially156
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resistant) for genotypes with a single mutation, and the mutant state Z1 = 1157

(fully resistant) for all genotypes with at least two mutations, see Fig 1(b). For158

diminishing returns epistasis, we require 1
2
≤ δ < 1. The fitness function is as in159

Eq (1).160

0 1 2 3 #mut

fit
n

e
ss

fit
n

e
ss

t < 0 t ≥ 0

fit
n

e
ss

fit
n

e
ss

t < 0 t ≥ 0

(a) Complete redundancy (b) Relaxed redundancy

0 1 2 3 #mut 0 1 2 3 #mut 0 1 2 3 #mut

Figure 1: Fitness schemes. The fitness for individuals carrying 0, 1, 2, 3 . . .
mutations (y-axis) are given for the complete redundancy (a) and relaxed
redundancy (b) model of fitness effects, respectively. Grey balls show the fitness
of ancestral wild-type individuals (without mutations). Colored balls represent
individuals carrying at least one mutation, for time points t < 0 before the
environmental change in blue and for t ≥ 0 in red.

3.3 Simulation model161

For the models described above, we use Wright-Fisher simulations for a haploid,162

panmictic populations of size Ne, assuming linkage equilibrium between all L loci163

in discrete time. Selection and drift are implemented by independent weighted164

sampling based on the marginal fitnesses of the ancestral and mutant alleles at165

each locus. Due to linkage equilibrium, the marginal fitnesses only depend on166

the allele frequencies. Ancestral alleles mutate with probability µi per generation167

at locus i. We start our simulations with a population that is monomorphic for168

the ancestral allele at all loci. The population evolves for 8Ne generations under169

mutation and deleterious selection to reach (approximate) mutation-selection-drift170

equilibrium. Following Hermisson and Pennings (2005, 2017), we condition on171

adaptation from the ancestral state and discard all runs where the deleterious172
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mutant allele (at any locus) reaches fixation during this time. (We do not show173

results for cases with very high mutation rates and weak deleterious selection174

when most runs are discarded). At the time of environmental change, selection175

switches from negative to positive and simulation runs are continued until a prescribed176

stopping condition is reached.177

We are interested in the genetic architecture of adaptation – the joint distribution178

of mutant frequencies across all loci – at the end of the rapid adaptive phase.179

Following Jain and Stephan (2017), we define this phase as “the time until the180

phenotypic mean reaches a value close to the new optimum”. Specifically, we181

stop simulations when the mean fitness W̄ in the population has increased up182

to a proportion fw of the maximal attainable increase from the ancestral to the183

derived state,184

W (Z1)− W̄
W (Z1)−W (Z0)

= fw . (2)

For the basic model with complete redundancy, this simply corresponds to a185

residual proportion fw of individuals with ancestral phenotype in the population.186

Extensions of the simulation scheme to include linkage or diploid individuals are187

described in Appendices A.1 and A.3.188

Parameter choices: Unless explicitly stated otherwise, we simulate Ne =189

10 000 individuals, with beneficial selection coefficients sb = 0.1 and 0.01, combined190

with deleterious selection coefficients sd = −0.1 and sd = −0.001 for low and191

high levels of SGV, respectively. (The corresponding Wrightian fitness values192

used as sampling weights in discrete time are 1 + sb and 1 + sd.) We investigate193

L = 2 to 100 loci. We usually assume equal mutation rates at all loci, µi = µ and194

define Θl = 2Neµ as the locus mutation parameter. Mutation rates are chosen195

such that the background mutation rates Θbg := 2Neµ(L − 1) (detailed below in196

Eq (10)) takes values from 0.01 to 100. We typically simulate 10 000 replicates197

per mutation rate and stop simulations when the population has reached the new198

fitness optimum up to fw = 0.05. In the model with complete redundancy, we thus199
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stop simulations when the frequency of individuals with mutant phenotype Z1 has200

increased to 95%.201

3.4 Analytical analysis202

We partition the adaptive process into two phases (see Fig 2 for illustration). An203

initial stochastic phase, governed by selection, drift, and mutation describes the204

establishment of mutant alleles at all loci. The subsequent deterministic phase205

governs the further evolution of established alleles until the end of the rapid206

adaptive phase as defined above. While mutation and drift can be ignored during207

the deterministic phase, interaction effects due to epistasis and linkage become208

important (in our model, they enter, in particular, through the stopping condition).209

We give a brief overview of our analytical approach below. A detailed account210

with the derivation of all results is provided in the Mathematical Appendix.211

During the stochastic phase, we model the origin and spread of mutant copies212

as a so-called Yule pure birth process following Etheridge et al. (2006) and Hermisson213

and Pfaffelhuber (2008). The idea of this approach is that we only need to keep214

track of mutations that found “immortal lineages”, i.e. derived alleles that still215

have surviving offspring at the time of observation (see Fig 2 for the case of216

L = 2 loci). Forward in time, new immortal lineages can be created by two types217

of events: new mutations at all loci start new lineages, while birth events lead218

to splits of existing lineages into two immortal lineages. For t > 0 (after the219

environmental change), in particular, new mutations at he ith locus arise at rate220

Neµi per generation and are destined to become established in the population221

with probability ≈ 2sb. Simultaneously, existing beneficial mutant alleles at all222

loci spread at rate sb (due to positive selection, via birth events exceeding death223

events). For the origin of new immortal lineages in the Yule process and their224
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subsequent splitting we thus obtain the rates225

pmut,i ≈ Neµi · 2sb = Θisb ; psplit ≈ sb. (3)

Extended results including standing genetic variation and time-dependent fitness226

are given in the Appendix. Assume now that there are currently {k1, . . . kL}, 0 ≤227

kj � Ne mutant lineages at the L loci. Then the probability that the next event in228

the Yule process is either a birth (split) or a new mutation at locus i is229

ki · psplit + pmut,i∑L
j=1(kj · psplit + pmut,j)

=
ki + Θi∑L

j=1(kj + Θj)
. (4)

Importantly, all these transition probabilities among states of the Yule process230

are constant in time and independent of the mutant fitness sb, which cancels in231

the ratio of the rates. As the number of lineages at all loci increases, their joint232

distribution (across replicate realizations of the Yule process) approaches a limit.233

In particular, as shown in the Appendix, the joint distribution of frequency ratios234

xi := ki/k1 in the limit k1 →∞ is given by an inverted Dirichlet distribution235

PinDir[x|Θ] =
1

B[Θ]

L∏
j=2

x
Θj−1
j

(
1 +

L∑
i=2

xi

)−∑L
i=1 Θi

(5)

where x = (x2, . . . , xL) and Θ = (Θ1, . . . ,ΘL) are vectors of frequency ratios and236

locus mutation rates, respectively, and where B[Θ] =
∏L

j=1 Γ(Θj)∑L
j=1 Γ(Θj)

is the generalized237

Beta function and Γ(z) is the Gamma function. Note that Eq (5) depends only on238

the locus mutation rates, but not on selection strength.239

After the initial stochastic phase, when mutant lineages have established and240

evaded stochastic loss, the dynamics can be adequately described by deterministic241

selection equations. For allele frequencies pi at locus i, assuming linkage equilibrium,242
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we obtain (consult the Mathematical Appendix M.1 for detailed derivations)243

ṗi = pi(W (Z1)− W̄ ) = sbpi(Z1 − Z̄), (6)

where W̄ and Z̄ are population mean fitness and mean trait value. For the mutant244

frequency ratios xi = pi/p1, we obtain245

ẋi =
d

dt

( pi
p1

)
=
ṗip1 − piṗ1

p2
1

= 0 . (7)

We thus conclude that the frequency ratios xi do not change during the deterministic246

phase. In particular, this means that Eq (5) still holds at our time of observation at247

the end of the rapid adaptive phase. As shown in the Appendix, this is even true248

with linked loci. Finally, derivation of the joint distribution of mutant frequencies pi249

(instead of frequency ratios xi) at the time of observation requires a transformation250

of the density. In general, this transformation depends on the stopping condition251

fw and on other factors such as linkage. Assuming linkage equilibrium among all252

selected loci, we obtain (see the Mathematical Appendix, Theorem 2, Eq (M.20))253

Pfw [p|Θ] =
δ∏L

j=1(1−pj)−fw

B[Θ]

L∏
j=1

p
Θj−1
j

( L∑
i=1

pi

)−∑L
i=1 Θi

( L∑
j=1

fwpj
1− pj

)
(8)

for p = (p1, . . . , pL) in the L-dimensional hypercube of allele frequencies. The254

delta function δX restricts the distribution to the L−1 dimensional manifold defined255

via the stopping condition fw =
∏L

j=1(1− pj). Further expressions, also including256

linkage, are given in the Mathematical Appendix and in Appendix A.1. In general,257

the joint distribution corresponds to a family of generalized Dirichlet distributions258

depending on the stopping condition. In the special case fw → 0 (i.e. complete259

adaptation, enforcing fixation at at least one locus), the distribution Eq (8) is260

restricted to a boundary face of the allele frequency hypercube and reduces to the261

inverted Dirichlet distribution given above in Eq (5). In the results section below,262
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we assess our analytical approximations for the joint distributions of adaptive263

alleles, Eq (5) and Eq (8), and discuss their implications in the context of scenarios264

of polygenic adaptation, ranging from sweeps to small frequency shifts.265

L . . . size of polygenic basis (no. of loci)
sd, sb . . . selection coefficient before/after the environment changes
pi := ki

N
. . . mutant allele frequency at locus i

xi := ki
k1

= pi
p1

. . . mutant allele frequency ratio: locus i / locus 1
fw . . . frequency of ancestral phenotype
µi . . . allelic mutation rate at locus i
Θi = 2Neµi . . . haploid population mutation rate at locus i
Θ = {Θ1, . . . ,ΘL} . . . vector of all locus population mutation rates
Θl . . . locus pop. mut. rate, for model with equal mutation rates
Θbg . . . background mutation rate, Eq (10)
B[Θ] =

∏
i≥1 Γ(Θi)∑
i≥1 Γ(Θi)

. . . Beta function, where Γ(Θi) is the Gamma function

Table 1: Glossary
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b 100%
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after recombination & near fixation

Figure 2: Phases of polygenic adaptation. The adaptive process is partitioned
into two phases. The initial, stochastic phase describes the establishment of
mutant alleles. Ignoring epistasis during this phase, it can be described by a Yule
process (panel a), with two types of events (yellow box). Either a new mutation
occurs and establishes with rate Θl · sb or an existing mutant line splits into two
daughter lines at rate sb. Mutations and splits can occur in parallel at all loci of
the polygenic basis, (here 2 loci, shown in green and blue). Yellow and red stars
at the blue locus indicate establishment of two recurrent mutations at this locus.
When mutants have grown to larger frequencies, the adaptive process enters its
second, deterministic phase, where drift can be ignored (panel b). During the
deterministic phase, the trajectories of mutations at different loci constrain each
other due to epistasis. We refer to the locus ending up at the highest frequency as
the major locus (here in blue) and to all others as minor loci (here one in green).
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4 Results266

While the joint distribution of allele frequencies provides comprehensive information267

of the adaptive architecture, low-dimensional summary statistics of this distribution268

are needed to describe and classify distinct types of polygenic adaptation. To269

this end, we order loci according to their contribution to the adaptive response.270

In particular, we call the locus with the largest allele frequency at the stopping271

condition the major locus and all other loci minor loci. Minor loci are further272

ordered according to their frequency (first minor, second minor, etc.). The marginal273

distributions of the major locus or kth minor locus are 1-dim summaries of the joint274

distribution. Importantly, these summaries are still collective because the role of275

any specific locus (its order) is defined through the allele frequency changes at276

all loci. This is different for the marginal distribution at a fixed focal locus, which277

is chosen irrespective of its role in the adaptive process, e.g.Chevin and Hospital278

(2008); Pavlidis et al. (2012); Wollstein and Stephan (2014).279

Concerning our nomenclature, note, that the major and minor loci do not differ280

in their effect size, as they are completely redundant. Still, the major locus is the281

one with the largest contribution to the adaptive response and would yield the282

strongest association in a GWAS case-control study.283

In the following, we analyze adaptive trait architectures in three steps. In284

Section 4.1 we use the expected allele frequency ratio of minor and major loci as a285

one-dimensional summary statistic. Subsequently, in Section 4.2, we analyze the286

marginal distributions of major and minor loci for a fully redundant trait with 2 to287

100 loci. Finally, in Section 4.3 we investigate the robustness of our results under288

conditions of relaxed redundancy. Further results devoted to diploids, linkage,289

and alternative starting conditions are provided in the Appendices.290
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4.1 Expected allele frequency ratio291

For our biological question concerning the type of polygenic adaptation, the ratio292

of allele frequency changes of minor over major loci is particularly useful. With293

“sweeps at few loci”, we expect large differences among loci, resulting in ratios294

that deviate strongly from 1. In contrast, with “subtle shifts at many loci”, allele295

frequency shifts across loci should be similar, and ratios should range close to296

1. Our theory (explained above) predicts that these ratios are the outcome of297

the stochastic phase, yet their distribution is preserved during the deterministic298

phase. They are thus independent of the precise time of observation. For our299

results in this section, we assume that the mutation rate at all L loci is equal,300

Θi ≡ Θl, for all 1 ≤ i ≤ L. This corresponds to the symmetric case that is most301

favorable for a “small shift” scenario.302

Consider first the case of L = 2 loci. There is then a single allele frequency303

ratio “minor over major locus”, which we denote by x. For two loci, the joint304

distribution of frequency ratios from Eq (5) reduces to a beta-prime distribution.305

Conditioning on the case that the first locus is the major locus (probability 1/2 for306

the symmetric model), we obtain for 0 ≤ x ≤ 1,307

Pβ′ [x|Θl] =
2Γ(2Θl)

