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Our motor commands can be exquisitely timed according to the demands of the environment, and 
the ability to generate rhythms of different tempos is a hallmark of musical cognition. Yet, the 
neuronal basis behind rhythmic tapping remains elusive. Here we found that the activity of 
hundreds of primate MPC neurons show a strong periodic pattern that becomes evident when their 
activity is projected into a lower dimensional state space. We show that different tempos are 
encoded by circular trajectories that travelled at a constant speed but with different radii, and that 
this neuronal code is highly resilient to the number of participating neurons. Crucially, the changes 
in the amplitude of the oscillatory dynamics in neuronal state space are a signature of beat-based 
timing, regardless of whether it is guided by an external metronome or is internally controlled and 
is not the result of repetitive motor commands. Furthermore, the increase in amplitude and 
variability of the neural trajectories accounted for the scalar property of interval timing. In 
addition, we found that the interval-dependent increments in the radius of periodic neural 
trajectories are the result of larger number of neurons engaged in the production of longer 
intervals.  Our results support the notion that beat-based timing during rhythmic behaviors is 
encoded in the radial curvature of periodic MPC neural population trajectories.  
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Introduction 
 
Precise timing is a fundamental requisite for a select group of complex actions such as the execution and 
appreciation of music and dance [1]. In these behaviors, the perception of time intervals is facilitated by 
the presence of a regular beat in the rhythmic sequence and individual intervals are encoded relative to 
this beat. This is called beat-based timing and serves as a framework for rhythmic entrainment where 
subjects perform movements synchronized to music [2–4]. Other set of behaviors, such as the interception 
of a moving target or the production of a single interval, seem to depend on a duration-based timing 
mechanism, in which the absolute duration of individual time intervals is encoded discretely like a 
stopwatch [2,5].  Functional imaging and behavioral studies have suggested the existence of a partially 
segregated timing neural substrate, with the cerebellum as a key structure for duration-based timing, the 
basal ganglia as main nuclei for beat-based timing, and MPC as potential master clock for both timing 
mechanisms [6–9]. Yet, the neural substrate for absolute timing, and especially for beat perception and 
rhythmic entrainment is still largely unknown. 
 

Recent advances on the neurophysiology of absolute timing during single interval reproduction 
tasks suggest that time is represented in the structured patterns of activation of cell populations in timing 
areas such as MPC and the neostriatum [10–13]. Rather than being quantified in the instantaneous activity 
of single cells that accumulate elapsed time or encode the time remaining for an action [14–16], the 
duration of produced intervals depends on the speed at which the neural population response changes. 
This implies that the activation profiles are compressed for short and elongated for long intervals due to 
temporal scaling on the activity of the same population of cells [12,13].  

 
On the other hand, MPC neurons are tuned to the duration and ordinal sequence of rhythmic 

movements produced either in synchrony with a metronome or guided by an endogenous tempo 
(synchronization-continuation task [SCT],[4,10]). Remarkably, the time varying pattern of activation of 
these interval-specific neural circuits follows a cascade of consecutive neural events (moving bumps) that 
repeats itself on each produced interval of the tapping sequence [4,10,17]. Nevertheless, single MPC cells 
multiplex the interval, the serial order, and task phase of the SCT, showing complex and heterogenous 
time-varying profiles of activation, that make it difficult to understand the neural population mechanisms 
behind beat-based rhythmic tapping. A successful approach to determine the latent task variables in cell 
populations is to project high dimensional individual neural activity into a low dimensional topological 
space in order to generate a robust and stable manifold [18]. Indeed, recent studies have reconstructed key 
hidden task parameters in the neural state population dynamics after dimensionality reduction [19–21]. 

 
Here we investigated the population dynamics of hundreds of MPC neurons in monkeys 

performing two isochronous tapping tasks, testing whether low dimensional state network dynamics can 
act as a neural clock during beat-based tapping.  We found highly stereotyped neural trajectories that had 
two main properties during the SCT. First, the three first principal components showed a periodic path for 
each produced interval. Notably, these oscillatory state trajectories did not overlap across durations, a 
signature of temporal scaling; instead, they showed a linear increase in their radius and a constant linear 
speed as a function of the target interval during metronome guidance (SC), as well as during internally 
controlled rhythmic tapping (CC). Second, the intertrial variability of the trajectories’ radial magnitude 
also increased as a function of the interval, accounting for a key feature of timing behavior: the scalar 
property, which states that the variability of produced or estimated intervals increases linearly as a 
function of interval duration. These properties were highly resilient to the number of participating neurons 
and were replicated using simultaneously recorded cells during synchronized tapping but not during a   
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Fig. 1. Tasks.  
A, Synchronization-continuation task (SCT). The trial started when the monkey placed his hand on a lever for a variable delay. 
Then, a visual metronome was presented, and the monkey tapped on a button to produce three intervals of a specific duration 
following the isochronous stimuli (synchronization phase), after which, the animal had to maintain the tapping rate to produce 
three additional intervals without the metronome (continuation phase). Correct trials were rewarded with an amount of juice that 
was proportional to the trial length. The instructed target intervals were 450, 550, 650, 850, and 1000 ms. B, Synchronization 
task (ST). Similar to the synchronization phase of the SCT, the animal had to produce five intervals guided by a visual 
metronome. The instructed intervals were 450, 550, 650, 750, 850 and 950 ms. C, Serial reaction-time task (SRTT). As in ST 
the trial started when the monkey placed its hand on a lever for a variable delay. However, in this task the monkey tapped the 
button after six stimuli separated by a random interstimulus interval, precluding the temporalization of the tapping behavior.  
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serial reaction time control task that precluded rhythmic prediction. Finally, we found a tight 
correlation between the interval-associated changes in trajectory amplitude and variability during SCT, 
the number of neurons involved in the sequential transient activation patterns, and the duration of the 
neural activation periods within these moving bumps. Indeed, moving bumps simulations revealed that 
scaling the duration of the transient period of activity and increasing the number of neurons participating 
in the evolving patterns produced an increase in the radius and the variability of the corresponding neural 
trajectories, replicating the empirical findings. These results suggest that beat-based tapping depends of 
the radial amplitude of periodic state population trajectories in MPC, which depends on to the number of 
neurons involved and the duration of these cells’ activation periods within moving bumps. 

 
 

Results 
 
Rhythmic tapping behavior 
We trained two monkeys (M01 and M02) in the SCT. M01 was also trained in two additional tapping 
tasks: the synchronization task (ST) and serial reaction time task (SRTT). During SCT the animals tapped 
on a push-button in synchronization with a rhythmic metronome for four times, thus producing three 
intervals (SC phase), followed by three internally-generated intervals (CC phase; Fig. 1A). In the ST the 
monkey produced five intervals guided by a metronome, similarly to the SC of SCT (Fig. 1B). Finally, 
during the SRTT, the animal pressed the button in response to five brief visual stimuli presented in a 
sequence, but separated by a random interstimulus interval, precluding the prediction of the next 
stimulus-response loop (Fig. 1C). Thus, during SCT and ST the animals entrained their rhythmic 
movements to a sensory metronome, while in the CC of SCT this was done to an internal representation 
of the same rhythm. On the other hand, the SRTT involved similar stimuli, tapping behavior, and 
sequential structure, but no predictive rhythmic timing was possible. Expectedly, the reaction times were 
significantly larger in the SRTT than in the ST (mean ± SD: 263 ± 37ms in the ST and 381 ± 46ms in the 
SRTT; ANOVA main effect of task: F(1, 718) =1443.93,  p < 0.0001).  
 
