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Abstract

A plethora of experimental studies have shown that long-term plasticity can be
expressed pre- or postsynaptically depending on a range of factors such as developmental
stage, synapse type, and activity patterns. The functional consequences of this diversity
are unknown. However, in models of neuronal learning, long-term synaptic plasticity is
implemented as changes in connective weights. Whereas postsynaptic expression of
plasticity predominantly affects synaptic response amplitude, presynaptic expression
alters both synaptic response amplitude and short-term dynamics. In other words, the
consideration of long-term plasticity as a fixed change in amplitude corresponds more
closely to post- than to presynaptic expression, which means theoretical outcomes based
on this choice of implementation may have a postsynaptic bias. To explore the
functional implications of the diversity of expression of long-term synaptic plasticity, we
modelled spike-timing-dependent plasticity (STDP) such that it was expressed either
pre- or postsynaptically, or both. We tested pair-based standard STDP models and a
biologically tuned triplet STDP model, and investigated the outcome in a feed-forward
setting, with two different learning schemes: either inputs were triggered at different
latencies, or a subset of inputs were temporally correlated. Across different STDP
models and learning paradigms, we found that presynaptic changes adjusted the speed
of learning, while postsynaptic expression was better at regulating spike timing and
frequency. When combining both expression loci, postsynaptic changes amplified the
response range, while presynaptic plasticity maintained control over postsynaptic firing
rates, potentially providing a form of activity homeostasis. Our findings highlight how
the seemingly innocuous choice of implementing synaptic plasticity by direct weight
modification may unwittingly introduce a postsynaptic bias in modelling outcomes. We
conclude that pre- and postsynaptically expressed plasticity are not interchangeable,
but enable complimentary functions.
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Author summary

Differences between functional properties of pre- or postsynaptically expressed
long-term plasticity have not yet been explored in much detail. In this paper, we used
minimalist models of STDP with different expression loci, in search of fundamental
functional consequences. Presynaptic expression acts mostly on neurotransmitter
release, thereby altering short-term synaptic dynamics, whereas postsynaptic expression
affects mainly synaptic gain. We compared cases where plasticity was expressed
presynaptically, postsynaptically, or both. We found that postsynaptic plasticity was
more effective at changing response times, while both pre- and postsynaptic plasticity
were similarly capable of detecting correlated inputs. A model with biologically tuned
expression of plasticity also achieved this separation over a range of frequencies without
the need of external competitive mechanisms. Postsynaptic spiking frequency was not
directly affected by presynaptic plasticity of short-term plasticity alone, however in
combination with a postsynaptic component, it helped restrain positive feedback,
contributing to activity homeostasis. In conclusion, expression locus may determine
distinct coding schemes while also keeping activity within bounds. Our findings
highlight the importance of correctly implementing expression of plasticity in modelling,
since the locus of expression may affect functional outcomes in simulations.

Introduction 1

Learning and memory in the brain, as well as refinement of neuronal circuits and 2

receptive fields during development, are widely attributed to long-term synaptic 3

plasticity [1]. While this notion is not yet formally experimentally proven [2], it has in 4

recent years received strong experimental support in several brain regions, in particular 5

the amygdala [3] and the cerebellum [4]. The notion that synaptic plasticity underlies 6

memory is typically attributed to Hebb [5], but it is in actuality an idea that extends 7

considerably farther back in time, e.g. to Ramon y Cajal and William James [6]. 8

After the discovery by Bliss and Lømo [7] of the electrophysiological counterpart of 9

Hebb’s postulate, now known as long-term potentiation (LTP), much effort has been 10

focused on establishing the induction and expression mechanisms of long-term plasticity. 11