(Γ(Θl))2
xΘl−1(1 + x)−2Θl , (9)

Fig 3 compares the expectation of this analytical prediction with simulation308

results for a range of parameters for the strength of beneficial selection sb and for309

the level of standing genetic variation (implicitly given by the strength of deleterious310

selection sd before the environmental change). There are two main observations.311

First, the simulation results demonstrate the importance of the scaled mutation312

rate Θbg ≡ Θl (for two loci). Low Θbg leads to sweep-like adaptation (heterogeneous313

adaptation response among loci, E[x] << 1), whereas high Θbg leads to shift-like314

adaptation (homogeneous response, E[x] near 1). Second, the panels show that315
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the selection intensity given by sd and sb has virtually no effect. Both results are316

predicted by the analytical theory (Eq (9)). In Appendix A.1, we further show that317

these results hold for arbitrary degrees of linkage (including complete linkage),318

see Fig S.1.319

For more than two loci, L > 2, one-dimensional marginal distributions of the320

joint distribution, Eq (5), generally require (L − 1)-fold integration, which can321

be complicated. However, it turns out that the key phenomena to characterize322

the adaptive architecture can still be captured by the 2-locus formalism, with323

appropriate rescaling of the mutation rate. For the general L-locus model, we324

broaden our definition of the summary statistic x above to describe the allele325

frequency ratio of the first minor locus and the major locus. To relate the distribution326

of x in the L-locus model to the one in the 2-locus model, we reason as follows:327

For small locus mutation rates Θl, the order of the loci is largely determined328

by the order at which mutations establish at these loci. I.e., the locus where329

the first mutation establishes ends up as the major locus and the first minor330

locus is usually the second locus where a mutation establishes. The distribution331

of the allele frequency ratio x is primarily determined by the distribution of the332

waiting time for this second mutation after establishment of the first mutation at333

the major locus. In the 2-locus model, this time will be exponentially distributed,334

with parameter 1/Θl. In the L-locus model, however, where L − 1 loci with total335

mutation rate Θl(L− 1) compete for being the “first minor”, the parameter for the336

waiting-time distribution reduces to 1/(Θl(L−1)). We thus see from this argument337

that the decisive parameter is the cumulative background mutation rate338

Θbg = (L− 1)Θl (10)

at all minor loci in the background of the major locus. In Fig 3 (orange dots) we339

show simulations of a L = 10 locus model with an appropriately rescaled locus340
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mutation rate Θl → Θl/9, such that the background rate Θbg is the same as for the341

2-locus model. We see that the analytical prediction based on the 2-locus model342

provides a good fit for the 10-locus model. A more detailed discussion of this type343

of approximation is given in Appendix A.4.344
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Figure 3: Effect of selection strength and SGV on the frequency ratio E[x].
We contrast the expected allele frequency ratios of the first minor locus (with the
second largest frequency) over the major locus (with the largest frequency) for 2
loci (blue dots) and for 10 loci (orange dots) with analytical predictions (Appendix,
Eq M.16, black curve). E[x] is shown as a function of Θbg (= Θl for the 2-locus
case). Panels correspond to different strengths of positive selection (sb, rows)
and levels of SGV (no SGV, strongly deleterious sd = 0.1, weakly deleterious
sd = 0.001, columns). We find that neither factor alters the expected ratio. We do
not obtain results for all parameters, as we condition on adaptation from ancestral
alleles, such that simulation runs are discarded if sampling conditions are met
before the environmental change. Results for 10 000 replicates, standard errors
< 0.005 (smaller than symbols).
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4.2 Genomic architecture of polygenic adaptation345

While the distribution of allele frequency ratios, Eqs (5) and (9), offers a coarse346

(but robust) descriptor of the adaptive scenario, the joint distribution of allele347

frequencies at the end of the adaptive phase, Eq (8), allows for a more refined348

view. In contrast to the distribution of ratios, the results now depend explicitly on349

the stopping condition (the time of observation) and on linkage among loci. We350

assume linkage equilibrium in this section and assess the mutant allele frequencies351

when the frequency of the remaining wild-type individuals in the population is fw352

(= 0.05 in our figures).353

Fig 4 displays the main result of this section. It shows the marginal distributions354

of all loci, ordered according to their allele frequency at the time of observation355

(major locus, 1st, 2nd, 3rd minor locus, etc.) for traits with L = 2, 10, 50, and356

100 loci. Panels in the same row correspond to equal background mutation357

rates Θbg = (L − 1)Θl, but note that the locus mutation rates Θl are not equal.358

The figure reveals a striking level of uniformity of adaptive architectures with the359

same Θbg, but vastly different number of loci. For Θbg ≤ 1 (the first three rows),360

the marginal distributions for loci of the same order (same color in the Figure)361

across traits with different L is almost invariant. For large Θbg, they converge362

for sufficiently large L (e.g. for Θbg = 10, going from L = 10 to L = 50 and to363

L = 100). In particular, the background mutation rate Θbg determines the shape364

of the major-locus distribution (red in the Figure) for large p→ 1− fw = 0.95 (the365

maximum possible frequency, given the stopping condition). For Θbg < 1, this366

distribution is sharply peaked with a singularity at p = 1− fw, whereas it drops to367

zero for large p if Θbg > 1 (see also the analytical results below).368

As predicted by the theory, Eq (8) and below, simulations (not shown) confirm369

that selection parameters do not affect the adaptive architecture. As discussed in370

Appendix A.1, sufficiently tight linkage does change the shape of the distributions.371
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Importantly, however, it does not affect the role of Θbg in determining the singularity372

of the major-locus distribution. This confirms the key role of the background373

mutation rate as a single parameter to determine the adaptive scenario in our374

model. While Θbg = 1 separates architectures that are dominated by a single375

major locus (Θbg < 1) from collective scenarios (with Θbg > 1), the classical sweep376

or shift scenarios are only obtained if Θbg deviates strongly from 1. We therefore377

distinguish three adaptive scenarios.378

• Θbg . 0.1, single completed sweeps. For Θbg � 1 (first two rows of Fig 4),379

the distribution of the major locus is concentrated at the maximum of its380

range, while all other distributions are concentrated around 0. Adaptation381

thus occurs at a single locus, via a selective sweep from low to high mutant382

frequency. Contributions by further loci are rare. If they occur at all they are383

usually due to a single runner-up locus (the largest minor locus).384

• 0.1 < Θbg < 100, heterogeneous partial sweeps. With intermediate background385

mutation rates (third and forth row of Fig 4), we still observe a strong asymmetry386

in the frequency spectrum. Even for values of Θbg slightly larger than 1, there387

is a clear major locus discernible, with most of its distribution for p > 0.5.388

However, there is also a significant contribution of several minor loci that389

rise to intermediate frequencies. We thus obtain a heterogeneous pattern390

of partial sweeps at a limited number of loci.391

• Θbg & 100, homogeneous frequency shifts. Only for high background392

mutations rates Θbg � 1 (last row of Fig 4 with Θbg = 100), the heterogeneity393

in the locus contributions to the adaptive response vanishes. There is then394

no dominating major locus. For only 2 loci, these shifts are necessarily still395

quite large, but for traits with a large genetic basis (large L; the only realistic396

case for high values of Θbg), adaptation occurs via subtle frequency shifts at397

many loci.398
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Analytical predictions399

To gain deeper understanding of the polygenic architecture – and for quantitative400

predictions – we dissect our analytical result for the joint frequency spectrum in401

Eq (8). We start with the case of L = 2 loci, allowing for different locus mutation402

rates Θ1 and Θ2. The marginal distribution at the first locus reads (from Eq (8),403

after integration over p2),404

Pfw [p1|Θ1,Θ2] =
pΘ1−1

1 (1− p1 − fw)Θ2−1(1− p1)Θ1+1

B[Θ1,Θ2] (1− p2
1 − fw)Θ1+Θ2

(
1− fw(1− 2p1)

(1− p1)2

)
, (11)

for 0 ≤ p1 ≤ 1 − fw (see also Appendix A.5). The distribution has a singularity at405

p1 = 0 if the corresponding locus mutation rate is smaller than one, Θ1 < 1. It has406

a singularity at p1 = 1− fw if the corresponding background mutation rate (which407

is just the mutation rate at the other locus for L = 2) is smaller than one, Θ2 < 1.408

The marginal distributions at the major locus, P+
fw [p|Θ1,Θ2], and the minor locus,409

P−fw [p|Θ1,Θ2], follow from Eq (11) as410

P±fw [p|Θ1,Θ2] = Pfw [p|Θ1,Θ2] + Pfw [p|Θ2,Θ1], (12)

where P+
fw [p|Θ1,Θ2] is defined for 1 −

√
fw ≤ p ≤ 1 − fw and P−fw [p|Θ1,Θ2] is411

defined for 0 ≤ p ≤ 1 −
√
fw. The sum in Eq (12) accounts for the alternative412

events that either the first locus or the second may end up as the major (or minor)413

locus. Consequently, P−fw [p|Θ1,Θ2] has a singularity at p = 0 if the minimal locus414

mutation rate Θl = min[Θ1,Θ2] < 1. Analogously, P+
fw [p|Θ1,Θ2] has a singularity415

at p = 1− fw if the minimal background mutation rate Θbg = min[Θ1,Θ2] < 1. The416

left column of Fig 4 shows the distributions at the major and minor locus for L = 2417

in the symmetric case Θ1 = Θ2 = Θl = Θbg and fw = 0.05. Simulations for a418

population of size Ne = 10 000 and analytical predictions match well.419

How do these results generalize for L > 2? We again allow for unequal locus420
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mutation rates Θi. It is easy to see from Eq (8) that the marginal distribution at the421

ith locus has a singularity at pi = 0 for Θi < 1. In the Mathematical Appendix M.3,422

we further show that it has a second singularity at pi = 1−fw if the corresponding423

background mutation rate
∑d

j 6=i Θj is smaller than 1. As a first step, we split the424

joint distribution, Eq (8), into the marginal distribution at the major locus P+
fw [p|Θ]425

(defined for 1− L
√
fw ≤ p ≤ 1−fw) and a cumulative distribution at all other (minor)426

loci, P−fw [p|Θ] (defined for 0 ≤ p ≤ 1 −
√
fw). Since any locus can end up as the427

major locus (with probability > 0), P+
fw [p|Θ] has a singularity at p = 1− fw for428

Θbg := min
1≤i≤L

[ L∑
j=1

Θj −Θi

]
< 1 . (13)

This equation generalizes the definition of the background mutation rate, Eq (10),429

to the case of unequal locus mutation rates. Similarly, P−fw [p|Θ] has a singularity430

at p = 0 if431

Θl := min
1≤i≤L

[
Θi

]
< 1 . (14)

As long as Θbg ≤ 1, we can approximate both the major-locus distribution P+
fw [p|Θ]432

and the cumulative minor locus distribution P−fw [p|Θ] for arbitrary L by formulas for433

a 2-locus model with locus mutation rates matching Θl and Θbg of the multi-locus434

model, Eq (12). Similarly, we can use results from a k-locus model to match the435

marginal distributions of the largest k loci (i.e., up to the (k−1)th minor) in models436

with L > k loci, upon rescaling of the mutation rates. As explained for the ratio437

of the first minor and major locus in the previous section, rescaling rules match438

the expected waiting time for establishment of a mutation at the kth locus after439

establishment of a first mutation. Details are given in the Appendix A.4. In Fig 4,440

we use formulas derived from a k-locus model (k ≤ 4) to approximate the (k−1)st441

minor locus distribution of models with L = 10; 50; 100 loci and Θbg ≤ 1. These442

approximations work well as long as these leading loci dominate the adaptive443

architecture of the trait, which is the case for Θbg ≤ 1.444
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Figure 4: Genomic architecture of polygenic adaptation. We distinguish three
patterns of architectures with increasing genomic background mutation rate Θbg:
complete sweeps, for Θbg . 0.1, heterogeneous partial sweeps at several loci for
0.1 < Θbg < 100, and polygenic frequency shifts for Θbg & 100. The plots show the
marginal distributions of all loci, ordered according to their allele frequency, i.e.
the major locus in red and all following (first, second, third, etc. minors) in blue
to green. Lines in respective colors show analytical predictions, Appendix A.4.
Simulations were stopped once the populations have adapted to 95% of the
maximum mean fitness in each of 10 000 replicates, resulting in an the upper
bound for the major locus distribution at, p1 = 0.95. Simulations for sb = −sd = 0.1.
Note the different scaling of the y-axis for different mutation rates.