Neural state trajectories 
We characterized the dynamics of the evolving response patterns using the projection of the neural 
population time-varying activity onto a low dimensional state space using Principal Component Analysis 
(PCA) on a population of 1477 MPC cells recorded during SCT (see Methods).  The results showed 
highly stereotyped trajectories with a strong periodicity in the first three PCs (Fig. 2A-D). Indeed, PC2 
and PC3 showed together a cyclic path for each produced interval (Fig. 2C,D). Each loop in the trajectory 
corresponded to the periodic network state variation during the production of the rhythmic tapping 
sequence of the SCT. The circular trajectories in the plane exhibited the tendency to start at the same 
position in the phase-space after each tap, suggesting the existence of a movement-triggering point at a 
particular location in the population trajectory across durations (see below). Crucially, from this common 
phase-space location, longer intervals produced larger state trajectory loops, with a monotonic increase in 
the trajectory radius as a function of target interval during both the SC and CC (Fig. 2E). However, the 
observed interval-dependent modulations in curvilinear amplitude were not accompanied by modulations 
of the linear speeds of the periodic neural trajectories, as these remained constant across durations (Fig. 
2F). Hence, contrary to a prototypical temporal scaling, where there is a decrease in linear speed as a 
function of interval and similar trajectory paths and traversed distances for different durations [13,22], the 
present results show that beat based-timing during the SCT is represented as an increase in curvature radii 
in the neural network state dynamics.   
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Fig. 2. Neural population trajectories during SCT and their oscillatory dynamic properties.  
A, C,  Projection of the neural activity in the MPC  (1477 neurons) during the SC of the  SCT onto the first (A) or second and 
third PCs (C). Each point in the trajectory represents  the neural network state at a  particular moment.  The trajectory completes 
an oscillatory cycle on every produced interval during the synchronization and continuation phases of the SCT. Target interval 
in milliseconds is color-coded (450, green; 650, blue; 1000, red). Color progression within each target interval corresponds to 
the elapsed time. A cube marks the beginning of each trajectory, while an octahedron marks the end. B, D, Projection of the 
neural activity during CC of the SCT onto the first (B) or the second and third (D) PC. Color code is the same as (A). E, Linear 
increase of the Radii in the oscillatory neural trajectories during SC (red, mean±SD, slope=0.0009, constant = 0.0679, R²=0.9, 
p=0.01) and CC (orange, mean±SD, slope=0.0009, constant = - 0.0296, R²=0.9, p < 0.01) as a function of target interval. F, 
Linear speed of neural trajectories during SC (orange, mean±SD, slope=0.0001, constant = 7.322, R²=0.0007, p=0.896) and CC 
(red, mean±SD, slope=0.002, constant = 4.049, R²=0.354, p = 0.002) as a function of target interval (ANOVA main effect 
interval, F(4,39)=92.15,p<0.0001; main effect condition, F(1,39)=381.46, p<0.0001; interval x condition interaction, F(4, 39) = 
15.15, p < 0.0001). The linear speed was similar (SC) or showed a slight increase (CC) with the target interval. G, Neural 
trajectory radii for the top 20% (red, slope=0.0011, constant = -0.035, R²=0.7, p< 0.0001) and bottom 20% (green,142 
slope=0.00088, constant = -0.009, R²=0.75, p< 0.0001)) intertap intervals across target intervals. Note that on those intervals in 
which the monkeys tended to produce shorter inter-tap durations, the state trajectory radius was smaller, and vice versa (ANOVA 
main effect interval, F(4,40)=155.7,p<0.0001; main effect population, F(1,40)=33.3, p<0.0001; interval x population interaction, 
F(4, 40) = 3.98, p = 0.008). H, Variability (SD) of SCT rotational neural trajectories (orange, mean±SD, normalized data 
slope=0.0019, constant = -1.02, R²=0.94, p= 0.005) and the monkeys’ produced intervals (magenta, mean±SD, normalized data 
slope=0.005, constant = -0.721, R²=0.98, p= 0.0008) as a function of target interval. The Weber increase in tapping variability 
was not statistically different from the increase in the variability of neural trajectories across target intervals (normalized data, 
slope t-test = 0.86, p = 0.42; constant t-test =1.36, p = 0.22).  
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To test the relationship between the radius of the curvature in the neural-state trajectories and the 
monkeys’ behavior during SC and CC, we split the produced intervals into two groups:  those in which 
the monkeys produced an inter-tap time that was below the 20th percentile, and those with inter-tap times 
above the 80th percentile [10].  Strikingly, on those intervals in which the monkeys tended to produce 
shorter inter-tap durations, the state trajectory radius was smaller, and vice versa (Fig. 2G).  

Another important property of the curvilinear radii in the PCA neural trajectories was that their 
variability (SD of the trajectory radii) followed the same linear increase as a function of target interval 
observed in the monkeys’ behavior (Fig. 2H). This linear relation between temporal variability and 
interval duration, known as scalar property of interval timing, has been widely reported in the timing 
literature, and our findings suggest that it depends on the radius of the rotatory dynamical state of MPC 
neural populations during both SCT conditions. It is important to mention that all the described properties 
in the neural trajectories are resilient on the methods used to compute the PCs (see S1 Fig.). 

 
The dynamics in the MPC population activity during the SCT was also characterized using 

demixed PCA (dPCA; Fig. 3; see Methods). This is a method that decomposes the dependencies of the 
neural population activity based on task parameters instead on the total variance explained. The first 
dPCA (dPCA1) showed a strong periodic structure with a minimum value around the beginning of each 
produced interval in the SCT sequence, similar to the findings from the PCA neural trajectories (Fig. 2C, 
D). In addition, the dPCA1 showed a strong change in amplitude with target duration. Since we used 
time-normalized neural data as input to the dPCA, all trials had the same length regardless of the target 
interval. In this scenario a scaling mechanism should have produced similar dPCAs across durations. 
Instead, we observed a time-dependent modulation in dPCA1 amplitude. In order to compare the two 
methods for dimensional reduction, we computed the bin-by-bin distance between the 450ms and the 
other four target intervals (Fig. 3F) using the PCAs (Fig. 3D) and dPCA1 (Fig. 3E). The resulting 
distance profiles are very similar between methods, with a periodic structure whose amplitude mean and 
variability increased as a function of the target interval (Fig. 3G,H). Thus, with a separate set of 
assumptions, the dPCA corroborates the existence of both the periodic structure of the neural state 
dynamics and a beat-based timing mechanism based on the amplitude modulation of the rotatory 
population trajectories during SCT. 

 
The analyses described above were done on neurons recorded throughout different sessions. Thus, 

