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Abstract

The understanding of speech in noise relies (at least partially) on spectrotem-

poral modulation sensitivity. This sensitivity can be measured by spectral

ripple tests, which can be administered at different presentation levels. How-

ever, it is not known how presentation level affects spectrotemporal modula-

tion thresholds. In this work, we present behavioral data for normal-hearing

adults which show that at higher ripple densities (2 and 4 ripples/oct), in-

creasing presentation level led to worse discrimination thresholds. Results

of a computational model suggested that the higher thresholds could be ex-

plained by a worsening of the spectrotemporal representation in the auditory

nerve due to broadening of cochlear filters and neural activity saturation.

Our results demonstrate the importance of taking presentation level into

account when administering spectrotemporal modulation detection tests.
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1. Introduction1

Complex acoustic signals such as speech are characterized by a combina-2

tion of spectral and temporal modulations. Speech understanding relies (at3

least partially) on the ability to detect and discriminate these modulations.4

In other words, it relies on an individual’s spectrotemporal modulation sen-5

sitivity (Supin et al., 1997). This can be assessed by two categories of tests:6

spectral ripple discrimination tests and spectral/spectrotemporal modulation7

detection (SMD/STMD, respectively) tests. There are many varieties of8

these. However, in this paper we focus on an SMD/STMD test where par-9

ticipants are asked to discriminate between a modulated and unmodulated10

stimulus. The modulation detection threshold is usually defined as the min-11

imal peak-to-valley ratio or modulation index at which the participant can12

discriminate between the two stimuli (e.g., Bernstein et al., 2013).13

It has been shown that SMD/STMD thresholds are correlated with dif-14

ferent measures of speech perception in quiet and in noise (Anderson et al.,15

2012; Mehraei et al., 2014; Davies-Venn et al., 2015; Croghan and Smith,16

2018). Additionally, SMD/STMD thresholds can provide a non-linguistic17

measure of spectral/spectrotemporal sensitivity without the confounding fac-18

tor of language knowledge that plays a role in standardized tests (e.g., speech19

audiometry, Gifford et al., 2014; Davies-Venn et al., 2015; Choi et al., 2016).20

This has motivated their use for a variety of purposes. For example, STMD21

paradigms have been used to explore perceptual learning mechanisms in the22

auditory system (Sabin et al., 2012). SMD/STMD tests have also used spec-23

tral/spectrotemporal resolution successfully as an outcome measure in dif-24

ferent fields of audiological research: prediction of speech understanding in25
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noise of hearing-aid users (Bernstein et al., 2016), assessment of cochlear26

implant candidacy, parameter fitting, and new sound processing strategies27

(Langner et al., 2017; Choi et al., 2016; Croghan and Smith, 2018; Zheng28

et al., 2017), evaluation of bimodal hearing benefit (Zhang et al., 2013), and29

music perception (Choi et al., 2018).30

Although these tests are used mostly in audiological research, to our31

knowledge no studies have evaluated how presentation level affects SMD/STMD32

thresholds. This is relevant because SMD/STMD thresholds might be nega-33

tively affected by the broadening of the auditory filters with increasing pre-34

sentation level (Glasberg and Moore, 2000). Taking the effect of level into35

account is crucial when administering SMD/STMD tests in a research en-36

vironment, in (potential) clinical practice, and even more in test situations37

where it cannot be controlled strictly (e.g., home-based computerized reha-38

bilitation programs). Furthermore, we need to understand this effect to be39

able to make a fair comparison of behavioral SMD/STMD results obtained40

at different presentation levels within and across studies.41

The goal of this work was to explore how presentation level affects SMD/STMD42

thresholds for young adult NH participants. Specifically, we focused on the43

STMD test, since spectrotemporally modulated (i.e., moving spectral ripple)44

stimuli have been suggested to provide a better representation of speech (Won45

et al., 2015) than stimuli measuring sensitivity to only spectral (i.e., rippled,46