In the 1990s, this lead to a heated debate on the precise locus of expression of LTP, 12

with some arguing for postsynaptic expression, whereas others were in favour of a 13

presynaptic locus of LTP [8]. Beginning in the early 2000’s, this controversy was 14

gradually resolved by the realisation that plasticity depends critically on several factors, 15

notably animal age, induction protocol, and precise brain region [9–11]. Indeed, this 16

resolution has now been developed to the point that it is currently widely accepted that 17

e.g. specific interneuron types have dramatically different forms of long-term 18

plasticity [12,13], meaning that long-term plasticity in fact depends on the particular 19

synapse type [14]. In retrospect, it is probably not all that surprising that LTP in 20

different circuits is expressed either pre- or postsynaptically, or both, given the diversity 21

of computational functions of different synapses [15]. Nevertheless, the precise 22

functional benefits of having LTP be expressed on one side of the synapse or the other 23

have remained quite poorly explored, with only a handful of classical theoretical papers 24

addressing this point [16–21]. 25

Going back several decades, a multitude of highly influential computer models of 26

neocortical learning and development have been proposed, some of them focusing on 27

aspects such as the rate-dependence of induction [22–24], while others have emphasised 28

the role of the relative millisecond timing of spikes in connected cells [25–27], and some 29

yet have included both [28]. Irrespective of whether timing, rate, or other factors are 30

used to determine the outcome of plasticity in theoretical models, it has virtually always 31
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been the case that – with a few notable exceptions [18,19,21] – the expression of 32

plasticity itself has been regarded as a simple change in the magnitude of synaptic inputs 33

between neurons of the network. In the absence of better information, this is of course a 34

perfectly reasonable approach, as it is a parsimonious assumption that induction of 35

long-term plasticity manifests itself in the alteration of connectivity weights. 36

However, the expression of plasticity is not always well modelled by this simple 37

change of instantaneous magnitude. This is because presynaptically expressed plasticity 38

leads to changes in synaptic dynamics, whereas postsynaptic expression does not 39

(Fig.1B). For instance, during high-frequency bursting, the readily releasable pool of 40

vesicles runs out, leading to short-term depression of synaptic efficacy [29], while at 41

some synapse types short-term facilitation dominates [30]. Such short-term plasticity is 42

important from a functional point of view because it leads to filtering of the information 43

that is transmitted by a synapse [31–33]. Short-term depressing connections are most 44

likely to elicit postsynaptic spikes due to brief non-sustained epochs of activity, whereas 45

facilitating synapses require that presynaptic activity be maintained for some period of 46

time before postsynaptic spikes are elicited. In other words, short-term facilitating 47

connections act as high-pass filtering burst detectors [34,35], while short-term depression 48

provides low-pass filtering inputs suitable for correlation detection and automatic 49

gain-control [36–38]. As a corollary, it follows that presynaptic expression of plasticity 50

may change the computational properties of a given synaptic connection. In this case, 51

increasing the probability of release by LTP induction will lead to more prominent 52

short-term depression due to readily-releasable pool depletion, and as a consequence to 53

a gradual bias towards correlation detection at the expense of burst detection [39,40]. 54

Fig 1. Postsynaptic response to the same stimulus after plasticity depends
on expression loci. A - Representation of pre- (red) and postsynaptic (blue) sides of
a synapse. B - Initial responses are illustrated in grey, while potentiated ones are in
colour. In this example, the amplitude of the first response after learning was set to be
the same after both pre- (red) and postsynaptic (blue) potentiation. Whereas with
postsynaptic potentiation the gain was increased by the same amount for all responses
in a high-frequency burst, with presynaptic potentiation the efficacy of the response
train was shifted toward the beginning, enhancing the first response but resulting in no
changes over the summed input.

It is long known that the induction of neocortical long-term plasticity may alter 55

short-term depression [16,41]. While the functional consequences of short-term 56

plasticity itself are quite well described [39,42], the theoretical implications of changes 57

in short-term plasticity due to the induction of long-term plasticity are less well 58

described. Yet, as outlined above, the vast majority of theoretical studies of long-term 59

plasticity assumes that synaptic amplitudes, but not synaptic dynamics, are altered by 60

cellular learning rules. One of the motivations of our present study is the observation 61

that this seemingly innocuous assumption may not be neutral, but in effect a bias, 62

because changing weights in theoretical models of long-term plasticity is equivalent to 63

assuming that synaptic plasticity is solely postsynaptically expressed. This begs the 64

question: What are the functional implications of pre- versus postsynaptically expressed 65

long-term plasticity? Providing answers to this central issue is important for 66

understanding brain functioning, as well as for knowing when weight-only changes in 67

computer modelling is warranted, and when it is not. 68

Here, we use computational modelling to explore the consequences of expressing 69

plasticity pre- or postsynaptically in a single neuron under two simple paradigms Fig. 70

