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ABSTRACT. In single cell analysis, visualization of high-dimensional data is essential for 
information extraction and interpretation. t-Distributed Stochastic Neighbor Embedding (t-
SNE) is a dimensionality reduction algorithm that facilitates visualization of complex high-
dimensional cytometry data as a two-dimensional distribution or ‘map’. t-SNE maps can be 
interrogated by either expert-driven or automated techniques to categorize single cell data into 
relevant biological populations and discern biologically relevant differences between individual 
samples. The use of t-SNE for high parameter mass and fluorescent cytometry datasets enables 
a comprehensive and unbiased view of results as compared to traditional biaxial gating. 
However, successful t-SNE visualization depends on heuristic titration of multiple parameters, 
as non-optimal embeddings can carry artifacts that make the map difficult or impossible to 
interpret. Moreover, standard t-SNE implementations fail to produce clear visualizations of 
datasets when millions of datapoints are projected on the map, often making this method 
unusable for larger biological datasets. To overcome current t-SNE limitations, we formulated 
opt-SNE, an array of automated tools for optimal parameter selection in t-SNE visualization. 
For optimal and fastest data embedding, opt-SNE utilizes Kullback-Liebler (KL) divergence 
evaluation in real time by tailoring the early exaggeration stage of t-SNE gradient computation 
in a dataset-specific manner. Here, we demonstrate that precise timing of early exaggeration 
and scaling the gradient descent learning rate step to the size of the dataset together dramatically 
improve computation time and enable high quality visualization of both large cytometry and 
transcriptomics datasets. Also, our results explain why existing software solutions with hard-
coded t-SNE parameters produce poorly resolved and potentially misleading maps of 
fluorescent and mass cytometry data. In sum, our novel approach to t-SNE enables the required 
fine-tuning of the algorithm to ensure optimal resolution of t-SNE maps and more precise data 
interpretation.  

 
Keywords: mass cytometry, flow cytometry, cytometry analysis, t-SNE, machine learning, viSNE, 
scRNA-seq, dimensionality reduction, data visualization 
 
1. Introduction.  

Visual exploration of high-dimensional data is imperative for the comprehensive analysis of single 
cell datasets. With state-of-art technologies, fluorescence, mass and sequencing-based cytometric 
data analysis requires tools able to reveal the combinations of proteomic or transcriptomic markers 
that define the cell phenotype in a multiparametric dataset.  Traditional biaxial presentation and 
gating has been the standard analysis method for parsing cytometry data, however, with the advent 
of modern high-parameter era, tools that can clearly present multidimensional data became 
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essential. Therefore, most of the techniques that belong to the family of dimensionality reduction 
(DR) methods have been borrowed and tested on cytometry data with variable success. A popular 
DR tool is principal component analysis (PCA); however, PCA generates a low-dimensional 
representation of data with a linear mapping matrix and is therefore mostly unsuitable for cytometry 
data visualization as it cannot faithfully present the non-linear relationships in the data.  

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a state-of-art dimensionality reduction 
algorithm for non-linear data representation (van der Maaten and Hinton 2008; Wattenberg 2016) 
that allows visualization of complex high-dimensional cytometry data as a two-dimensional 
distribution or “map”, where each ‘island’ roughly corresponds to a population of cells defined by 
cytometric signature that existed in high-dimensional space and was preserved and flattened in t-
SNE space (Amir el et al. 2013). These maps can be interrogated by human-guided or automated 
techniques to categorize single cell data into relevant biological populations and visualize important 
differences between samples.  

t-SNE was developed for a broad range of data analysis tasks that involve machine learning and 
has been adopted for cytometry use. Once the data structure has been revealed and visualized 
through t-SNE, the quantification and interpretation of the data can be performed by analyzing t-
SNE coordinates with clustering algorithms such as DensVM (Becher et al. 2014; Chen et al. 2016). 
Cytometry clustering algorithms that directly interrogate high-dimensional data, such as FlowSOM 
(Van Gassen et al. 2015) and PhenoGraph (Levine et al. 2015), employ t-SNE maps to present 
annotated clusters to the viewer.  

