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Figure S.4: Adaptive architecture for diploids in linkage equilibrium.
Adaptation in a 2-locus model according to scheme (S.3), with recessive (h = 0.1),
codomiant (h = 0.5) or dominant (h = 0.9) ancestral alleles. We assume
Hardy-Weinberg and linkage equilibrium. Simulations are stopped when the wild
type haplotypes drops below 5%. Standing genetic variation builds up for 16Ne

generations before the change in the environment. Selection coefficients are set
to sb = −sd = 0.1. Solid lines show analytical predictions using the framework
developed for haploids.

57

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 23, 2018. ; https://doi.org/10.1101/450759doi: bioRxiv preprint 



A.4 Approximations for multi-locus architectures1157

For tight linkage, where the joint distribution of mutant alleles is given by a Dirichlet1158

distribution, Mathematical Appendix Eq (M.29), lower dimensional marginal distributions1159

for single loci or groups of loci can easily be derived. For linkage equilibrium,1160

Mathematical Appendix Eq (M.20), however, the required integrals can only be1161

solved numerically. For L loci, an (L−2)-dim integral needs to be evaluated, which1162

becomes computationally unfeasible (with programs packages like Mathematica)1163

for L > 5. Nevertheless, we can derive approximations for the marginal distributions1164

of polygenic models with large L in many cases. To do so, we make use of a key1165

property of the adaptive architecture, shown in our results: The (joint) architecture1166

of adaptation at loci with the largest contribution to the adaptive response is1167

primarily a function of combined mutation rates at competing loci, such as the1168

background mutation rate Θbg. Given these values, it is largely independent of the1169

number of loci in the genetic basis of the trait itself. We can therefore describe1170

the adaptive architecture of a polygenic trait with L loci by a model with k < L1171

loci given that the total adaptive response is well captured by the contribution1172

of the top k loci. It turns out that this is typically the case for Θbg < 1, when1173

the contributions from different loci are very heterogeneous. In the following, we1174

describe this procedure for an L-locus model with equal mutation rates Θi = Θl1175

for 1 ≤ i ≤ L.1176

Approximations using the 2-locus model1177

Several key properties of the L-locus architecture can already be described by1178

the 2-locus framework. This includes the marginal distributions at the major1179

locus and at the first minor locus. This requires that the mutation rate at the1180

minor locus of the 2-locus model matches the background mutation rate of the1181

L-locus model. As described in the main text, this choice matches the time1182
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lag between the first origin of a mutation destined for establishment at a locus1183

(usually the major locus) and at a second locus (usually the first minor locus). It1184

also guarantees that the approximation captures the correct asymptotic shape of1185

the major-locus distribution at p = 1− fw, and of the first-minor-locus distribution1186

at p = 0. The choice of the mutation rate at the major locus itself is far less1187

important. For the approximation of the major locus distribution, we find that1188

setting it to the locus-mutation rate yields the best fit. We thus use a 2-locus1189

model with unequal mutation rates, P1>
fw [p1|Θl,Θbg], Eq (M.28a), in Fig 4. For1190

the marginal distribution at the first minor locus, the approximation with equal1191

mutation rates, P1<
fw [p1|Θbg,Θbg], Eq (M.28b), works slightly better. Finally, we can1192

also approximate the distribution at an average minor locus (rather than the first1193

minor locus) by P1<
fw [p1|Θl,Θbg].1194

Approximations using models with k ≥ 2 loci1195

The approximation of higher-order minor loci requires models with a sufficiently1196

large genetic basis that such a locus exists at all. I.e., a k-locus model can1197

approximate marginal distributions up to the (k−1)st minor locus. Assume that we1198

want to approximate the marginal distribution of the jth minor locus of an L-locus1199

model using a k-locus model, j < k < L. As for the case k = 2 discussed above,1200

the approximation requires that the expected lag time between the establishment1201

of a mutation at a first locus and the establishment of a mutation at a jth locus be1202

matched. For the L-locus model, this waiting time is1203

1

Θl

j∑
i=1

1

L− i
.

For a k-locus model with equal mutation rate Θ
(k)
l at all loci, we thus obtain the1204

matching rule1205
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Θ
(k)
l = Θl

∑j
i=1

1
k−i∑j

i=1
1
L−i

for the approximation of the jth minor locus. For j = 1, this reproduces the1206

matching rule for the background mutation rate Θbg. In general, the value for1207

Θk
l depends on j, but converges once L, k � j. Approximations by models1208

with unequal locus mutation rates are also possible, but usually do not lead to1209

a relevant improvement. In Fig 4, we use formulas from 3- and 4-locus models to1210

approximate the marginal distributions of the 2nd and 3rd minor locus, respectively.1211

In general, the approximations for all loci can be improved by using approximation1212

models with more loci than required, i.e. k > j + 1. In Fig S.5, we show this for1213

approximations of the major locus and the first three minor loci, all derived from a1214

4-locus model.1215
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Figure S.5: Approximating higher dimensional adaptive architectures for 10
loci, Θbg = 1. We approximate a 10 locus model with the theoretical predictions
based on the four locus model for the major and the first, second and third minor
locus. Compare Fig 4, where we use approximations based on the minimal
number of loci needed.
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A.5 Marginal distribution of a single locus1216