2), a time-locked stimulus [26,43,44] or the detection of a rate-correlated 71

stimulus [45–47]. Initially, we compare and contrast relatively artificial scenarios, for 72

which the locus of expression is either solely presynaptic, solely postsynaptic, or equally 73
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divided between both sides. We then move on to investigating the functional impact of 74

a model with separate pre- and postsynaptic components that were tuned to biological 75

data from connections between neocortical layer-5 pyramidal cells. 76

Fig 2. Two different stimulation paradigms were explored. A - Latency
reduction: inputs from each presynaptic neuron arrived at different relative times in the
volley according to an assigned delay. B - Correlated inputs: half of the inputs had
correlated activity, while the rest were independent.

Results 77

Presynaptic expression modelled as changes in stochastic release 78

For the first set of simulations, we explored the simplest possible differentiation between 79

pre- and postsynaptic efficacy changes. Here, we considered the probability of vesicle 80

release (Pj) and the quantal amplitude (qj) pre- and postsynaptic quantities 81

respectively. Plasticity was expressed either exclusively on each side or equally divided 82

between both sides. 83

Since postsynaptic activity depends on the average input across many synapses, one 84

might expect that any differences between pre- or postsynaptic changes should vanish 85

over longer intervals of time. In agreement with this view, there was in this case no 86

appreciable difference between average results. The mean latency shifts (Fig. 3A and 87

B), as well as the decrease of postsynaptic activity duration and increase of 88

postsynaptic firing frequency (respectively Figs. 3D and 3E) did not differ appreciably 89

depending on the implementation. In both cases, sharpening of response only took place 90

after latency reduction was stabilised because frequency and duration were affected by 91

inputs with delays that fell outside of the STDP time window (Fig. 3C). However, in 92

comparison to the purely postsynaptic case, simulations with presynaptic plasticity 93

presented a smaller variance of the latency shift (Fig. 3B), and potentiation developed 94

faster (Fig. 3F). Conversely, depression was slower as the probability of plasticity 95

tended to decrease (Fig. 3F). 96

Fig 3. Change of stochastic neurotransmitter release probability lead to
faster presynaptic plasticity. The graphs here and below are colour-coded: only
presynaptic plasticity (red), only postsynaptic plasticity (blue), or simultaneous pre-
and postsynaptic plasticity (black) are implemented. A-F: Latency reduction
configuration. A - Example traces of the postsynaptic membrane potential before (grey)
and after (black) plasticity. Initial latency of response is marked by a green dashed line.
B - Shortening of postsynaptic latency to spike in comparison to the initial state. C -
Synaptic weight distribution after 200 trials, normalized for each kind of plasticity
expression and sorted by the fixed presynaptic delay. D - Postsynaptic response
duration (interval between first and last spike in each trial). E - Postsynaptic intraburst
frequency. F - Potentiation of average synaptic weight among early presynaptic inputs
(i.e. that arrived within the first half of the stimulus). G-I: Correlated input
configuration. G - Input rasterplot sample: correlated inputs shown in black and
uncorrelated in gray. H - Histogram of total correlated and uncorrelated presynaptic
activities. I - Potentiation of the average synaptic weight among correlated inputs.

In the correlated stimuli paradigm (Fig. 3G and H), potentiation was similarly faster 97

with presynaptic expression of plasticity (Fig. 3I). This happened because plasticity was 98

triggered only after a signal was transmitted, which in the presynaptic case resulted in a 99
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positive feedback loop as the probability of potentiation was higher for a more 100

potentiated synapse. This is a consequence of potentiation requiring glutamate release, 101

so that in a high-p synapse, there is an intrinsic propensity for more potentiation. 102

Conversely, depression was slower as the probability of plasticity tended to decrease 103

(Fig. 3F). 104

Presynaptic expression modelled as changes in short-term 105

plasticity 106

We next explored the effects of altering short-term plasticity. This adds another degree 107

of biological realism, since short-term plasticity takes into account the history of 108

presynaptic activity [16]. In this scenario, presynaptic changes generate redistribution of 109

synaptic resources used over a certain time period, instead of an overall amplification. 110