Unfortunately, t-SNE is that it does not specifically address the challenge of large cytometry 
datasets, and the results of running readily available t-SNE implementations on large datasets are 
often unsatisfactory. Having been developed and benchmarked on relatively small (<50,000 
datapoints) datasets, t-SNE does not satisfy the needs of cytometry data, when  hundreds of 
thousands or millions of cytometric events are collected for analysis. Firstly, t-SNE learns the 
embedding non-parametrically, and hence new pieces of data cannot be added to an existing 
analysis. This necessitates the whole dataset to be analyzed within one embedding computation. 
When the full dataset is comprised of multiple samples, each representing a subject in a large cohort 
or an independent experimental condition, retaining statistically significant representation of small 
subpopulations in each sample requires inflating the size of the dataset (Donnenberg and 
Donnenberg 2007). Second, even when the experimental setup and reagent selection permits 
detection of rare populations, downsampling the data risks preventing these scarce subsets from 
being identified.  

These limitations are not satisfactorily addressed with existing practices for applying t-SNE. 
Not only are large datasets computationally expensive to analyze, but also the resulting t-SNE maps 
provide poor visualization and incomprehensive representation of high-dimensional data.  

As a result, when being not able to produce quality t-SNE visualizations from the large datasets, 
the researchers often resort to either downsampling their data up to the very limit of detection of 
rare populations (DiGiuseppe et al. 2015) or to exporting specific populations from their dataset, 
thus compromising the ‘unbiased’ data analysis approach (Lin et al. 2015).  

Despite the fact that t-SNE has already been widely adopted by the scientific community, to our 
knowledge no rigorous theoretical or empirical testing of the t-SNE adaptation for cytometry 
applications has been performed to date. In 2013, Amir et al reported the use of t-SNE (or viSNE, 
as it was renamed (Amir el et al. 2013)) on mass cytometry data; since then, t-SNE has been 
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implemented in the majority of commercial and open-source platforms for cytometry analysis 
(FlowJo, Cytobank, FCSExpress, cytofkit, etc). In most implementations, few or no adjustments 
were made to the Barnes-Hut t-SNE algorithm. This includes retaining the default and hard-coded 
parameter settings that were originally tested and optimized with non-cytometry datasets like 
CIFAR (image dataset) or MNIST (handwritten digits). This lack of rigorous analysis of the full 
potential and applicability of t-SNE to cytometry data is the primary motivation for this work.   

In this paper, we propose a method to automatically find optimal t-SNE parameters via fine-
tuning of the early exaggeration stage of t-SNE embedding in real time. We call our approach opt-
SNE, for optimal t-SNE algorithm. We find that our adjustments can tremendously shorten the 
number of iterations required to obtain a visualization of superior quality. Our approach also 
eliminates the need for trial-and-error runs intended to empirically find the optimal selection of t-
SNE parameters, which can potentially save hundreds of hours of computation time.  
 
2. Materials and methods  

2.1. Datasets  

All datasets used in the study are summarized in Table 1.  
 

Dataset Data type Number of 
parameters References 

Mass41parameter Mass cytometry 41 total, 14 used for t-
SNE (Bendall et al. 2011) 

Flow18parameter Flow cytometry 18 total, 11 used for t-
SNE 

primary data available upon 
request 
 

Flow20M Flow cytometry 18 total, 15 used for t-
SNE 

primary data available upon 
request 

10X scRNAseq 20 PCA vectors 
https://support.10xgenomics.c
om/single-cell-gene-
expression/datasets 

OMIP-37 Flow cytometry 18 total, 10 used for t-
SNE 

(Belkina and Snyder-
Cappione 2017) 

 
2.2. Primary samples   

Flow18parameter data were collected as described (Belkina and Snyder-Cappione 2017) with 
minor modifications of the flow cytometry reagent list.  
 