the neural state trajectories were also studied on simultaneously recorded cells while monkey M01 
performed a synchronization task (ST, Fig. 1B) and a serial reaction time task (SRTT, Fig. 1C). As in the 
SCT, the PCA-projected activity during the ST showed periodic state dynamics (Fig. 4A; S3 Fig. A), 
whereas the SRTT neural trajectories were not as periodic (Fig. 4B; S3 Fig. B). In fact, the fitting of a 
normalized sinusoidal function on the first PC was statistically more robust for ST than SRTT (in terms 
of MSE: Fig. 4C). Again, the radius of the neural trajectories during the ST showed a significant increase 
in both mean radius (Fig. 4D, purple) and variability (Fig. 4E) but a constant linear speed (Fig. 4F) as a 
function of the target interval, reproducing the findings in SCT. In contrast, the radius and variability of 
the trajectories during SRTT showed small changes across target intervals, with a non-significant linear 
fit as a function of target interval for the three parameters (Fig. 4D, E, F green). This phenomenological 
comparison suggests that rhythmic tapping to a metronome depends on the amplitude of the cyclic 
dynamics of population activity, and that the shift from a predictive to a reactive behavior during SRTT 
preclude the organization of periodic population state trajectories. 
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Fig.3 Demixed PCA applied to neural population activity during SCT.  
A,B,C,  First three components of the demixed PCA of the neural activity. Together they explain 10.8% of the variance. Target 
interval in milliseconds is color-coded (see inset in (A)). Notice that the neural trajectories show oscillatory activity and their 
amplitude varies across target intervals. D,E, Euclidean distance between the first PC of the 450ms target interval and the first 
PC of each target interval across time for (D) time normalized PCA and (E) dPCA. Target interval is color-coded as in (A). Two-
sample Kolmogorov-Smirnov test on the distributions of PCA and dPCA distances showed non-significant differences (p < 0.05) 
across target intervals. F, Distance calculation diagram. Binarized one inter-tap trajectories for two target intervals are shown 
(green, 450ms; red, 1000ms). The 450ms target interval trajectory is used as the reference for distance calculation. The Euclidean 
distance between each sequential bin is calculated among the reference interval and the other target intervals trajectories. Both 
population analysis, PCA and  dPCA, produced population signals with si milar characteristics. Thus, oscillatory activity, 
modulation of the amplitude with the target interval, and an intersection close to the tap time are characteristics of the underlying 
the neural population activity irrespective of  t he  dimension reduction algorithm. G,  Mean inter-tap  Euclidean distance 
(mean±SD) between the 450ms and each target interval for the PCA (orange) and dPCA (magenta). There was a non-significant 
difference between the slopes of PCA and dPCA (slope t-test = 1.97, p = 0.0539) H, Variability of the distance between the 
450ms and each target interval for the PCA (orange) and dPCA (magenta). The variability increased monotonically as a function 
of the target interval for both analysis. 
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Fig. 4. Comparison of ST and SRTT trajectories in simultaneously recorded neurons.  
A, Neural activity data projected on the PC1 (solid line, linearly detrended) and the correspondent sinusoidal fit (dotted line) 
during a trial of ST for the target interval of 650ms. B. Similar to (A) for SRTT. Note that the strong periodic structure of the ST 
neural trajectory is lost during SRTT for the same population of cells. C, The mean square error (MSE) of the sinusoidal fits 
during ST (purple) is significantly smaller than during SRTT (green; 60 trials, two-sample t-test = -6.78, p < 0.0001). D, Radii 
of the neural trajectories during ST (purple, slope=0.000087, constant = 0.055, R²=0.619, p<0.0001) and SRTT (green, non-
significant linear regression, R²=0.0172 and p=0.489) as a function of target interval. E, Variability of the neural trajectories 
during ST (purple, data slope= 0.000037, constant = 0.028, R²=0.368, p< 0.0001) and SRTT (green, non-significant linear 
regression, R²=0.0005 and p= 0.903) across target intervals. F.  Linear speed of neural trajectories during ST (purple, mean±SD, 
slope=0.0001, constant = 7.322, R²=0.0007, p=0.896) and SRTT (green, mean±SD, slope=0.002, constant = 4.049, R²=0.354, p 
= 0.002) did not change as a function of target interval. G. Output of the time-delay neural network (TDNN, in blue) trained to 
decode the duration of produced intervals based on the PC1 neural trajectories (orange) during target interval of 850ms. Tapping 
times are shown in yellow.  H. TDNN error, defined as the difference between the produced and the decoded interval, as a 
function of produced interval. TDNN predicted accurately the performance of the monkey on a trial by trial basis (the decoded 
mean was not statistically different from 0, t-test = -0.5228, p = 0.6) 
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The simultaneity of the recordings during ST [23] allowed for the decoding of the produced 

intervals on a trial-by-trial basis. Using a time-delay neural network (TDNN, see Methods) (Fig. 4G), we 
found that an ideal reader of the neural trajectories could predict accurately the tapping times during ST 
on 86% of the produced intervals. Indeed, the decoding accuracy was better than the actual percent of 
correct trials in this demanding task (Fig. 4H), supporting the notion that the neural trajectories can 
robustly predict the rhythmic tapping behavior.  

 
The population state dynamics is not related to the tapping kinematics 
The cyclic and smooth nature of the neural trajectories during ST and SCT sharply contrast with the 
kinematics of movement (Fig. 5A,C-D), that is characterized by stereotypic tapping movements separated 
by a dwell period that increased as a function of the target interval (Fig. 5E; [24,25]). These observations 
suggest that during rhythmic tapping an explicit timing mechanism in MPC keeps track of the dwell time 
by setting in motion a continuous and periodic change in the neural population state. According to this 
scheme, the tapping command is triggered once the state trajectories get to a specific position in the 
phase-space that correspond to the intersection point between the tangent circular paths whose radii 
increase with the tapping tempo. To test the hypothesis, we computed the distance between a point in 
state-space and the position of the taps in the neural trajectory and found a similar distance across target 
intervals (Fig 5B, see inset). In addition, the distance between the same point and half intertap position 
increased as a function of target interval (Fig 5B). Therefore, these results support the idea that the neural 
trajectories encode the dwell time between taps in the PC amplitude and triggers the stereotypic tapping 
movements once the neural dynamics reaches a point in state-space (S2 Fig).  
 
Distributed nature of neural trajectories timing information 
We determined whether we could extract information about the target interval from the neural population 
dynamics, and how this information was modulated by the size of the neural population used to compute 
the trajectories. To this end, we first segregated each segment of the single dimension trajectory according 
to the SCT target interval (450, 550, … 1000ms; see insets in Fig. 6A).  Then, to capture the shape of the 
trajectory segments as a single three-dimensional coordinate, we applied a second layer PCA (PCA’) and 
kept the first 3 PC’s. As a result, we obtained a dot cloud in 3D where each point represents a particular 
produced interval trajectory segment (Fig. 6A). We trained Support Vector Machines (SVM) to classify 
the cloud of points for the five target intervals of the SCT. We trained the SVM ten times and used 5-fold 
cross validation to evaluate the performance of the classifier. On the other hand, each neuron was sorted 
according to the weight magnitude of the original PCAs. The neurons with the largest PC participation 
were removed in steps of ten percent from the original population size, and the second layer PCAs were 
computed on the new trajectories. Finally, the SVM was carried out on the second layer PCAs for 
different population sizes (see Fig. 6). There was an asymptotic decline in the classifier performance with 
the removal of a larger percentage of the neural population (Fig. 7A). However, even with very small 
populations (total cells: 15) the classifier was able to extract all SCT target interval above chance. These 
results are in line with the idea that the temporal structure of rhythmic behavior depends on a neural 
population code that is distributed within MPC. 
 