4.3 Relaxing complete redundancy445

To complete our picture of adaptive architectures, we investigate the robustness446

of our model assumption against relaxation of redundancy. As explained above447
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(Model extensions and Fig 1), we implement diminishing returns epistasis, such448

that an individual with a single mutation has fitness δsb/d, while individuals carrying449

more than one mutation have fitness sb/d. With small deviations from complete450

redundancy (e.g. δ = 0.9, stopping at 5% ancestral phenotypes, data not shown)451

we obtain basically no differences in the genomic patterns of adaptation. With452

larger deviations (e.g. δ = 0.5) quantitative differences appear. However, the453

qualitative picture concerning the scenario of polygenic adaptation remains the454

same.455

Fig 5 shows the marginal frequency distributions of major and minor loci for456

a trait with relaxed redundancy with δ = 0.5 that is sampled when the population457

has accomplished 95% of the fitness increase on its way to the new optimum,458

Eq (2). Given the fitness function, this is not possible with adaptation at only a459

single locus. At least two loci are needed. The Figure compares the simulation460

data for the relaxed redundancy model (colored dots) and the full redundancy461

model (dots in back and gray). As in Fig 4, traits in the same row have the same462

background mutation rate Θbg. However, the background rate for the model with463

relaxed redundancy is redefined as464

Θrelax
bg = (L− 2)Θl (15)

where Θl is the locus mutation rate (equal at all loci). We thus define the background465

rate, more precisely, as the combined population-scaled mutation rate of all loci466

that are not essential to accomplish adaptation of the phenotype and, thus, are467

truly redundant. With this choice, the adaptive architecture of the relaxed redundancy468

model reproduces the one of the model with full redundancy – up to a shift in469

the number of the loci due to an extra locus that is needed for adaptation with470

relaxed redundancy. The Figure captures this by comparing traits with relaxed471

redundancy with L = 3, 4, 11, and 101 loci to fully redundant traits with one fewer472
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locus. The inset figures in the column for L = 4 loci show the same scenario,473

but with an averaged marginal distribution for the two largest loci with relaxed474

redundancy (in green).475

• For mutation rates, Θbg � 1, we still find adaptation by sweeps. Relative to476

the full redundancy model, we now observe two “major” sweep loci instead477

of only a single sweep. The inset (for L = 4) shows that their averaged478

distributions matches the major locus distribution of the full redundancy479

model. The distribution at the third largest locus (the “first minor” locus480

with relaxed redundancy) resembles the corresponding distribution of the481

first minor locus of the trait with full redundancy.482

• For intermediate mutation rates, 0.1 < Θbg < 100, the pattern is dominated483

by partial sweeps. We clearly see the similarity in the marginal distributions484

of the kth largest locus with full redundancy and the k + 1st largest locus of485

the relaxed redundancy trait. For the two major loci with relaxed redundancy,486

we again see (inset) that the averaged distribution matches the major-locus487

distribution of the full redundancy model.488

• Finally, for strong mutation, Θbg & 100, adaptation again occurs by small489

frequency shifts at many loci.490

In summary, our results show that relaxing redundancy leads to qualitatively491

similar results, but with a reduced “effective” background mutation rate that only492

accounts for "truly redundant" loci.493

26

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 23, 2018. ; https://doi.org/10.1101/450759doi: bioRxiv preprint 

https://doi.org/10.1101/450759
http://creativecommons.org/licenses/by-nc/4.0/


2/3 loci 3/4 loci 10/11 loci 100/101 loci

Complete selective sweeps:
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Several partial and complete selective sweeps:
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1st  and 2nd major (= 1st minor) locus
2nd, 3rd... 9th minor locus
≥10th minor
1st  and 2nd major locus (insets)

complete redundancy:

major and minor loci (simulations)

Figure 5: Relaxed redundancy. Relaxing redundancy such that a single mutant
has fitness 1 + 0.5sb/d and only two mutations or more confer the full fitness
effect (1 + sb/d) demonstrates the robustness of our model. As in Fig 4, allele
frequency distributions of derived alleles are displayed once the population has
reached 95% of maximum attainable mean population fitness. Genomic patterns
of adaptation show similar characteristics as with complete redundancy. Due to
relaxed redundancy, an additional "major locus" is required to reach the adaptive
optimum. As explained in the main text, the distribution of the kth largest locus
with complete redundancy therefore corresponds to the distribution of the k + 1st
largest locus with relaxed redundancy. Insets in the second column show the
same data with the distributions of the two major loci for relaxed redundancy
combined (in green).
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5 Discussion494

Traits with a polygenic basis can adapt in different ways. Few or many loci can495

contribute to the adaptive response. The changes in the allele frequencies at496

these loci can be large or small. They can be homogeneous or heterogeneous.497

While molecular population genetics posits large frequency changes – selective498

sweeps – at few loci, quantitative genetics views polygenic adaptation as a collective499

response, with small, homogeneous allele frequency shifts at many loci. Here,500

we have explored the conditions under which each adaptive scenario should be501

expected, analyzing a polygenic trait with redundancy among loci that allows for502

a full range of adaptive architectures: from sweeps to subtle frequency shifts.503

5.1 Polygenic architectures of adaptation504

For any polygenic trait, the multitude of possible adaptive architectures is fully505

captured by the joint distribution of mutant alleles across the loci in its basis.506

Different adaptive scenarios (such as sweeps or shifts) correspond to characteristic507

differences in the shape of this distribution, at the end of the adaptive phase. For508

a single locus, the stationary distribution under mutation, selection and drift can509

be derived from diffusion theory and has been known since the early days of510

population genetics (S. Wright (1931), Wright (1931)). For multiple interacting511

loci, however, this is usually not possible. To address this problem for our model,512

we dissect the adaptive process into two phases. The early stochastic phase513

describes the establishment of all mutants that contribute to the adaptive response514

under the influence of mutation and drift. We use that loci can be treated as515

independent during this phase to derive a joint distribution for ratios of allele516

frequencies at different loci, Eq (5). During the second, deterministic phase,517

epistasis and linkage become noticeable, but mutation and drift can be ignored.518

Allele frequency changes during this phase can be described as a density transformation519
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of the joint distribution. For the simple model with fully redundant loci, and assuming520

either LE or complete linkage, this transformation can be worked out explicitly.521

Our main result Eq (8) can thus be understood as a multi-locus extension of522

Wright’s stationary distribution. For a neutral locus with multiple alleles, Wright’s523

distribution is a Dirichlet distribution, which is reproduced in our model for the524

case of complete linkage, see Appendix A.1. For the opposite case of linkage525

equilibrium, we obtain a family of inverted Dirichlet distributions, depending on526

the stopping condition – our time of observation.527

Note that the distribution of adaptive architectures is not a stationary distribution,528

but necessarily transient. It describes the pattern of mutant alleles at the end of529

the “rapid adaptive phase” Jain and Stephan (2015, 2017), because this is the530

time scale that the opposite narratives of population genetics and quantitative531

genetics refer to. In particular, the quantitative genetic “small shifts” view of532

adaptation does not talk about a stationary distribution: it does not imply that533

alleles will never fix over much longer time scales, due to drift and weak selection.534

On a technical level, the transient nature of our result means that it reflects535

the effects of genetic drift only during the early phase of adaptation. These536

early effects are crucial because they are magnified by the action of positive537

selection. In contrast, our result ignores drift after phenotypic adaptation has538

been accomplished – which is also a reason why it can be derived at all.539

To capture the key characteristics of the adaptive architecture, we dissect the540

joint distribution in Eq (8) into marginal distributions of single loci. As explained541

at the start of the results section, these loci do not refer to a fixed genome542

position, but are defined a posteriori via their role in the adaptive process. For543

example, the major locus is defined as the locus with the largest mutant allele544

frequency at the end of the adaptive phase. (Since all loci have equal effects545

in our model, this is also the locus with the largest contribution to the adaptive546

response.) This is a different way to summarize the joint distribution than used in547
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some of the previous literature Chevin and Hospital (2008); Pavlidis et al. (2012);548

Wollstein and Stephan (2014), which rely on a gene-centered view to study the549

pattern at a focal locus, irrespective of its role in trait adaptation. In contrast,550

we use a trait-centered view, which is better suited to describe and distinguish551

adaptive scenarios. For example, “adaptation by sweeps” refers to a scenario552

where sweeps happen at some loci, rather than at a specific locus. This point is553

further discussed in Appendix A.5, where we also display marginal distributions554

of Eq (8) for fixed loci.555

The role of the background mutation rate556

Our results show that the qualitative pattern of polygenic adaptation is predicted557

by a single compound parameter: the background mutation rate Θbg (see Eqs (10),(13),(15)),558

i.e., the population mutation rate for the background of a focal locus within the559

trait basis. For a large basis, Θbg is closely related to the trait mutation rate.560

We can understand the key role of this parameter as follows. As detailed in561

the Section 3.4, the early stochastic phase of adaptation is governed by two562

processes: New successful mutations (destined for establishment) enter the population563

at rate Θlsb per locus (where Θl is the locus mutation rate and sb the selection564

coefficient), while existing mutants spread with an exponential rate sb. Consider565

the locus that carries the first successful mutant. For Θbg < 1, the expected566

spread from this first mutant exceeds the creation of new mutant lineages at all567

other loci. Therefore, the locus will likely maintain its lead, with an exponentially568

growing gap to the second largest locus. Vice versa, for Θbg > 1, most likely one569

of the competing loci will catch up. We can thus think of Θbg as a measure of570

competition experienced by the major locus due to adaptation at redundant loci571

in its genetic background. The argument does not depend on the strength of572

selection, which affects both rates in the same way. The same can be shown for573

adaptation from standing genetic variation at mutation-selection-drift balance. As574
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a consequence of low mutant frequencies during the stochastic phase, the result575

is also independent of interaction effects due to epistasis or linkage.576

Since the order of loci is not affected by the deterministic phase of the adaptive577

process, Θbg maintains its key role for the adaptive architecture. In the joint578

frequency distribution, Eq (5) and Eq (8), it governs the singular behavior of579

the marginal distribution at the major locus. For Θbg < 1, this distribution has a580

singularity at the maximum of its range. Adaptation is therefore dominated by the581

major locus, leading to heterogeneous architectures. For Θbg . 0.1, adaptation582

occurs almost always due to a completed sweep at this locus. For Θbg > 1, in583

contrast, no single dominating locus exists: adaptation is collective and supported584

by multiple loci. For a polygenic trait with Θbg & 100, we obtain homogeneous585

small shifts at many loci, as predicted by quantitative genetics.586

The result also shows that the adaptive scenario does not depend directly on587

the number of loci in the genetic basis of the trait, but rather on their combined588

mutation rate (the mutational target size, sensu Pritchard et al. (2010)). For589

redundant loci and fixed Θbg, the predicted architecture at the loci with the largest590

contribution to the adaptive response is almost independent of the number of loci,591

see Fig 4. Qualitatively, the same still holds true when the assumption of complete592

redundancy is dropped (Fig 5). In this case, only loci in the genetic background593

that are not required to reach the new trait optimum, but offer redundant routes594

for adaptation, are included in Θbg. Note that the same reasoning holds for595

a quantitative trait that is composed of several modules of mutually redundant596

genes, but where interactions among genes in different modules can be ignored.597

In this case, the adaptive architecture for each module depends only on the598

module-specific Θbg, but not on the mutation rates at genes in the basis of the599

trait outside of the module.600
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Polygenic adaptation and soft sweeps601

In our analysis of polygenic adaptation, we have not studied the probability that602

adaptation at single loci could involve more than a single mutational origin and603

thus produces a so-called soft selective sweep from recurrent mutation. As explained604

in Pennings and Hermisson (2006); Hermisson and Pennings (2017), however,605

the answer is simple and only depends on the locus mutation rate – independently606

of adaptation at other loci. Soft sweeps become relevant for Θl & 0.1. For607

much larger values Θl � 1, they become “super-soft” in the sense that single608

sweep haplotypes do not reach high frequencies because there are so many609

independent origins of the mutant allele. The role of Θbg for polygenic adaptation610

is essentially parallel to the one of Θl for soft sweeps. In both cases, the population611

mutation rate is the only relevant parameter, with a lower threshold of Θ ∼ 0.1 for a612

signal involving multiple alleles and much higher values for a “super-soft” scenario613

with only subtle frequency shifts. Nevertheless, the mathematical methods to614

analyze both cases are different, essentially because the polygenic scenario does615

not lend itself to a coalescent approach.616

5.2 Alternative approaches to polygenic adaptation617

The theme of “competition of a single locus with its background” relates to previous618

findings by Chevin and Hospital (2008) Chevin and Hospital (2008) in one of the619

first studies to address polygenic footprints. These authors rely on a deterministic620

model to describe the adaptive trajectory at a single target QTL in the presence621

of background variation. The background is modeled as a normal distribution with622

a mean that can respond to selection, but with constant variance. Obviously, a623

drift-related parameter, such as Θbg, has no place in such a framework. Still, there624

are several correspondences to our result on a qualitative level. Specifically, a625

sweep at the focal locus is prohibited under two conditions. First, the background626
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variation (generated by recurrent mutation in our model, constant in Chevin and627

Hospital (2008)) is large. Second, the fitness function must exhibit strong negative628

epistasis that allows for alternative ways to reach the trait optimum – and thus629

produces redundancy (Gaussian stabilizing selection in Chevin and Hospital (2008)).630

Finally, while the adaptive trajectory depends on the shape of the fitness function,631

Chevin and Hospital note that it does not depend on the strength of selection on632

the trait, as also found for our model.633

A major difference of the approach used in Chevin and Hospital (2008) is the634

gene-centered view that is applied there. Consider a scenario where the genetic635

background “wins” against the focal QTL and precludes it from sweeping. For636

a generic polygenic trait (and for our model) this still leaves the possibility of a637

sweep at one of the background loci. However, this is not possible in Chevin638

and Hospital (2008), where all background loci are summarized as a sea of639

small-effect loci with constant genetic variance.640

This constraint is avoided in the approach by deVladar and Barton de Vladar641

and Barton (2014) and Jain and Stephan Jain and Stephan (2017), who study642

an additive quantitative trait under stabilizing selection with binary loci (see also643