Litvak et al., 2007; Saoji et al., 2009) or temporal modulation. Addition-47

ally, STMD tests prevent participants from having access to phase cues by48

using low rate temporal modulation (Bernstein et al., 2013). Furthermore,49

we used a biologically inspired model of peripheral processing up to the au-50
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ditory nerve (AN) to help us interpret the behavioral results, to study the51

contribution of peripheral information to spectrotemporal sensitivity, and to52

generate STMD threshold predictions.53

2. Behavioral Measurements54

2.1. Materials & Methods55

2.1.1. Participants56

Ten participants (1 male, 9 female, median age 23.5 years, age range57

21–29 years) took part. They had audiometric thresholds ≤ 20 dB HL at58

all octave frequencies from 125 to 8000 Hz. Written informed consent was59

obtained. The study was approved by the Ethics Committee of the University60

Hospitals Leuven (approval no. B322201731501).61

2.1.2. Equipment62

Measurements were performed in a double-walled sound-attenuating booth.63

Stimuli were played from a computer via an RME Hammerfall DSP Multi-64

face II sound card and presented to the participants through Sennheiser HDA65

200 headphones using APEX 3 (Francart et al., 2008).66

2.1.3. Stimuli67

We used the spectrotemporally modulated stimuli described by Kowalski68

et al. (1996) and Chi et al. (1999). These were 500-ms long (including 20-ms69

onset and offset cosine ramps) and were generated with a sampling frequency70

of 44100 Hz and 16-bit resolution using MATLAB (Mathworks, Natick, MA).71

The spectral modulation was achieved as follows. The spectrum of the72

ripple stimulus (the “carrier”) consisted of 4000 random-phase tones equally73
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spaced along the (logarithmic) frequency axis from 354 to 5656 Hz. The74

amplitudes of the individual components were adjusted to form a sinusoidally75

shaped spectrum around a flat base. The amplitude of the ripple was defined76

as the modulation depth m. The initial phase of the ripple Φ was defined77

relative to a sine wave starting at the low-frequency edge. Its value was set78

using 50 different selections of random phases between 0 and 2π to prevent79

participants from using phase differences as a cue. The ripple density was80

defined as Ω (with values of 0.5, 2, and 4 ripples/oct). The mathematical81

expression for the static ripple is given in Eq. 182

S(x) = 1 +m sin(2πΩx+ Φ) (1)

where x is the position on the logarithmic frequency axis (in octaves), which83

was defined as x = log2(
f
f0

) with f being the component tone frequency and84

f0 the low-frequency edge. Notice that when m = 0, the resulting profile is85

a flat spectrum.86

The temporal modulation was achieved by moving the static ripple down-87

wards along the frequency axis at a constant velocity ω (defined as the num-88

ber of ripple per second passing the low-frequency edge of the spectrum).89

The value of ω was 4 Hz. The complete mathematical expression for the90

spectrotemporal modulated stimuli is given in Eq. 2, where t is time.91

S(x, t) = 1 +m sin(2π (ω t+ Ωx) + Φ) (2)

In order to make our results comparable to those of previous studies, we92

report the modulation depth m as 20 log10 (m) (i.e., in dB). The reference93

stimulus was unmodulated (i.e., 20 log10 (m) = −∞ dB), whereas the modu-94
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lation depth of the target stimulus was varied adaptively (Sec. 2.1.4). Figure 195

shows spectrograms of the reference stimulus and two example target stimuli96

(20 log10(m) = −6 dB and 20 log10(m) = 0 dB).97

2.1.4. Procedure98

Initially, the stimuli were presented at levels of 65 and 86 dB SPL using all99

three ripple densities (0.5, 2, and 4 ripples/oct). Then, stimuli were presented100

at levels of 55, 65, 75, and 86 dB SPL with a ripple density of 4 ripples/oct.101
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Figure 1: (Color online) Spectrograms of the spectrotemporal modulated stimuli. Notice

how the pattern along the frequency axis changes with increasing ripple density.
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Throughout, stimuli were presented monaurally to the left ear. Level roving102