Neural population trajectories and evolving activation patterns 
The results of the previous section revealed a distributed representation of tapping tempo across MPC cell 
populations. However, a critical question is what aspects of the time-varying activity defined the changes 
in amplitude in the neural trajectories as a function of the timed duration [17]. Based on our previous 
observations [4,10], we hypothesized that the evolving patterns of neural activity could be directly linked 
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Fig. 5. Neural trajectories do not follow the tapping kinematics.  
A, Diagram of the rotational trajectory of the SCT neural activity during three inter-tap intervals: one 450ms interval (green) and 
two 1000ms intervals (red). Each tap is numbered and projected in the trajectory as a white circle. A blue triangle marks the 
beginning, whereas a yellow triangle marks the end of the movement time. The monkeys produced phasic stereotypic movements 
whilst  timing  the   dwell   between   taps   during SCT [24].      B,  Euclidean   distance  (dt,  see inset)   between   an   anchor 
point (red) and the position of each tap (green, mean±SD, slope= 0.00007, R²=0.0633, p=0.225), or half of the inter-tap interval 
position on the neural trajectories (blue, mean±SD, slope=-0.001, R²=0.801, p<0.0001) across target intervals for SC. A two-
way ANOVA detected significant main effects on position (F(1,40) =1855.72, p < 0.0001), target interval (F(4,40) =77, p < 
0.0001) and their interaction (F(4,40)=63.68, p<0.0001).  Tukey's HSD post hoc test showed that the distances of the anchor 
point to tap and half inter-tap positions were significantly different (p<0.05). In contrast, the anchor to tap distances across target 
intervals were not statistically different. Inset: scheme of the distance calculation, red sphere marks the anchor point, two sample 
inter-tap trajectories for 550ms (light gray) and 1000ms (dark gray) are shown. The green sphere marks the tap position and the 
blue sphere marks the half inter-tap position. Thus, the neural trajectories converge on an attractor around the tap time, to later 
diverge at half the inter-tap interval. Note that these results suggest the existence of tangent circular trajectories that converge in 
an intersection zone close to the tapping moment, although their amplitude changed as a function of interval. C, Speed of the 
tapping movement (orange trace) from the second to the sixth tap of ST, and the PC1 projected neural information (cyan) for 26 
simultaneously recorded neurons during a trial with a target interval of 550 ms. Taps were represented as yellow squares and 
stimuli as red circles. D, similar to (C) during an 850ms target interval (PC1 projected neural information as a yellow trace). E, 
Mean ± SD of the duration of the movement (green) and the dwell between movements (magenta) across target intervals, 
computed from the speed profile of the tapping movements. A two-way ANOVA showed significant main effects on kinematic 
state (movement/dwell duration, F(1,228) =1850,61, p < 0.0001), target interval (F(5,228) = 272.72, p < 0.0001) and their 
interaction (F(5,228)=236.18, p<0.0001).  Tukey's HSD post hoc test showed that dwell durations across intervals were 
significantly different (p<0.05). Therefore, the monkey modulated the dwell duration to successfully temporalize her behavior, 
while the down-push-up sequence of the tapping movement was phasic and stereotypic across target intervals. 
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Fig. 6 Robustness in the classifier for SCT target interval using segments of the PCA neural trajectory between taps with 
different neural population sizes.  
A-C, Three principal components projection of the second layer PCA applied to each of the six inter-tap neural trajectory 
segments and the five trial repetitions (see inset), for (A) 100, (B) 50 and (C) 1% of neural population. Target interval color in 
the inset in (A). D-F, Distances between cluster centroids of data projection across target intervals for (D) 100, (E) 50, and (F) 
1% of neural population. 
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with the time-encoding features of the neural trajectories during the SCT. Consequently, to test this idea 
we first characterized the properties of neuronal moving bumps [10,12,26] during this task. With this 
information we carried out simulations to determine whether the key features of the moving bumps were 
linked to the observed changes in curvature radius and variability as a function of duration in the neural 
state trajectories. 
 

As expected, a substantial proportion of MPC cells during the SCT showed a progressive pattern 
of activation in the neuronal population, consisting of a gradual response onset of single cells within a 
produced interval (Fig. 8, see Methods). This activation pattern started before a tap, migrated during the 
timed interval, and finished after the next tap (Fig. 8). In addition, a similar response profile was repeated 
in a cyclical manner for the three intervals of SC and the three intervals of CC (Fig. 8A,B) [4,10]. These 
findings suggest that rhythmic timing can be encoded in the sequential activation of neural populations 
[12]. A central question is what parameters of the neuronal response profiles are encoding the target 
interval and the SCT condition. Remarkably, the number of neurons involved in these evolving activation 
patterns (Fig. 8A,B, Fig. 9C), as well as the duration of neural activation periods (Fig. 9D) increased as a 
function of the target interval. SC showed a larger number of active cells whereas CC showed a longer 
activation period. In contrast, the neural recruitment lapse, namely, the time between pairs of 
consecutively activated cells (Fig. 9E), and the cells’ discharge rate (Fig. 9F) did not show statistically 
significant changes across target intervals and task phases. These results suggest that both the size of the 
circuits involved in measuring the passage of time and the duration of their activation times are core time-
encoding signals in MPC, and suggest the existence of a delicate balance between these two measures to 
produce the progressive activation profiles of neurons when tapping to a metronome or an internally 
generated rhythmic signal (Fig. 9C,D). 

 
Next, we simulated evolving patterns of population activity with different response profiles and 

evaluated their translation onto PCA state space. First, we generated activity patterns on individual units 
that were complex, heterogenous and that scaled in time, producing activation periods with the same 
time-varying activity but different durations (Fig. 10A, see Methods) [13]. Then, we simulated population 
cascade patterns for three consecutive intervals, emulating two key features on the MPC population 
responses: a gradual response onset of single cells that started before, migrated within, and finished after 
the end on an interval, with a constant overall recruitment of cells over time; and the cyclical repetition of 
this response profile for the three intervals (Fig. 10C,D). In addition, Fig. 11A shows that neurons were 
added randomly in the intermediate portion of the simulated moving bumps when increasing the total 
number of neurons.  The projection of the simulated cascades onto PCA space produced oscillatory 
trajectories (Fig. 10B), whose radii and variability increased but the linear speed was similar with the 
target interval, as seen in the actual population responses. Importantly, these properties were only 
followed when the simulated neural cascades included an increase in both the number of neurons and the 
duration of the activation periods as a function of target interval (Fig. 10E,F). Simulations with constant 
values in both parameters produced PCA trajectories with similar radii or variability across interval 
durations, and a decrease in speed with target interval consistent with the notion of temporal scaling (Fig. 
10E-G, Fig. 11B-E). Furthermore, the scaling of the response duration alone did not reproduce the 
observed changes in radii and variability across durations in the state trajectories (Fig. 11D-E).  These 
findings indicate not only a close relation between the properties of the sequential neural patterns of 
activation and the neural state trajectories during rhythmic tapping, but also suggest that an increment in 
the number of neurons engaged in the evolving patterns of population activity is fundamental to 
reproduce the two critical duration-dependent features of the PCA neural population trajectories: the 
increase in the magnitude and variability of the radii as a function of target interval.  
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Fig. 7. Trajectory classifier robustness across neural population sizes.  
A, Support Vector Machine classifier performance (mean ± STD of percent of correct classifications) for target interval (5 
instructed intervals) during the SCT task based on the neural trajectory computed from different population sizes. The total initial 
population size was of 1477 neurons. Dotted lines correspond to random level. The neurons with the largest PC participation 
were removed in steps of ten percent of the original population size, until reaching 1% of the original population. Inset shows 
the original time normalized neural trajectory PC used to generate the second layer PCA’. B, Point cloud in 3D for the second 
layer PCAs’ for target interval. See color code in the inset. Note that the percent of correct classification decreased as a function 
of the population size; however, the classification was above chance even for the trajectories based on small cell ensembles. 
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Fig. 8. Overall patterns of activity in cell populations 
A,B, Neural activation periods, sorted by their mean peak activation time, during the SCT task for the target intervals of 450 (A) 
and 850(B) ms. Each horizontal line corresponds to the onset and duration of the significant activation period of a cell according 
to the Poisson-train analysis (see Methods). The Poisson-train analysis was carried out on the discharge rate of cells that was 
warped  in relation to the tapping  times  (seven black vertical lines;  [4,49]).  Note  that  the  number  of  cells  with  significant 
activation periods is larger for the longer target interval. 
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Fig. 9. Evolving patterns of activation.  
A, Neural activation periods for the second produced interval (2nd and 3rd taps as black vertical lines) during SC for the target 
interval of 850ms. The horizontal lines of each row correspond to the onset and extent of the activation periods detected by the 
Poisson train analysis. Cells were sorted by their time of peak activity. B, Recruitment lapse as a function of cell number. The 
activation lapse was the difference in the time of peak activity between contiguous cells in the neural avalanche. The mean 
activation lapse (± SEM) was 2.98 ± 0.08 ms.  C, Number of cells with significant activation periods across target intervals for 
SC (red) and CC (blue). Avalanches for longer intervals recruited more cells. (ANOVA main effect target interval, 
F(4,20)=21.1,p<0.0001; main effect task condition, F(1,20)=6.2, p<0.02; interval x condition interaction, F(4, 20) = 0.71, p = 
0.594). D, Duration of the activation periods during the SC (red) and CC (blue) increased as a function of target intervals. 
(ANOVA main effect target interval, F(4,20)=18.9,p<0.0001; main effect task condition, F(1,20)=26.7, p<0.0001; interval x 
condition interaction, F(4, 20) = 1.3, p = 0.268). E, Mean neural recruitment lapse during SC (red) and CC (blue) did not change 
as a function of target interval (ANOVA main effect target interval, F(4,20)=2.7,p=0.06; main effect task condition, F(1,20)=3.4, 
p=0.08; interval x condition interaction, F(4, 20) = 0.79, p = 0.55). F, The discharge rate during activation periods in SC (red) 
and CC (blue) did not vary across target intervals (ANOVA main effect target interval, F(4,20)=2.2,p=0.06; main effect task 
condition, F(1,20)=0.86, p=0.35; interval x condition interaction, F(4, 20) = 0.92, p = 0.45). 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/450817doi: bioRxiv preprint 