Even if the amplitude of an individual EPSP were affected equally by pre- or by 111

postsynaptically expressed plasticity, the total input from a burst would still differ 112

dramatically depending on the site of expression (Fig. 1B). 113

Correspondingly, in this case, results differed considerably depending on the specific 114

locus of plasticity in the latency configuration. Postsynaptic expression alone provided 115

the largest latency reduction, and also achieved it faster than the other plasticity 116

implementations (Fig. 4B). Presynaptic expression results were subtle and a defined 117

minimal effect compared to the mixed setting with both pre- and postsynaptic 118

expression. Effects of postsynaptic plasticity over response duration and intraburst 119

frequency (Figs. 4C and 4D) were also more marked. This was a direct result of the 120

increase in total input per burst. 121

Nevertheless, synaptic efficacy was still potentiated faster and depressed slower in 122

the presynaptic case (Fig. 1E). This was similar to the stochastic case, although less 123

pronounced. This means that even if the rate of learning was effectively faster, 124

presynaptic expression affected timing less efficiently than postsynaptic expression did 125

(Fig. 1F). 126

Fig 4. Change of short-term plasticity was less efficient at reducing latency.
Graphs here and in subsequent figures are colour-coded: red denotes presynaptic
plasticity alone, blue postsynaptic plasticity alone, and black combined pre- and
postsynaptic plasticity. A - Example traces of postsynaptic activity before (grey) and
after plasticity (coloured). Initial response latency is illustrated by a vertical dashed
line. B - Latency reduction was more marked for postsynaptic (blue) than for
presynaptic (red) or combined (black) plasticity. C - Combined and presynaptic
plasticity reduced response duration better than with postsynaptic expression. D -
Burst frequency was similarly increased with all three forms of plasticity, although rate
change was faster with postsynaptic plasticity. E - Time course of average synaptic
weights for early (left) and late (right) inputs. F - Normalized synaptic weight
distribution, according to presynaptic delay. G - Time course of average synaptic
weights for correlated (left, ”corr”) and uncorrelated (right, ”unc”) inputs.

On the other hand, plasticity rates in the correlated inputs paradigm evolved 127

differently compared to the stochastic case (Fig. 1G), even though the overall effect on 128

the covariance between pre- and postsynaptic activity was similar (not shown). With 129

depression acting via short-term plasticity, the postsynaptic rate of change was slightly 130

faster than the presynaptic change. 131
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Contextualization with a biologically tuned model 132

For an improved biological plausibility, we investigated the interplay between pre- and 133

postsynaptic plasticity in a model that was fitted to data from rodent V1 pyramidal 134

neurons [19, 48]. To isolate the effects of each component, we simply blocked either pre- 135

or postsynaptic changes instead of normalising the total synaptic change in each side, so 136

as to not disrupt of the parameter tuning. We still found that both pre- and 137

postsynaptic plasticity components independently lead to the shortening of postsynaptic 138

latency (Figs. 5B and 5C). As with the above, more abstract modelling scenarios, 139

postsynaptic changes appeared to be more effective at affecting spike timing. When 140

both pre- and postsynaptic plasticity were active, the presence of postsynaptic 141

potentiation enhanced the response compared to presynaptic plasticity alone. 142

As postsynaptic plasticity in the tuned model lacked the capacity to depress [49], it 143

also lead to inflated postsynaptic frequency and duration if implemented alone (Figs. 5D 144

and E). However, the inclusion of presynaptic LTD was enough to avoid saturation, and 145

the whole model was able to produce a sharpened response. In this case, postsynaptic 146

changes developed faster (Fig. 5F) because of increased postsynaptic frequency. 147

Fig 5. Physiologically tuned model combined pre- and postsynaptic LTP
for latency reduction with a controlled activity. The following graphs are
colour-coded: only presynaptic plasticity components (red), only postsynaptic
component (blue), or both pre- and postsynaptic components (black). A - Example
traces of postynaptic activity before (grey) and after plasticity. Initial latency of
response is marked by a green dashed line. B - Shortening of postsynaptic latency in
comparison to the initial state. C - Distribution of pre- and postsynaptic efficacies after
250 trials. D and E -Duration and intraburst frequency of postsynaptic activity. F -
Potentiation of average synaptic weight of early (left) and late (right) presynaptic
inputs.