Figure S.6 shows the marginal distribution at a single focal locus for a trait with L1217

= 2 to L=100 loci in its basis. Since all loci are equal, the probability that the focal1218

locus ends up as the major locus is 1/L. The red dots in the figure indicate the1219

part of the marginal distribution that corresponds to this case. With an increasing1220

number of redundant loci, the probability for each single locus to play a major1221

role in the adaptive process decreases. The marginal distribution of a fixed locus1222

therefore changes strongly with an increasing number of loci L. For large L, in1223

particular, it does not represents the key components of the adaptive architecture1224

on the level of the trait any more. This is in contrast to Fig 4, where marginal1225

distributions of the loci with the largest contributions to the adaptive response1226

are shown. For 2 loci, Fig S.6 also shows the analytical approximation for the1227

marginal distribution Eq (11). As long as the adaptive architecture is dominated1228

by only a few loci, the same 2-locus result can be used as an approximation for1229

the marginal distribution in models with more than two loci. This is shown in the1230

figure for Θbg ≤ 1. The figure also shows that the approximation fails for Θbg ≥ 101231

when adaptation is truly collective.1232
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2 loci 10 loci 50 loci 100 loci

Complete selective sweeps:
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x-axis: allele frequency

Figure S.6: Marginal distribution at a single focal locus. Simulation results
for the marginal distribution at a single locus at the end of the adaptive phase
are shown in blue. Red dots show the contribution of the major locus to this
distribution (all cases, where the focal locus ends up as the major locus). Dashed
lines show the analytical prediction for the 2-locus model, Eq (11). Parameters
and further details as in Fig 4.
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Polygenic adaptation: From sweeps to subtle

frequency shifts

Mathematical Appendix

October 23, 2018

This Appendix describes the details of the mathematical model and methods1

used to derive the analytical results of the article. Section M.1 gives an outline2

of the model; section M.2 introduces the branching process method used for3

the early stochastic phase of polygenic adaptation; section M.3 describes the4

derivation of the joint frequency distribution at the end of the deterministic phase.5

M.1 Redundant trait model6

Consider a panmictic population of Ne haploids. Selection acts on a binary trait7

Z (e.g. resistance) with just two states, a wildtype state Z0 (not resistant) and a8

mutant state Z1 (resistant). Without restriction, we can choose Z0 = 0 and Z1 = 1.9

Malthusian (logarithmic) fitness is defined by the function10

W (Z, t) = s(t)Z (M.1)

where the time dependent coefficient s(t) defines the strength of directional selection.11

We assume that s(t) < 0 for t < 0, but s(t) > 0 for t > 0, such that the optimal12

trait value shifts from the wildtype state Z = 0 to the mutant state Z = 1 due to13

1
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some change in the environment at time t = 0. We also assume that selection is14

stronger than drift, |Ns(t)| � 1 for almost all t, but is arbitrary otherwise.15

We assume that Z is polygenic, with L biallelic loci (wildtype ai and mutant16

alleleAi, i = 1, . . . , L) constituting its genetic basis. While genotype a = (a1, a2, . . . , aL)17

produces the ancestral wildtype Z0, all mutant genotypes are fully redundant and18

produce the mutant phenotype Z1, independently of the number of mutations.19

New mutations from ai to Ai occur at a rate µi per generation, with µi � |s(t)|20

for almost all t. For the purpose of our model, back mutation from Ai to ai can21

be ignored. The linkage map among loci is arbitrary – unless explicitly specified22

otherwise. Let pi be the frequency of allele Ai, and let fa be the frequency of the23

wildtype genotype a. Then the mean fitness in the population is24

W̄ (t) = s(t)Z̄(t) = s(t) (faZ0 + (1− fa)Z1) (M.2a)

where Z̄ is the trait mean. Since W (Z1, t) = s(t)Z1 is the marginal fitness of any25

mutant allele, the selection dynamics at the ith locus can be expressed as26

ṗi = pi
(
W (Z1, t)− W̄ (t)

)
= s(t)pi

(
Z1 − Z̄(t)

)
. (M.2b)

Our redundancy assumption implies strong diminishing returns epistasis on the27

level of fitness: the fitness of genotypes with multiple mutations is the same as28

the one of single mutants. Eq (M.2b) shows that the epistatic effect of the genetic29

background on the dynamics at a particular locus is mediated by the trait mean30

Z̄(t) as single compound parameter. Allele frequencies at all loci change with the31

same (time and frequency-dependent) rate. We readily establish that32

d

dt

(
pi
pj

)
=
ṗipj − ṗjpi

p2
j

= 0 . (M.3)

Thus, the ratio of allele frequencies among loci does not change under selection.33

2
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Note that this holds for an arbitrary linkage map. We can conclude that any34

differences in (relative) allele frequencies are due to mutation and drift.35

We are interested in the pattern of allele frequency changes across loci during36

the phase of rapid phenotypic adaptation. This phase starts with the onset of37

positive selection on derived alleles at time t = 0. It ends when mean fitness38

W̄ (t) approaches its maximum s(t)Z1 and further selective change in the allele39

frequencies is strongly decelerated. Since (W (Z1, t)− W̄ (t))/s(t) = (Z1 − Z0)fa,40

we can parametrize this end point by a condition fa(t) = fw on the frequency of41

the wildtype Z0 in the population. In our figures, we usually use fw = 0.05. As42

initial state at time t = 0, we assume that the population adapts from a balance43

of mutation, selection, and drift. We thus allow for standing genetic variation44