2.3. Data pre-processing. 

For the mass41parameter dataset, we used singlet events from five files recorded from replicate 
conditions of mouse bone marrow samples. For Flow18parameter dataset and OMIP37 dataset, 
flow cytometry samples from a single donor per file were recorded. Data were digitally 
concatenated when applicable and a randomly downsampled file of 1,000,000 events was created 
and used for analyses. Flow cytometry data were compensated with acquisition-defined 
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compensation matrices. Prior to t-SNE analysis, all cytometry data were transformed using asinh 
or biexponential transformation.  
For Flow20M dataset, 18-parameter flow cytometry PBMC data from 27 subjects were 
compensated with acquisition-defined compensation matrix and concatenated. Light scatter 
parameters were log-transformed and fluorescence parameters were asinh-transformed. 
 
2.4. Data analysis. 

A desktop C++ Barnes-Hut implementation of t-SNE for Mac OS was used for most t-SNE analyses 
(Van Der Maaten 2014). All datasets were embedded in 2D space.  Original code was edited to 
allow user input for early exaggeration stop iteration, perplexity, total number of iterations, early 
exaggeration factor value, and learning rate value. KLD value and t-SNE coordinates were reported 
at each generation or as frequently as requested. To allow generation of visually comparable t-SNE 
maps, random seed was not used unless specified. For cross-validation and to benchmark against 
standard platforms, we utilized cloud-based Cytobank, FlowJo V10.3-10.5 and FlowJo V9.9.6. 
Cytobank and FlowJo platforms were used to generate FCS files from tabular data. Logs of t-SNE 
runs were batch-processed in VBA and analyzed with GraphPad Prism 7. Expert-guided (manual) 
analysis of cell populations was performed in FlowJo 10.3-10.5 as described previously for specific 
datasets (Belkina and Snyder-Cappione 2017; Bendall et al. 2011) or as explained below and used 
for map annotations. 

For scRNAseq analysis, we used SeqGeq 1.3 package. We used PCA projections from 10X 
Genomics dataset to calculate the t-SNE embedding and annotated it using marker genes for major 
cell types.  

The quality of the embeddings was assessed by a nearest neighbor classifier strategy similar to 
that found in previous reports (Jian et al. 2016; Van Der Maaten 2014; van der Maaten and Hinton 
2008). Briefly, for each observation, the k nearest neighbors (by Euclidean distance) were 
calculated using the 2D coordinates of the t-SNE map and the class assigned by expert gating was 
compared to the most common class of its k neighborhood. The rate of correct matches was tallied 
and represented as the overall nearest neighbor accuracy. The accuracy was also calculated on a 
per-class basis; different values for k (1,10,20,30,40,50) were reported. 

  
3. Results and discussion. 

3.1. An overview of t-SNE setup for cytometry. 

As described in detail in van der Maaten 2014, t-SNE computes low-dimensional coordinates of 
high-dimensional data so that similar data points that are close to one another in the raw data space 
are mapped close in the reduced space, and dissimilar points are mapped at longer distances. First, 
t-SNE models the probabilities as a Gaussian distribution around each data point in the high-
dimensional space, and models the target distribution of pairwise similarities in the lower-
dimensional space using Cauchy distribution (Student t-distribution with 1 degree of freedom). 
Then the Kullback-Liebler Divergence (KLD) between the distributions is iteratively minimized 
via gradient descent. The gradient computation is essentially an N-body simulation problem with 
attractive forces (approximated to nearest neighbors using vantage-point trees) pulling similar 
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points together and repulsive forces (approximated at each iteration using the Barnes-Hut 
algorithm) pushing dissimilar points apart.  

An important part of gradient descent is “early exaggeration” (EE) that was proposed by van 
der Maaten and Hinton (2008) to battle the “overcrowding” artifact of embedding. With early 
exaggeration, all probabilities modeling distances in high-dimensional space are multiplied by a 
factor (early exaggeration factor, EEF) for the duration of the first (typically 250 or 25% of the 
total number of)  iterations. EE coerces data to form tight and widely separated clusters in the map 
and is considered to enable the map to find a better global structure.  