of 8 dB was used (i.e., random gain between -4 and 4 dB for each stimulus)103

to reduce the salience of level cues (Eddins and Bero, 2007).104

A two-interval two-alternative forced-choice task was used. One of the105

intervals contained the unmodulated (i.e., reference) stimulus and the other106

interval contained the modulated (i.e., target) stimulus. The target was ran-107

domly presented in the first or second interval with equal probability. There108

was a 500-ms pause between intervals. Participants were seated in front of109

a computer screen. They were instructed to discriminate the target interval,110

which would correspond to the stimulus with a “rippled, vibrating sound”,111

from the reference interval, which would correspond to the stimulus with a112

“noisy sound”. They did so by clicking on the corresponding button on the113

screen (or by using the corresponding keys on the keyboard). Visual feedback114

was provided through a green (correct response) or red (incorrect response)115

highlight after each trial. Conditions were presented to each participant in a116

random order. In a given run, the ripple density was fixed. The modulation117

depth at threshold was estimated using a three-down one-up procedure track-118

ing the 79.4% point on the psychometric function (Levitt, 1971). Each run119

started with a fully modulated target (20 log10(m) = 0 dB). The modulation120

depth was decreased by 6 dB after the first reversal, changed by 4 dB until121

two more reversals occurred, and changed by 2 dB for the last 6 reversals. A122

run was ended after 9 reversals. For each run, the mean value of 20 log10m at123

the last 6 reversals was calculated. Participants completed a test and retest124

run for every condition. If the thresholds for the two differed by more than125

3 dB, a third run was completed. For each condition, the final threshold was126
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taken as the average of all runs.127

2.2. Results128

Statistical analysis was conducted using the R programming language129

and statistical environment (R Core Team, 2017).130
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Figure 2: (Color online) STMD thresholds boxplot. The line in the middle of each box

represents the median of the participants’ thresholds for each condition. Symbols represent

the average. The vertical edges of each box represent the 25th and 75th percentiles.

The distance between them is the interquartile range (IQR). Error bars (i.e., whiskers)

are drawn from the ends of the IQR to the furthest data point within 1.5 of the IQR.

Crosses represent data points beyond that (i.e., outliers). Lower thresholds indicate better

performance. * = p < 0.05, *** = p < 0.001.

Figure 2 shows a boxplot of the STMD thresholds together with the aver-131

age across participants for stimuli at 65 and 86 dB SPL and 0.5, 2 and 4 rip-132

ples/oct. A general linear model (GLM) showed that ripple density had a133
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significant effect on the STMD thresholds (χ2(1) = 8.26, p < 0.001) as134

did level (χ2(1) = 11.76, p < 0.001). There was a significant interaction135

of ripple density and level (χ2(1) = 24.17, p < 0.001). Tukey post hoc136

tests on the GLM revealed increased thresholds with increasing ripple den-137

sity at 86 dB SPL, between 0.5 ripples/oct and 4 ripples/oct (z = 5.83,138

p < 0.001, confidence interval (CI) [3.64, 8.02]) and between 2 ripples/oct139

and 4 ripples/oct (z = 4.82, p < 0.001, CI [2.63, 7.01]). In contrast,140

thresholds decreased with increasing ripple density at 65 dB SPL between141

0.5 ripples/oct and 2 ripples/oct (z = −3.57, p < 0.001, CI [-5.76, -1.38])142

and then increased between 2 ripples/oct and 4 ripples/oct (z = 2.54,143

p = 0.012, CI [0.35, 4.73]). The STMD thresholds were significantly lower144

at 65 dB SPL than at 86 dB SPL at 2 ripples/oct (z = 3.12, p < 0.001,145

CI [0.93, 5.31]) and at 4 ripples/oct (z = 5.40, p < 0.001, CI [3.21, 7.59]),146

but not at 0.5 ripples/oct (z = −1.45, p = 0.40, CI [-3.64, 0.73]).147

Figure 3 shows a boxplot of the STMD thresholds for stimuli at 55, 65, 75, and148

86 dB SPL and 4 ripples/oct. STMD thresholds changed significantly with149

level (Friedman’s ANOVA, χ2
F (3) = 24.36, p < 0.001). There was a large150

increase between 65 and 75 dB SPL. Post hoc Conover’s tests with Holm151

correction for multiple comparisons revealed significant differences between152

55 and 75 dB SPL (p < 0.001), 55 and 86 dB SPL (p < 0.001), 65 and153

75 dB SPL (p < 0.001), 65 and 86 dB SPL (p < 0.001), and 75 dB SPL and154

86 dB SPL (p < 0.001). There was no significant difference between thresh-155

olds for the two lowest levels (55 and 65 dB SPL, p > 0.05).156
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Figure 3: (Color online) STMD thresholds boxplot with a ripple density of 4 ripples/oct.