(SGV) at all loci. If selection prior to t = 0 is constant (which is what we generally45

assume in our computer simulations, see main text), SGV is given by the standard46

equilibrium distribution under mutation, selection, and drift, where we require that47

ai is the ancestral state at each locus. I.e., each allele frequency trajectory pi(t),48

back in time, originates from the boundary pi = 0 rather than pi = 1 (see also49

Hermisson and Pennings (2005) for this concept). However, our analytical results50

do not require a static equilibrium and, for a general s(t) < 0 for t < 0, the SGV51

reflects this non-equilibrium dynamics.52

As described in the main text, we dissect the adaptive process into two phases.53

During an initial stochastic phase mutation, selection, and drift lead to the build-up54

of genetic variation, either from SGV or due to new mutation after time t = 0,55

as long as allele frequencies pi at all loci are still low. We will describe our56

approach to this phase in detail in the section on Yule processes below. Once57

allele frequencies are sufficiently large, genetic drift and recurrent new mutation58

play only a minor role relative to selection until we reach the end of the rapid59

adaptive phase. We thus enter a deterministic phase where the dynamics is then60

well approximated by Eq (M.2b).61
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Relaxed redundancy62

To relax the stringent redundancy condition of our model, it is natural to assume63

that a single mutation is not sufficient to produce the full mutant phenotype Z1 = 1,64

but only a partial phenotype Zq = q with 0 < q < 1. This makes the marginal65

fitness of mutant alleles dependent on the genetic background. If genotypes with66

two or more mutations produce Z1, we have67

ṗi =
(
Wi(t)− W̄ (t)

)
pi = s(t)pi

(
Z1 − Z̄(t)− (Z1 − Zq)

fi
pi

)
(M.4)

where fi is the frequency of the haplotype with a single mutation at locus i. Since68

fi/pi depends on i (even in linkage equilibrium), the ratio of allele frequencies at69

different loci is no longer invariant and the key symmetry assumption (M.3) of the70

fully redundant model is violated. Note that redundancy is recovered for very low71

mutant frequencies, such that double mutants are rare (fi ≈ pi) and also late in72

the adaptation process, when most haplotypes carry at least one mutation and73

fi → 0.74

Diploids75

We can generalize the redundant trait model to diploids as follows. For a general76

model, the dynamical equations in continuous time read77

ṗi =
(
Wi(t)− W̄ (t)

)
pi (M.5)

where Wi(t) is the marginal fitness of allele Ai and W̄ (t) the mean fitness. All78

fitnesses may depend on the allele frequencies and on time. Using (M.3), we see79

that all mutant alleles Ai are redundant in the sense that they all feel the same80

selection pressure if and only if their marginal fitnesses are equal at all times,81

Wi(t) = Wj(t), ∀ i, j. (The same condition can also be derived from a discrete time82

4
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dynamics.) For haploids, equal marginal fitnesses, independently of the genetic83

composition of the population, enforces the fully redundant trait model described84

above. For diploids with dominance, the marginal fitness also depends on the85

allele frequency at the focal locus itself. An obvious solution to the condition86

of equal marginal fitnesses across loci is the case of complete dominance of87

the mutant allele. We can gain some more flexibility for the fitness scheme, if88

we assume that genotype frequencies are at Hardy-Weinberg equilibrium at all89

times. We can then distinguish three genotype classes: the wildtype without any90

mutations (normalized fitness 0), mutant individuals with one or more mutations91

on only a single haplotype (fitness s1(t)) and individuals with mutations on both92

haplotypes (fitness s2(t)). The marginal fitness of any mutant allele then is93

Wi(t) = s1(t)fa + s2(t)(1− fa) , (M.6)

where fa is the frequency of the ancestral haplotype without mutations. We thus94

require redundancy of mutations (only) within haplotypes. Note, however, that this95

fitness scheme implies a position effect, i.e., the fitness of the genotype does not96

only depend on the number of mutations at each locus, but also on the association97

of mutations to one or the other haplotype. If we assume linkage equilibrium in98

addition to Hardy-Weinberg proportions, a position effect can be avoided if we99

use the following fitness scheme100

1. The ancestral genotype without any mutants has normalized fitness W (t) =101

0,102

2. any genotype with at least one homozygous mutant has fitness W (t) =103

s2(t),104

3. a genotype without a locus that is homozygous for the mutant, but with k

5
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loci that are heterozygous has fitness

W (t) = s2(t) + 21−k
(
s1(t)− s2(t)

)
.