 
3.2. The standard t-SNE configuration fails to visualize large datasets 

Multiple software platforms allow t-SNE analysis of cytometry data, including commonly used 
cytometry analysis desktop packages (FlowJo, FCS Express), and a cloud-based analysis platform 
Cytobank. Implementations of t-SNE are available as open-source packages in popular 
programming languages such as R (rtsne) and Python (sci-kit learn). Most of implementations wrap 
or re-write original C++ code of t-SNE (van der Maaten, 2014) and produce identical analysis 
results. We opted to use the C++ code and customize it to implement parameter adjustments 
discussed below, and we also intergerated equivalent adjustments in the FlowJo and SeqGeq 
implementations of t-SNE. 

The t-SNE algorithm can be guided by a set of parameters that finely tune certain aspects of the 
t-SNE run (Wattenberg 2016). However, cytometry software solutions often make those parameters 
either inaccessible or severely restrained to provide ‘one-size-fits-all’ solution for t-SNE setup. 
Although each platform has a unique combination of possible adjustments, most of them allow 
changes to the number of iterations and to the perplexity (a soft measure for the number of nearest 
neighbors considered for each data point). 

For this study, we used two large datasets, one fluorescent (18-parameter) and one mass 
cytometry (41-parameter), each containing 1 million events in total. We opted not to employ 
popular datasets that are used for algorithm testing in cytometry because most of them were too 
small for our needs and rarely exceeded 500,000 events (Weber and Robinson 2016).  

Datasets larger than approximately 1-2 x105 events are generally observed to suffer from 
dramatic reduction in t-SNE map quality. As such, they are usually downsampled prior to analysis. 
However, we hypothesized that the resolution of t-SNE maps comprised of higher event counts 
could be dramatically improved with fine-tuning of t-SNE parameters.   

Empirically, cytometrists have observed that increasing the number of iterations results in better 
quality maps. We tested that by running both datasets at default 1000 iterations per run and 
comparing them with “extended” 3000 iteration computation (Fig. 1A, B). To aid visualization, 
here and further on we overlay the maps with color-coded populations derived from expert-driven 
(‘manual’) gating of the same dataset which serves here as a ground-truth basis for data 
classification. As expected, 1000-iteration runs produced maps with poor visualization (overall 1-
NN accuracy of embedding was 65% and as low as 18% for certain populations). Specifically, we 
observed massive overlaps and random fragmentation of populations. In contrary, 3000-iterations 
runs resulted in maps with better defined “islands”, isolated populations and no random 
fragmentations (overall 1-NN accuracy of embedding 96%; detailed results of accuracy evaluations 
for all runs are presented in Suppl. Table 1).  
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To find the cause of this difference, we examined the behavior of KL divergence (KLD) over the 
duration of t-SNE embedding. We made several observations. First, as shown on Fig 1C, KLD 
value is inflated during the EE in the beginning of the “default” t-SNE run (red line). In the 
“extended” run with 3000 iterations (black line), the EE lasts over 750 iterations since most 
cytometry platforms have EE scaled to 25% of total iteration number (although some use original 
hard-coded value of 250 iterations). Second, KLD does not immediately minimize at the start of 
the EE; instead, the graph of KLD over time is a plateau that is followed by a curve that captures 
the incremental decrease of KLD indicating the gradient descent. In the “default” run, the plateau 
was interrupted when the EE was stopped and KLD dropped, and then continued with non-
exaggerated value of KLD.  

 
3.3.  KLD plateau phase resolves global cluster structure in t-SNE visualization  

According to the authors, EE was introduced as a “trick” to improve resolution of the global 
structure of the data visualization that would not converge to separated clusters otherwise (van der 
Maaten and Hinton 2008). Since the poor-quality cytometry t-SNE maps as shown in Fig. 1A, B 
suffer from same problem, we hypothesized that with conventional platforms, by increasing total 
iterations the analyst may inadvertently increase the number of EE iterations and that may 
beneficially influence visualization quality. To test this hypothesis, we compared multiple 3000-
iteration runs that differed in timing of the EE stop (Fig 2A). To assess the effect of early 
exaggeration on map optimization, we sampled each run at the iteration when the EE stops, and 
assessed the effects of our perturbations on both mass cytometry (Fig 2A) and flow cytometry (Fig 
2B) data visualization. 