Jain and Devi (2018) for an extension to adaptation to a moving optimum). These644

models allow for different locus effects, but ignore genetic drift. Before the environmental645

change, all allele frequencies are assumed to be in mutation-selection balance,646

with equilibrium values derived in de Vladar and Barton (2014). At the environmental647

change, the trait optimum jumps to a new value and alleles at all loci respond648

by large or small changes in the allele frequencies. Overall, de Vladar and649

Barton (2014) and Jain and Stephan (2017) predict adaptation by small frequency650

shifts in large parts of the biological parameter space. In particular, sweeps are651

prevented in these models if most loci have a small effect and are therefore652

under weak selection prior to to the environmental change. This contrasts to653

our model, where the predicted architecture of adaptation is independent of the654
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selection strength. The reason for this difference is that effects of drift on the655

starting allele frequencies are neglected in the deterministic models. Indeed, loci656

under weak selection start out from frequency x0 = 0.5 de Vladar and Barton657

(2014). In finite populations, however, almost all of these alleles start from very658

low (or very high) frequencies – unless the population mutation parameter is659

large (many alleles at intermediate frequencies at competing background loci are660

expected only if Θbg � 1, in accordance with our criterion for shifts). To test this661

further, we have analyzed our model for the case of starting allele frequencies662

set to the deterministic values of mutation-selection balance, µ/sd. Indeed, we663

observe adaptation due to small frequency shifts in a much larger parameter664

range (Appendix A.2).665

Generally, adaptation by sweeps in a polygenic model requires a mechanism666

to create heterogeneity among loci. This mechanism is entirely different in both667

modeling frameworks. While heterogeneity is (only) produced by unequal locus668

effects for the deterministic quantitative trait, it is (solely) due to genetic drift for669

the redundant trait model. Since both approaches ignore one of these factors,670

both results should rather underestimate the prevalence of sweeps.671

Both drift and unequal locus effects are included in the simulation studies by672

Pavlidis et al (2012) Pavlidis et al. (2012) and Wollstein and Stephan (2014)673

Wollstein and Stephan (2014). These authors assess patterns of adaptation674

for a quantitative trait under stabilizing selection with up to eight diploid loci.675

However, due to differences in concepts and definitions there are few comparable676

results. In contrast to Jain and Stephan (2017) and to our approach, they study677

long-term adaptation (they simulate Ne generations). In Pavlidis et al. (2012);678

Wollstein and Stephan (2014), sweeps are defined as fixation of the mutant679

allele at a focal locus, whereas frequency shifts correspond to long-term stable680

polymorphic equilibria Wollstein and Stephan (2014). With this definition, a shift681

scenario is no longer a transient pattern, but depends entirely on the existence682
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(and range of attraction) of polymorphic equilibria. A polymorphic outcome is683

likely for a two-locus model with full symmetry, where the double heterozygote684

has the highest fitness. For more than two loci, the probability of shifts decreases685

(because polymorphic equilibria become less likely, see Bürger and Gimelfarb686

(1999)). However, also the probability of a sweep decreases. This is largely due687

to the gene-centered view in Pavlidis et al. (2012), where potential sweeps at688

background loci are not recorded (see also Appendix A.5).689

5.3 Scope of the model and the analytical approach690

We have described scenarios of adaptation for a simple model of a polygenic691

trait. This model allows for an arbitrary number of loci with variable mutation692

rates, haploids and diploids, linkage, time-dependent selection, new mutations693

and standing genetic variation, and alternative starting conditions for the mutant694

alleles. Its genetic architecture, however, is strongly restricted by our assumption695

of (full or relaxed) redundancy among loci. In the haploid, fully redundant version,696

the phenotype is binary and only allows for two states, ancestral wild-type and697

mutant. Biologically, this may be thought of as a simple model for traits like698

pathogen or antibiotic resistance, body color, or the ability to use a certain substrate699

Coffman et al. (2005); Novembre and Han (2012).700

Our main motivation, however, has been to construct a minimal model with701

a polygenic architecture that allows for both sweep and shifts scenarios – and702

for comprehensive analytical treatment. One may wonder how our methods and703

results generalize if we move beyond our model assumptions.704

Key to our analytical method is the dissection of the adaptive process into a705

stochastic phase that explains the origin and establishment of beneficial variants706

and a deterministic phase that describes the allele frequency changes of the707

established mutant copies. This framework can be applied to a much broader708

class of models. Indeed, in many cases, the fate of beneficial alleles, establishment709
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or loss, is decided while these alleles are rare. Excluding complex scenarios710

such as passage through a fitness valley, the initial stochastic phase is relatively711

insensitive to interactions via epistasis or linkage. We can therefore describe the712

dynamics of traits with a different architecture (e.g. an additive quantitative trait713

with equal-effect loci under stabilizing selection) within the same framework by714

coupling the same stochastic dynamics to a different set of differential equations715

describing the dynamics during the deterministic phase.716

This is important because, as described above, the key qualitative results to717

distinguish broad categories of adaptive scenarios are due to the initial stochastic718

phase. This holds true, in particular, for the role of the background mutation rate719

Θbg. We therefore expect that these results generalize beyond our basic model.720

Indeed, we have already seen this for our model extensions to include diploids,721

linkage, and relaxed redundancy. Vice-versa, we have seen that other factors,722

such as alternative starting conditions for the mutant alleles, directly affect the723

early stochastic phase and lead to larger changes in the results. As shown in724

Appendix A.2, however, they can be captured by an appropriate extension of the725

stochastic Yule process framework.726

Several factors of biological importance are not covered by our current approach.727

Most importantly, this includes loci with different effect sizes and spatial population728

structure. Both require a further extension of our framework for the early stochastic729

phase of adaptation. While variable locus effects (both directly on the trait or730

on fitness due to pleiotropy) are expected to enhance the heterogeneity in the731

adaptive response among loci, the opposite is true for spatial structure, as further732

discussed below.733

5.4 When to expect sweeps or shifts734

Although our assumptions on the genetic architecture of the trait (complete redundancy735

and equal loci) are favorable for a collective, shift-type adaptation scenario, we736
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observe large changes in mutant allele frequencies (completed or partial sweeps)737

for major parts of the parameter range. A homogeneous pattern of subtle frequency738

shifts at many loci is only observed for large mutation rates. This contrasts739

with experience gained from breeding and modern findings from genome-wide740

association studies, which are strongly suggestive of an important role for small741

shifts with contributions from very many loci (reviewed in Falconer et al. (1996);742

Barton and Keightley (2002); Hill (2014); Visscher et al. (2017); Csilléry et al.743

(2018), see Hancock et al. (2010); Laporte et al. (2016); Zan and Carlborg (2018)744

for recent empirical examples). For traits such as human height, there has even745

been a case made for omnigenic adaptation Boyle et al. (2017), setting up a746

“mechanistic narrative” for Fisher’s (conceptual) infinitesimal model. Clearly, body747

height may be an extreme case and the adaptive scenario will strongly depend on748

the type of trait under consideration. Still, the question arises whether and how749

wide-spread shift-type adaptation can be reconciled with our predictions. We will750

first discuss this question within the scope of our model and then turn to factors751

beyond our model assumptions.752

The size of the background mutation rate753

The decisive parameter to predict the adaptive scenario in our model, the background754

mutation rate, is not easily amenable to measurement. Θbg = (L−1)Θl compounds755

two factors, the locus mutation parameter Θl and the number of loci L, which are756

both complex themselves and require interpretation. To assess the plausibility of757

values of the order of Θbg & 100, required for homogeneous polygenic shifts in758

our model, we consider both factors separately.759

Large locus mutation rates Θl = 4Neµ (for diploids, 2Neµ for haploids) are760

possible if either the allelic mutation rate µ or the effective population size Ne761

is large. Both cases are discussed in detail (for the case of soft sweeps) in762

Hermisson and Pennings (2017). Basically, µ can be large if the mutational target763
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at the locus is large. Examples are loss-of-function mutations or cis-regulatory764

mutations. Ne is the short-term effective population size Pennings and Hermisson765

(2006); Karasov et al. (2010); Barton (2010) during the stochastic phase of adaptation.766

This short-term size is unaffected by demographic events, such as bottlenecks,767

prior to adaptation and is therefore often larger than the long-term effective size768

that is estimated from nucleotide diversity. (Strong changes in population size769

during the adaptive period can have more subtle effects Wilson et al. (2014).)770

For recent adaptations due to gain-of-function mutations, plausible values are771

Θl . 0.1 for Drosophila and Θl . 0.01 for humans Hermisson and Pennings772

(2017).773

If 10 000 loci or more contribute to the basis of a polygenic trait Boyle et al.774

(2017), large values of Θbg could, in principle, easily be obtained. However,775

the parameter L in our model counts only loci that actually can respond to the776

selection pressure: mutant alleles must change the trait in the right direction777

and should not be constrained by pleiotropic effects. Omnigenic genetics, in778

particular, also implies ubiquitous pleiotropy and so the size of the basis that779

is potentially available for adaptation is probably strongly restricted. For a given780

trait, the number of available loci L may well differ, depending on the selection781

pressure and pleiotropic constraints. Furthermore, our results for the model with782

relaxed redundancy show that Θbg only accounts for loci that are truly redundant783

and offer alternative routes to the optimal phenotype. With this in mind, values784

of L in the hundreds or thousands (required for Θbg ≥ 100) seem to be quite785

large. While some highly polygenic traits such as body size could still fulfill this786

condition, this appears questionable for the generic case.787

Balancing selection and spatial structure788

In our model, characteristic patterns in the adaptive architecture result from heterogeneities789

among loci that are created by mutation and drift during the initial stochastic790
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phase of adaptation. As initial condition, we have mostly assumed that mutant791

alleles segregate in the population in the balance of mutation, purifying selection792

and genetic drift. Since this typically results in a broad allele frequency distribution793

(unless mutation is very strong), it favors heterogeneity among loci and thus794

adaptation by (partial) sweeps. However, even after decades of research, the795

mechanisms to maintain genetic variation in natural populations remain elusive796

Barton and Keightley (2002). As discussed in Appendix A.2, more homogeneous797

starting conditions for the mutant alleles can be strongly favorable of a shift scenario.798

Such conditions can be created either by balancing selection or by neutral population799

structure.800

Balancing selection (due to overdominance or negative frequency dependence)801

typically maintains genetic variation at intermediate frequencies. If a major part802

of the genetic variance for the trait is due to balancing selection, adaptation could803

naturally occur by small shifts. However, the flexibility of alleles at single loci,804

and thus the potential for smaller or larger shifts, will depend on the strength of805

the fitness trade-off (e.g. due to pleiotropy) at each locus. If these trade-offs806

are heterogeneous, the adaptive architecture will reflect this. Also, adaptation807

against a trade-off necessarily involves a fitness cost. Therefore, if the trait can808

also adapt at loci that are free of a trade-off, these will be preferred, possibly809

leading to sweeps.810

As discussed in a series of papers by Ralph and Coop Ralph and Coop (2010,811

2015), spatial population structure is a potent force to increase the number of812

alternative alleles that contribute to the adaptive response. If adaptation proceeds813

independently, but in parallel, in spatially separated subpopulations, different alleles814

may be picked up in different regions. Depending on details of the migration815

pattern Paulose et al. (2018), we then expect architectures that are globally polygenic816

with small shifts, but locally still show sweeps or dominating variants.817

Furthermore, population structure and gene flow before the start of the selective818
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phase can have a strong effect on the starting frequencies. In particular, if the819

base population is admixed, mutant alleles could often start from intermediate820

frequencies and naturally produce small shifts. This applies, in particular, to821

adaptation in modern human populations, which have experienced major admixture822

events in their history Lazaridis et al. (2016); Pickrell and Reich (2014) and only823

show few clear signals of selective sweeps Pritchard et al. (2010).824

Finally, gene flow and drift will continue to change the architecture of adaptation825

after the rapid adaptive phase that has been our focus here. This can work in826

both directions. On the one hand, subsequent gene flow can erase any local827

sweep signals by mixing variants that have been picked up in different regions828

Ralph and Coop (2010, 2015). On the other hand, local adaptation, in particular,829

may favor adaptation by large-effect alleles at few loci, favoring sweeps over830

longer time-scales. Indeed, as argued by Yeaman Yeaman (2015), initial rapid831

adaptation due to small shifts at many alleles of mostly small effect may be832

followed by a phase of allelic turnover, during which alleles with small effect833

are swamped and few large-effect alleles eventually take over. This type of834

allele sorting over longer time-scales is also observed in simulations studies for a835

quantitative trait under stabilizing selection that adapt to a new optimum after an836

environmental change Franssen et al. (2017); Jain and Stephan (2017).837

Between sweeps and shifts: adaptation by partial sweeps838

Previous research has almost entirely focused on either of the two extreme scenarios839

for adaptation: sweeps in a single-locus setting or (infinitesimal) shifts in the840

tradition of Fisher’s infinitesimal model. This leaves considerable room for intermediate841

patterns. Our results for the redundant trait model show that such transitional842

patterns should be expected in a large and biologically relevant parameter range843

(values of Θbg between 0.1 and 100). Patterns between sweeps and shifts are844

polygenic in the sense that they result from the concerted change in the allele845
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frequency at multiple loci. They can only be understood in the context of interactions846

among these loci. However, they usually do not show subtle shifts, but much847

larger changes (partial sweeps) at several loci. If adaptation occurs from mutation-selection-drift848

balance, the polygenic patterns are typically strongly heterogeneous, even across849

loci with identical effects on the trait. Such patterns may be difficult to detect850

with classical sweep scans, in particular if partial sweeps are "soft" because they851

originate from standing genetic variation or involve multiple mutational origins.852

However, they should be visible in time-series data and may also leave detectable853

signals in local haplotype blocks.854

Indeed there is empirical evidence for partial sweeps from time series data in855

experimental evolve and resequence experiments on recombining species such856

as fruit flies. For example, Burke et al. Burke et al. (2010) observe predominantly857

partial sweeps (from SGV) in their long-term selection experiments with Drosophila858

melanogaster for accelerated development – a rather unspecific trait with a presumably859

large genomic basis. A similar pattern of “plateauing”, where allele frequencies at860

several loci increase quickly over several generations, but then stop at intermediate861

levels, was recently observed by Barghi and collaborators Barghi et al. (2018) for862

adaptation of 10 Drosophila simulans replicates to a hot temperature environment.863

Complementing the genotypic time-series data with measurements of several864

phenotypes, these authors found convergent evolution for several high-level traits865

(such as fecundity and metabolic rate), indicating that rapid phenotypic adaptation866

had reached a new optimum. This high-level convergence contrasts a strong867

heterogeneity in the adaptation response among loci and also between replicates868