https://doi.org/10.1101/450817
http://creativecommons.org/licenses/by/4.0/


16 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 Simulations of moving bumps and neural trajectories.  
A, Activity profile of one simulated neuron during its activation period is scaled for the five simulated durations. B. Neural 
trajectories generated from the population activity of moving bumps simulations. The number of neurons and activation periods 
varied across intervals (see Methods). The simulated interval is color coded. Second and third simulated taps are marked as white 
spheres on each trajectory. C,D,  Activation profiles of  neurons for three consecutive simulated intervals with a duration of 
450ms (c) and 1000ms (D). The white vertical lines correspond to the tap events defining the intervals. The activation profiles 
follow a Gaussian shape of cell recruitment, with slow activation rates at the tails (close to each tap). The number of neurons and 
the duration of the activation periods increased as a function of simulated interval. E,F,G, Radii (E), variability (F) and linear 
speed(G) of the neural trajectories generated from simulations. Data from the simulated neural activity with growing number of 
neurons and activation periods (red), static duration of activation periods and number of neurons (orange), and from the actual 
recorded population during SCT (blue) across target intervals. Note that a constant was added to both simulation data in graphs. 
(E) Radii for simulation with variable parameters (red, mean±SD, slope=0.0009, R²=0.811, p<0.0001), simulation with constant 
parameters (orange, mean±SD, non-significant linear regression, slope=-0.0001, R²=0.811, p=0.214), and neural activity (blue, 
mean±SD, slope=0.0009, R²=0.897, p<0.0001). The slopes of the radius, variability and linear speed were not statistically 
different between the simulations with variable parameters and the actual neuronal trajectories (radius slope t-test = 0.15, p = 
0.878; variability slope t-test = 0.25, p = 0.803; linear speed slope t-test = 1.8, p = 0.077). However, the slopes between the 
simulations with constant parameters and neuronal trajectories showed statistically significant differences (radius slope t-test = 
9.13, p < 0.0001; variability slope t-test = 3.73, p < 0.001; linear speed slope t-test = 17.71, p < 0.0001). 
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Fig. 11 Moving bump simulation parameters.  
A, Temporal position of the activation period of neurons added to a simulation of a 1000ms target interval trial (red) in contrast 
to the position of the activation period of neurons also participating in a 450ms trial (black). B,C, Radius (B)  and variability (C) 
of  PCA trajectories generated from moving bumps simulations when the number of neurons increased a constant number of 
neurons below or above the original changing number of neurons as a function of target interval shown in Figure 7. A two-way 
ANOVA on the radius showed significant main effects for number of neurons (F(4,100) =10544.2, p < 0.0001), target interval 
(F(4,100) = 4013.12, p < 0.0001) and their interaction (F(16,100)=25.8, p<0.0001).  Tukey's HSD post hoc test showed 
significant differences for the radii of all simulations with different number of neurons and for all target intervals (p<0.05).  
Additionally, A two-way ANOVA on the variability showed significant main effects for number of neurons (F(4,100) =2421.8, 
p < 0.0001), target interval (F(4,100) =3476.91, p < 0.0001) and their interaction (F(16,100)=22.53, p<0.0001).  Tukey's HSD 
post hoc test showed significant differences for the variability of all simulations with different number of neurons (p<0.05).  D,E, 
Radius (D) and variability (E) of the trajectories generated from neural moving bumps where the duration of the activation 
periods was half (short, yellow) or double (long, red) than the original scaled duration (blue) as a function of target interval 
shown in Figure 7. A two-way ANOVA on the variability showed significant main effects for activation duration (F(2,60) 
=3081.54, p < 0.0001), target interval (F(4,60) =2801.16, p < 0.0001) and their interaction (F(8,60)=211.34, p<0.0001).  Tukey's 
HSD post hoc test showed significant differences for all simulations with different activation durations (p<0.05).  In addition, a 
two-way ANOVA on the variability showed significant main effects for activation duration (F(2,60) =1227.53, p < 0.0001), 
target interval (F(4,60) =257.49, p < 0.0001) and their interaction (F(8,60)=24.87 p<0.0001).  Tukey's HSD post hoc test showed 
significant differences for all simulations with different activation durations (p<0.05).  Thus, the number of neurons the activation 
duration within moving bumps produce large changes in the radius and variability of the simulated neural trajectories.  
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Discussion 
The present study supports four conclusions. First, the time-varying discharge rate of MPC cells shows a 
strong periodic organization when projected onto a two-dimensional state space, generating a circular 
neural trajectory during each produced interval. The amplitude of this trajectory increases with target 
duration and is closely related to the rhythmic tapping during the SCT and ST, but not during the reactive 
tapping of SRTT. Second, the scalar property, a hallmark of timing behavior, was accounted for by the 
variability of the curvilinear radii in the PCA neural trajectories. Third, the population dynamics for 
simultaneously recorded MPC cell populations during ST contained information to accurately decode the 
tapping times on a trial by trial basis. Last, there is a strong correlation between the interval-associated 
changes in radial magnitude and variability of the periodic neural trajectories during SCT and the number 
of neurons involved in the sequential activation patterns as well as the duration of their transient periods 
of activation within these moving bumps.  
 

The network state trajectories showed the following properties: they were simple, periodic, 
exhibited an amplitude modulation according to the timed duration, and were different from the 
stereotypic kinematics of the phasic tapping movements and the timing control of the dwell between 
movements in this task [24,25]. Notably, the increases in trajectory amplitude as a function of target 
interval were observed during the two rhythmic tapping tasks, reproduced with dPCA, and closely related 
with the monkeys’ produced intervals during SCT and ST. Furthermore, the switch from predictive 
rhythmic tapping to a reaction time task (SRTT) produced a profound disorganization in the periodicity of 
neural trajectories accompanied by no changes in radial amplitude. In contrast with the temporal scaling 
model [13] we found that the neural trajectories do not scale in time, because they present a time-related 
amplitude modulation with similar linear speed profiles across durations. In line with our observations, 
neural-network simulations of complex sensorimotor patterns showed that temporal scaling of input 
stimuli produced curvilinear trajectories that increased in radii for longer intervals [27]. Hence, temporal 
scaling may be associated with interval-based timing whereas amplitude modulations in neural population 
trajectories can be associated with beat-based timing [28] or complex temporal processing [27].  