We found impressive differences in map quality between shorter and longer EE runs. Although 
the map after EE200/total3000 iterations appears visually more pleasing than EE250/total1000 (Fig 
1A, B) and could be considered a successful visualization, ground-truth labeling indicates that it 
suffered from cluster fragmentation. When cluster fragments were plotted on a biaxial plot against 
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parameters that were used in t-SNE dimension reduction, we were not able to identify parameters 
that immediately contributed to their fragmentation (Fig. 2C).  

Conversely, tight clusters that form at the end of the plateau remain mostly unchanged until the 
EE continues (Fig 2 A, B). The KLD minimization in that case could be explained by the gradual 
shrinking of the 2D space (data not shown). Once EE is removed, the attractive forces within each 
cluster are weakened and the local structure of the data is fully resolved within each cluster. Overall, 
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these observations suggest that the EE stage of gradient descent is essential for clusterization of 
datapoints while the non-exaggerated descent results in resolution of local structures.  

 
3.4. Stopping early exaggeration after the plateau phase produces maps of optimal quality  

We have demonstrated that when the EE is too short, cell clusters continue being resolved 
simultaneously with local structure of each cluster being unfolded, which leads to fragmented, 
overlapped or deformed “islands” in the resulting map. This conclusion allows an equation to be 
construction to find optimal early exaggeration timing. We track the relative rate of KLD change 
(KLDRCN = 100% *((KLDN-1 – KLDN)/ KLDN-1) where N is the iteration number) and locate the 
local maximum (maxKLDRC) (Fig. 3A). Since KLD is computed at each iteration, the 
maxKLDRC ‘sensor’ can be easily added to the algorithm programmatically and would stop EE at 
the next iteration past maxKLDRC. For mass41parameter dataset of 1M datapoints, the 
maxKLDRC was detected at iteration 705. We ran t-SNE with EE stop at iteration 706 and sampled 
map development at 706, 1.5x706, 2x706, 2.5x706 and 3x706 iterations (Fig 3B). As expected, at 
maxKLDRC iteration the map contained the primordial clusters only; it was fully shaped at 2 x 
max KLDRC and there was no visible improvement in map quality past that step and the 
visualization was very similar to EE750/3000 map at Fig. 1A). As expected, when compared to the 
map ran with ‘default’ settings of EE taking 25% of the run but running the same number of 
iterations (1410), the EE-triggered t-SNE produced superior results within the same computation 
time, and it also eliminated extensive trial-and-error calibration of t-SNE parameters (Fig. 3C). We 
propose a conservative approach to finalize the embedding when KLDRC < KLD/10,000. 
Alternatively, t-SNE projection output can be evaluated in real time to justify the termination of 
embedding.  
 
3.5. Moderate adjustments of EE factor and perplexity do not impact visualization  

Once we found EE to be crucial for map optimization, we decided to examine if the value of EE 
factor a can also be tuned to improve the results of t-SNE. We have altered the C++ t-SNE code 
since in the original Barnes-Hut C++ t-SNE implementation the EE factor is hardcoded, and all our 
previous results were obtained with default value of a = 12. We chose the parameters defined above 
(a = 12, EE = 706 iterations, 1410 iterations total) as our baseline for comparison since they 
provided optimal balance of map quality/computation time. First, we tested how the optimization 
would proceed without EE (a = 0). We expected the run to fail or produce extremely crowded 
results as explained in the original t-SNE report (van der Maaten and Hinton 2008), however, we 
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did not see much overlap in cluster positioning, probably due to the fact that we ran a substantial 
number of map iterations (Fig 4B). Nevertheless, the resulting map showed a lot of fragmentation 
proving to be an extreme case of interrupted plateau phase. Even when run for as many as 3000 
iterations, the fragmentation could not be remedied, once again demonstrating the necessity of EE.  