Barghi et al. (2018). Based on their data, the authors reject both a selective869

sweep model and adaptation by subtle shifts. Instead, the observed patterns870

are most consistent with the intermediate adaptive scenario in our framework,871

featuring heterogeneous partial sweeps at interacting loci with a high level of872

genetic redundancy.873
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A Supporting information1021

A.1 Linked loci1022

Negative epistasis for fitness causes negative linkage disequilibrium (LD) among1023

the selected loci. While LD can usually be ignored as long as loci are unlinked,1024

this changes once recombination rates drop below the selection coefficient r < sb1025

(data not shown). For tight linkage r → 0, in particular, individuals carrying1026

multiple mutations can no longer be formed by recombination, but require multiple1027

mutational hits on the same haplotype. This is unlikely while mutant allele frequencies1028

are low, which is when the relevant mutations of the adaptive process arise. By1029

the end of the adaptive phase, the excess of single-mutant haplotypes produces1030

strong negative LD. Nevertheless, our theory predicts that the distribution of allele1031

frequency ratios that emerges from the early stochastic phase of the adaptive1032

process is unaffected Eq.(9). This prediction is confirmed by simulations, see1033

Fig S.1. If anything, the match even improves for strong linkage. (Deviations for1034

high Θl values result since the rate of recurrent mutation∼ Θl(1−p) is smaller than1035

assumed in the Yule process approximation, ∼ Θl, when the mutant frequency p1036

gets large. This affects the major locus stronger than any other locus and leads1037

to overshooting of the minor/major ratio seen in the Figure. The bias is reduced1038

for strong linkage since 95% phenotypic adaptation corresponds to smaller allele1039

frequencies in this case.)1040

Fig S.2 shows the joint distribution of the major and the minor locus of a trait1041

with L = 2 loci for different degrees of linkage. In all cases, the process is stopped1042

when the proportion of remaining non-mutant individuals drops below fw = 0.05.1043

The results show that the linkage equilibrium assumption (red and blue lines)1044

provides a good approximation as long as r ≥ sb. For r < sb, the distributions are1045

shifted to lower values and clear deviations become visible. The constraint on the1046
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allele frequencies at the stopping condition changes from (1− p1)(1− p2) = fw for1047

linkage equilibrium to p1+p2 = 1−fw for complete linkage. As a consequence, the1048

boundary between the major and minor locus distributions (red and blue) drops1049

from 1−
√
fw to (1−fw)/2. As shown in the Mathematical Appendix, Eq (M.29), we1050

can derive an analytical approximation for the distributions for complete linkage1051

r = 0. For L = 2, we obtain a modified Beta-distribution (black lines in the Figure)1052

P±fw,tl[p|Θ] =
2(1− fw)−1

B[Θ]

(
p

1− fw

)Θ−1(
1− p

1− fw

)Θ−1

(S.1)

with p ≥ (1 − fw)/2 (resp. p ≤ (1 − fw)/2) for the major (minor) locus. The1053

simulation results show that this prediction is accurate for r � sb (deviations for1054

Θbg = 100 are due to overshooting of the stopping condition in the last generation1055

of our Wright-Fisher simulations).1056

While linkage affects the shape of the joint distribution, it does not alter its1057

key qualitative characteristics that distinguish adaptive scenarios. In particular,1058

the same conditions on Θbg and Θl apply for singularities at the boundaries of1059

marginal distributions. We still observe sweep-like adaptation for Θbg � 1, adaptation1060

by small shifts for Θbg � 1, and a heterogeneous pattern of partial sweeps in a1061

transition range of Θbg around 1.1062

A.2 Alternative starting allele frequencies1063

So far we have assumed that adaptation starts from mutation-selection-drift balance.1064

This includes variable amounts of standing genetic variation (weak or strong sd)1065

and even cases where this balance is not represented by a stable equilibrium1066

distribution (time-dependent selection, see the Mathematical Appendix). There1067

are, however, other scenarios of biological relevance. Given the right (possibly1068

complex) selection scheme, balancing selection can maintain mutant alleles, prior1069

to the environmental change, at arbitrary frequencies. The same holds true1070
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Figure S.1: E[x] for redundant fitness effects with two linked loci. Simulation
results (colored dots) for the mean allele frequency ratio are plotted in
dependence of the locus population mutation rate Θl and compared with the
analytical prediction (black line). Simulations are stopped when fitness has
reached 95% of its maximum. Linkage does not change the results for the ratio
of allele frequencies, despite significant build up of linkage disequilibrium with
low recombination rates (data not shown). Results for 10 000 replicates standard
errors < 0.005 (smaller than symbols).

if the base population is admixed, either due to natural processes or due to1071

human activity (e.g. breeding from hybrids). For these scenarios, our theoretical1072

formalism to describe the establishment of mutants during the stochastic phase1073

(Fig 2) does not apply. In this section, we describe how the formalism can be1074

extended to cover arbitrary starting frequencies of mutants at the onset of positive1075
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Figure S.2: Genetic architecture of adaptation with linkage. Marginal
distributions for the major locus (red) and the minor locus (blue) of a model with
L = 2 loci depending on Θbg (rows) and linkage among the loci (columns). Black
lines show the analytical approximations for LE (dashed) and complete linkage
(solid). For strong recombination r ≥ sb = 0.1, the deviations from the LE
approximation are small. For r � sb = 0.1, the approximation for complete linkage
works well. Further parameters: −sd = sb = 0.1, Ne = 10 000, 10 000 replicates.

selection at time t = 0.1076

Extended Yule framework1077

The Yule process that describes the stochastic phase of the adaptive process1078

accounts for the mutant copies at all loci that are destined for establishment. In1079
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our framework so far (see the Mathematical Appendix M.2), we have started this1080

process with zero copies. SGV due to mutation-selection-drift balance can still1081

be produced by such a process if it is started at some time in the past (t < 0).1082

For general starting frequencies, we can alternatively start this process at time1083

t = 0, but with mutant copies (immortal lineages) already present. Suppose1084

that the mutant frequency at locus i at time t = 0 is pi, corresponding to Nepi1085

mutant copies. Of these, only the ni < Nepi "immortal" mutants (destined for1086

establishment) are included in the Yule process. Assuming an independent establishment1087

probability pest per copy, ni is binomially distributed with parameters Nepi and pest.1088

For the limit distribution of a multi-type Yule process that is started with a non-zero1089

number of lines, consider that each of these initial lines can be understood as an1090

extra source of new immortal lines (due to birth) that is entirely equivalent to the1091

generation of new lineages by mutation. It is therefore appropriate to include1092

these lines as extra locus mutation rate1093

Θ̃i = Θi + ni = 2Neµi + ni . (S.2)

In the absence of recurrent mutation, Θi = 0, this procedure reproduces the1094

well-know Polya urn scheme (e.g. Griffiths and Tavaré (1998); Hoppe urn: Hoppe1095

(1984)). Replacing Θi by Θ̃i within our original Yule process formalism, and1096

averaging over the binomial distribution, leads to the desired extension to arbitrary1097

starting frequencies.1098

Application1099

Theory papers (e.g.Orr and Betancourt (2001); de Vladar and Barton (2014); Jain1100

and Stephan (2015, 2017)) often use a deterministic framework to describe the1101

frequency of alleles that segregate in a population in mutation-selection balance.1102

To simplify the analysis, they do not model SGV as a distribution (due to mutation,1103
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selection, and drift), but replace this distribution by its expected value (ignoring1104

drift). We can apply our scheme with fixed starting frequencies to this case and1105

thus assess the effect of genetic drift in the starting allele frequency distribution.1106

We assume equal loci and a starting frequency |µl/sd| for an (initially deleterious)1107

mutant allele with selection coefficient sd in the mutation-selection balance. Fig S.31108

shows the simulated marginal distributions of the loci with the largest contribution1109

to the adaptive response (compare Fig 4). We see that the type of the adaptive1110

architecture is again constant across rows with equal background mutation rate.1111

However, due to the more homogeneous starting conditions, adaptation involves1112

more loci and is much more shift-like. Analytical predictions following the above1113

scheme are shown for L = 2 loci. With establishment probability pest = 2sb, the1114

counts n1 and n2 of "immortal" mutants at both loci are independent random draws1115

from a Binomial distribution with parameters Ne|µl/sd| = |Θl/2sd| and 2sb. For1116

Θbg ≥ 0.1, we find (heuristically) that the marginal distribution for alleles starting1117

from mutation-selection balance closely matches the one of the fully stochastic1118

model with effective Θeff
bg = Θbg(1 + |sb/2sd|) = 51Θbg for the parameters in the1119

figure (lines added in green). (Note that, from the average number of established1120

lines, one would assume Θeff
bg = Θbg(1 + |sb/sd|) = 101Θbg. However, this does not1121

account for the variance in the number of immortal lines among the two loci.)1122
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p< and p>

ΘB=0,1; weak start frq:6; strong start frq:1
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p< and p>

ΘB=0,1; weak start frq:2; strong start frq:1
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p< and p>

ΘB=0,1; weak start frq:1; strong start frq:1
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p< and p>

ΘB=1; weak start frq:500; strong start frq:5

Θbg = 1
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p< and p>

ΘB=1; weak start frq:56; strong start frq:1
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p< and p>

ΘB=1; weak start frq:11; strong start frq:1
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p< and p>

ΘB=1; weak start frq:6; strong start frq:1
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ΘB=10; weak start frq:5000; strong start frq:50
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ΘB=10; weak start frq:556; strong start frq:6
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ΘB=10; weak start frq:103; strong start frq:2
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Figure S.3: Polygenic adaptation from alternative allele starting frequencies.
The panels show the adaptive architecture when mutant alleles start from
their expected value in mutation-selection balance, without drift. We distribute
L · |Θl/2sd| mutant copies as evenly as possible across all loci. We set −sd =
sb/100 = 0.001. Black lines for L = 2 loci show analytical predictions described
in the main text (only computationally possible for Θbg ≤ 1), green lines for
Θbg ≥ 1 show the heuristic prediction for Θeff

bg = 51Θbg. Finally, gray lines show
the marginal distributions when adaptation occurs from mutation-selection-drift
balance, compare Fig 4.

A.3 Diploids1123

To extend our model to diploids, we assume that a single locus that is homozygous1124

for the mutant allele is sufficient to produce the fully functional mutant phenotype,1125

while a heterozygous locus produces a mutant that is functional with probability1126

1−h. We assume that mutants contribute independently. Thus, if k heterozygous1127

loci exist, but no homozygous mutant locus, the resulting mutant phenotype will1128

be functional with probability 1−(1−(1−h))k = 1−hk. For L = 2 loci, in particular,1129
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the (logarithmic) fitness of genotype G becomes1130

w(G) =



0 no mutations: G = (aabb)

(1− h)s 1 heterozygous locus: G = (Aabb, aaBb)

(1− h2)s 2 heterozygous loci: G = (AaBb)

s ≥ 1 homozygous mutation: G = (AA.., ..BB)

, (S.3)

where s = sb > 0 for t ≥ 0 and s = sd < 0 for t < 0. Note that h ∈ [0, 1] measures

the dominance of the ancestral allele. We assume Hardy-Weinberg-linkage-equilibrium

(HWLE). In this case, the marginal fitnesses of the mutant alleles are (for 2 loci),

w∗A = s− (1− pA)(1− pB)
[
1− pB(1− 2h)

]
hs, (S.4a)

w∗B = s− (1− pA)(1− pB)
[
1− pA(1− 2h)

]
hs. (S.4b)

In contrast to the haploid case, the marginal fitnesses are in general not equal.1131

There are, however, two important special cases, where our fitness scheme1132

(with redundancy on the level of loci) implies equal marginal fitnesses (and thus1133

redundancy on the level of alleles): either if the ancestral allele is fully recessive1134

(h = 0) or if the alleles are co-dominant (h = 0.5). As shown in the Mathematical1135

Appendix, this holds true more generally for an arbitrary number of loci.1136

Simulation results1137

We simulated a diploid model with two loci in HWLE according to the above1138

scheme with three different levels of dominance of the ancestral allele, h =1139

0.1; 0.5; and 0.9. The diploid, effective population size is Ne, corresponding to 2Ne1140

chromosomes. The mutation rate is µ at both loci and we define the population-scaled1141

mutation rate for diploids as Θd
l = Θd

bg = 4Neµ. Simulations are stopped when1142

the percentage of remaining ancestral haplotypes drops below fw = 0.05. (This1143
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condition directly corresponds to the stopping condition for haploids. Alternative1144

stopping conditions, such as 95% increase in mean diploid fitness are also covered1145

by our theoretical framework, but require a different transformation.)1146

The results are shown in Fig S.4. We see that the haploid results fully carry1147

over to diploids for co-dominance (h = 0.5, middle column), where the diploid1148

fitness scheme implies redundancy on the level of alleles. As explained above,1149

the same holds true if the ancestral allele is fully recessive. Our simulations show1150

that the haploid result is still a good approximation for h = 0.1 (left column). In1151

contrast, much larger deviations are obtained for recessive mutants (dominant1152

ancestral allele, h = 0.9, right column). In this case, the locus with the larger1153

mutant frequency experiences stronger selection. For Θl ≥ 0.1, when polymorphism1154

at both loci is likely, this favors the major locus relative to the minor locus, increasing1155

the heterogeneity in the adaptive architecture.1156
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Figure S.4: Adaptive architecture for diploids in linkage equilibrium.
Adaptation in a 2-locus model according to scheme (S.3), with recessive (h = 0.1),
codomiant (h = 0.5) or dominant (h = 0.9) ancestral alleles. We assume
Hardy-Weinberg and linkage equilibrium. Simulations are stopped when the wild
type haplotypes drops below 5%. Standing genetic variation builds up for 16Ne

generations before the change in the environment. Selection coefficients are set
to sb = −sd = 0.1. Solid lines show analytical predictions using the framework
developed for haploids.
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A.4 Approximations for multi-locus architectures1157