Since 21−k is the probability for any focal mutant allele to be on the same105

haplotype with all k − 1 other mutant alleles, assuming linkage equilibrium,106

this fitness scheme leads to the same marginal fitness as Eq (M.6) above.107

M.2 Yule approximation108

We describe the dynamics of mutant types at the different loci during the stochastic109

phase by a multi-type Yule pure birth process with immigration. Our framework110

builds on established mathematical theory Joyce and Tavaré (1987); Durrett (2010)111

and a previous approach to describe the genealogy of a beneficial allele during a112

selective sweep in terms of a Yule process Etheridge et al. (2006); Hermisson and113

Pfaffelhuber (2008). Here, we extend this approach to the polygenic scenario.114

Consider a mutationAi that appears at some locus either prior to the environmental115

change (standing genetic variation) or after the change. This mutation is relevant116

for the joint distribution of mutant allele frequencies at the time of observation after117

the rapid adaptive phase if and only if descendants of this mutation still segregate118

in the population at this time. The idea of the Yule approach is to construct the119

genealogies of these mutant descendants at all loci forward in time. We start the120

process at some time t0 � 0 in the past before the first mutation with surviving121

descendants has originated. We assume that the frequency pi of mutant alleles122

is low during the entire stochastic phase. Then, new mutations at locus i appear123

at rate ≈ Nµi =: Θi/2 per generation, but only a fraction of those will survive124

deleterious selection prior to t = 0 and genetic drift to establish in the population125

and to contribute to the adaptation of the trait. We denote this establishment126

probability as pest(t). If selection is constant and positive (as assumed in the main127
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text), s(t) = sb > 0, we can approximate pest ≈ 2sb. For general time-dependent128

selection, pest(t) will depend on s(t̃) with t̃ ≥ t Uecker and Hermisson (2011), and129

also on the mutations that were previously established at the same or at other130

loci. Crucially, however, since the marginal fitness of mutant copies at all loci is131

the same at any given time, pest(t) does not depend on the locus. We only include132

mutants into our Yule process that successfully establish in the population, which133

are represented as “immortal lineages” in the Yule tree. We follow these lineages134

in continuous time. There are then two types of events:135

1. First, new mutation creates new immortal lineages at rate136

pmut,i(t) =
Θi

2
pest(t) (M.7)

independently at each locus. This event is called “immigration” in the mathematical137

literature Joyce and Tavaré (1987), but it corresponds to mutation in our138

model. (In a model with gene flow, where adaptation in a local deme occurs139

from immigration, new lines would be truly immigrants, see also Pennings140

and Hermisson (2006) for this analogy).141

2. Second, existing immortal mutant allelesAi can give birth to further immortal142

mutant copies, corresponding to a split of the immortal line in the Yule143

process. To derive the split rate psplit, imagine that we implement the evolutionary144

dynamics as a continuous-time Moran model, where individuals give birth145

(due to a binary split) at constant rate one per generation. In the corresponding146

Yule process, we only include this birth event if it leads to two immortal147

lineages. Obviously, the probability to “be immortal” for a newborn individual148

is the same as for a new mutation and given by pest(t). Conditioning on the149

fact that we only consider splits of immortal lineages and thus at least one of150

the offspring lineages must be immortal, we arrive at a split rate per immortal151
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lineage of152

psplit(t) =
p2

est(t)

p2
est(t) + 2pest(t)(1− pest(t))

=
pest(t)

2− pest(t)
≈ pest(t)

2
, (M.8)

where the approximation in the last term assumes that pest(t)� 1, which is153

usually the case unless selection is very strong.154

The Yule process defines a continuous-time Markov process of a random variable155

k = (k1, . . . , kL), where ki ∈ N0 is the number of immortal mutant lineages at the156

ith locus. We are interested in the relative proportions in the number of lineages157

ki across loci after a sufficiently long time – assuming that the distribution of these158

proportions reaches a limit by the end of the stochastic phase. We can generate159

this distribution from the transition probabilities among Yule states (the embedded160

jump-chain of the continuous-time process). If there are currently (k1, . . . , kL)161

lineages at the L loci, the probability that the next event is either a birth event162

(split) or a new mutation (immigration) at locus i is163

Pr[(k1, . . . , kL)→ (k1, . . . , ki + 1, . . . , kL)]

=
kipsplit + pmut,i∑L

j=1(kjpsplit + pmut,j)
=

ki + Θi∑L
j=1(kj + Θj)

.
(M.9)

Crucially, these transition probabilities are constant in time and independent of the164

establishment probability pest(t). As a consequence, they are also independent of165

the mutant fitness, which only affects the speed of the Yule process (via pest), but166

not its sequence of events.167

We start the process with no mutants and stop it whenever the number of168

mutants at one of the loci (e.g. locus 1) reaches some number k1 = n. We are169

interested in the distribution of the number of mutants ki at the other loci at this170

time, respectively their ratios ki/n (remember that we already know that these171

ratios stay invariant during the deterministic phase of the adaptation process).172

We can prove the following173
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Theorem 1 In the limit of n → ∞, the joint distribution of ratios xi = ki/n of174

immortal mutant lineages across loci converges to the inverted Dirichlet distribution,175

PinDir[{xi}i≥2|Θ] =
1

B[Θ]

L∏
j=2

x
Θj−1
j

(
1 +

L∑
j=2

xj

)−∑L
j=1 Θj

(M.10)

where the vector Θ = (Θ1, . . . ,ΘL) summarizes the mutation rates andB[Θ] is the176

multivariate Beta function, which can be expressed in terms of Gamma functions177

as178

B[Θ] =

∏L
i=1 Γ(Θi)

Γ(
∑L

i=1 Θi)
. (M.11)

Proof We proceed in three steps.179

Step 1 Assume that we stop the process when the first locus reaches n >180

0 lineages. We derive the probability that the process at this time is in state181