 
We found a strong correlation between the duration of the produced intervals and the curvilinear 

amplitude of the MPC neural trajectories during the SCT and ST and, due to the simultaneity of the 
recordings in the latter task, we decoded accurately the produced durations on a trial by trial basis. In 
addition, the cyclic and smooth nature of the neural trajectories during ST and SCT sharply contrasts with 
the tapping kinematics, which are characterized by stereotypic tapping movements separated by a dwell 
period that increases with the timed interval [24,25]. Previous studies have demonstrated that cell 
populations in premotor and motor cortical areas show rotatory non-muscle like trajectories that reflect 
the internal dynamics needed for controlling reaching and cycling [29,30]. Under this scenario, we found 
evidence supporting the notion that the periodic MPC trajectories during rhythmic tapping encode the 
dwell between taps in their curvilinear radii and that the tapping command is triggered whenever the 
trajectory reaches a specific phase-space, which corresponds to the intersection point between the tangent 
circular paths. This dynamical geometry contrasts with the neural trajectories of medial frontal areas 
during a single interval reproduction task [22]. In this interval-based paradigm the state trajectories not 
only evolve at different speeds but also generate parallel paths for different timed intervals depending on 
the initial conditions of the neural population dynamics [22]. Thus, the present data are consistent with 
the notion that timing is encoded in a neural population clock [17,31–34] and puts forward the hypothesis 
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that temporal processing during beat entrainment depends on the amplitude of tangent circular trajectories 
in MPC populations. 

 
The scalar property states that temporal variability increases linearly as a function of timed 

duration [35]. This hallmark feature of temporal processing has been documented across many timing 
tasks and species [9,35–38].  Several computational models based on neural population time 
representations have been implemented to describe this property including drift diffusion [39,40] and 
recurrent networks [26,41]. Here, we found that the variability in the radii of neural trajectories increased 
as a function of target interval during SCT and ST but remained similar during the SRTT, a task that 
precludes time prediction while preserving the sensory and tapping components. Therefore, these results 
suggest that the amplitude of the MPC state-network trajectories is a feasible neural correlate of the scalar 
property during rhythmic tapping. 
 

The dynamics of coordinated neural population activity define the evolution of the network state 
trajectories, which in turn have revealed functional principles in a variety of behaviors that are not evident 
at the single cell level [13,19,21,42].  Notably, the tapping tempo is strongly mapped in the neural 
trajectories and is encoded in a distributed fashion, not dependent on a particular response profile of 
individual neurons. Within this neural population framework, we found large groups of neurons that 
showed sequential transient activation patterns that traversed each produced interval during the SCT. 
Previous studies have reported moving bumps as a timing mechanism in parietal cortex [43]; MPC [4,10], 
the basal ganglia [12,44,45], and hippocampus [46,47]. For example, the bump activity in the rat striatum 
during a peak interval task moved progressively slower as the timed interval progressed, providing a 
functional basis for the decrease in the animals’ timing accuracy as the length of the timed interval 
increased [12]. In contrast, during the SCT we found that the rate of engagement of the neurons within 
moving bumps was constant and was accompanied by an increase in the number of neurons participating 
in the evolving patterns of population activity. Thus, an optimal reader could estimate the tempo of 
rhythmic tapping based on two signals: the location of the activity within a bump, where longer intervals 
engaged moving bumps composed of larger number of neurons, and the resetting between consecutive 
evolving activation patterns [40].  Strikingly, our simulations revealed a tight relation between the scaling 
of the duration of the transient period of activity, the increase in the number of neurons within moving 
bumps, and the increase in radius and variability of the corresponding neural trajectories. The simulations 
also suggest that neurons have the same relative position within a moving bump independently of the 
timed interval, as seen previously in the rat striatum [12]. Consequently, the increase in neural population 
size for longer intervals implies that incorporation of new cells at  intermediate locations within the 
moving bump [10]. These results not only replicate our empirical observations, but also support the 
notion that the properties of moving bumps, especially the number of participating neurons, can shape the 
curvilinear amplitude and the corresponding variability in neural state trajectories during SCT.  
  

Overall, these findings support the notion that the beat-based mechanism for rhythmic tapping is 
based on the changes in curvature radii of the neural population state dynamics in MPC, with slower 
tempos encoded in larger traversed distances in the tangent periodic neural trajectories and suggest that 
the variability in these neural trajectories is a feasible neural substrate of the scalar property during 
rhythmic tapping.  
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Materials and Methods 
 
Subjects  
All the animal care, housing, and experimental procedures were approved by Ethics in Research 
Committee of the Universidad Nacional Autónoma de México and conformed to the principles outlined in 
the Guide for Care and Use of Laboratory Animals (NIH, publication number 85-23, revised 1985). The 
two monkeys (M01 and M02, Macaca mulatta, both males, 5-7 kg BW) were monitored daily by the 
researchers and the animal care staff to check their conditions of health and welfare. 
 

Tasks 
Synchronization-Continuation Task (SCT). The SCT has been described before [48]. Briefly, the monkeys 
were trained to push a button each time stimuli with a constant interstimulus interval were presented. This 
resulted in a stimulus-movement cycle (Fig. 1A). After four consecutive synchronized movements, the 
stimuli were eliminated, and the monkeys had to continue tapping with the same interval for three 
additional intervals. Monkeys received a reward (drops of juice) if each of the intervals produced had an 
error < 30% of the target interval. The daily performance of the monkeys was >70% of correct trials. The 
amount of juice was proportional to the trial length. Trials were separated by a variable intertrial interval 
(1.2-4 s). The target intervals, defined by visual stimuli (red square with a side length of 5cm, presented 
for 33ms), were 450, 550, 650, 850, and 1,000 ms. The target intervals were chosen pseudorandomly 
within a repetition. Five repetitions were collected for each target interval.  
Synchronization Task (ST). This task was similar to the synchronization phase of the SCT [25]. The 
subject had to push a button with a stimulus. Six stimuli with a constant interstimulus were presented (red 
square with a side length of 5cm, shown for 33ms). Thus, the metronome was always present during the 
task. The target intervals were 450, 550, 650, 750, 850, and 950ms. Five repetitions were collected for 
each target interval.  
Serial Reaction Time-Task (SRTT). This task is also described elsewhere [48].  Monkeys were required to 
push a button each time a stimulus was presented, but in this case the interstimulus interval within a trial 
was random (picking randomly from the same 450,550,650,750,850, or 950ms), precluding the explicit 
temporalization of tapping (Fig. 1B). Monkeys received a reward if the response time to each of the five 
stimuli was within a window of 200 to 500 ms. The intertrial interval was as ST. Visual (white square 
with a side length of 5cm, presented for 33ms) stimuli were used, and 5 repetitions were collected.  
 
 
Neural recordings  
For the SCT and SRTT extracellular recordings were obtained from the MPC of the monkeys using a 
system with 7 or 16 independently movable microelectrodes (1-3 MΩ, Uwe Thomas Recording, 
Germany, S3). Only correct trials were analyzed. All isolated neurons were recorded regardless of their 
activity during the task, and the recording sites changed from session to session. At each site, raw 
extracellular membrane potentials were sampled at 40 kHz. Single-unit activity was extracted from these 
records using the Plexon off-line sorter (Plexon, Dallas, TX).  In the present paper we analyzed the 
activity of 1477 (1074 of Monkey 1 and 403 of Monkey 2) MPC neurons in both monkeys that did not 
show significant changes in their spontaneous activity during the hold period across all the task 
(ANOVA, p > 0.05). The functional properties of some of these cells (1083 neurons) have been reported 
previously [9,10,14]. In addition, using a semichronic, high-density electrode system [23], 26 and 41 
MPC cells were recorded simultaneously while monkey M01 was performing the ST and SRTT tasks.   
 