For tight linkage, where the joint distribution of mutant alleles is given by a Dirichlet1158

distribution, Mathematical Appendix Eq (M.29), lower dimensional marginal distributions1159

for single loci or groups of loci can easily be derived. For linkage equilibrium,1160

Mathematical Appendix Eq (M.20), however, the required integrals can only be1161

solved numerically. For L loci, an (L−2)-dim integral needs to be evaluated, which1162

becomes computationally unfeasible (with programs packages like Mathematica)1163

for L > 5. Nevertheless, we can derive approximations for the marginal distributions1164

of polygenic models with large L in many cases. To do so, we make use of a key1165

property of the adaptive architecture, shown in our results: The (joint) architecture1166

of adaptation at loci with the largest contribution to the adaptive response is1167

primarily a function of combined mutation rates at competing loci, such as the1168

background mutation rate Θbg. Given these values, it is largely independent of the1169

number of loci in the genetic basis of the trait itself. We can therefore describe1170

the adaptive architecture of a polygenic trait with L loci by a model with k < L1171

loci given that the total adaptive response is well captured by the contribution1172

of the top k loci. It turns out that this is typically the case for Θbg < 1, when1173

the contributions from different loci are very heterogeneous. In the following, we1174

describe this procedure for an L-locus model with equal mutation rates Θi = Θl1175

for 1 ≤ i ≤ L.1176

Approximations using the 2-locus model1177

Several key properties of the L-locus architecture can already be described by1178

the 2-locus framework. This includes the marginal distributions at the major1179

locus and at the first minor locus. This requires that the mutation rate at the1180

minor locus of the 2-locus model matches the background mutation rate of the1181

L-locus model. As described in the main text, this choice matches the time1182
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lag between the first origin of a mutation destined for establishment at a locus1183

(usually the major locus) and at a second locus (usually the first minor locus). It1184

also guarantees that the approximation captures the correct asymptotic shape of1185

the major-locus distribution at p = 1− fw, and of the first-minor-locus distribution1186

at p = 0. The choice of the mutation rate at the major locus itself is far less1187

important. For the approximation of the major locus distribution, we find that1188

setting it to the locus-mutation rate yields the best fit. We thus use a 2-locus1189

model with unequal mutation rates, P1>
fw [p1|Θl,Θbg], Eq (M.28a), in Fig 4. For1190

the marginal distribution at the first minor locus, the approximation with equal1191

mutation rates, P1<
fw [p1|Θbg,Θbg], Eq (M.28b), works slightly better. Finally, we can1192

also approximate the distribution at an average minor locus (rather than the first1193

minor locus) by P1<
fw [p1|Θl,Θbg].1194

Approximations using models with k ≥ 2 loci1195

The approximation of higher-order minor loci requires models with a sufficiently1196

large genetic basis that such a locus exists at all. I.e., a k-locus model can1197

approximate marginal distributions up to the (k−1)st minor locus. Assume that we1198

want to approximate the marginal distribution of the jth minor locus of an L-locus1199

model using a k-locus model, j < k < L. As for the case k = 2 discussed above,1200

the approximation requires that the expected lag time between the establishment1201

of a mutation at a first locus and the establishment of a mutation at a jth locus be1202

matched. For the L-locus model, this waiting time is1203

1

Θl

j∑
i=1

1

L− i
.

For a k-locus model with equal mutation rate Θ
(k)
l at all loci, we thus obtain the1204

matching rule1205
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Θ
(k)
l = Θl

∑j
i=1

1
k−i∑j

i=1
1
L−i

for the approximation of the jth minor locus. For j = 1, this reproduces the1206

matching rule for the background mutation rate Θbg. In general, the value for1207

Θk
l depends on j, but converges once L, k � j. Approximations by models1208

with unequal locus mutation rates are also possible, but usually do not lead to1209

a relevant improvement. In Fig 4, we use formulas from 3- and 4-locus models to1210

approximate the marginal distributions of the 2nd and 3rd minor locus, respectively.1211

In general, the approximations for all loci can be improved by using approximation1212

models with more loci than required, i.e. k > j + 1. In Fig S.5, we show this for1213

approximations of the major locus and the first three minor loci, all derived from a1214

4-locus model.1215
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Figure S.5: Approximating higher dimensional adaptive architectures for 10
loci, Θbg = 1. We approximate a 10 locus model with the theoretical predictions
based on the four locus model for the major and the first, second and third minor
locus. Compare Fig 4, where we use approximations based on the minimal
number of loci needed.
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A.5 Marginal distribution of a single locus1216

Figure S.6 shows the marginal distribution at a single focal locus for a trait with L1217

= 2 to L=100 loci in its basis. Since all loci are equal, the probability that the focal1218

locus ends up as the major locus is 1/L. The red dots in the figure indicate the1219

part of the marginal distribution that corresponds to this case. With an increasing1220

number of redundant loci, the probability for each single locus to play a major1221

role in the adaptive process decreases. The marginal distribution of a fixed locus1222

therefore changes strongly with an increasing number of loci L. For large L, in1223

particular, it does not represents the key components of the adaptive architecture1224

on the level of the trait any more. This is in contrast to Fig 4, where marginal1225

distributions of the loci with the largest contributions to the adaptive response1226

are shown. For 2 loci, Fig S.6 also shows the analytical approximation for the1227

marginal distribution Eq (11). As long as the adaptive architecture is dominated1228

by only a few loci, the same 2-locus result can be used as an approximation for1229

the marginal distribution in models with more than two loci. This is shown in the1230

figure for Θbg ≤ 1. The figure also shows that the approximation fails for Θbg ≥ 101231

when adaptation is truly collective.1232
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x-axis: allele frequency

Figure S.6: Marginal distribution at a single focal locus. Simulation results
for the marginal distribution at a single locus at the end of the adaptive phase
are shown in blue. Red dots show the contribution of the major locus to this
distribution (all cases, where the focal locus ends up as the major locus). Dashed
lines show the analytical prediction for the 2-locus model, Eq (11). Parameters
and further details as in Fig 4.
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Polygenic adaptation: From sweeps to subtle

frequency shifts

Mathematical Appendix

October 23, 2018

This Appendix describes the details of the mathematical model and methods1

used to derive the analytical results of the article. Section M.1 gives an outline2

of the model; section M.2 introduces the branching process method used for3

the early stochastic phase of polygenic adaptation; section M.3 describes the4

derivation of the joint frequency distribution at the end of the deterministic phase.5

M.1 Redundant trait model6

Consider a panmictic population of Ne haploids. Selection acts on a binary trait7

Z (e.g. resistance) with just two states, a wildtype state Z0 (not resistant) and a8

mutant state Z1 (resistant). Without restriction, we can choose Z0 = 0 and Z1 = 1.9

Malthusian (logarithmic) fitness is defined by the function10

W (Z, t) = s(t)Z (M.1)

where the time dependent coefficient s(t) defines the strength of directional selection.11

We assume that s(t) < 0 for t < 0, but s(t) > 0 for t > 0, such that the optimal12

trait value shifts from the wildtype state Z = 0 to the mutant state Z = 1 due to13

1
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some change in the environment at time t = 0. We also assume that selection is14

stronger than drift, |Ns(t)| � 1 for almost all t, but is arbitrary otherwise.15

We assume that Z is polygenic, with L biallelic loci (wildtype ai and mutant16

alleleAi, i = 1, . . . , L) constituting its genetic basis. While genotype a = (a1, a2, . . . , aL)17

produces the ancestral wildtype Z0, all mutant genotypes are fully redundant and18

produce the mutant phenotype Z1, independently of the number of mutations.19

New mutations from ai to Ai occur at a rate µi per generation, with µi � |s(t)|20

for almost all t. For the purpose of our model, back mutation from Ai to ai can21

be ignored. The linkage map among loci is arbitrary – unless explicitly specified22

otherwise. Let pi be the frequency of allele Ai, and let fa be the frequency of the23

wildtype genotype a. Then the mean fitness in the population is24

W̄ (t) = s(t)Z̄(t) = s(t) (faZ0 + (1− fa)Z1) (M.2a)

where Z̄ is the trait mean. Since W (Z1, t) = s(t)Z1 is the marginal fitness of any25

mutant allele, the selection dynamics at the ith locus can be expressed as26

ṗi = pi
(
W (Z1, t)− W̄ (t)

)
= s(t)pi

(
Z1 − Z̄(t)

)
. (M.2b)

Our redundancy assumption implies strong diminishing returns epistasis on the27

level of fitness: the fitness of genotypes with multiple mutations is the same as28

the one of single mutants. Eq (M.2b) shows that the epistatic effect of the genetic29

background on the dynamics at a particular locus is mediated by the trait mean30

Z̄(t) as single compound parameter. Allele frequencies at all loci change with the31

same (time and frequency-dependent) rate. We readily establish that32

d

dt

(
pi
pj

)
=
ṗipj − ṗjpi

p2
j

= 0 . (M.3)

Thus, the ratio of allele frequencies among loci does not change under selection.33

2
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Note that this holds for an arbitrary linkage map. We can conclude that any34

differences in (relative) allele frequencies are due to mutation and drift.35

We are interested in the pattern of allele frequency changes across loci during36

the phase of rapid phenotypic adaptation. This phase starts with the onset of37

positive selection on derived alleles at time t = 0. It ends when mean fitness38

W̄ (t) approaches its maximum s(t)Z1 and further selective change in the allele39

frequencies is strongly decelerated. Since (W (Z1, t)− W̄ (t))/s(t) = (Z1 − Z0)fa,40

we can parametrize this end point by a condition fa(t) = fw on the frequency of41

the wildtype Z0 in the population. In our figures, we usually use fw = 0.05. As42

initial state at time t = 0, we assume that the population adapts from a balance43

of mutation, selection, and drift. We thus allow for standing genetic variation44

(SGV) at all loci. If selection prior to t = 0 is constant (which is what we generally45

assume in our computer simulations, see main text), SGV is given by the standard46

equilibrium distribution under mutation, selection, and drift, where we require that47

ai is the ancestral state at each locus. I.e., each allele frequency trajectory pi(t),48

back in time, originates from the boundary pi = 0 rather than pi = 1 (see also49

Hermisson and Pennings (2005) for this concept). However, our analytical results50

do not require a static equilibrium and, for a general s(t) < 0 for t < 0, the SGV51

reflects this non-equilibrium dynamics.52

As described in the main text, we dissect the adaptive process into two phases.53

During an initial stochastic phase mutation, selection, and drift lead to the build-up54

of genetic variation, either from SGV or due to new mutation after time t = 0,55

as long as allele frequencies pi at all loci are still low. We will describe our56

approach to this phase in detail in the section on Yule processes below. Once57

allele frequencies are sufficiently large, genetic drift and recurrent new mutation58

play only a minor role relative to selection until we reach the end of the rapid59

adaptive phase. We thus enter a deterministic phase where the dynamics is then60

well approximated by Eq (M.2b).61
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Relaxed redundancy62

To relax the stringent redundancy condition of our model, it is natural to assume63

that a single mutation is not sufficient to produce the full mutant phenotype Z1 = 1,64

but only a partial phenotype Zq = q with 0 < q < 1. This makes the marginal65

fitness of mutant alleles dependent on the genetic background. If genotypes with66

two or more mutations produce Z1, we have67

ṗi =
(
Wi(t)− W̄ (t)

)
pi = s(t)pi

(
Z1 − Z̄(t)− (Z1 − Zq)

fi
pi

)
(M.4)

where fi is the frequency of the haplotype with a single mutation at locus i. Since68

fi/pi depends on i (even in linkage equilibrium), the ratio of allele frequencies at69

different loci is no longer invariant and the key symmetry assumption (M.3) of the70

fully redundant model is violated. Note that redundancy is recovered for very low71

mutant frequencies, such that double mutants are rare (fi ≈ pi) and also late in72

the adaptation process, when most haplotypes carry at least one mutation and73

fi → 0.74

Diploids75

We can generalize the redundant trait model to diploids as follows. For a general76

model, the dynamical equations in continuous time read77

ṗi =
(
Wi(t)− W̄ (t)

)
pi (M.5)

where Wi(t) is the marginal fitness of allele Ai and W̄ (t) the mean fitness. All78

fitnesses may depend on the allele frequencies and on time. Using (M.3), we see79

that all mutant alleles Ai are redundant in the sense that they all feel the same80

selection pressure if and only if their marginal fitnesses are equal at all times,81

Wi(t) = Wj(t), ∀ i, j. (The same condition can also be derived from a discrete time82

4

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 23, 2018. ; https://doi.org/10.1101/450759doi: bioRxiv preprint 

https://doi.org/10.1101/450759
http://creativecommons.org/licenses/by-nc/4.0/


dynamics.) For haploids, equal marginal fitnesses, independently of the genetic83

composition of the population, enforces the fully redundant trait model described84

above. For diploids with dominance, the marginal fitness also depends on the85

allele frequency at the focal locus itself. An obvious solution to the condition86

of equal marginal fitnesses across loci is the case of complete dominance of87

the mutant allele. We can gain some more flexibility for the fitness scheme, if88

we assume that genotype frequencies are at Hardy-Weinberg equilibrium at all89

times. We can then distinguish three genotype classes: the wildtype without any90

mutations (normalized fitness 0), mutant individuals with one or more mutations91

on only a single haplotype (fitness s1(t)) and individuals with mutations on both92

haplotypes (fitness s2(t)). The marginal fitness of any mutant allele then is93

Wi(t) = s1(t)fa + s2(t)(1− fa) , (M.6)

where fa is the frequency of the ancestral haplotype without mutations. We thus94

require redundancy of mutations (only) within haplotypes. Note, however, that this95

fitness scheme implies a position effect, i.e., the fitness of the genotype does not96

only depend on the number of mutations at each locus, but also on the association97

of mutations to one or the other haplotype. If we assume linkage equilibrium in98

addition to Hardy-Weinberg proportions, a position effect can be avoided if we99

use the following fitness scheme100

1. The ancestral genotype without any mutants has normalized fitness W (t) =101

0,102

2. any genotype with at least one homozygous mutant has fitness W (t) =103

s2(t),104

3. a genotype without a locus that is homozygous for the mutant, but with k

5

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 23, 2018. ; https://doi.org/10.1101/450759doi: bioRxiv preprint 

https://doi.org/10.1101/450759
http://creativecommons.org/licenses/by-nc/4.0/


loci that are heterozygous has fitness

W (t) = s2(t) + 21−k
(
s1(t)− s2(t)

)
.