(n, k2, . . . , kL) as follows. We need n + k2 + · · · + kL events (new mutations or182

splits) to generate all mutant individuals. The last event must occur at the first183

locus. All other events can occur in arbitrary order at the L loci. The probability of184

each realization (each order of events at the loci) is given by the corresponding185

product of transition probabilities (M.9). The key insight is that all realizations186

have the same probability. Indeed, the denominator of (M.9) does not depend on187

the locus where the next event occurs. Different realizations then only correspond188

to permutations in the factors ki + Θi in the numerator of the product of transition189

probabilities. We can directly write down the probability for the state as190

Pr[{ki}i≥2|n,Θ] =

(
n− 1 + k2 + · · ·+ kL
n− 1, k2, . . . , kL

)
(Θ1)(n)

∏L
j=2(Θj)(kj)

(Θ1 + · · ·+ ΘL)(n+k2+···+kL)

, (M.12)

where

Θ(k) := Θ(Θ + 1) . . . (Θ + k − 1)
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is the Pochhammer function. The leading multinomial coefficient counts the number191

of all permutations and the ratio of Pochhammer functions is the probability of192

each realization.193

Step 2 We can rewrite (M.12) as a Dirichlet-negative-multinomial compound194

distribution, defined as195

∫ 1

0

. . .

∫ 1

0

(
n− 1 + k2 + · · ·+ kL
n− 1, k2, . . . , kL

) L∏
i=2

ykii

(
1−

L∑
i=2

yi

)n
f({yi}i≥2|Θ) dy2 . . . dyL ,

(M.13)

where196

f({yi}i≥2|Θ) =
1

B[Θ]

L∏
i=2

yΘi−1
i

(
1−

L∑
i=2

yi

)Θ1−1

is the (L− 1)-dimensional Dirichlet distribution for a L-dimensional probability197

vector (y1, . . . , yL) with constraint y1 = 1 −
∑

i≥2 yi. This is best shown in the198

reverse direction, i.e., by deriving (M.12) from (M.13). To see this, note that199

∫ 1

0

. . .

∫ 1

0

L∏
i=2

yΘi+ki−1
i

(
1−

L∑
i=2

yi

)Θ1+n−1

dy2 . . . dyL =
Γ(Θ1 + n)

∏L
i=2 Γ(Θi + ki)

Γ
(
Θ1 + n+

∑L
i=2(Θi + ki)

)
because the integrand in this expression is just a Dirichlet density with shifted

values of Θi → Θi + ki and the right hand side is the corresponding normalization

factor. Then using

Γ(
∑L

i=1 Θi)∏L
i=1 Γ(Θi)

Γ(Θ1 + n)
∏L

i=2 Γ(Θi + ki)

Γ
(
Θ1 + n+

∑L
i=2(Θi + ki)

) =
(Θ1)(n)

∏L
j=2(Θj)(kj)

(Θ1 + · · ·+ ΘL)(n+k2+···+kL)

reduces (M.13) to (M.12).200

The compound distribution Eq (M.13) can be interpreted as follows: If a random201

experiment can have a finite number of outcomes (here: mutant lineages at one of202
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L loci), the negative multinomial distribution describes the probability to observe203

each of these events ki times if we repeat the experiment until a focal event204

(here: new mutant lineage at the first locus) has occurred n times. While the205

negative multinomial distribution assumes that all outcomes occur with a fixed206

probability yi, this probability is itself drawn from a Dirichlet distribution in the207

Dirichlet-negative-multinomial compound distribution. In the present context, the208

main advantage of (M.13) over (M.12) is that we can easily perform the limit209

n→∞ in this form.210

Step 3 For large n→∞, the values of ki/n, i ≥ 2, of the negative multinomial211

distribution can be replaced by their expectations,212

xi := E
[
ki
n

]
=

yi

1−
∑L

j=2 yj
⇔ yi =

xi

1 +
∑L

j=2 xj
.

We can then transform the density (M.10) from variables yi to the xi (representing213

the relative mutant frequencies). The entries of the Jacobian matrix (for 2 ≤ i, j ≤214

L) are215

Jij =
∂yi
∂xj

=
δi,j(1 +

∑L
k=2 xk)− xi

(1 +
∑L

k=2 xk)
2

.

Since this is the sum of an identity matrix (times a factor) and a matrix with216

identical columns we can easily derive the eigenvalues and thus the determinant,217

Det[J] =
1

(1 +
∑d

k=2 xk)
L
.

Applying this transformation to (M.13), we obtain (M.10).218

Remarks219

1. For two loci, the Dirichlet-negative-multinomial distribution (M.13) reduces
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to a Beta-negative-binomial distribution

PβNB[k|n] =

∫ 1

0

(
n+ k − 1

k

)
yk(1− y)n

Γ(Θ1 + Θ2)

Γ(Θ1)Γ(Θ2)
yΘ2−1(1− y)Θ1−1 dy

and the inverted Dirichlet distribution (M.10) simplifies to a so-called β-prime220

distribution,221

Pβ′(x) =
Γ(Θ1 + Θ2)

Γ(Θ1)Γ(Θ2)
xΘ2−1

(
1 + x

)−Θ1−Θ2 . (M.14)