Otherwise as Figure 2.

3. Computational Model157

We used a computational model with a physiologically inspired front end158

(i.e., model of the auditory periphery up to the AN) to help us interpret159

the behavioral results, to study the contribution of peripheral information160

to spectrotemporal sensitivity, and to obtain quantitative predictions of the161

behavioral thresholds. A block diagram of the model is shown in Fig. 4. We162

hypothesized that the model would reflect a worsening in the spectrotemporal163

representation in the AN with increasing level.164

3.1. Stimuli165

We included a wider range of levels (from 40 to 95 dB SPL in steps of166

5 dB) than used in the experiments. We used the same ripple densities167
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(0.5, 2, and 4 ripples/oct). We simulated responses to the reference stimulus168

(20 log10(m) = −∞ dB) and target stimuli with a modulation depth of169

20 log10(m) = −6 dB and 20 log10(m) = 0 dB (which correspond to 50 and170

100% modulation, respectively, in a linear scale).171

3.2. AN Model172

The model proposed by Zilany et al. (2009, 2014) was used as a front173

end. This model reproduces the responses of AN fibers to acoustic stimu-174

lation. It has been validated with a wide range of physiological data. It175
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Figure 4: (Color online) Block diagram of the computational model used to interpret the

behavioral data and to study the contribution of peripheral information to spectrotemporal

sensitivity.
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is comprised of different modules (each simulating a specific function of the176

auditory periphery).177

First, the stimulus is passed through a filter simulating the middle ear178

frequency response. The output is fed to a signal path and a control path.179

The signal path mimics the behavior of the outer-hair-cell- (OHC-) controlled180

filtering of the basilar membrane in the cochlea and the transduction of the181

inner-hair-cells (IHCs) by a series of non-linear and low-pass filters. The con-182

trol path mimics the function of the OHCs in controlling basilar membrane183

filtering. The control path output feeds back into itself and into the signal184

path. The output of the IHCs is fed to the IHC-AN synapse module with185

two power-law adaptation paths, which simulate slow and fast adaptation.186

For each stimulus, the AN model generated a so-called early stage neu-187

rogram (ESN). An ESN is a time-frequency representation of a signal which188

encodes temporal modulations caused by the interaction of spectral compo-189

nents in each band (Elhilali et al., 2003). It shows the response of neurons190

tuned to different characteristic frequencies (CFs) through time. We used191

512 CFs logarithmically spaced from 250 to 8000 Hz. For each CF, we simu-192

lated the average response of 50 AN fibers with different spontaneous rates:193

high (100 spikes/s), medium (5 spikes/s), and low (0.1 spikes/s), with propor-194

tions of 0.6, 0.2, and 0.2, respectively, which correspond to the distribution195

observed in mammals (Liberman, 1978; Zilany and Bruce, 2007). We grouped196

the neural activity into time bins of 8 ms, which is close to the equivalent197

rectangular duration of the temporal window of the auditory system (Moore198

et al., 1988; Oxenham and Moore, 1994). Afterwards, we smoothed the re-199

sponse by convolving it with a 2-sample long rectangular window with 50%200
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overlap. Figure 5 shows example ESNs of reference and target stimuli for201

different ripple densities.202
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Figure 5: (Color online) ESNs of spectrotemporally modulated stimuli.

3.3. Neurogram activity203

We quantified the increase of neural activity by computing the mean and204

standard deviation of the neurograms across different levels. Figure 6 shows205

plots of the ESN activity for the reference stimulus (20 log10 (m) = −∞ dB)206

and a fully-modulated target stimulus (20 log10(m) = 0 dB). In all cases,207
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increasing the level increased the neural activity and the slope of the curves208

decreased at high levels. These trends were consistent across all three ripple209

densities.210

Level [dB SPL]

9540 65 86 9540 65 86 9540 65 8655 75

0.5 ripples/oct 2 ripples/oct 4 ripples/oct

0

255
20 log10(m) = -∞ dB 
20 log10(m) =    0 dB

(N
o

rm
.)