In the second configuration, we observed a separation between synaptic efficacy of 148

correlated and uncorrelated inputs (Fig. 6A) without the need of added mechanism of 149

competition [46,50]. This only occurred when both pre- and postsynaptic components 150

were implemented. This is not achieved through other models with physiologically 151

compatible parameters [47]. We quantified this capacity with a linear separator for the 152

average and variance of p values (Fig. 6B). 153

The presynaptic frequency range for optimal separation was between 50 and 80 Hz. 154

On the lower end it was bounded by the correlation time scale, as interspike intervals 155

longer than 20 ms were unable to represent the minimal interval of correlation. On the 156

other end, higher presynaptic frequency yielded overall potentiation that included 157

uncorrelated inputs, limiting the separation from the more potentiated correlated 158

population (see appendix). 159

Fig 6. The physiologically tuned model was able to separate between
correlated and uncorrelated inputs, but only when there is simultaneous
pre- and postsynaptic plasticity. The following graphs are colour-coded: only
presynaptic plasticity component (red), only postsynaptic component (blue), or both
pre- and postsynaptic components (black). A - Normalized average pre- (p), post- (q)
and combined (W) synaptic efficacies of correlated (corr) and uncorrelated (unc) inputs.
B - Postsynaptic spiking frequency. C - Average separation between correlated and
uncorrelated inputs as a function of presynaptic frequency.

In the same way as in the latency configuration, postsynaptic potentiation directly 160

increased postsynaptic firing rate, however in this case the presynaptic component 161
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produced no such effect. In combination with postsynaptic plasticity, presynaptic 162

plasticity performed a kind of output control, as its introduction helped to maintain a 163

lower postsynaptic frequency even if q saturated (Fig. 6C). 164

Discussion 165

In recent years, it has become eminently clear that diversity in LTP expression is both 166

ubiquitous and considerable, depending on factors such as animal age, induction 167

protocol, and precise brain region [9–11,15]. In this work, we explored a few possible 168

functional consequences of pre- or postsynaptic locus of plasticity expression, and found 169

that even in a single neuron scenario overall dynamics may be affected by it. Plasticity 170

has in the typical phenomenological model been implemented as a straightforward 171

change in synaptic weight amplitude [26,51,52], although there are a few notable 172

exceptions [16–18,53,54]. In other words, in the absence of better information, a 173

standard assumption has been that that locus of expression does not matter appreciably 174

for the modelling scenario at hand. Our findings thus challenge this standard 175

assumption, highlighting when it is valid, and when it is not. 176

We investigated two different learning paradigms, one with differently timed inputs, 177

in which postsynaptic latency to spike was used as a learning measurement, and another 178

under constant stimulation, where a subset of inputs were correlated and potentiated 179

together. We worked with simplified conceptual models, first a simple stochastic STDP 180

implementation and later a more realistic, biologically tuned model of long-term 181

plasticity at in which pre- and postsynaptic components were fitted to connections 182

between neocortical layer 5 pyramidal cells [19]. 183

Our study showed that the locus of expression of plasticity determined affinity for 184

different coding schemes. Presynaptic plasticity as the regulation of flat release 185

probability alone did not result in any differences over average postsynaptic activity 186

measurements compared to the usual postsynaptic expression. However, in the presence 187

of short-term synaptic modulation, presynaptic changes had a milder impact on the 188

timing of postsynaptic spiking output in comparison to changes in quantal amplitude. 189

This was because, as amplitude becomes higher, fewer inputs are needed to evoke a 190

postsynaptic spike, while with presynaptic changes the spike still depends on the sum of 191

a larger number of stimuli. Additionally, overall weight changes developed faster with 192

presynaptic plasticity, in effect upregulating the speed of learning. This effect, however, 193

was not present in the correlated input configuration where both pre- and 194

postsynaptically expressed cases performed similarly. 195

One could argue that presynaptic short-term plasticity alone was not suitable for 196

postsynaptic rate coding, as it did not affect the average summed input and thus 197

postsynaptic firing frequency remained unchanged. Therefore, in agreement with 198

previously published interpretations [40], presynaptic plasticity appeared to act as a 199

limiter or a form of homeostasis for postsynaptic activity. It is in other words possible 200

that, in some cases, the interpretation of plasticity as a purely postsynaptic 201

phenomenon might lead to overestimation of its effects on postsynaptic firing frequency. 202