If we measure the ratio x always relative to the locus with the higher frequency,222

we obtain a conditioned distribution that is truncated at x = 1. For equal223

locus mutation rates Θ1 = Θ2 = Θl, in particular,224

Pβ′ [x|Θl] =
2Γ(2Θl)

(Γ(Θl))2
xΘl−1(1 + x)−2Θl . (M.15)

with expectation225

E[x] =

∫ 1

0

xPβ′ [x|Θl]dx =
2Γ(2Θl) 2F1[2Θl, 1 + Θl, 2 + Θl,−1]

(1 + Θl)(Γ(Θl))2
, (M.16)

where 2F1 is the hypergeometric function.226

2. The process described here is a variant of the Polya urn and Hoppe urn227

processes that are well-known in the mathematical literature and have been228

used to describe coalescent processes forward in time Joyce and Tavaré229

(1987); Durrett (2010).230

3. Our result (M.10) can also be seen as multi-locus version of Wright’s formula231

for the stationary distribution of the Wright-Fisher diffusion Wright (1931).232

For L neutral alleles at a singe locus, and if the mutation rates Θi depend233

only on the target allele (house-of-cards condition), this is a Dirichlet distribution.234

Here, we see that an analogous result holds for a distribution of equivalent235

(mutually redundant) alleles across L loci. Although alleles at different236
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loci cannot mutate into each other and are never identical by descent, it237

turns out that the genealogy in both models can be described by a Yule238

process with immigration. In contrast to the single-locus case, we obtain an239

inverted Dirichlet distribution for multiple loci. This difference results from240

a different stopping condition for the Yule process. For a single locus, the241

population size sets an upper bound for the total number of copies across242

all alleles. If we stop the process for a given total number ntot of lines, we243

obtain the classical Dirichlet distribution in the limit ntot → ∞. In contrast,244

the population size defines a bound for mutants of a only single type in the245

multi-locus case, which is reflected by our choice of the stopping condition.246

This choice is appropriate unless all loci are tightly linked, as we will see247

below.248

4. In our model, we did not distinguish different mutational origins of mutant249

alleles at the same locus. It is, in principle, possible to do so. For any250

single locus, the process conditioned on reaching some number of mutants251

ki at this locus i is entirely independent of the process at the other loci. The252

joint distribution of different mutational origins at this locus is therefore given253

by the Ewens sampling formula, as described in the theory of soft selective254

sweeps (Pennings and Hermisson (2006); Hermisson and Pennings (2017)).255

M.3 Allele frequency distributions256

Eq (M.10) predicts the distribution of allele frequency ratios xi at the end of257

the stochastic phase of the adaptive process. Typically, the Yule process will258

approach convergence for n & 100. In a large population, this still corresponds259

to a small allele frequency. However, since the allele frequency ratios remain260

constant also during the deterministic phase, we can use the Yule process result261

to derive the distribution of mutant allele frequencies also at a later stage, when262

(partial or complete) phenotypic adaptation has been achieved. As above, we263
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characterize the time of observation via the frequency of the ancestral phenotypes264

fw that is still found in the population. We treat the case of full adaptation, fw = 0,265

before we turn to the case of a general fw.266

Complete phenotypic adaptation, fw = 0267

If selection is very strong, complete fixation of the mutant phenotype may be268

rapidly achieved. For any non-zero level of recombination among loci, fw = 0269

requires, in our model, that there is (at least) a single locus where the mutant270

allele has reached fixation. In the following, we will call the locus with the largest271

mutant frequency the major locus and all other loci minor loci. We are interested272

in the joint distribution of allele frequencies when the major locus has reached273

fixation. From (M.10), we can derive the probability that the first locus ends up274

being the major locus as275

P(Θ)
1> =

∫ 1

0

. . .

∫ 1

0

PinDir[{xi}i≥2|Θ] dx2 . . . dxL . (M.17)

Since allele frequencies pi equal allele frequency ratios xi relative to the major276

locus in this case, the joint distribution at all minor loci, {pi}i≥2, 0 ≤ pi ≤ 1,277

conditioned on fixation of the mutant allele at the first locus, follows as PinDir[{pi}i≥2|Θ]/P1>[Θ].278

The joint allele frequency distribution for all loci at fw = 0 results as product of a279

Dirac point measure at the major locus and truncated inverted Dirichlet densities280

at the minor loci. Summing over all possible loci as major locus we obtain281

P0[{pi}i≥1|Θ] =
L∑
k=1

(
δpk−1

B[Θ]

∏
j 6=k

p
Θj−1
j

(
1 +

∑
j 6=k

pj

)−∑L
j=1 Θj

)
, (M.18)

where the Dirac δ constrains the distribution to the boundary faces pk = 1 of the282

L-dimensional hypercube [0, 1]L of allele frequencies. Note that this formula is283

independent of linkage patterns as long as loci can recombine at all and are not284

completely linked (see below for this case).285
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Incomplete phenotypic adaptation, fw > 0, linkage equilibrium286

While the distribution of allele frequency ratios xi, Eq (M.10), holds for any time287

of observation during the adaptive process (once the Yule process has reached288

convergence), the corresponding distribution (M.18) for the absolute allele frequencies289

pi holds only for complete phenotypic adaptation, fw = 0. To derive this distribution290

for arbitrary fw ≥ 0, we need to translate the stopping condition for the ancestral291

phenotype to a condition on the pi. For fw = 0, this just leads to the condition pk =292