 N
e

u
ra

l A
ct

iv
it

y

Figure 6: (Color online) Neurogram activity. The solid lines and the shaded areas cor-

respond to the mean and standard deviation, respectively, of each neurogram. This is a

measure of the amount of activity at the AN level. A large increase in activity could lead

to saturation and, therefore, to a poorer spectrotemporal representation, yielding higher

thresholds (Sec. 4). The dashed lines represent the levels at which behavioral measure-

ments were obtained.

3.4. Neurogram frequency profiling211

We defined a frequency profile of a neurogram as a slice across its CFs at212

a given point in time. If we think of a neurogram as an image, a frequency213

profile would correspond to all the row values of a specific column.214

Consider the ESNs in Fig. 5 for the ripple density of 0.5 ripples/oct.215

The top ESN (20 log10(m) = −∞ dB) shows a uniform, indistinct pattern.216

A frequency profile at any point in time would show a roughly flat curve.217

In contrast, the bottom ESN (20 log10(m) = 0 dB) shows a clear pattern,218

reflecting the spectrotemporal characteristics of the stimulus. A frequency219
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profile at any point in time would show distinct crests and troughs. Figure 7220

shows frequency profiles for different ripple densities at different levels.221

3.5. Dispersion222

One measure of the information available at the AN level for detection223

of modulation is the dispersion of the frequency profiles (i.e., columns) of224

the ESNs across time. The dispersion is a measure of the amplitude of225

the frequency profile curves. It measures the amount of variation in am-226

plitude across the frequency range. We quantified this dispersion using the227

interquartile range (IQR), as shown in Eq. 3. We also computed a measure228

of the dispersion variability across all the frequency profiles of a given neu-229

rogram, as shown in Eq. 4. In both cases, ESNj is the frequency profile at230

the j-th point in time.231

ESNdisp = Median(IQR(ESNj)) (3)
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Figure 7: (Color online) Frequency profiles of the ESNs at t = 250 ms (total duration of

the stimulus was 500 ms).
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ESNdispVar = IQR(IQR(ESNj)) (4)

Figure 8 shows plots of ESN dispersion. Deeper modulations (closer232

to 20 log10(m) = 0 dB) led to larger dispersions for lower ripple densities233

(0.5 and 2 ripples/oct). In all cases, increasing the level reduced the disper-234

sion. This trend was consistent across all three ripple densities.235
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Figure 8: (Color online) Plots of ESN dispersion. The solid lines and the shaded areas

correspond to the ESN dispersion and dispersion variability, respectively, for frequency

profiles across all time points for each neurogram. The ESN dispersion is a measure

of the amount of information for modulation detection available at the AN level (larger

dispersion allows for higher detectability, Sec. 4). The dashed lines represent the levels at

which behavioral measurements were obtained.

3.6. Regression236

Model results were compared with the behavioral data using a regression237

model. Since the results of experiment 1 showed that the effect of presenta-238

tion level was largest at 4 ripples/oct, we focused on the behavioral data for239

experiment 2.240

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/450957doi: bioRxiv preprint 

https://doi.org/10.1101/450957


We calculated the difference in dispersion between a fully-modulated tar-241

get stimulus (20 log10(m) = 0 dB) and the non-modulated reference as a242

predictor for an exponential regression model as described by Eq. 5:243

Behav. thresh.(ESNdisp,ESNdisp ref) = a eb (ESNdisp−ESNdisp ref) (5)

with parameters a and b. It yielded an (adjusted) R2 value of 0.98 and a244

root mean squared error (RMSE) of 0.25 dB. Figure 9 shows plots of the245

behavioral data versus the model metric as well as the regression model.246

We used the generated model to predict the behavioral thresholds for the247

different levels. Figure 10 shows the model’s predictions as well as the mean248

of the behavioral data (as a reference). The model predictions show that the249

lowest (best) STMD threshold is around 20 log10(m) = − 13.5 dB for the250

modelled experiment.251

ESNdisp exp - ESNdisp ref
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Figure 9: (Color online) Exponential regression model of the behavioral thresholds of

experiment 2 (ripple density of 4 ripples/oct).
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Figure 10: (Color online) Model predictions (squares) of the behavioral thresholds (circles)

across different levels (ripple density of 4 ripples/oct).