Since 21−k is the probability for any focal mutant allele to be on the same105

haplotype with all k − 1 other mutant alleles, assuming linkage equilibrium,106

this fitness scheme leads to the same marginal fitness as Eq (M.6) above.107

M.2 Yule approximation108

We describe the dynamics of mutant types at the different loci during the stochastic109

phase by a multi-type Yule pure birth process with immigration. Our framework110

builds on established mathematical theory Joyce and Tavaré (1987); Durrett (2010)111

and a previous approach to describe the genealogy of a beneficial allele during a112

selective sweep in terms of a Yule process Etheridge et al. (2006); Hermisson and113

Pfaffelhuber (2008). Here, we extend this approach to the polygenic scenario.114

Consider a mutationAi that appears at some locus either prior to the environmental115

change (standing genetic variation) or after the change. This mutation is relevant116

for the joint distribution of mutant allele frequencies at the time of observation after117

the rapid adaptive phase if and only if descendants of this mutation still segregate118

in the population at this time. The idea of the Yule approach is to construct the119

genealogies of these mutant descendants at all loci forward in time. We start the120

process at some time t0 � 0 in the past before the first mutation with surviving121

descendants has originated. We assume that the frequency pi of mutant alleles122

is low during the entire stochastic phase. Then, new mutations at locus i appear123

at rate ≈ Nµi =: Θi/2 per generation, but only a fraction of those will survive124

deleterious selection prior to t = 0 and genetic drift to establish in the population125

and to contribute to the adaptation of the trait. We denote this establishment126

probability as pest(t). If selection is constant and positive (as assumed in the main127
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text), s(t) = sb > 0, we can approximate pest ≈ 2sb. For general time-dependent128

selection, pest(t) will depend on s(t̃) with t̃ ≥ t Uecker and Hermisson (2011), and129

also on the mutations that were previously established at the same or at other130

loci. Crucially, however, since the marginal fitness of mutant copies at all loci is131

the same at any given time, pest(t) does not depend on the locus. We only include132

mutants into our Yule process that successfully establish in the population, which133

are represented as “immortal lineages” in the Yule tree. We follow these lineages134

in continuous time. There are then two types of events:135

1. First, new mutation creates new immortal lineages at rate136

pmut,i(t) =
Θi

2
pest(t) (M.7)

independently at each locus. This event is called “immigration” in the mathematical137

literature Joyce and Tavaré (1987), but it corresponds to mutation in our138

model. (In a model with gene flow, where adaptation in a local deme occurs139

from immigration, new lines would be truly immigrants, see also Pennings140

and Hermisson (2006) for this analogy).141

2. Second, existing immortal mutant allelesAi can give birth to further immortal142

mutant copies, corresponding to a split of the immortal line in the Yule143

process. To derive the split rate psplit, imagine that we implement the evolutionary144

dynamics as a continuous-time Moran model, where individuals give birth145

(due to a binary split) at constant rate one per generation. In the corresponding146

Yule process, we only include this birth event if it leads to two immortal147

lineages. Obviously, the probability to “be immortal” for a newborn individual148

is the same as for a new mutation and given by pest(t). Conditioning on the149

fact that we only consider splits of immortal lineages and thus at least one of150

the offspring lineages must be immortal, we arrive at a split rate per immortal151
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lineage of152

psplit(t) =
p2

est(t)

p2
est(t) + 2pest(t)(1− pest(t))

=
pest(t)

2− pest(t)
≈ pest(t)

2
, (M.8)

where the approximation in the last term assumes that pest(t)� 1, which is153

usually the case unless selection is very strong.154

The Yule process defines a continuous-time Markov process of a random variable155

k = (k1, . . . , kL), where ki ∈ N0 is the number of immortal mutant lineages at the156

ith locus. We are interested in the relative proportions in the number of lineages157

ki across loci after a sufficiently long time – assuming that the distribution of these158

proportions reaches a limit by the end of the stochastic phase. We can generate159

this distribution from the transition probabilities among Yule states (the embedded160

jump-chain of the continuous-time process). If there are currently (k1, . . . , kL)161

lineages at the L loci, the probability that the next event is either a birth event162

(split) or a new mutation (immigration) at locus i is163

Pr[(k1, . . . , kL)→ (k1, . . . , ki + 1, . . . , kL)]

=
kipsplit + pmut,i∑L

j=1(kjpsplit + pmut,j)
=

ki + Θi∑L
j=1(kj + Θj)

.
(M.9)

Crucially, these transition probabilities are constant in time and independent of the164

establishment probability pest(t). As a consequence, they are also independent of165

the mutant fitness, which only affects the speed of the Yule process (via pest), but166

not its sequence of events.167

We start the process with no mutants and stop it whenever the number of168

mutants at one of the loci (e.g. locus 1) reaches some number k1 = n. We are169

interested in the distribution of the number of mutants ki at the other loci at this170

time, respectively their ratios ki/n (remember that we already know that these171

ratios stay invariant during the deterministic phase of the adaptation process).172

We can prove the following173

8

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 23, 2018. ; https://doi.org/10.1101/450759doi: bioRxiv preprint 

https://doi.org/10.1101/450759
http://creativecommons.org/licenses/by-nc/4.0/


Theorem 1 In the limit of n → ∞, the joint distribution of ratios xi = ki/n of174

immortal mutant lineages across loci converges to the inverted Dirichlet distribution,175

PinDir[{xi}i≥2|Θ] =
1

B[Θ]

L∏
j=2

x
Θj−1
j

(
1 +

L∑
j=2

xj

)−∑L
j=1 Θj

(M.10)

where the vector Θ = (Θ1, . . . ,ΘL) summarizes the mutation rates andB[Θ] is the176

multivariate Beta function, which can be expressed in terms of Gamma functions177

as178

B[Θ] =

∏L
i=1 Γ(Θi)

Γ(
∑L

i=1 Θi)
. (M.11)

Proof We proceed in three steps.179

Step 1 Assume that we stop the process when the first locus reaches n >180

0 lineages. We derive the probability that the process at this time is in state181

(n, k2, . . . , kL) as follows. We need n + k2 + · · · + kL events (new mutations or182

splits) to generate all mutant individuals. The last event must occur at the first183

locus. All other events can occur in arbitrary order at the L loci. The probability of184

each realization (each order of events at the loci) is given by the corresponding185

product of transition probabilities (M.9). The key insight is that all realizations186

have the same probability. Indeed, the denominator of (M.9) does not depend on187

the locus where the next event occurs. Different realizations then only correspond188

to permutations in the factors ki + Θi in the numerator of the product of transition189

probabilities. We can directly write down the probability for the state as190

Pr[{ki}i≥2|n,Θ] =

(
n− 1 + k2 + · · ·+ kL
n− 1, k2, . . . , kL

)
(Θ1)(n)

∏L
j=2(Θj)(kj)

(Θ1 + · · ·+ ΘL)(n+k2+···+kL)

, (M.12)

where

Θ(k) := Θ(Θ + 1) . . . (Θ + k − 1)
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is the Pochhammer function. The leading multinomial coefficient counts the number191

of all permutations and the ratio of Pochhammer functions is the probability of192

each realization.193

Step 2 We can rewrite (M.12) as a Dirichlet-negative-multinomial compound194

distribution, defined as195

∫ 1

0

. . .

∫ 1

0

(
n− 1 + k2 + · · ·+ kL
n− 1, k2, . . . , kL

) L∏
i=2

ykii

(
1−

L∑
i=2

yi

)n
f({yi}i≥2|Θ) dy2 . . . dyL ,

(M.13)

where196

f({yi}i≥2|Θ) =
1

B[Θ]

L∏
i=2

yΘi−1
i

(
1−

L∑
i=2

yi

)Θ1−1

is the (L− 1)-dimensional Dirichlet distribution for a L-dimensional probability197

vector (y1, . . . , yL) with constraint y1 = 1 −
∑

i≥2 yi. This is best shown in the198

reverse direction, i.e., by deriving (M.12) from (M.13). To see this, note that199

∫ 1

0

. . .

∫ 1

0

L∏
i=2

yΘi+ki−1
i

(
1−

L∑
i=2

yi

)Θ1+n−1

dy2 . . . dyL =
Γ(Θ1 + n)

∏L
i=2 Γ(Θi + ki)

Γ
(
Θ1 + n+

∑L
i=2(Θi + ki)

)
because the integrand in this expression is just a Dirichlet density with shifted

values of Θi → Θi + ki and the right hand side is the corresponding normalization

factor. Then using

Γ(
∑L

i=1 Θi)∏L
i=1 Γ(Θi)

Γ(Θ1 + n)
∏L

i=2 Γ(Θi + ki)

Γ
(
Θ1 + n+

∑L
i=2(Θi + ki)

) =
(Θ1)(n)

∏L
j=2(Θj)(kj)

(Θ1 + · · ·+ ΘL)(n+k2+···+kL)

reduces (M.13) to (M.12).200

The compound distribution Eq (M.13) can be interpreted as follows: If a random201

experiment can have a finite number of outcomes (here: mutant lineages at one of202
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L loci), the negative multinomial distribution describes the probability to observe203

each of these events ki times if we repeat the experiment until a focal event204

(here: new mutant lineage at the first locus) has occurred n times. While the205

negative multinomial distribution assumes that all outcomes occur with a fixed206

probability yi, this probability is itself drawn from a Dirichlet distribution in the207

Dirichlet-negative-multinomial compound distribution. In the present context, the208

main advantage of (M.13) over (M.12) is that we can easily perform the limit209

n→∞ in this form.210

Step 3 For large n→∞, the values of ki/n, i ≥ 2, of the negative multinomial211

distribution can be replaced by their expectations,212

xi := E
[
ki
n

]
=

yi

1−
∑L

j=2 yj
⇔ yi =

xi

1 +
∑L

j=2 xj
.

We can then transform the density (M.10) from variables yi to the xi (representing213

the relative mutant frequencies). The entries of the Jacobian matrix (for 2 ≤ i, j ≤214

L) are215

Jij =
∂yi
∂xj

=
δi,j(1 +

∑L
k=2 xk)− xi

(1 +
∑L

k=2 xk)
2

.

Since this is the sum of an identity matrix (times a factor) and a matrix with216

identical columns we can easily derive the eigenvalues and thus the determinant,217

Det[J] =
1

(1 +
∑d

k=2 xk)
L
.

Applying this transformation to (M.13), we obtain (M.10).218

Remarks219

1. For two loci, the Dirichlet-negative-multinomial distribution (M.13) reduces
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to a Beta-negative-binomial distribution

PβNB[k|n] =

∫ 1

0

(
n+ k − 1

k

)
yk(1− y)n

Γ(Θ1 + Θ2)

Γ(Θ1)Γ(Θ2)
yΘ2−1(1− y)Θ1−1 dy

and the inverted Dirichlet distribution (M.10) simplifies to a so-called β-prime220

distribution,221

Pβ′(x) =
Γ(Θ1 + Θ2)

Γ(Θ1)Γ(Θ2)
xΘ2−1

(
1 + x

)−Θ1−Θ2 . (M.14)

If we measure the ratio x always relative to the locus with the higher frequency,222

we obtain a conditioned distribution that is truncated at x = 1. For equal223

locus mutation rates Θ1 = Θ2 = Θl, in particular,224

Pβ′ [x|Θl] =
2Γ(2Θl)

(Γ(Θl))2
xΘl−1(1 + x)−2Θl . (M.15)

with expectation225

E[x] =

∫ 1

0

xPβ′ [x|Θl]dx =
2Γ(2Θl) 2F1[2Θl, 1 + Θl, 2 + Θl,−1]

(1 + Θl)(Γ(Θl))2
, (M.16)

where 2F1 is the hypergeometric function.226

2. The process described here is a variant of the Polya urn and Hoppe urn227

processes that are well-known in the mathematical literature and have been228

used to describe coalescent processes forward in time Joyce and Tavaré229

(1987); Durrett (2010).230

3. Our result (M.10) can also be seen as multi-locus version of Wright’s formula231

for the stationary distribution of the Wright-Fisher diffusion Wright (1931).232

For L neutral alleles at a singe locus, and if the mutation rates Θi depend233

only on the target allele (house-of-cards condition), this is a Dirichlet distribution.234

Here, we see that an analogous result holds for a distribution of equivalent235

(mutually redundant) alleles across L loci. Although alleles at different236
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loci cannot mutate into each other and are never identical by descent, it237

turns out that the genealogy in both models can be described by a Yule238

process with immigration. In contrast to the single-locus case, we obtain an239

inverted Dirichlet distribution for multiple loci. This difference results from240

a different stopping condition for the Yule process. For a single locus, the241

population size sets an upper bound for the total number of copies across242

all alleles. If we stop the process for a given total number ntot of lines, we243

obtain the classical Dirichlet distribution in the limit ntot → ∞. In contrast,244

the population size defines a bound for mutants of a only single type in the245

multi-locus case, which is reflected by our choice of the stopping condition.246

This choice is appropriate unless all loci are tightly linked, as we will see247

below.248

4. In our model, we did not distinguish different mutational origins of mutant249

alleles at the same locus. It is, in principle, possible to do so. For any250

single locus, the process conditioned on reaching some number of mutants251

ki at this locus i is entirely independent of the process at the other loci. The252

joint distribution of different mutational origins at this locus is therefore given253

by the Ewens sampling formula, as described in the theory of soft selective254

sweeps (Pennings and Hermisson (2006); Hermisson and Pennings (2017)).255

M.3 Allele frequency distributions256

Eq (M.10) predicts the distribution of allele frequency ratios xi at the end of257

the stochastic phase of the adaptive process. Typically, the Yule process will258

approach convergence for n & 100. In a large population, this still corresponds259

to a small allele frequency. However, since the allele frequency ratios remain260

constant also during the deterministic phase, we can use the Yule process result261

to derive the distribution of mutant allele frequencies also at a later stage, when262

(partial or complete) phenotypic adaptation has been achieved. As above, we263
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characterize the time of observation via the frequency of the ancestral phenotypes264

fw that is still found in the population. We treat the case of full adaptation, fw = 0,265

before we turn to the case of a general fw.266

Complete phenotypic adaptation, fw = 0267

If selection is very strong, complete fixation of the mutant phenotype may be268

rapidly achieved. For any non-zero level of recombination among loci, fw = 0269

requires, in our model, that there is (at least) a single locus where the mutant270

allele has reached fixation. In the following, we will call the locus with the largest271

mutant frequency the major locus and all other loci minor loci. We are interested272

in the joint distribution of allele frequencies when the major locus has reached273

fixation. From (M.10), we can derive the probability that the first locus ends up274

being the major locus as275

P(Θ)
1> =

∫ 1

0

. . .