Neural activation periods 
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We used the Poisson-train analysis to identify the cell activation periods within each interval defined by 
two subsequent taps. This analysis determines how improbable it is that the number of action potentials 
within a specific condition (i.e. target interval and ordinal sequence) was a chance occurrence. For this 
purpose, the actual number of spikes within a time window was compared with the number of spikes 
predicted by the Poisson distribution derived from the mean discharge rate during the entire recording of 
the cell. The measure of improbability was the surprise index (SI) defined as: 
 
𝑆𝐼 = −𝑙𝑜𝑔𝑃  
 
where P was defined by the Poisson equation: 
 

𝑃 = 𝑒−𝑟𝑇 ∑
(𝑟𝑇)𝑖

𝑖!

∞

𝑖=𝑛

 

 
where P is the probability that, given the average discharge rate r, the spike train for a produced interval T 
contains n or more spikes in a trial. Thus, a large SI indicates a low probability that a specific elevation in 
activity was a chance occurrence. This analysis assumes that an activation period is statistically different 
from the average discharge rate r, considering that the firing of the cell is following a non-homogenous 
Poisson process (see also [49]). The detection of activation periods above randomness has been described 
previously [4,50]. Importantly, the Poisson-train analysis provided the response-onset latency and the 
activation period for each cell and for each combination of target interval/serial order. 
 
 
Neural trajectories 
Event time normalization and binarization. We developed a time normalization algorithm to align the 
neural data from different tapping times of different recording sessions in the same relative time 
framework. For each neuron, we calculated the produced interval (time between two taps). Then, we 
subtracted the time of the second tap of a produced interval in the task sequence from all spike and 
stimulus times (eventtimes) and divided them by the produced interval. The tapping times acquired values 
of minus one and zero, and all the other eventtimes were normalized between these two values. Finally, we 
added the tap sequence number. Thus, all the normalized values for movement, sensory and spike events 
acquired values between zero and seven in an SCT trial, as follows:  
 

𝑡𝑖𝑚𝑒_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑒𝑣𝑒𝑛𝑡 =
(𝑒𝑣𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑡𝑎𝑝_𝑡𝑖𝑚𝑒)

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 + 𝑡𝑎𝑝_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

 
Therefore, the time range of events between the first and the last tap of the normalized data of a trial 
(UTND) was the same regardless of the target interval. In addition to the trial relative time framework, we 
also used the target interval normalized data (TIND), which corresponds to the UTND multiplied by the 
target interval. This time normalization procedure was not necessary for simultaneously recorded data.  
Trial binarization. For UTND, TIND and simultaneously recorded data, we binarized the neural data by 
calculating the discharge rate on consecutive windows of 0.02 units. For UTND we always got 50 bins 
between each pair of taps across target intervals, whereas for TIND and the simultaneously recorded data 
this number depended on the target interval of the trial. For example, the total number of bins was 23 and 
50 for trials with the 450 and 1000 ms intervals, respectively. The binarized data of each neuron was 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/450817doi: bioRxiv preprint 

https://doi.org/10.1101/450817
http://creativecommons.org/licenses/by/4.0/


22 
 

divided by the maximum discharge rate of that particular neuron across all repetitions and target intervals 
of the SCT. 
 

Principal component coefficients matrix. Given a linear transformation of a matrix X into a matrix Y, 
such that each dimension of Y explains variance of the original data X in descending order, PCA can be 
described as the search for matrix P that transforms X into Y as follows: 
     𝑌 = 𝑃𝑋      
Hence, we first calculated the matrix P using a matrix X that includes all trials and target interval 
combinations for the visual SCT of our UTND cell population. Using this P on other data guarantees that 
the same transformation is applied to different neural activity sets. Therefore, using the UTND framework 
we avoided over- or under-representation of the information for different target intervals, due to the 
constant total number of bins across conditions. 
  
Generating neural trajectories 
The TIND information for every trial of all neurons constituted the columns of the X’ matrix. The 
principal component coefficients matrix P were multiplied by the X’ matrix to transform the neural data 
into the space of the original Y. Using the same transformation matrix for each trial, allowed the 
comparison of trajectories for different trials and tasks. A locally weighted scatter plot smoothing 
function was applied to the columns of the Y matrix. The first three dimensions of Y were used to 
generate graphical three-dimensional trajectories. 
 
Trajectory radius and variability 
The first three PCs explained the 10.7, 3.8 and 2.3 percent of the total variance. The PC1 showed a steep 
change at the beginning and end of the trial, suggesting a chunking mechanism of the tap sequence in the 
overall of the neural population-state. In contrast, the PC2 and PC3 showed a strong oscillatory structure 
with a phase difference of π/2 radians during SCT. For these two PCs, we calculated the centroids of the 
segments of trajectories between adjacent taps. We measured the radius of the 2D trajectory segment as 
the mean of the Euclidean distances between the centroid and each point in the trajectory segment. The 
variability of the trajectory was calculated as the standard deviation of the Euclidean distances between 
the centroid and each point in the trajectory segment across the six serial order elements (3 of the SC and 
3 of the CC) for each target interval. Accordingly, the temporal variability of the behavior for each target 
interval was computed as the standard deviation of the produced intervals within a trial, namely, the 
across six serial order elements of the SCT. 
 

Neural trajectory decoder  

We trained a time-delay neural network (TDNN) to decode the produced intervals from the first PC of the 
simultaneously recorded neural activity during ST. The TDNN architecture had an input layer with 20 
time-delays and one hidden 10-unit layer. The output layer consisted of a single unit that was trained to 
generate a value of 1 when a tap occurred or 0 otherwise. We trained the network using a Bayesian 
regularization backpropagation algorithm that minimized the mean squared error of the output. The tap 
time was defined as the time of the peak of the neural network output higher than a threshold of 0.12. We 
considered a correctly decoded interval when the decoded and the produced taps times difference was less 
than 60ms. We used 5-fold cross validation to evaluate the performance of the neural network.   

Demixed principal component analysis 
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The demixed principal component analysis [19] decomposes neural population activity into components 
capturing the majority of the variance of the data dependent on task parameters. We used the TIND 
resampled to 30 bins for all target intervals as the input data to the dPCA and the target interval as the 
marginalization parameter. Therefore, the length of all the trials for all target intervals was the same. We 
calculated the bin-by-bin Euclidean distance between the 450ms first PC and all the target intervals using 
the PCA and dPCA analysis. 

 
Support Vector Machine classifier 
We were interested in studying the relation between the neural trajectory dynamics and the instructed 
interval of the SCT(450ms, 550ms,…, 1000ms). Therefore, we first normalized the length of each 
segment of the first 8 PCs of the neural trajectory associated to a produced interval (the time between two 
taps) to 30 bins (see inset Fig. 7A). This step was necessary to avoid a bias associated to the length of the 
segment. Then, we applied a second layer PCA’ to each of the original neural trajectory segments for 
each PC independently. We kept the first 3PCs’ as they explained 96% of the variance. As a result, a 
point in a new three-dimensional coordinate for each 30-bin trajectory segment was obtained (see Fig. 
7B). In order to assess which PC had more information about each of the SCT parameters, we carried out 
a classification procedure for each PC using a Support Vector Machines (SVM) algorithm [51]. Each 
classifier was retrained 10 times, and we used 5-fold cross validation to evaluate the performance of the 
classifier. Thus, we identified the PC with more information for each SCT parameter and called it best-
PC.  
 