4. Discussion252

Higher levels led to increased STMD thresholds. Moreover, increasing253

ripple density affected the STMD thresholds differently depending on the254

level. At 65 dB SPL, STMD thresholds were lowest at 2 ripples/oct. In255

other studies a similar trend was found. Anderson et al. (2012) found lowest256

thresholds at 3 ripples/oct, followed by increasing thresholds with increas-257

ing ripple density (up to 64 ripples/oct). The participants of Eddins and258

Bero (2007) performed best either at 2 or 3 ripples/oct. Davies-Venn et al.259

(2015) found a significant improvement in thresholds from 0.5 to 1 and from260

1 to 2 ripples/oct. Other studies (Bernstein and Green, 1987; Leek and Sum-261

mers, 1996) have found similar trends. The most common explanation is that262

there are two regions in which different cues are used. For low ripple densities263

(<= 3 ripples/oct), the ripples are detected using a spectral-contrast mech-264

anism, while for higher ripple densities (> 3 ripples/oct), the spectral cues265

become weaker and the interaction between the close peaks in the rippled266
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noise provides usable temporal cues (Davies-Venn et al., 2015). However,267

further studies are needed to confirm this. At 86 dB SPL, STMD thresh-268

olds increased with increasing ripple density, similar to what Bernstein et al.269

(2013) found. The effect of presentation level was largest at 4 ripples/oct,270

where low presentation levels (55 and 65 dB SPL) yielded significantly lower271

(better) STMD thresholds than high presentation levels (75 and 86 dB SPL).272

Understanding the effect of level on STMD thresholds for NH listeners is273

the first step to understanding it in HI listeners. Although it is very likely274

that level also affects STMD thresholds of HI listeners, our results cannot be275

translated directly to the HI population for several reasons. Firstly, increas-276

ing the intensity affects neural saturation for NH and HI listeners differently.277

This can also affect perception differently due to the abnormal loudness-278

growth curve (i.e., non-linear loudness shift, Edwards et al., 1998; Hellman,279

1999) of HI listeners. Additionally, the auditory filters of HI listeners are ab-280

normally broad (resulting in spectral smearing of the internal representation281

of the stimulus, Moore, 2007) and change less with level compared to NH282

listeners. Furthermore, the large heterogeneity of the HI population (Lopez-283

Poveda and Johannesen, 2012) would very likely play a role. Therefore, we284

hypothesize that STMD thresholds of HI listeners will also be affected by285

level and will be worse than those of NH listeners. However, testing this286

requires further behavioral measurements and modelling. This would be a287

crucial step for further understanding the differences in STMD thresholds288

between NH and HI participants. Our results show that attributing them to289

differences in spectrotemporal sensitivity would be only partially true, since290

level also plays an important role.291
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We used a computational model with a physiologically inspired front end292

to explain the behavioral results (Fig. 5). We found that the observed effects293

of level on the behavioral data could be explained by a worsening of the294

spectrotemporal representation in the AN due to broadening of the cochlear295

filters. Furthermore, higher levels led to more neural saturation “filling in the296

dips” of the neurograms. This can be seen in the increase of the neural ac-297

tivity (Fig. 6) and the flattening of the frequency profiles (Fig. 7). Frequency298

profiles at lower levels reflected the changes of the spectral information across299

time, while frequency profiles at higher levels lost the representation of this300

information (Fig. 8). All these factors diminish the coding of the spectrotem-301