As expected, higher values of a lead to much higher KLD during EE, however, the KLD of 
resulting maps at 2000 iterations when a is	varied	between	4	and	60	was	comparable	(Fig.	4A). 
Larger a prolongs the plateau phase and become detrimental for KLD values when over 100. 
Visually a = 200 results in a distorted map with smaller populations lost. We suggest that for 
cytometry applications a parameter may remain unchanged and set to 12, as suggested in van der 
Maaten 2014, or reverted to a = 4, as originally proposed in van der Maaten and Hinton (2008) 
since based on our experience, any value between 4 and 20 leads to comparable results. 

Increased perplexity has been proposed as an intuitively beneficial method for visualization 
improvement since it translates to larger number of considered nearest neighbors and hence more 
accurate approximation of attractive forces, while decreased perplexity can completely fail the 
visualization (Wattenberg 2016). KLD values of runs with varying perplexity cannot be compared 
since KLD value is related to perplexity, but it does not appear that increased perplexity results in 
faster resolution of clusters (Fig 4C) or cleaner data visualization (Fig 4D). However, while 
changing a does not affect t-SNE computation time, perplexity is linearly related to the time and 
memory required to create the embedding (data not shown). Although we and others have seen 
some benefits of perplexity increase for map quality in otherwise suboptimal t-SNE runs, 
optimizing the EE step as described above and further in this work does not leave much space for 
improvement with perplexity tuning (Fig 4E).  

 
3.6. Learning step size is a key parameter to ensure t-SNE visualization of large datasets 

The step size in t-SNE gradient descent is updated at each iteration per Jacobs adaptive learning 
rate (Jacobs 1988). This method increases the learning rate in directions in which the gradient is 
stable. A conservative initial value of 200 is hard-coded into most platforms. We hypothesized that 
larger datasets may stay longer on KLD plateau due to the number of iterations it takes to build up 
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a sufficient learning rate step size. To evaluate this possibility, we titrated the step size h while 
observing the KLD with fixed EE=1000 iterations in Mass41parameter dataset. In agreement with 
our hypothesis, h = 25 and h = 50 runs failed to resolve from KLD plateau within 1000 iterations 
of EE (Fig 5A) and h = 200 finished the plateau in ~700 iterations as previously shown. With further 
increase in h, we found that not only it takes progressively less iterations to complete the plateau, 
but also the final KLD of the maps scored at lower values. KLD is directly related to the quality of 
visualization since it reflects the faithfulness of representation of high-dimensional data in t-SNE 
space, therefore, lower KLD values indicate superior visualization quality. 

With higher h values, we continued to see improvement in plateau duration and KLD values 
until h ~ 64,000, a value that is drastically far from the “default” h = 200 setting (note that in most 
platforms, h is restricted to ranges below 3,000) (Fig. 5B). At h ~ 256,000 we observed irregular 
peaks in KLD graph indicating that the visualization starts to fail calculating stable gradient. 
However, using lower values of h we were able to converge the map with lowest KLD values at 
the fraction of time when limiting the EE step to 200 and even 100 iterations despite the 1M size 
of the dataset (Fig. 5C). Visual inspection of the embedded maps over the range of h values agrees 
with KLD values (Fig 5D). 

In a recent theoretical publication, Linderman and Steinerberger (Linderman and Steinerberger 
2017) prove that generally t-SNE embedding will not converge if a product of EE factor a (which 
is we kept at a default value of 12) and of learning rate step size h is larger than the number of 
datapoints n (i.e. if ah>n). Since we employ adaptive learning rate, our selection of initial h value 
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is more forgiving, however, in our experiments we found the optimal settings of h to be close to h 
= n / 12. Therefore, we propose to initiate the gradient descent with h = n / a to create optimal t-
SNE visualization (Fig 4E).  