∫ 1

0

PinDir[{xi}i≥2|Θ] dx2 . . . dxL . (M.17)

Since allele frequencies pi equal allele frequency ratios xi relative to the major276

locus in this case, the joint distribution at all minor loci, {pi}i≥2, 0 ≤ pi ≤ 1,277

conditioned on fixation of the mutant allele at the first locus, follows as PinDir[{pi}i≥2|Θ]/P1>[Θ].278

The joint allele frequency distribution for all loci at fw = 0 results as product of a279

Dirac point measure at the major locus and truncated inverted Dirichlet densities280

at the minor loci. Summing over all possible loci as major locus we obtain281

P0[{pi}i≥1|Θ] =
L∑
k=1

(
δpk−1

B[Θ]

∏
j 6=k

p
Θj−1
j

(
1 +

∑
j 6=k

pj

)−∑L
j=1 Θj

)
, (M.18)

where the Dirac δ constrains the distribution to the boundary faces pk = 1 of the282

L-dimensional hypercube [0, 1]L of allele frequencies. Note that this formula is283

independent of linkage patterns as long as loci can recombine at all and are not284

completely linked (see below for this case).285
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Incomplete phenotypic adaptation, fw > 0, linkage equilibrium286

While the distribution of allele frequency ratios xi, Eq (M.10), holds for any time287

of observation during the adaptive process (once the Yule process has reached288

convergence), the corresponding distribution (M.18) for the absolute allele frequencies289

pi holds only for complete phenotypic adaptation, fw = 0. To derive this distribution290

for arbitrary fw ≥ 0, we need to translate the stopping condition for the ancestral291

phenotype to a condition on the pi. For fw = 0, this just leads to the condition pk =292

1 for the major locus, constraining the distribution (M.18) to the boundary faces293

of the allele frequency hypercube. Importantly, this constraint is independent of294

linkage. For fw > 0, in contrast, any constraint on the distribution of the pi due to295

the stopping condition will necessarily also depend on the linkage disequilibria.296

For further analytical progress we now assume that recombination is sufficiently297

strong that linkage disequilibria can be ignored. We then obtain298

L∏
j=1

(1− pj) = fw (M.19)

and the joint allele frequency distribution is given by the following Theorem, which299

is our main analytical result.300

Theorem 2 If the adaptive process is stopped at a frequency fw of the ancestral301

phenotype in the population, and assuming linkage equilibrium among loci, the302

joint distribution of mutant frequencies on the L-dimensional hypercube is303

Pfw [{pi}i≥1|Θ] =
δ∏L

j=1(1−pj)−fw

B[Θ]

L∏
i=1

pΘi−1
i

( L∑
j=1

pj

)−∑L
j=1 Θj

( L∑
j=1

fw pj
1− pj

)
, (M.20)

where the δ-function restricts the support of Pfw [{pi}i≥1|Θ] to the (L−1)-dimensional304

submanifold
∏L

j=1(1− pj) = fw.305
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Proof We can rewrite (M.19) as condition on the frequency p1 at the first locus,306

p1 = 1− fw∏L
j=2(1− pj)

(M.21)

to obtain the transformation from frequency ratios xi to absolute allele frequencies307

pi, i ≥ 2,308

xi =
pi
p1

=
pi
∏L

j=2(1− pj)∏L
j=2(1− pj)− fw

. (M.22)

The corresponding Jacobian matrix reads (2 ≤ i, j ≤ L)309

J̃ij =
∂xi
∂pj

=
pi

1− pj
fw
∏L

k=2(1− pk)
(
∏L

k=2(1− pk)− fw)2
+ δi,j

∏L
k=2(1− pk)∏L

k=2(1− pk)− fw
.

=
pi

1− pj
1− p1

p2
1

+
δi,j
p1

.

Thus

J̃ =
1− p1

p2
1

Q +
1

p1

I ,

where I is the identity matrix and Qi,j = pi/(1 − pj). Since Q has the eigenvalue310 ∑
j pj/(1 − pj) and a (L − 2)-fold eigenvalue 0, we obtain the spectrum of J̃ and311

thus the determinant312

Det[J̃] = p1−L
1

( L∑
j=1

pj(1− p1)

(1− pj)p1

)
. (M.23)

From (M.10), we then obtain the joint distribution of locus frequencies p2, . . . , pL

at the stopping condition (M.21) as

Pfw [{pi}i≥2|Θ] =
Det[J̃]

B[Θ]

L∏
i=2

(
pi
p1

)Θi−1(
1 +

L∑
j=2

pj
p1

)−∑L
j=1 Θj

=
1

B[Θ]

L∏
i=1

pΘi−1
i

( L∑
j=1

pj

)−∑L
j=1 Θj

( L∑
j=1

pj(1− p1)

1− pj

)
(M.24)
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where the dependence on fw is implicit in p1 = p1(fw), as given in (M.21). The313

joint distribution over all L loci follows as314

Pfw [{pi}i≥1|Θ] = δp1−1+fw/
∏L

j=2(1−pj) Pfw [{pi}i≥2|Θ] . (M.25)

Note that we do not assume that the first locus is the major locus in (M.25).

Finally, the symmetrical form (M.20) results from the relation

δg(x)−c =
δx−xc
|g′(x)|xc|

; g(xc) = c

for the Dirac δ-function.315

Remarks316

1. To obtain marginal distributions for single loci we generally need to perform317

a (L − 2)-dimensional integral (after resolving the δ-function). Details for318

specific cases used in the main part of the article are provided in the Mathematica319

notebook. For two loci, simple explicit formulas for marginal distributions can320

be derived. E.g., the marginal distribution at the first locus reads321

Pfw [p1|Θ1,Θ2] =
pΘ1−1

1 (1− p1 − fw)Θ2−1(1− p1)Θ1+1

B[Θ1,Θ2] (1− p2
1 − fw)Θ1+Θ2

(
1− fw(1− 2p1)

(1− p1)2

)
(M.26)

for 0 ≤ p1 ≤ fw. The distribution has singularities at p1 = 0 for Θ1 < 1 and322

at p1 = 1 − fw for Θ2 < 1. The distributions P+
fw [p|Θ1,Θ2] at the major locus323

and P−fw [p|Θ1,Θ2] at the minor locus (which can either be locus 1 or locus 2)324

follow as325

P±fw [p|Θ1,Θ2] =
(
Pfw [p|Θ1,Θ2] + Pfw [p|Θ2,Θ1]

)
H±(p−1+

√
fw) (M.27)

where H(x) is the Heaviside function with Hx = 1 for x ≥ 0 and Hx = 0326

else. Finally, the conditioned distributions P1≷
fw

[p1|Θ1,Θ2] at the first locus if327
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this locus is the major/minor locus are328

P1>
fw [p1|Θ1,Θ2] =

Pfw [p1|Θ1,Θ2]

P(Θ1,Θ2)
1>

Hp1−1+
√
fw , (M.28a)

P1<
fw [p1|Θ1,Θ2] =

Pfw [p1|Θ1,Θ2]

1− P(Θ1.Θ2)
1>

H−(p1−1+
√
fw) , (M.28b)

where P(Θ1,Θ2)
1> , defined in Eq (M.17), evaluates to a Hypergeometric function329

for general Θ1 6= Θ2, but reduces to 1/2 for Θ1 = Θ2.330

2. The marginal distribution for pk has a singularity at pk = 0 for Θk < 1 and a

singularity at pk = 1−fw for
∑L

j 6=k Θj < 1. To see this, consider the marginal

distribution of pL, which is obtained from Eq. (M.25) after integartion over

p1, . . . , pL−1. Dropping non-singular terms (such as the sums in Eq M.24),

and defining

qk =

∏L
j=k+1(1− pj)− fw∏L

j=k+1(1− pj)

the singlular part can be written as

Pfw [pL|Θ] ∼
∫ 1

0

∫ 1

0

. . .

∫ 1

0

δp1−q1

L∏
i=1

pΘi−1
i dp1 . . . dpL−1

=

∫ qL−1

0

∫ qL−2

0

. . .

∫ q2

0

qΘ1−1
1

L∏
i=2

pΘi−1
i dp2 . . . dpL−1 ,

after performing the p1 integral. The upper integral limits qk account for the

constraint q1 > 0. Substituting

p̃2 :=
p2

q2

⇒ dp2 = q2 dp̃2
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and using that q1 = q2(1− p̃2)/(1− p̃q2) we obtain

Pfw [pL|Θ] ∼
∫ qL−1

0

. . .

∫ q3

0

∫ 1

0

qΘ1−1
1 qΘ2

2 p̃Θ2−1
2

L∏
i=3

pΘi−1
i dp̃2dp3 . . . dpL−1

=

∫ qL−1

0

. . .

∫ q3

0

qΘ1+Θ2−1
2

∫ 1

0

(
1− p̃2

1− p̃2q2

)Θ1−1

p̃Θ2−1
2 dp̃2

L∏
i=3

pΘi−1
i dp3 . . . dpL−1.

Since the p̃2 integral is bounded by 1/Θ2 from below and by 1/Θ2+1/Θ1 from331

above for all 0 ≤ q2 ≤ 1, it does not contribute to a singularity in Pfw [pL|Θ].332

For the singular part, we thus have333

Pfw [pL|Θ] ∼
∫ qL−1

0

. . .

∫ q3

0

qΘ1+Θ2−1
2

L∏
i=3

pΘi−1
i dp3 . . . dpL−1.

Iterating the substitution procedure for variables p3 to pL−1, we arrive at334

Pfw [pL|Θ] ∼ q
∑L−1

j=1 Θj−1

L−1 pΘL−1
L =

(
1− fw − pL

1− pL

)∑L−1
j=1 Θj−1

pΘL−1
L ,

demonstrating the singular behavior for pL → 0 and for pL → 1 − fw. Since335

the labeling of loci is arbitrary, the assertion follows for all loci.336

Incomplete phenotypic adaptation, fw > 0, tight linkage337

Even if all loci are completely linked, the joint distribution of allele frequency ratios338

is still given by (M.10). However, the transformation to absolute allele frequencies339

at the stopping condition fw 6= 0 depends on linkage. Because all mutant alleles340

are rare during the stochastic phase, we can ignore haplotypes with more than341

a single mutant during this time. Since we ignore new mutations during the342

deterministic phase, mutant alleles stay in maximal linkage disequilibrium in the343

absence of recombination. We thus have344

L∑
j=1

pj = 1− fw ⇒ xi =
pi
p1

=
pi

1− fw −
∑L

j=2 pj
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with corresponding Jacobian

Jij =
∂xi
∂pj

=
pi + δi,j p1

p2
1

; Det[J] =
1− fw
pL1

.

Using this transformation on (M.10), the joint distribution of mutant frequencies

reads

Pfw,tl[{pi}i≥1|Θ] =
δ∑L

i=1 pi−1+fw

B[Θ](1− fw)L−1

L∏
i=1

(
pi

1− fw

)Θi−1

. (M.29)

Evidently, this is just the Dirichlet distribution on the cube [0, 1 − fw]L. This is345

expected since the problem reduces to a single-locus, L-alleles problem for tight346

linkage. The marginal distributions can be derived for an arbitrary number of loci347

and are given by transformed β-distributions,348

Pfw,tl[pk|Θ] =
(1− fw)−1

B[Θ]

(
pk

1− fw

)Θk−1(
1− pk

1− fw

)(∑d
j 6=k Θj

)
−1

, (M.30)

with singularities at the boundaries pk = 0 for Θk < 1 and at pk = 1 − fw349

for
∑

j 6=k Θj < 1 as in the linkage equilibrium case. For two tightly linked loci,350

the major locus must have frequency p > (1 − fw)/2. The distribution at the351

major/minor locus therefore reads352

P±fw,tl[p|Θ1,Θ2] =
(
Pfw,tl[p|Θ1,Θ2] + Pfw,tl[p|Θ2,Θ1]

)
H±(p−(1−fw)/2) (M.31)

and conditioned distributions follow as in (M.28).353
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