poral pattern of the modulated stimuli in the AN with increasing level, mak-302

ing it harder to discriminate.303

The regression analysis (Fig. 9) suggested that information in the au-304

ditory periphery is able to account for a large proportion of the variance305

in the behavioral data, supporting its value for predicting spectrotemporal306

modulation thresholds (Fig. 10).307

Similar results could have been obtained with a more simple model (e.g., an308

excitation pattern model, Moore and Glasberg, 1987). However, the use of309

frameworks based on the biology of the auditory system has a few advan-310

tages. For instance, they incorporate physiological information inherently.311

This allows a more direct, transparent understanding of the auditory mech-312

anisms at different stages of the auditory pathway (the periphery in this313

case), since it gives insight into the representation of the stimuli at each of314

these steps. Additionally, the Zilany et al. (2009, 2014) AN model incor-315

porates the effects of sensorineural hearing loss due to damage to the IHCs316
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and OHCs (something that would not be straightforward to do using a non-317

physiological approach). Now that presented framework has been validated318

for the NH case, this would be of special interest, since it could allow studying319

the effect of level on spectrotemporal modulation detection by HI listeners320

using a similar framework to the one described here.321

Furthermore, alternative back ends could have been used in the proposed322

model. For example, the ratio between the dispersion of the reference and323

the target stimulus (instead of the difference) could have been used as the324

predictor for the regression. Additionally, a different approach could have325

been used to predict the behavioral threshold. For instance, the difference326

in dispersion (or the quotient) between the reference and the target stimulus327

required for threshold could be computed. Afterwards, the modulation depth328

required to achieve this difference metric could be calculated iteratively, with329

the final value being the predicted behavioral threshold. This approach would330

eliminate the need for the regression model in Eq. 5.331

The effect of presentation level has a number of implications for the use of332

STMD tests in experimental and clinical environments. When administering333

STMD tests at different levels, the observed differences in STMD thresholds334

should (at least partially) be attributed to the effect of level, making it335

more complex to interpret the contribution of spectrotemporal sensitivity336

only. For NH participants it is recommended to use a fixed presentation level337

to allow for direct comparison between their STMD thresholds. However,338

it is unclear how level affects STMD thresholds in HI listeners. Therefore339

recommendations for STMD tests in HI participants cannot be made based340

on our data. Future work will be focused on investigating level effects for341
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different types of spectral and spectrotemporal ripple tests, as well as for HI342

listeners.343

5. Conclusions344

STMD thresholds were higher (worse) at high than at low presentation345

levels, with larger differences in thresholds at 4 ripples/oct than at 2 rip-346

ples/oct. The computational model with a physiologically inspired front end347

could account for the behavioral results, showing that information at the348

peripheral level is sufficient to predict the behavioral thresholds. STMD349

thresholds obtained at different presentation levels are affected not only by350

differences in spectrotemporal modulation, but also at least partly by level.351

Therefore, this effect needs to be considered when administering STMD tests352

(both in clinical practice and in experimental research) and when comparing353

STMD thresholds within and across studies.354
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Langner, F., Saoji, A. A., Büchner, A., Nogueira, W., 2017. Adding simul-425

taneous stimulating channels to reduce power consumption in cochlear426

implants. Hearing Research 345, 96–107.427

Leek, M. R., Summers, V., 1996. Reduced frequency selectivity and the428

preservation of spectral contrast in noise. The Journal of the Acoustical429

Society of America 100 (3), 1796–1806.430

Levitt, H., feb 1971. Transformed up-down methods in psychoacoustics. The431

Journal of the Acoustical society of America 49 (2), 467–477.432

26

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/450957doi: bioRxiv preprint 