 
3.7. Opt-SNE allows successful embedding of large datasets 

We implemented all proposed techniques including dataset-specific automated early exaggeration 
step controlled by KLDRC sensor and calculated optimal learning rate step size, and KLDRC-
driven embedding termination, in a single workflow that we labeled ‘opt-SNE’, or ‘optimized t-
Stochastic neighbor embedding’. To test opt-SNE performance, we chose a >20,000,000 event 
fluorescent cytometry dataset concatenated from 27 individual PBMC samples stained with a 
variation of the OMIP-037 fluorescent cytometry panel that allow assessment of naïve and memory 
T cell subsets and deeper gamma delta T cell analysis (Fig 6A). The embedding completed in 770 
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iterations with only 73 iterations required to pass the EE step (with h = 1,537,700) and resulted in 
clear separation of cell clusters as evaluated by marker annotation (Fig 6C). Embedding was also 
annotated per sample to control for batch effects in clustering. The majority of populations appear 
to be evenly represented in all subjects with the exceptions of several populations that contained 
sample-unique debris features (Fig 6B, arrows). A detailed breakdown of identified populations is 
presented in Fig 6D that shows subsets of CD4+ and CD8+ T cells, NK cells, gamma delta T cells, 
B cells and monocytes. Interestingly, B cells and monocytes were labeled together with dead cell 
marker in a dump channel in this panel and therefore cannot be gated accurately via traditional 
analysis. However, t-SNE has been able to identify them in high-dimensional space by the 
combination of other markers and light scatter characteristics and cluster them into populations 
minimally mixed with dead cells. Remarkably, running a standard t-SNE algorithm over several 
thousands of iterations completely failed to reveal the structure of the multi-million flow cytometry 
data (Fig 6E). 

To test the applicability of opt-SNE for applications beyond flow and mass cytometry, we 
analyzed the 1.3M cell single-cell RNA-seq dataset of mouse embryonic brain cells published by 
10X/Chromium. We used pre-calculated PCA projections reported by 10X to generate our opt-
SNE maps that we compare with 10X t-SNE embedding (Fig 6F). In their visualization, 10X used 
EE = 1000/total 4000 iterations of standard t-SNE while we used opt-SNE settings (h = 97,959, EE 
= 66/total 885 iterations, Fig 5G). Clean annotation of non-immune transcriptomics analysis is not 
as straightforward as with cytometry data, since fewer scRNAseq markers can be interpreted for 
population identification. We applied the same labeling approach as suggested by 10X, however, 
opt-SNE embedding allowed us to resolve several cell clusters that were not clearly separated in 
10X visualization (Fig. 6F, arrows) despite suggestive transcription profiles (data not shown). 
Therefore, opt-SNE allowed equivalent or superior resolution of single cell transcriptomics data as 
with standard t-SNE but with ~5x smaller iteration time.  

 
4. Discussion 

Similarly to other types of biological data, cytometry data carries a structure that is difficult to 
project because of its mixed nature often comprising cluster-like, manifold-like and/or  hierarchical 
components (Finn et al. 2008; Mazza et al. 2018). In this paper we propose several techniques that 
are essential for optimal t-SNE data projection and are focused on fine-tuning of the early 
exaggeration stage of t-SNE embedding. EE was designed to ensure cluster formation on a 2D 
plane (van der Maaten and Hinton 2008). We propose an efficient measure to ensure that the 
cluster-like global structure of the data is fully revealed during the EE stage by monitoring the KLD 
output of the embedding in real time. However, it is possible that prolonged amplification of 
attractive forces that drives tight cluster formation in EE is detrimental for manifold-like local data 
structure that is often represented by so called ‘continuously-expressed’ markers. These molecules 
include major hallmarks of cell functional state and guide cell activation and exhaustion, as well as 
indicate disease phenotypes. The non-exaggerated stage of t-SNE allows to reveal local data 
structures (van der Maaten and Hinton 2008) if they are preserved during the EE stage. Therefore, 
cytometry data analysis would be missing valuable information if we reduced t-SNE applicability 
to clusterization only, especially since other techniques would perform that task better and faster. 
However, some workflows call for t-SNE pre-processing to facilitate extraction of cluster features 
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from multidimensional data (Becher et al. 2014; Diggins et al. 2015). In those cases, it may be 
helpful to adapt opt-SNE toolkit to terminate the embedding calculation immediately at the EE stop 
iteration and assess local structure after a clustering algorithm has identified populations in the t-
SNE space.  