Similar properties were observed in the biologically tuned model with simultaneous 203

pre- and postsynaptic plasticity. Learning results were dramatically affected by 204

postsynaptic plasticity, while the presynaptic side appeared to act more on the rate of 205

learning and on weight dynamics. It is possible that these results could be modified 206

according to the ratio of pre- versus postsynaptic forms of plasticity, thus being 207

optimized according to the computational task at hand. It is noteworthy that the 208

biologically tuned model was also capable of separating groups of correlated and 209

uncorrelated inputs without the need for a competitive mechanism, in an optimal range 210

of input frequencies that depended on input frequency and correlation times. 211
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Since it is possible to specifically block pre- or postsynaptic STDP 212

pharmacologically [41,49], several of our findings related to the locus of expression of 213

plasticity are experimentally testable. For example, at connections between neocortical 214

layer-5 pyramidal cells, it is possible to block nitric oxide signalling to abolish pre- but 215

not postsynaptic expression of LTP [49]. It is also possible to use GluN2B-specific 216

blockers such as ifenprodil or Ro25-6581 to block presynaptic NMDA receptors necessary 217

for presynaptically expressed LTD without affecting postsynaptic NMDA receptors that 218

are needed for LTP [41,55]. As a proxy for learning rate, one could explore in vitro how 219

blockade of different forms of plasticity expression impacts the number of pairings 220

required for plasticity, or alternatively how the magnitude of plasticity is affected for a 221

given number of pairings [49,52]. In vivo, the impact on cortical receptive fields could 222

similarly be explored. For example, we predict that receptive field discriminability is 223

poorer when presynaptic LTP is abolished by nitric oxide signalling blockade [19]. 224

In conclusion, we challenged the standard assumption of modelling synaptic 225

plasticity as a straightforward weight change by considering plasticity as pre- or 226

postsynaptically expressed, or both. As our collective understanding of LTP expression 227

improves, it is important to understand its overall consequences on circuit dynamics and 228

global functioning of neural networks [56]. We found that even in a simple feed-forward 229

network, the locus of expression could have considerable impact on learning outcome. 230

We speculate that the effect will only be greater in recurrent networks, where 231

presynaptic plasticity at loops and re-entrant pathways will exacerbate the effects of 232

changes in synaptic dynamics due to alterations of the accumulated difference. This 233

additional level of complexity may in particular complicate very large recurrent network 234

models [57,58]. As the locus of expression of long-term plasticity has been relatively 235

poorly studied, our study highlights the general need for more detailed modelling of the 236

role of the site of expression. In modelling long-term plasticity, correctly implementing 237

changes in weight is thus a matter of gravity. 238

Methods 239

Neuron model 240

All of the simulations consisted of one postsynaptic neuron receiving a number of 241

presynaptic Poisson inputs. In the first section, we used a simple leaky 242

integrate-and-fire model defined by 243

τV
dV

dt
= Ev − V (t) − ge(t)(Ee − V (t)), (1)

in which the membrane potential V decayed exponentially with a time constant of 244

τV = 20ms to the resting value of Ev = −74 mV, and the threshold for an action 245

potential was Vth = −54 mV. After each spike it was reset at V0 = −60 mV with a 246

refractory period of 1 ms. 247

Inputs were accounted as conductance-based excitatory contributions with reversal 248

potential Ee = 0 mV, amplitude qj , summed after the lth spike of presynaptic neuron j, 249

that decayed exponentially with a time constant of τg = 5ms: 250

dge
dt

= −ge
τg

+
∑
j,l

qjδ(t− tlj) . (2)

In the the last section, we used the adaptative exponential integrate-and-fire 251

model [59] for increased bursting stability: 252

dV

dt
=

1

C
[gL(EL − V ) + gL∆T e

(
V −VT

∆T

)
− geV − z] , (3)
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τW
dz

dt
= cz(V − EL) − z . (4)