https://doi.org/10.1101/450957


Liberman, M. C., 1978. Auditory-nerve response from cats raised in a low-433

noise chamber. The Journal of the Acoustical Society of America 63 (2),434

442–455.435

Litvak, L. M., Spahr, A. J., Saoji, A. A., Fridman, G. Y., 2007. Relationship436

between perception of spectral ripple and speech recognition in cochlear437

implant and vocoder listeners. The Journal of the Acoustical Society of438

America 122 (2), 982–991.439

Lopez-Poveda, E. A., Johannesen, P. T., 2012. Behavioral estimates of the440

contribution of inner and outer hair cell dysfunction to individualized au-441

diometric loss. Journal of the Association for Research in Otolaryngology442

13 (4), 485–504.443

Mehraei, G., Gallun, F. J., Leek, M. R., Bernstein, J. G. W., 2014. Spec-444

trotemporal modulation sensitivity for hearing-impaired listeners: Depen-445

dence on carrier center frequency and the relationship to speech intelligi-446

bility. The Journal of the Acoustical Society of America 136 (1), 301–316.447

Moore, B. C., Glasberg, B. R., Plack, C., Biswas, A., 1988. The shape of the448

ears temporal window. The Journal of the Acoustical Society of America449

83 (3), 1102–1116.450

Moore, B. C. J., 2007. Cochlear Hearing Loss: Physiological, Psychological,451

and Technical Issues. Wiley Series in Human Communication Science.452

Moore, B. C. J., Glasberg, B. R., 1987. Formulae describing frequency se-453

lectivity as a function of frequency and level, and their use in calculating454

excitation patterns. Hearing research 28 (2-3), 209–225.455

27

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/450957doi: bioRxiv preprint 

https://doi.org/10.1101/450957


Oxenham, A. J., Moore, B. C., 1994. Modeling the additivity of nonsimulta-456

neous masking. Hearing research 80 (1), 105–118.457

R Core Team, 2017. R: A Language and Environment for Statistical Com-458

puting. R Foundation for Statistical Computing, Vienna, Austria.459

URL https://www.r-project.org/460

Sabin, A. T., Eddins, D. a., Wright, B. a., 2012. Perceptual learning evi-461

dence for tuning to spectrotemporal modulation in the human auditory462

system. The Journal of neuroscience : the official journal of the Society for463

Neuroscience 32 (19), 6542–9.464

Saoji, A. A., Litvak, L., Spahr, A. J., Eddins, D. A., 2009. Spectral modula-465

tion detection and vowel and consonant identifications in cochlear implant466

listeners. Journal of the Acoustical Society of America 126 (3), 955–958.467

Supin, A. Y., Popov, V. V., Milekhina, O. N., Tarakanov, M. B., 1997.468

Frequency-temporal resolution of hearing measured by rippled noise. Hear-469

ing Research 108 (1-2), 17–27.470

Won, J. H., Moon, I. J., Jin, S., Park, H., Woo, J., Cho, Y. S., Chung, W. H.,471

Hong, S. H., 2015. Spectrotemporal modulation detection and speech per-472

ception by cochlear implant users. PLoS ONE 10 (10), 1–24.473

Zhang, T., Spahr, A. J., Dorman, M. F., Saoji, A., 2013. Relationship Be-474

tween Auditory Function of Nonimplanted Ears and Bimodal Benefit. Ear475

and hearing 34 (2), 133–41.476

Zheng, Y., Escab́ı, M., Litovsky, R. Y., 2017. Spectro-temporal cues enhance477

28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/450957doi: bioRxiv preprint 

https://www.r-project.org/
https://doi.org/10.1101/450957


modulation sensitivity in cochlear implant users. Hearing Research 351,478

45–54.479

Zilany, M. S. A., Bruce, I. C., 2007. Predictions of speech intelligibility with480

a model of the normal and impaired auditory-periphery. In: Neural Engi-481

neering, 2007. CNE’07. 3rd International IEEE/EMBS Conference. IEEE,482

Kohala Coast, HI, USA, pp. 481–485.483

Zilany, M. S. A., Bruce, I. C., Carney, L. H., 2014. Updated parameters and484

expanded simulation options for a model of the auditory periphery. The485

Journal of the Acoustical Society of America 135 (1), 283–286.486

Zilany, M. S. A., Bruce, I. C., Nelson, P. C., Carney, L. H., 2009. A phe-487

nomenological model of the synapse between the inner hair cell and audi-488

tory nerve: Long-term adaptation with power-law dynamics. The Journal489

of the Acoustical Society of America 126 (5), 2390–2412.490

29

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/450957doi: bioRxiv preprint 

https://doi.org/10.1101/450957

	Introduction
	Behavioral Measurements
	Materials & Methods
	Participants
	Equipment
	Stimuli
	Procedure

	Results

	Computational Model
	Stimuli
	AN Model
	Neurogram activity
	Neurogram frequency profiling
	Dispersion
	Regression

	Discussion
	Conclusions