Conversely, t-SNE is sometimes used to structure cytometry data in which the cluster-like 
structure is not prominent simply because of the tool’s accessibility. It is advisable to note that 
certain data structures cannot be revealed with t-SNE (Im et al 2018) (Amid and Warmuth 2018) 
and, more generally, that features identified from t-SNE embedding must be verified with 
alternative methods.  

Im and colleagues also suggest that if a continuous manifold structure exists in the data, large 
perplexity values may cause artificial breaks (overclustering) in the data. Perplexity values 
commonly used in cytometry analysis are on the lower end of suggested range for efficient 
clustering since it is often advised to scale the number of nearest neighbors to the average cluster 
size (Cao and Wang 2017), however, that might facilitate feature preservation for markers whose 
expression is not bimodally distributed.  

Visual exploration of data drives hypothesis formation and human serendipity, therefore t-
SNE is an extremely valuable tool for data comprehension. It is often used to facilitate data 
perception when hypothesis generation is automated by robust computational methods (Butler et 
al. 2018; Van Gassen et al. 2015). It is also valuable for quality assessment of data, when 
abnormal clustering could be traced back to sample preparation, data acquisition and 
preprocessing artifacts (Mazza et al. 2018). For these applications, batch embedding of multiple 
experimental points is essential for sample comparison and can only be enabled when t-SNE 
accommodates large datasets. Several approaches to large scale t-SNE have been recently 
reported including LargeVis (Jian et al. 2016), net-SNE (Cho et al. 2018) and HSNE (van Unen et 
al. 2017), however, these improved methods often require considerable computational resources 
(for instance, LargeVis results were generated on a 512Gb RAM, 32 core station). With proper 
RAM allocation and multicore adaptations, Barnes-Hut t-SNE can be routinely run on a data 
analysis station in an immunology lab. In this work, we have not focused on computation time 
and efficiency since we were benchmarking the algorithm against itself and our improvements in 
computation time occurred due to less iterations required to complete the data embedding. 
However, all our analyses were performed using several personal computers with the exception of 
20M embedding that required ~60Gb RAM at its peak. Nevertheless, we expect our conclusions 
to be applicable for existing or future adaptations of t-SNE even if they utilize alternative 
methods of computation (Chan et al. 2018; Linderman et al. 2017) as long as they retain the core 
principles of t-SNE embedding.  

In cytometry, t-SNE was first introduced as a tool to visualize CyTOF data as fluorescence-
based high-parameter datasets were less common. With recent advances in instrument and 
reagent availability, flow cytometry datasets with > 20-25 parameters are quickly becoming 
prevalent and even standard in the field, while the data assessment tools available for a general 
userbase are still lacking. Recently, DNA-barcoded antibodies have been used to allow 
simultaneous protein-epitope and transcriptome measurements in single cells (Stoeckius et al. 
2017) thus expanding the repertoire of traditional cytometry methods that could employ t-SNE as 
a staple method of data visualization and presentation. We believe that opt-SNE is a simple to 
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implement and powerful optimization that removes some of the major limitations in t-SNE use in 
cytometry and can potentiate multiple data-driven findings in single cell research.  
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Data and software Availability 

This	preprint	will	be	updated	with	repository	information	for	C++	implementation	of	opt-
SNE.		Cytometry	datasets	are	immediately	available	upon	request.		
To	facilitate	availability	to	flow	cytometry	and	scRNA-seq	data	analysts,	opt-SNE	has	

been	incorporated	into	FlowJo	version	≥	10.5.2	and	SeqGeq	version	≥		1.4.	This	option	was	
considered	experimental	and	therefore	hidden,	but	users	can	enable	it	by	adding	
<DRPlatform showAutoLearning="1" />	to	the	FlowJo10.prefs	(or	SeqGeq.prefs)	
XML	file.	
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