1 for the major locus, constraining the distribution (M.18) to the boundary faces293

of the allele frequency hypercube. Importantly, this constraint is independent of294

linkage. For fw > 0, in contrast, any constraint on the distribution of the pi due to295

the stopping condition will necessarily also depend on the linkage disequilibria.296

For further analytical progress we now assume that recombination is sufficiently297

strong that linkage disequilibria can be ignored. We then obtain298

L∏
j=1

(1− pj) = fw (M.19)

and the joint allele frequency distribution is given by the following Theorem, which299

is our main analytical result.300

Theorem 2 If the adaptive process is stopped at a frequency fw of the ancestral301

phenotype in the population, and assuming linkage equilibrium among loci, the302

joint distribution of mutant frequencies on the L-dimensional hypercube is303

Pfw [{pi}i≥1|Θ] =
δ∏L

j=1(1−pj)−fw

B[Θ]

L∏
i=1

pΘi−1
i

( L∑
j=1

pj

)−∑L
j=1 Θj

( L∑
j=1

fw pj
1− pj

)
, (M.20)

where the δ-function restricts the support of Pfw [{pi}i≥1|Θ] to the (L−1)-dimensional304

submanifold
∏L

j=1(1− pj) = fw.305
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Proof We can rewrite (M.19) as condition on the frequency p1 at the first locus,306

p1 = 1− fw∏L
j=2(1− pj)

(M.21)

to obtain the transformation from frequency ratios xi to absolute allele frequencies307

pi, i ≥ 2,308

xi =
pi
p1

=
pi
∏L

j=2(1− pj)∏L
j=2(1− pj)− fw

. (M.22)

The corresponding Jacobian matrix reads (2 ≤ i, j ≤ L)309

J̃ij =
∂xi
∂pj

=
pi

1− pj
fw
∏L

k=2(1− pk)
(
∏L

k=2(1− pk)− fw)2
+ δi,j

∏L
k=2(1− pk)∏L

k=2(1− pk)− fw
.

=
pi

1− pj
1− p1

p2
1

+
δi,j
p1

.

Thus

J̃ =
1− p1

p2
1

Q +
1

p1

I ,

where I is the identity matrix and Qi,j = pi/(1 − pj). Since Q has the eigenvalue310 ∑
j pj/(1 − pj) and a (L − 2)-fold eigenvalue 0, we obtain the spectrum of J̃ and311

thus the determinant312

Det[J̃] = p1−L
1

( L∑
j=1

pj(1− p1)

(1− pj)p1

)
. (M.23)

From (M.10), we then obtain the joint distribution of locus frequencies p2, . . . , pL

at the stopping condition (M.21) as

Pfw [{pi}i≥2|Θ] =
Det[J̃]

B[Θ]

L∏
i=2

(
pi
p1

)Θi−1(
1 +

L∑
j=2

pj
p1

)−∑L
j=1 Θj

=
1

B[Θ]

L∏
i=1

pΘi−1
i

( L∑
j=1

pj

)−∑L
j=1 Θj

( L∑
j=1

pj(1− p1)

1− pj

)
(M.24)
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where the dependence on fw is implicit in p1 = p1(fw), as given in (M.21). The313

joint distribution over all L loci follows as314

Pfw [{pi}i≥1|Θ] = δp1−1+fw/
∏L

j=2(1−pj) Pfw [{pi}i≥2|Θ] . (M.25)

Note that we do not assume that the first locus is the major locus in (M.25).

Finally, the symmetrical form (M.20) results from the relation

δg(x)−c =
δx−xc
|g′(x)|xc|

; g(xc) = c

for the Dirac δ-function.315

Remarks316

1. To obtain marginal distributions for single loci we generally need to perform317

a (L − 2)-dimensional integral (after resolving the δ-function). Details for318

specific cases used in the main part of the article are provided in the Mathematica319

notebook. For two loci, simple explicit formulas for marginal distributions can320

be derived. E.g., the marginal distribution at the first locus reads321

Pfw [p1|Θ1,Θ2] =
pΘ1−1

1 (1− p1 − fw)Θ2−1(1− p1)Θ1+1

B[Θ1,Θ2] (1− p2
1 − fw)Θ1+Θ2

(
1− fw(1− 2p1)

(1− p1)2

)
(M.26)

for 0 ≤ p1 ≤ fw. The distribution has singularities at p1 = 0 for Θ1 < 1 and322

at p1 = 1 − fw for Θ2 < 1. The distributions P+
fw [p|Θ1,Θ2] at the major locus323

and P−fw [p|Θ1,Θ2] at the minor locus (which can either be locus 1 or locus 2)324

follow as325

P±fw [p|Θ1,Θ2] =
(
Pfw [p|Θ1,Θ2] + Pfw [p|Θ2,Θ1]

)
H±(p−1+

√
fw) (M.27)

where H(x) is the Heaviside function with Hx = 1 for x ≥ 0 and Hx = 0326

else. Finally, the conditioned distributions P1≷
fw

[p1|Θ1,Θ2] at the first locus if327
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this locus is the major/minor locus are328

P1>
fw [p1|Θ1,Θ2] =

Pfw [p1|Θ1,Θ2]

P(Θ1,Θ2)
1>

Hp1−1+
√
fw , (M.28a)