The corresponding parameters for a pyramidal neuron were C = 281 pF, gL = 30 nS, 253

EL = −70.6 mV, ∆T = 2mV, c = 4nS, τW = 144ms. Spiking threshold was VT = −50.4 254

mV, and after each spike V was reset to the resting potential EL while z increased by 255

the quantity b = 0.0805 nA (as in [59]). 256

Stimulation paradigms 257

The postsynaptic neuron received either one of two stimulus configurations. The first 258

one was based on [26] and is referred to as latency reduction (Fig. 2A). In every 259

375-ms-long trial, the postsynaptic cell received a volley of Poisson inputs that arrived 260

with fixed delays, normally distributed around a time reference, per specific presynaptic 261

neuron. Each input lasted for 25 ms with a spiking frequency of 100 Hz. We measured 262

the time to spike of the first postsynaptic spike in response to a bout of stimuli using 263

the mean of the presynaptic delay distribution as a reference point. For clarity, in the 264

Results, curves that represent latency shift, intraburst frequency or burst duration were 265

smoothed using a moving average filter with a window of three points. 266

The second type of stimulation paradigm was based on [45] (Fig. 2B). This 267

configuration consisted of continuous Poisson inputs with fixed frequency. However, half 268

of the inputs had correlated fluctuations of activity, with a time window of τcorr = 20 269

ms, while the other half was uncorrelated. 270

Additive STDP model 271

For the majority of the simulations we opted to implement STDP with the simple 272

additive model proposed by Song and Abbott [26]: 273

τ
STDP

dWij

dt
=

∑
k

∑
l

F (tki − tlj)

F (ti − tj)

{
cpot, ti > tj

cdep, ti < tj .
(5)

Each increment to the synaptic weights Wij (since there was only one postsynaptic 274

cell we consider Wj = Wij for the rest of this paper) was computed after a pair of pre- 275

and postsynaptic spikes, and the parameters were set to τSTDP = 20ms, cpot = 0.005, 276

and cdep = −0.00525. We separated the synaptic weight Wj as a product between pre- 277

and postsynaptic counterparts, probability of release Pj(0, 1] and quantal amplitude 278

qj(0, qmax] respectively, so that Wj = qjPj . The probability of release was simulated in 279

two different ways, one by regulating the probability of stochastic interactions and the 280

other by short-term plasticity. 281

When the weight convergence rates were compared, we had to ensure that 282

∆W = W f −W i per time step was the same for all simulations. Therefore, we 283

normalized the chages so that if only q was changed: 284

∆W q = P i(qf − qi) = P i∆q , (6)

and if only P was changed, 285

∆WP = qi∆P . (7)
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The initial value of all simulations was the same for P and q, so in these cases 286

∆P = ∆q ≡ ∆. This amount was equally divided between P and q when both were 287

changed simultaneously: 288

∆WPq = P fqf − P iqi = (P i + ∆PPq)(qi + ∆qPq) − P iqi

= (P i + ∆Pq)(qi + ∆Pq) − P iqi , (8)

so that 289

∆Pq = −1

2

[
(P i + qi) −

√
(P i + qi)2 + 4P i∆

]
. (9)

The largest possible change for P or q separately was ∆tot = 1 − qi. To keep the 290

same range of W for changing P and q simultaneously, we limited the maximal values P 291

and q in this case at qmax = Pmax =
√
qi. 292

Biologically tuned STDP model 293

We compared the results of the straightforward additive model to a slightly more 294

complex STDP model that acts separately over pre- and postsynaptic factors [19]. 295

Parameters were fitted to experimental data from connections between pyramidal cells 296

from layer 5 of V1 [41,48,49]. The equations for pre- and postsynaptic changes followed: 297

∆qj = c+xj+(t)y−(t− ε)Y (t) , (10)

∆Pj = −d−y−(t)y+(t)Xj(t) + d+xj+(t− ε)y+(t)Xj(t) . (11)

where Xj(t) =
∑

l δ(t− tlj) is increased at each spike from the presynaptic neuron j and 298

Y (t) =
∑

k δ(t− tki ) at each spike from the postsynaptic neuron. ε is to emphasize that 299