Additionally, we were interested in studying how the size of the neural population used to 
generate the PCA affected the information contained in the trajectory. We sorted each neuron according 
to the magnitude of the PCA weights for the best-PC. We iteratively removed the activity of 10% of the 
neurons with the largest PCA weights for the best-PC until reaching 1% (15 total neurons). Finally, for 
each population size, we computed the second layer PCAs on the new trajectories and the corresponding 
SVM classification.  
 
Oscillatory activity analysis 
To characterize the phase, frequency, and amplitude of the neural trajectories, we calculated a series of 
nonlinear regression models over the residuals of linear regressions on the projected data for the first PC. 
The general function of the nonlinear models was: 
 
𝑃𝐶 = 𝑎 ∗ 𝑠𝑖𝑛𝑒(2𝜋 ∗ 𝑏 ∗ 𝑡 + 𝑐) + 𝑑  
 
Where t is time. In addition, the parameter a is the amplitude of the oscillatory function, b the frequency, 
c the phase offset, and c is a constant. For each trial of both tasks (ST and SRTT) we calculated the mean 
square error. 
 
Movement kinematics 
We applied the Lucas-Kanade optic flow method to measure the monkey’s arm speed during the ST. This 
method calculates a flow field from the intensity changes between two consecutive video frames. The 
analyzed video was recorder with a Microsoft Kinect for Windows camera with a 640x480 resolution. 
The optic flow method was applied to a smaller area of 140x140 pixels from the original video that 
contained the monkey’s arm during the whole trial and no other moving objects.  The arm’s movement 
velocity vector was calculated across all frames as the magnitude of the sum of all the individual flow 
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fields vectors which magnitude was larger than a predefined threshold. The velocity vector was calculated 
from the first to the last tap on each correct trial. We reported the speed as the magnitude of the velocity 
vector. Posteriorly, the kinematic state of the arm was tagged as movement when the velocity vector was 
larger than a threshold or dwell otherwise. The tagging algorithm considered a change on the kinematic 
state when the new state lasted longer than 3 consecutive frames. 
 
 
Moving bumps simulations 
In order to investigate how the properties of the pattern of neuronal activation affected the generation of 
population neuronal trajectories. We generated 5 repetitions of simulations of neuronal activity for each 
target interval. The individual neuronal activation period was composed of the sum of 20 random gamma 
functions. The activation period was constant for all the neurons on one simulation, but varied with the 
target interval: 197, 205, 213, 233, and 257ms activation duration for 450, 550, 650, 850, 1000ms target 
interval respectively. The initial activation time for each neuron was adjusted so that the population 
activation rate followed a gaussian function as to produce a moving bump pattern. The number of neurons 
in the simulation was incremented according to the target interval (450ms, 108 neurons; 550ms, 120 
neurons; 650ms, 130 neurons; 850ms, 170 neurons; 1000ms, 182 neurons). Fig. 11A shows neurons were 
added randomly in the intermediate portion of the moving bumps.  
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S1 Fig. Effect of timing and firing rate normalization on the amplitude and speed of neural trajectories.  
We used different combinations of the time and firing rate normalization of the neural data in order to calculate the PCA 
coefficients and then the neural trajectories. We fitted a sine function on each of the first ten PCs and measured their amplitude 
and speed. For all the possible normalization combinations, we found at least 2 of the first four PCs that showed a robust fit of 
the sine function that was accompanied by a monotonic increase in the mean and the variability of the trajectory radius and a 
similar speed across target intervals. Here we show only two PCs (color coded) for each normalization combination (see 
A,C,E,G,I). (A-F) were generated using normalized firing rate data to calculate the trajectories. The left row corresponds to PC 
radial amplitude and the right row to the PC linear speed.  
A,B, coefficients computed with time-normalized but trajectories calculated on actual time bins, as presented across this paper 
for SCT.  (A) PC amplitude increased with target interval:  PC3, red, data slope= 0.00081, constant = 0.011, R²=0.899, p< 0.0001, 
ANOVA main effect target interval, F(4,20)=128.69,p<0.0001; PC2, yellow, data slope= 0.00053, constant = 0.148, R²=0.676, 
p< 0.0001, ANOVA main effect target interval, F(4,20)=51.54,p<0.0001. (B) PC linear speed is similar across target interval: 
PC3, red, non-significant linear regression, R²=0.07, p=0.201, ANOVA main effect target interval, F(4,20)=22.12,p<0.0001; 
PC2, yellow, non-significant linear regression, R²=0.05, p=0.28, ANOVA main effect target interval, F(4,20)=14.36, p<0.0001.  
C,D, coefficients and trajectories are computed using time normalized data. (C) PC1, red, data slope= 0.0012, constant = -0.651, 
R²=0.902, p< 0.0001, ANOVA main effect target interval, F(4,20)=875.21,p<0.0001; PC2, yellow, data slope= 0.0013, constant 
= -0.658, R²=0.923, p< 0.0001, ANOVA main effect target interval, F(4,20)=858.7,p<0.0001. (D) PC1, red, data slope= 0.0048, 
constant = -1.638, R²=0.98, p<0.0001, ANOVA main effect target interval, F(4,20)=390.94,p<0.0001; PC2, yellow, data slope= 
0.0034, constant = -0.158, R²=0.953, p<0.0001, ANOVA main effect target interval, F(4,20)=160.57, p<0.0001. 
E,F, coefficients and trajectories are computed using actual time data. (E) PC4, red, data slope= 0.0005, constant = 0.053, 
R²=0.882, p< 0.0001, ANOVA main effect target interval, F(4,20)=101.86,p<0.0001; PC1, yellow, data slope= 0.00084, constant 
= -0.225, R²=0.899, p< 0.0001, ANOVA main effect target interval, F(4,20)=332.76, p<0.0001. (F) PC4, red, non-significant 
linear regression, R²=0.013, p=0.586, ANOVA main effect target interval, F(4,20)=23.35, p<0.0001; PC1, yellow, data slope= 
0.0034, constant = 0.641, R²=0.686, p<0.0001, ANOVA main effect target interval, F(4,20)=100.04, p<0.0001. 
G,H, same as (A,B) but using non-normalized firing rate data to calculate the trajectories.  (G) PC2, red, data slope= 0.175, 
constant = 62.162, R²=0.625, p< 0.0001, ANOVA main effect target interval, F(4,20)=27.58,p<0.0001; PC3, yellow, data slope= 
0.238, constant = 21.433, R²=0.865, p< 0.0001, ANOVA main effect target interval, F(4,20)=101.03, p<0.0001. (H) PC2, red, 
non-significant linear regression, R²=0.089, p=0.145, ANOVA main effect target interval, F(4,20)=8.18, p<0.001; PC3, yellow, 
non-significant linear regression, R²=0.0002, p=0.939, ANOVA main effect target interval, F(4,20)=16.37, p<0.0001.  
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S2 Fig. State trajectory progress during SCT.  
A,B, One trajectory loop for the second produced interval of the (A) SC and (B) CC, during  a 450ms (light gray) and a 1000ms 
(dark gray) target interval. Trajectory progression marked as colored spheres: previous tap (green), 1st inter-tap quarter (cyan), 
2nd inter-tap quarter/half interval (blue), 3rd inter-tap quarter (yellow), and next tap (red). Therefore, the neural trajectories follow 
circular paths with different radii that increase according to the target interval but with similar speed profiles. 
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S3 Fig. State trajectories during ST and SRTT using simultaneously recorded neurons.  
A,B, Three dimensional neural dynamics trajectory of a 650ms single ST (A) and SRTT (B) intervals. Elapsed time is color-
coded. The previous and the next taps are marked as red and white spheres respectively. The stimuli are marked as a white 
pyramid.  
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