P1<
fw [p1|Θ1,Θ2] =

Pfw [p1|Θ1,Θ2]

1− P(Θ1.Θ2)
1>

H−(p1−1+
√
fw) , (M.28b)

where P(Θ1,Θ2)
1> , defined in Eq (M.17), evaluates to a Hypergeometric function329

for general Θ1 6= Θ2, but reduces to 1/2 for Θ1 = Θ2.330

2. The marginal distribution for pk has a singularity at pk = 0 for Θk < 1 and a

singularity at pk = 1−fw for
∑L

j 6=k Θj < 1. To see this, consider the marginal

distribution of pL, which is obtained from Eq. (M.25) after integartion over

p1, . . . , pL−1. Dropping non-singular terms (such as the sums in Eq M.24),

and defining

qk =

∏L
j=k+1(1− pj)− fw∏L

j=k+1(1− pj)

the singlular part can be written as

Pfw [pL|Θ] ∼
∫ 1

0

∫ 1

0

. . .

∫ 1

0

δp1−q1

L∏
i=1

pΘi−1
i dp1 . . . dpL−1

=

∫ qL−1

0

∫ qL−2

0

. . .

∫ q2

0

qΘ1−1
1

L∏
i=2

pΘi−1
i dp2 . . . dpL−1 ,

after performing the p1 integral. The upper integral limits qk account for the

constraint q1 > 0. Substituting

p̃2 :=
p2

q2

⇒ dp2 = q2 dp̃2
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and using that q1 = q2(1− p̃2)/(1− p̃q2) we obtain

Pfw [pL|Θ] ∼
∫ qL−1

0

. . .

∫ q3

0

∫ 1

0

qΘ1−1
1 qΘ2

2 p̃Θ2−1
2

L∏
i=3

pΘi−1
i dp̃2dp3 . . . dpL−1

=

∫ qL−1

0

. . .

∫ q3

0

qΘ1+Θ2−1
2

∫ 1

0

(
1− p̃2

1− p̃2q2

)Θ1−1

p̃Θ2−1
2 dp̃2

L∏
i=3

pΘi−1
i dp3 . . . dpL−1.

Since the p̃2 integral is bounded by 1/Θ2 from below and by 1/Θ2+1/Θ1 from331

above for all 0 ≤ q2 ≤ 1, it does not contribute to a singularity in Pfw [pL|Θ].332

For the singular part, we thus have333

Pfw [pL|Θ] ∼
∫ qL−1

0

. . .

∫ q3

0

qΘ1+Θ2−1
2

L∏
i=3

pΘi−1
i dp3 . . . dpL−1.

Iterating the substitution procedure for variables p3 to pL−1, we arrive at334

Pfw [pL|Θ] ∼ q
∑L−1

j=1 Θj−1

L−1 pΘL−1
L =

(
1− fw − pL

1− pL

)∑L−1
j=1 Θj−1

pΘL−1
L ,

demonstrating the singular behavior for pL → 0 and for pL → 1 − fw. Since335

the labeling of loci is arbitrary, the assertion follows for all loci.336

Incomplete phenotypic adaptation, fw > 0, tight linkage337

Even if all loci are completely linked, the joint distribution of allele frequency ratios338

is still given by (M.10). However, the transformation to absolute allele frequencies339

at the stopping condition fw 6= 0 depends on linkage. Because all mutant alleles340

are rare during the stochastic phase, we can ignore haplotypes with more than341

a single mutant during this time. Since we ignore new mutations during the342

deterministic phase, mutant alleles stay in maximal linkage disequilibrium in the343

absence of recombination. We thus have344

L∑
j=1

pj = 1− fw ⇒ xi =
pi
p1

=
pi

1− fw −
∑L

j=2 pj
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with corresponding Jacobian

Jij =
∂xi
∂pj

=
pi + δi,j p1

p2
1

; Det[J] =
1− fw
pL1

.

Using this transformation on (M.10), the joint distribution of mutant frequencies

reads

Pfw,tl[{pi}i≥1|Θ] =
δ∑L

i=1 pi−1+fw

B[Θ](1− fw)L−1

L∏
i=1

(
pi

1− fw

)Θi−1

. (M.29)

Evidently, this is just the Dirichlet distribution on the cube [0, 1 − fw]L. This is345

expected since the problem reduces to a single-locus, L-alleles problem for tight346

linkage. The marginal distributions can be derived for an arbitrary number of loci347

and are given by transformed β-distributions,348

Pfw,tl[pk|Θ] =
(1− fw)−1

B[Θ]

(
pk

1− fw

)Θk−1(
1− pk

1− fw

)(∑d
j 6=k Θj

)
−1

, (M.30)

with singularities at the boundaries pk = 0 for Θk < 1 and at pk = 1 − fw349

for
∑

j 6=k Θj < 1 as in the linkage equilibrium case. For two tightly linked loci,350

the major locus must have frequency p > (1 − fw)/2. The distribution at the351

major/minor locus therefore reads352

P±fw,tl[p|Θ1,Θ2] =
(
Pfw,tl[p|Θ1,Θ2] + Pfw,tl[p|Θ2,Θ1]

)
H±(p−(1−fw)/2) (M.31)

and conditioned distributions follow as in (M.28).353
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