∆W was calculated before xj+ and y− were updated, upon the arrival of a new spike. 300

y+ and y− are postsynaptic traces, 301

dy+
dt

= − y+
τy+

+ Y , (12)

dy−
dt

= − y−
τy−

+ Y , (13)

with decay times τy+
and τy− respectively, and xj+ was a presynaptic trace with decay 302

time τx+
: 303

dxj+
dt

= −xj+
τx+

+Xj . (14)

The parameter values were taken from [19]: d− = 0.1771, τy− = 32.7ms, 304

d+ = 0.15480, c+ = 0.0618, τy+ = 230.2ms and τx+ = 66.6ms. To avoid manipulation of 305

the fitting, weight changes were not normalized in this case. 306

In the last section, we used a linear least squares separator to classify presynaptic 307

inputs according to synaptic weight average and variance. 308
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Presynaptic factor 309

Presynaptic control of the probability of release per stimulus was implemented either as 310

a Markovian process or as short-term plasticity. In the former case, probability (Pj) of 311

stochastic neurotransmitter vesicle release followed a binomial distribution. Each 312

presynaptic neuron had N = 5 release sites that functioned independently. In the 313

second we considered a dynamic modulation of the EPSPs through STP. The 314

probability Pj was decomposed into the product of instantaneous probability of release 315

pj(t) and availability of local resources rj(t), resulting in the following synaptic efficacy: 316

Wj(t) = qjpj(t)rj(t) . (15)

In the latter case, the dynamics of pj(t) and rj(t) followed the model proposed by 317

Tsodyks and Markram [60]: 318

drj(t)

dt
=

1 − rj(t)

τD
− pj(t)rj(t)Xj(t) , (16)

dpj(t)

dt
=
Pj − pj(t)

τF
+ Pj [1 − pj(t)]Xj(t) . (17)

Depression and facilitation time constants, τD = 200 ms and τF = 50 ms 319

respectively, were chosen as representative values for connections between pyramidal 320

neurons [61]. The resulting short-term plasticity could be either depressing, if Pj > PC , 321

or facilitating, if Pj < PC . For the values of τD and τF used, PC ≈ 0.3. 322

Supporting information 323

S1 Appendix. Rate model A simple firing rate model with linear response was 324

able to illustrate how correlated and uncorrelated input separation was achieved 325

without competition between the two populations. Considering independent Poisson 326

inputs with fixed firing rate we found there is a determined, non-zero average value for 327

P . The LTP model (eqs. 10 and 11) was converted to time-averaged values: 328

< dq >= c+τx+τy−Iν
2 , (18)

< dP >= νIτy+(d+τx+I − d−τy−ν) . (19)

Postsynaptic output ν was then considered as a simple firing rate model with linear 329

relation to average input I, weighted by average synaptic efficacy (eq. 15): 330

ν = α+ βqrpI , (20)

where α and β (for fixed values of q and P ) were fitted to data from simulations 331

without plasticity. Since I was fixed, we could consider stationary values for r(t) and 332

p(t), r̄ and p̄, from eqs. 16 and 17: 333

r̄ =
1 + PIτF

1 + PIτF + PIτD(1 + IτF )
, (21)

p̄ =
P (1 + IτF )

1 + PIτF
. (22)

We thus have < dq > (P, q, I) and < dP > (P, q, I) for LTP: 334

ν ≈ α+
βqIP (1 + IτF )

1 + PIτF + PIτD(1 + IτF )
. (23)

October 18, 2018 11/16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/450825doi: bioRxiv preprint 

https://doi.org/10.1101/450825
http://creativecommons.org/licenses/by/4.0/


In the vector field dP × dq (Fig. 7A), it is visible that P tends to the a specific value 335

(P∗) at the intersection of the higher* p-nullcline and the maximum value qmax which 336

corresponds to the average value of P for uncorrelated inputs. This is in contrast to 337

correlated inputs, which tend to potentiate to the maximum. This value tends to 338

increase with frequency, limiting the range of separation of the more potentiated 339

correlated population. 340

Fig 7. S1 A - Rate model p x q vector field for uncorrelated synaptic inputs. The lines
show corresponding simulation averages for uncorrelated (yellow) and correlated (gray)
inputs. B - *Point of convergence P∗ as a function of presynaptic frequency.
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